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ABSTRACT 

Membrane bioreactors (MBRs) are successfully being adopted in super-large-scale 

(>100,000 m3.d-1) applications due to several advantages, mainly superior and 

consistent effluent quality. Moreover, the significant reduction in the membrane and 

operating costs has contributed to its wider acceptance. Despite their considerable 

evolution in the recent past and large-scale applications in municipal wastewater 

treatment, fouling and the cost associated with its mitigation are still hot topics and 

need the attention of researchers and academia to optimize and reduce the expense of 

MBR in the range of the conventional activated sludge process (CASP). Mathematical 

modeling is a great tool to explore the model-based optimization of operating costs 

associated with fouling mitigation strategies. For this, a comprehensive and integrated 

process model must be adapted, calibrated, and validated at a super-large-scale facility. 

MBR involves complex interactions between biology and filtration, and its modeling 

is challenging without considering these interactions. In the recent past, integrated 

models have been developed and applied to MBRs, ranging from bench to pilot scales 

and rarely for full-scale facilities of capacity up to 15,000 m3.d-1. In this work, a super-

large-scale MBR plant with a design capacity of 348,000 m3.d-1 is dynamically 

modeled to simulate the depollution and filtration-fouling processes.  

The integrated model combines biochemical (ASM3-SMP-EPS-Bio-P, aeration, 

chemical precipitation), resistance in series (RIS) fouling, and energy sub-models. The 

comprehensive, integrated model is capable of simulating a) biological processes to 

describe the stoichio-kinetic activity of the biomass for carbon oxidation and nutrient 

removal (i.e., Nitrogen and Phosphorus) coupled with EPS-SMP production and 

degradation processes; b) the role of biological process aeration in carbon oxidation 

and nitrification under the influence of MLSS; c) the numerical balance of the volumes 

of the influent, effluent, sludge and all internal and external recirculation; d) coagulant 

addition inducing chemically enhanced phosphorus removal (CEPR) in addition to 

enhanced biological phosphorus removal (EBPR); e) fouling dynamics associated with 

synchronized filtration-relaxation, intermittent air-scouring and backwashing under 

the influence of transmembrane pressure (TMP), temperature, MLSS, and bound EPSs 
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concentration, and f) specific energy consumption. The model was calibrated using 

one-week data collected during the first experimental campaign and was validated 

against 92 days of data from the plant with and without the addition of FeCl3. 

The calibrated integrated model provided an acceptable correspondence for pollutants 

(COD, NOx, NH4, PO4
3-, MLSS, EPSs, and SMPs) removal and prediction of the TMP, 

a direct indicator for fouling development. The model also successfully produced 

acceptable datasets not available from routine measurements, e.g., the evolution of the 

biomass and transformation of the pollutants in each reactor in series. Moreover, the 

model can provide detailed insights into reversible and irreversible fouling dynamics 

under the synchronized influence of multiple fouling abatement controls, including 

filtration-relaxation, intermittent air-scouring, and backwashing. 

In order to be used to develop model-based controls and intelligent decision-making 

tools to optimize the functioning of the full-scale MBRs, particularly the air-scouring 

and activation and de-activation of the chemical washes to save energy and chemicals, 

this model would have to be validated in fouling conditions. Since it was not possible 

to test the limits of the model, the sensitivity analysis approach was investigated. 
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RÉSUMÉ 

Les bioréacteurs à membrane (BaM) sont utilisés dans des applications de traitement 

des eaux usées à très grande échelle avec succès (>100 000 m3.d-1) en raison de 

plusieurs avantages, principalement une qualité d’effluent supérieure et constante. De 

plus, la baisse importante des couts des membranes et de leur exploitation a contribué 

à cette acceptation plus large, même sur ce marché économiquement sensible. Malgré 

leur évolution considérable dans un passé récent et les applications à grande échelle 

dans le traitement des eaux usées municipales, le colmatage des membranes et le coût 

associé à sa limitation sont encore des sujets d’actualité et nécessitent des travaux pour 

faire baisser les dépenses du BaM vers des valeurs comparables à celles des procédés 

classiques de traitement à boues activées (BAC). La modélisation mathématique est 

un excellent outil pour l’optimisation, fondée sur des modèles, des coûts d’exploitation 

associés aux stratégies de limitation du colmatage, en particulier l’aération de la 

membrane, qui est le principal facteur contribuant aux coûts énergétiques des BaM. 

Jusqu’ici le travail nécessaire d’adaptation calibration et validation d’un modèle 

intégré n’avait pas encore été mené sur une installation à très grande échelle. 

Le BaM met en jeu des interactions complexes entre la biologie, la filtration et le 

colmatage, et sa modélisation est une tâche difficile en tenant compte de ces 

interactions. Dans le passé récent, des modèles intégrés ont été élaborés et appliqués 

aux BaM, principalement à l’échelle pilote, et rarement pour les installations à grande 

échelle de capacités allant jusqu’à 15 000 m3.d-1, et aucune étude de modélisation n’a 

été réalisée pour des installations à très grande échelle à ce jour. Dans ce travail, une 

usine concue sur la base d’un BaM à très grande échelle avec une capacité de 

traitement de 348000 m3.j-1 est modélisée dynamiquement pour simuler les processus 

de dépollution et de colmatage de la membrane. Le modèle intégré combine la 

biochimie (ASM3-SMP-EPS-Bio-P, aération et précipitation chimique), la résistance 

au colmatage en série (RIS) et les sous-modèles énergétiques. Le modèle intégré 

complet est capable de simuler a) les processus biologiques décrivant l’activité 

stoechico-cinétique de la biomasse pour l’oxydation du carbone et l’élimination des 

éléments nutritifs (c.-à-d. l’azote et le phosphore) couplés aux processus de production 
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et de dégradation des exo-polymères libres et liés; b) le rôle de l’aération pour le 

processus biologique dans l’oxydation et la nitrification du carbone sous l’influence 

des matières en suspension; c) le bilan matière sur les volumes des influents, des 

effluents, des purges et de toute recirculation interne et externe; d) l’ajout de coagulant 

pour l’élimination chimique améliorée du phosphore en plus d’une élimination 

biologique ; e) la dynamique de colmatage associée à la filtration-relaxation 

synchronisée, à l’air intermittent et au retro-lavage, sous l’influence de la pression 

transmembranaire (TMP), de la température, des MLSS et de la concentration en 

exopolymères liés, et f) de la consommation d’énergie spécifique en kWh.m-3 ou 

kWh.Kg-1, ainsi que de sa répartition entre usages. Le modèle a été étalonné à l’aide 

de données recueillies au cours d’une semaine de la première campagne expérimentale. 

Il a ensuite été validé par des données issues de 92 jours de fonctionnement avec et 

sans ajout de FeCl3. De plus, une analyse de sensibilité a été utilisée pour déterminer 

les paramètres influents afin de faciliter l’étalonnage des sous-modèles et de démontrer 

la robustesse du modèle. 

Le modèle intégré calibré a fourni une concordance acceptable pour l’élimination des 

polluants (DCO, NOx, NH4, PO4
3-, MLSS, SPE et PGS), ainsi que la prédiction de la 

pression transmembranaire qui est un indicateur direct du développement du 

colmatage. Le modèle a aussi permis de compléter les jeux de données lorsque qu’elles 

étaient non-disponibles à partir de relevés de routine. p.ex. évolution de la biomasse et 

transformation des polluants dans chacun des réacteurs en série. De plus, le modèle est 

en mesure de fournir des renseignements détaillés sur la dynamique des colmatages 

réversible et irréversible, en tenant compte des différents moyens mis en œuvre pour 

les limiter. Le modèle peut être utilisé pour le développement d’opérations de contrôles 

commandes et outils d’aide à la décision afin d’optimiser le fonctionnement des BaM 

à grande échelle, en particulier la gestion de l’aération grosses bulles pour la limitation 

du colmatage ou la gestion des lavages chimiques dans un objectif d’optimiser les 

couts de l’énergie et des produits chimiques. Ce modèle devait être validé dans des 

conditions de colmatage avérées. Celles-ci étant relativement faibles, une approche par 

analyse de sensibilité a été menée, qui a permis de pointer les paramètres majeurs et 

de donner les limites de la robustesse du modèle. Elle a permis de conclure à l’utilité 

du modèle dans les objectifs fixés de son utilisation.  
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 General Introduction 

This section presents a brief on a fundamental understanding of the membrane 

bioreactor (MBR), global challenges, various configurations, applications, global 

markets scenarios, prospective growth in the global market, and future research 

directions.  

 INTRODUCTION 

MBR is considered to be an intensified conventional activated sludge process (CASP) 

as it combines the features of low-pressure filtration technologies, especially ultra-

filtration (0.01-0.5µm) and microfiltration (0.1 – 0.4µm); and suspended growth 

biological reactors and results in the elimination of tertiary treatments (Abdel-Fatah, 

2018; Hai et al., 2018; Judd, 2010).  

MBR technology is a mature and well established and is being extensively adopted in 

wastewater treatment; for municipal, commercial and industrial applications 

(Krzeminski et al., 2017; Burman and Sinha, 2018; Habib et al., 2017; Hamedi et al., 

2021) because of number of advantages over CASP including: less space requirements 

(Zuthi et al., 2017; Kulesha et al., 2018; Xiao et al., 2019; Krzeminski et al., 2017), 

better process stability (Janus and Ulanicki, 2015), superior and constant supernatant 

quality (Krzeminski et al., 2017; Zuthi et al., 2017; Xiao et al., 2019; Hai et al., 2018; 

Habib et al., 2017), higher nutrient removal (Habib et al., 2017; Kulesha et al., 2018), 

higher heavy metal removal (Krzeminski et al., 2017), extended sludge retention time 

(Burman and Sinha, 2018; Habib et al., 2017), decoupling of hydraulic retention time 

(HRT) and sludge retention time (SRT) (Judd, 2008; Pimentel et al., 2015; Xiao et al., 

2019), better control over solid inventory and SRT (Boyle-Gotla et al., 2014), less 

sludge production (Cadore et al., 2018; Burman and Sinha, 2018; Habib et al., 2017; 

Zuthi et al., 2017), concentrated biomass loading/higher mixed liquor suspended solid 

(MLSS) (Akhondi et al., 2017; Hai et al., 2018), simultaneous and improved 

nitrification/de-nitrification (Burman and Sinha, 2018; Judd, 2008), higher volumetric 

loadings, improved disinfection of supernatant through, higher removal of pathogenic 

bacteria and viruses (Judd, 2008; Krzeminski et al., 2017; Gabarrón et al., 2015), 
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potential degradation of specific refractory pollutant ( Park et al., 2017, Dolar et al., 

2012, Ma et al., 2018), supernatant re-use applications (Krzeminski et al., 2017; Habib 

et al., 2017; Gabarrón et al., 2015; Shen et al., 2015; Zhang et al., 2014), reduced GHG 

impact (Baresel et al., 2022), and larger possibility of automation and control (Makisha 

et al., 2018).  

Despite all these leading edges over the CASP, the MBR technology is still struggling 

on many fronts, including limitations in oxygen transfer associated with higher 

biomass concentrations (Barreto et al., 2017), exorbitant loss of permeability due to 

fouling (Barreto et al., 2017; Hamedi et al., 2021; Kimura and Uchida, 2019); 30-34 

% higher operational costs (Bertanza et al., 2017) due to energy consumption in 

aeration and pumping and chemical consumption in cleaning to counter the membrane 

fouling (Krzeminski et al., 2017; Li et al., 2019; Meng et al., 2017), higher investment 

(Xiao et al., 2019; Zhang et al., 2021), an increased tendency for foaming (Judd, 2010), 

sludge production with high dewatering requirements and yet higher costs for 

membrane replacement (Lo et al., 2015; Iglesias et al., 2017). All these disadvantages 

hamper the MBR for its broader applications and even penetration to the costs sensitive 

markets (Krzeminski et al., 2017; Mirbagheri et al., 2015).  

In addition, membrane fouling induces transmembrane pressure (TMP) increase, 

which is evaluated to be the main trigger. In the recent past, several efforts have been 

dedicated to reducing and optimizing the cost of membrane aeration associated with 

membrane fouling mitigations, and still, no universal solution has been explored 

(Krzeminski et al., 2012, 2017). 

 VARIOUS CONFIGURATIONS OF MBRS 

Different MBR configurations are available; depending upon the oxygen availability, 

permeate flow direction, placement of the membrane module, membrane geometry, 

and reactor configurations associated with recirculation directions. The submerged 

membrane bioreactor (SMBRs) is the most common, widely used in municipal 

applications and equally popular among researchers ( Zhang et al., 2021). 

MBRs usually target nitrogen and phosphorous simultaneously. For effective 

biological nutrient removal (BNR), several arrangements for oxic, anaerobic, and 

anoxic environments are used in various configurations (Monclús et al., 2010; 
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Vaiopoulou et al., 2007). For example, configurations such as modified Ludzack-

Ettinger (MLE) process, A/O, A2/O, University of Cape Town (UCT), Virginia 

Initiative Process (VIP), and Bardenpho process have been tried and tested for nutrient 

removal in MBR (Ahn et al., 2003; Ersu et al., 2010; Hai et al., 2018). All these 

configurations give different performances for BNR, and this is mainly because of the 

introduction of intermittent aeration (Wang, 2020) and re-circulations of the sludge 

from the aerobic to anaerobic (Daigger et al., 2010; Monclús et al., 2010) reactors, 

which impact the microbial community and stimulate competition among them for the 

substrate utilization. A detailed assessment of multiple MBR configurations for their 

effectiveness in nutrient removal is published as part of the peer-reviewed publication 

of this work, placed in Annexure-A. 

Several submerged MBR technologies have now been commercialized with improved 

membranes and lower capital investment (Zhang et al., 2021). By 2010, at least 

seventy recognized manufacturers of MBR systems (Sutherland, 2010) were 

operational around the world, including Zenon-Zeeweed (General Electric), Memcor 

(Siemens), Asahi Kasei (Kubota OW), Memstar (United Envirotech), Mitsubishi 

(Mitsubishi Rayon Engineering ), Puron (Koch Membrane Systems), Toray, Econity, 

Kolon & Para, and PentAir Xflow (Buer and Cumin, 2010; Hai et al., 2018; Judd, 

2010) and competing for global supplies. The following section briefly presents 

different configurations used in commercially available systems for full-scale 

applications. 

 LARGE SCALE APPLICATION OF MBRS AND THEIR EVOLUTION 

By 2005, around 2,200 MBR plants were globally operational (Mirbagheri et al., 

2015). North America reported 219 MBR facilities treating municipal wastewater, 

with just 17 exceeding 10,000 m3.d-1 (Yang et al., 2006).  Around 37 MBR plants with 

5,000 m3.d-1 capacity were operational in 2008, while more than 800 commercial MBR 

WWTP were operational in Europe (Lesjean and Huisjes, 2008). As shown in Fig. 1.1, 

the installed capacity of the individual MBR jumped to the next level after every five 

years. 

It has been reported that the size of the MBR plants has exponentially increased over 

the past few years and has crossed the individual plant installed capacity of 



Chapter 1: General Introduction 

4                                                                                                                           PART-I: PREAMBLE TO THESIS 

100,000 m3.d-1 (Xiao et al., 2019; Zhang et al., 2021), with the largest operational 

plants located in Stockholm (Sweden), Beijing (China), Guizhou (China) and Paris 

(France) having treatment capacities of 0.86 million m3.d-1, 0.78 million m3.d-1, 0.35 

million m3.d-1 and, 0.348 million m3.d-1, respectively (Judd and Judd, 2018; 

Krzeminski et al., 2017). 

 

Fig. 1.1: MBR generations adopted and modified from Buer and Cumin (2010) 

As of today, globally, there are around 62 super-large scales (>100,000 m3.d-1) MBR 

facilities contributing to the treatment of more than 11.4 million m3.d-1 of wastewater, 

with almost 60% of this treatment capacity located in China (Xiao et al., 2019; Zhang 

et al., 2021). Notably, most of these large-scale MBRs are used for municipal 

wastewater treatment, whereas industrial wastewater treatment MBRs are much 

smaller (Meng et al., 2017). Still, most of the MBR plants operational worldwide are 

medium- or small-scale in capacity. 

 MBR MARKET AND GROWTH DRIVERS  

Since the mid-1990s, MBR plants have been installed at an exponential rate due to 

technological advances, e.g., lower operating costs with an immersed configuration as 

discussed in section 3.1 and considerable reductions in the membrane cost (Zhang et 

al., 2021). As a result, the number and capacity of MBR installations continue to grow 

further, and the global size of the MBR market was valued at US$ 3.09 billion in 2020 

and is further forecasted to reach US$ 5.48 billion by 2028 at a compound annual 

growth rate of 7.02% (Emergen, 2021). Worldwide, APAC (Asia-Pacific) is 

considered to have the highest MBR market growth in the world. Fig. 1.2 summarizes 
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the MBR market growth by region during the period 2017-2024 (Market Research, 

2022). 

 

Fig. 1.2: MBR market value (US$) by region (Market Research, 2022). 

 

Growing risk of water scarcity, ability of MBR to provide superior and consistent 

effluent quality, stricter regulation for effluent discharge, reducing investment costs, 

maturity and acceptance of the technology, and the opportunity to upgrade existing 

WWTPs are the key driving factor for broader applications and growing MBR market.  

 RESEARCH TRENDS  

Keeping in view the growing commercial acceptance and large applications, dedicated 

and focused research is being carried out by academia and manufacturers. The 

economics of the MBR technology is linked to energy consumption, filtration 

efficiency (higher and consistent flux), and membrane replacement costs (Krzeminski 

et al., 2017). High energy consumption, operation costs, and fouling issues are still the 

dominant areas of research in the field of MBRs (Aslam et al., 2017; Krzeminski et 

al., 2017; Meng et al., 2017). As shown in Fig. 1.3, a chronological sequence of paper 

publishing, patent applications and large-scale MBR is presented, and it can be seen 

that by the end of 2021, the cumulative numbers of scientific publications and patents 

were 15,195 and 16,287, respectively. 
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Fig. 1.3: MBR publications, patents, and full-scale engineering applications for the 

last 25 years (Scopus, April-2022) 

The direction of research in the last two decades has been focused on applications, the 

development of novel configurations and the optimization of the MBRs. The 

optimization aims are to improve operational efficiency, improve performance for 

target pollutant removal, cut construction and operating costs, and reduce energy 

consumption in operations, especially air scouring. Membrane fouling control is an 

ongoing MBR research goal. Generally, novel fouling control, aeration, and intelligent 

air scour regulation systems are expected in the near future (Xiao et al., 2019; Zhang 

et al., 2021). The comprehensive review by Meng et al. (2017) also mapped the 

research needs beyond 2020, as shown in Fig. 1.4, with the focus on the development 

of the fouling controls system for full-scale applications and to reduce the specific 

energy demand, which is needed due to both environmental and economic concerns. 

Lower specific energy demand is expected with the construction of more super large-

scale MBR facilities coupled with precise and automatic control of innovative aeration 

strategies based on analyses of pollutant removal and membrane fouling (Zhang et al., 

2021). 
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Fig. 1.4: Research needs for pilot and full-scale MBRs (Meng et al., 2017) 

 

 SUMMARY AND IMPLICATIONS 

To sum up, MBR is an upgraded version of CASP that offers superior and consistent 

effluent quality with operating costs significantly reduced in the last decade, which is 

now almost comparable to CASP. As membrane modules gradually become cheaper, 

demands for the quality of treated effluent become more stringent, and the operation 

of MBRs gradually becomes more cost-effective, the market for MBRs in both 

industrial and municipal water grows. Further research is expected to reduce the 

specific energy consumption when coupled with a robust and intelligent fouling 

control system for full-scale applications. 
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 Membrane Fouling in MBRs 

and its Control  

Understanding the fouling mechanism is pertinent for the development of any 

mechanistic models for simulation of the fouling evolution in MBRs with time as well 

as in synchronization with the fouling control measures in place. This chapter presents 

the literature review on membrane fouling, factors that influence it, and the various 

types of fouling development mechanisms. It also presents a detailed review of the 

effects of the addition of the coagulant. Furthermore, several commercially available 

fouling control strategies are discussed in this chapter. 

 MEMBRANE FOULING 

Understanding the fouling phenomenon is an essential requirement for developing the 

systems and strategies for the sustainable operations of the MBR. Fouling is the result 

of chemical and physical interactions happening between the mixed liquor and the 

membrane surface in a submerged membrane bioreactor (Krzeminski et al., 2017; 

Burman and Sinha, 2018). Therefore, the membrane and bioreactors cannot be studied 

in isolation while understanding the fouling mechanism in sMBR (Drews, 2010). 

Fouling can be described as a lumped effect of multiple factors resulting in gradual 

loss of the membrane permeability due to concentration polarization, 

deposition/adsorption of organic (including microbes and dead cells) and inorganic 

colloids (including metal salts added for chemical precipitation), and suspended 

matters within and onto the surface of the membrane (Krzeminski et al., 2017; Aslam 

et al., 2017; Boyle-Gotla et al., 2014; Azis et al., 2018). Loss of membrane 

permeability leads to a decline in permeate flux, higher TMP, aeration shear 

implementation; resulting in more energy consumption and frequent cleaning of the 

fouled membranes (Azis et al., 2018; Burman and Sinha, 2018; Drews, 2010; Zuthi et 

al., 2017). The permeability loss of the membranes may also be due to the sludging 

and clogging of the membranes modules and bundles (Drews, 2010). Membrane 

fouling is likely to contribute to the deterioration of supernatant quality and membrane 

performance and reduces the useful life of the membrane, which is estimated at around 

ten years (Cote et al., 2012), and results in enhanced operating costs. 
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The fouling process is explained in Fig. 2.1. Fouling is attributed mainly to the 

mechanisms simultaneously and interlinkingly happening in MBRs, including i) 

sorption of soluble micro-colloids inside the membrane pores, ii) pore plugging due to 

the deposition/adsorption of particles inside the membrane pores, iii) the formation of 

cake layer outside the membrane surface as a result of biomass deposition (Habib et 

al., 2017; Krzeminski et al., 2017; Shen et al., 2015; Zuthi et al., 2017). 

 

Fig. 2.1: Fouling phenomenon and fouled HF membrane  

 

In recent publications, MLSS is reported to be the significant and poorly understood 

factor for membrane fouling as major foulants, including biofilm with extracellular 

polymeric substances (EPS), soluble microbial products (SMP) / organic compounds, 

colloids, particulates, dead cell debris, dissolved inorganic compounds, and sludge 

flocs; are parts of it and produced within due to biological and chemical processes 

(Habib et al., 2017; Iorhemen et al., 2016; Krzeminski et al., 2017; Oliver et al., 2008).  

 CLASSIFICATION OF THE MEMBRANE FOULING 

Membrane fouling is classified in multiple ways, and there is no universally accepted 

and adopted approach. Based on the literature, fouling can be classified based on three 
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distinct approaches, i.e., i) flux recovery, ii) the location of fouling, and iii) fouling 

components.  

  Classification based on flux recovery  

Reversible fouling is attributed to the formation of a sludge cake layer by loosely 

attached foulants which can be removed through physical means such as backwashing 

/ relaxation (Di Bella et al., 2018; Drews, 2010; Meng et al., 2017). After physical 

cleaning, the flux can be recovered to an acceptable level. Due to the fact that the 

detachable foulants return to the mixed liquor during aeration scouring or 

backwashing, fouling is often referred to as recoverable. Irreversible fouling is linked 

to pores constriction caused by permanently attached foulants and can be removed 

through chemical cleaning or chemically enhanced backwashing (Di Bella et al., 2018; 

Drews, 2010); the flux cannot be recovered through physical means. 

  Classification based location of the fouling  

The cake layer or external fouling is due to the formation of the layer on the membrane 

surface and is considered the major mechanism of fouling (Lee et al., 2018; Zuthi et 

al., 2017). The constituents of the MLSS, including proteins and polysaccharides, tend 

to form a gel layer on the membrane surface while colloids accumulate on the 

membrane surface and adsorb on the gel layer, leading to the gradual formation of a 

cake layer (Lee et al., 2018; Meng et al., 2009). This cake layer is reversible and can 

be removed through backwashing (Lee et al., 2018). Some of the colloidal constituents 

of MLSS having sizes smaller than the pores size get entrapped in the pores and cause 

plugging, which results in a substantial loss in porosity and permeability of the 

membrane. This type of plugging can only be removed through chemical cleaning (Lee 

et al., 2018). Clogging happens due to the agglomeration of solids (organic and 

inorganics) in the pores openings of the membrane and results in permeability loss. 

Clogging is attributed to the phenomenon of slugging (filling of membrane channels 

with solids) and braiding (accumulation of hairs and fibers on the membrane surface) 

or also known as ragging (Stefanski et al., 2011). 
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 Classification based on biomass constituents  

Depending upon the nature of fouling matter, fouling may be classified into three 

categories, i.e., i) biofouling, ii) organic fouling, and iii) inorganic fouling (Hai et al., 

2018; Judd and Judd, 2018; Kulesha et al., 2018; Meng et al., 2017).  

Biofouling is defined as the deposition, growth, and metabolism of undesirable micro-

organisms (resulting in the formation of bound EPS and SMP) or flocs onto the 

membrane surface and the pores, leading to the development of the biofilm/bio-cake 

and membrane resistance increase, which results in severe fouling and a steep decline 

in flux (Aslam et al., 2017; Burman and Sinha, 2018; Busch et al., 2007; Janus and 

Ulanicki, 2015; Kulesha et al., 2018). Bio-cake formation is considered the main 

reason for fouling (Meng et al., 2009).  

Organic fouling is described as the deposition and adsorption of soluble microbial 

SMPs and EPSs within the pores of the membrane and on the surface of the membrane, 

respectively (Ni et al., 2011; Meng et al., 2017; Drews, 2010). Organic fouling is 

considered a subset of biofouling (Burman and Sinha, 2018). It is caused by the 

formation of biofilm and attachment of colloidal organic and microbial substances on 

the membrane surface (Meng et al., 2017). In addition, synthetic organics, greases, oil, 

and surfactants present in the wastewater also accumulate on the membrane surface 

and result in membrane fouling (Kulesha et al., 2018). SMPs are responsible for the 

initial fouling of the membrane. The EPSs, being the major organic foulants, are 

responsible for prolonged fouling of the membranes, which may lead to irreversible 

fouling and eventually early replacement of the membrane (Meng et al., 2007; Wang 

et al., 2008). The effects of SMPs on membrane fouling are attributed to the factors 

such as i) SMPs concentrations in the mixed liquor, ii) membrane material, and iii) 

operational mode). In addition to fouling, SMPs are also responsible for effluent 

quality as the COD is linked with the formation of the SMPs (Ni et al., 2011). SMPs 

are low to high molecular weight compounds ranging between 0.5 -50 kDa. Due to 

their solubility potential, these can get into the pores of the membranes and get 

deposited onto the pores surface. Measurement and characterization of SMPs are still 

a challenge because of their unknown composition. As mentioned by Meng et al. 

(2017), the research on the role of SMPs on the membrane fouling has been of great 

interest but is still poorly understood (Meng et al. 2021). Similarly, Ni et al.(2011) 
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have recommended to explore the interaction between the SMPs and EPSs happening 

in the mixed liquor and on the surface of the fouled membrane due to the constant 

formation of SMPs associated with the release of EPSs. Inorganic fouling in the MBR 

occurs due to chemical and biological precipitation of mineral ions (Ca2+, Mg2+, Fe3+, 

Al3+, SO4
2-, PO4

3-, CO3
2-, OH-, etc.) and ionizable groups (COO-, CO3

2-, SO4
2, PO4

3-, 

OH-) on the membrane surface. Mineral ions are accumulated on the membrane 

surface through entrapment in the gel layers (Wang et al., 2008). Inorganic mineral 

ionizable groups may cause fouling when precipitation occurs on the membrane due 

to hydrolysis and oxidation during the chemical process, such as coagulation 

(Iorhemen et al., 2016). 

 FACTORS AFFECTING THE MEMBRANE FOULING  

Parameters responsible for membrane fouling can be grouped into different categories 

such as i) influent wastewater properties, ii) Biomass characteristics, iii) operating and 

hydrodynamic conditions, iv) membrane module and characteristics (Le-Clech et al., 

2006; Akhondi et al., 2017; Deung Park, 2015; Meng et al., 2009). A classification of 

the factors affecting the MBR fouling is shown in Fig. 2.2 (see Page.19.). 

 

 

Fig. 2.2: Classification of the factors affecting the fouling in MBRs 
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Fouling in MBR is still poorly understood because of the several cross-boundary 

interactions happening among all four categories of factors and at various levels of the 

system, as explained by the interlinking chart in Fig. 2.3. 

 Mixed liquor characteristics  

Activated sludge composition plays a crucial role in the development of fouling in 

MBRs. As it has already been discussed in the previous section, the MBRs are usually 

operated at higher solid concentrations and, therefore, fouling may be impacted. 

According to the literature review, several properties of the mixed liquor, such as 

MLSS concentration, viscosity, EPS/SMP concentrations, floc size, and structure, 

affect the fouling phenomenon and are necessary to better understanding mechanistic 

modeling of the MBRs. A synthesis of the mixed liquor properties affecting the 

membrane fouling is presented in Table 2-1. 

Table 2-1: Effect of biomass properties on membrane fouling in MBRs 

Sr# Mixed liquor 

Characteristics 

Effect on Membrane Fouling 
References 

1. Mixed Liquor 

Suspended 

Solids (MLSS) 

Concentration-  

MLSS concentration has a positive co-

relation with the fouling rate. 

(Bottino et al., 2009; 

Chang and Kim, 

2005; Pan et al., 

2010; Psoch and 

Schiewer, 2006; 

Trussell et al., 2007; 

Wu and Huang, 2009; 

Yigit et al., 2008) 

 

MLSS concentration has a negative co-

relation with the fouling rate. 

(Kornboonraksa and 

Lee, 2009; 

Rosenberger et al., 

2006, 2005) 

MLSS concentration has little to no co-

relation with the fouling rate. 

(Le-Clech et al., 

2003; Lesjean et al., 

2005) 

Higher MLSS concentration induced 

faster membrane fouling by increasing 

the chances of sludge deposition on the 

membrane surface due to the presence of 

higher EPS and SMP concentrations. 

(Lousada-Ferreira et 

al., 2010) 

2.  Mixed liquor 

viscosity  

 

Sludge viscosity is found to have a 

positive correlation with the fouling rate.  

(Chae et al., 2006; 

Itonaga et al., 2004; 

Le-Clech et al., 2006; 

Moreau et al., 2009; 

Trussell et al., 2007) 
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Sr# Mixed liquor 

Characteristics 

Effect on Membrane Fouling 
References 

3 Extra polymeric 

substances 

(EPSs)  

EPS concentration have a positive co-

relation with the fouling rate 

(Chae et al., 2006; 

Drews et al., 2006b; 

Xie et al., 2012) 

Polysaccharides  Only the polysaccharides fraction of the 

EPSs positively affected the fouling rate.  
(Lesjean et al., 2009) 

Tightly bond 

EPS 

Tightly bound EPS has more potential to 

foul the membrane than the loosely 

bound EPSs. 

(Ramesh et al., 2007) 

4 Soluble 

microbial 

products 

(SMPs)  

SMPs contribute less to the fouling as 

compared to the EPSs. 
(Ramesh et al., 2007) 

SMPs concentrations with MLSS 

concentrations exceeding 10 g.L-1 did 

not have any effect on the membrane 

fouling. The optimal MLSS 

concentrations for MBR < 710 g.L-1 

(Lousada-Ferreira et 

al., 2010, Nadeem et 

al., 2022) 

 

The concentration of SMPs reduced as 

SRT increased and the rate of membrane 

fouling.  

(Meng et al., 2009) 

SMPs are accumulated on the membrane 

surface, reducing the filterability, and 

thus increasing the fouling.  

(Drews et al., 2006; 

Geng and Hall, 2007; 

X. Zhang et al., 2015) 

6 Particle size  Generally, a decrease in floc size 

increased the membrane fouling; 

consequently, increase in floc size 

improved filtration. However, there are 

studies where an increase in the floc size 

(associated with coagulant addition) also 

results in a fouling increase (Nadeem et 

al., 2022). Furthermore, a decrease in 

the floc size reduced the viscosity of the 

sludge (Braak et al., 2017). 

(Lin et al., 2011; Shen 

et al., 2015; Wang et 

al., 2011) 

7 Filamentous 

bacteria 

The higher concentrations of 

filamentous bacteria increased the 

viscosity of the sludge and caused 

bulking, which the severally increased 

cake resistance.  

(Kim et al., 2013; 

Meng et al., 2017) 

 

 

 Influent composition and operational parameters 

Influent composition and operating conditions include sludge retention time (SRT), 

hydraulic retention time (HRT), biological aeration or dissolved oxygen (DO) 

concentrations, temperature, permeate flux, and sequence and duration of 

backwashing or relaxation. Numerous studies have been conducted to determine the 

effect of MBR operational parameters on the membrane fouling, and the summary of 

these studies is presented in Table 2-2. 
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Table 2-2: Influent composition and operating parameters and their influence on 

MBR fouling  

Sr# 

Influent 

Characteristics 

/operating 

parameters 

Effect on Membrane Fouling References 

1 Hydraulic 

retention time 

(HRT) and 

Sludge retention 

time (SRT) 

Low HRTs and/or too long SRTs 

increased the fouling rate and reduced 

the filtration efficiency of MBRs. SRT 

of 20-30 days and HRT of 12-18 hours 

has been found optimum. 

(Chae et al., 2006; 

Deng et al., 2015; 

Fallah et al., 2010; 

Guo et al., 2012; 

Huang et al., 2011; 

Jeong et al., 2010; 

Meng et al., 2009; 

Shariati et al., 2011; 

Villain and Marrot, 

2013) 

2 F/M ratio or 

organic loading 

rate  

A higher F/M ratio increased the 

metabolic growth and EPS production, 

which increased the irreversible 

fouling. 

(Dvořák et al., 2011; 

Khan et al., 2013; 

Liu et al., 2012; 

Meng and Yang, 

2007) 

Low F/M reduced the cell growth and 

sludge deflocculating. A four-fold 

reduction in the F/M ratio resulted in 20 

times decrease in the steady-state 

membrane fouling rate. 

(Trussell et al., 

2007) 

3 Organic loading 

rate  

Higher fouling rates with increased 

organic loading  

(Johir et al., 2012 ; 

Tay et al., 2009) 

4 C/N ratio Low C/ N ration reduced the fouling 

rate  

(B. Wu et al., 2012) 

A high C/N ratio improved the MBR 

performance by lowering the membrane 

fouling. 

(Fu et al., 2009; Hao 

et al., 2016) 

A low C/N ratio reduced organic matter 

and nutrients removal efficiencies. 

(Mannina et al., 

2017, 2016) 

5 Temperature  At lower temperatures, the production 

of EPS increased, known to impact 

fouling. 

(Drews et al., 2006a; 

Guo et al., 2012; Ma 

et al., 2013; Van den 

Brink et al., 2011) 

The sludge settle-ability and 

filterability are reduced at low 

temperatures. 

(Krzeminski et al., 

2012) 

6 Salinity  Higher salinity changes the sludge 

properties (like floc structure and size 

distribution changes) mainly due to 

changes in the microbial composition; 

SMP concentration also increased (see 

Table 2-1) as well as fouling. 

(Di Bella et al., 

2013) 

 The sludge characteristics analysis 

showed that filtration resistance, SMP, 

and EPS gradually increased following 

the salinity increase from 0 to 35 g·L−1. 

Xie et al.,2014 
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Sr# 

Influent 

Characteristics 

/operating 

parameters 

Effect on Membrane Fouling References 

 At high salt concentrations, pore 

blocking resistance increased, which 

increased membrane fouling. Biomass 

properties characterized by increased 

salinity had an impact on membrane 

filtration and fouling properties.  

(Jang et al., 2013) 

7 pH and alkalinity  Low pH values help in better 

flocculation and improved adsorption 

of EPS on the membrane surface. An 

increase in pH will result in higher 

fouling rates.  

(Sweity et al., 2011; 

Wang et al., 2012) 

Too high concentration of alkalinity 

may increase the pH, which in turn will 

increase the fouling rate as well as 

increased deposition of Ca+ ions on the 

membrane surface, known as scaling 

problem. 

(Arabi and Nakhla, 

2008; Meng et al., 

2009) 

8 Biological 

aeration and DO 

concentration  

[Fine bubble 

(<2mm) 

aeration] 

Higher aeration intensities can damage 

the floc structure by breaking them into 

smaller flocs, increasing their chances 

of depositing into the membrane pores, 

leaving the pores blocked and thus 

irreversible fouling.  

(Deng et al., 2015; 

Deung Park, 2015; Ji 

and Zhou, 2006). 

Biological process is negatively 

affected at lower airflow rates which 

results in bio flocculation and cake 

layer formation through increasing 

EPS, SMP, and MLSS deposition on 

the membrane surface.  

(Faust et al., 2014; 

Gao et al., 2011) 

9 Air-scoring 

[coarse bubble 

(>2mm) 

aeration] 

Higher aeration rates can mitigate 

membrane fouling in a specific scope. 

Increased aeration results in an 

increased EPS and SMP concentrations 

in mixed liquor and thus higher 

irreversible fouling. Furthermore, high 

aeration results in thinner, denser, and 

less permeable biofouling. Optimum 

SADm varies from system to system, 

and therefore, it is difficult to derive an 

optimum range.  

(Braak et al., 2011; 

De Temmerman et 

al., 2014; Germain et 

al., 2005; 

Pourabdollah et al., 

2014; Zhang et al., 

2013) 

The effect of cyclic air-scouring on 

fouling is contradictory in the literature. 

(Ding et al., 2016; 

Wu and He, 2012) 

 Membrane and module characteristics 

Membrane material, pore size and distribution, surface charge, roughness, the 

geometry of membrane fibers, and hydrophilicity or hydrophobicity are the membrane 

characteristics responsible for fouling in isolation or interlinking. The summary of the 
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membrane and module properties affecting the fouling is summarized in Table 2-3 

below. 

Table 2-3: Effects of membrane properties on fouling 

Sr# 

 

Biomass 

Characteristics 
Effect on Membrane Fouling References 

1 Hydrophobicity/ 

Hydrophilicity 

Hydrophobic membranes are more 

prone to higher fouling than hydrophilic 

membranes due to the interactions 

between feed water, microbial cells, and 

membrane materials. In hydrophobic 

membranes, higher rates of pores 

plugging occur, and higher amounts of 

polysaccharides and protein in SMP are 

rejected due to cake layer formation on 

the membrane surface, which results in 

a lower permeability. Ceramic 

membranes are hydrophilic; hence they 

foul less. Polymeric membranes are 

mostly hydrophobic and exhibit more 

fouling. Coating the hydrophilic 

material on the polymeric membrane’s 

surfaces reduced the fouling. 

(Nittami et al., 2014) 

. (Maximous et al., 

2009) 

(Hofs et al., 2011; Jin 

et al., 2010; 

Mutamim et al., 

2013) (Dolina et al., 

2015). 

(Hamza et al., 2016) 

2 Zeta potential Higher zeta potential might mitigate 

fouling by inducing stronger 

electrostatic double layer and repulsive 

interactions.  

(X. Zhang et al., 

2015) 

3 Surface charge The membrane surface is usually 

negatively charged, and some cations 

from the sludge-like Ca+2 or Al3+ may 

react with the membrane surface and 

lead to fouling.  

(Guglielmi and 

Andreottola 2010; 

Rana and Matsuura, 

2010) 

4 Surface 

roughness 

Membranes with a rough surface are 

more prone to fouling, however, 

membranes with protruding fibers on 

the membrane surface act as antifouling.  

(Elimelech et al., 

1997; Guglielmi and 

Andreottola, 2010.) 

(Hashino et al., 2011) 

. 

5 Pores size In general, membrane pore size 

increases the tendency for the pore-

blocking mechanism. However, it is 

totally linked with the membrane 

material. 

(Guglielmi and 

Andreottola, 2010; 

Jin et al., 2010; Le-

Clech et al., 2006; 

Van den Broeck et 

al., 2012) (Miyoshi et 

al., 2015) 
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Fig. 2.3: Relationship between the various actors of the fouling phenomenon
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Factors affecting the membrane fouling are diverse and cross-linking. The findings are 

contradictory, as presented in Table 2-1-Table 2-3. The synthesis of these effects and 

their interlinking are drawn in Fig. 2.3. 

 COAGULANT ADDITION FOR PHOSPHORUS REMOVAL AND 

MEMBRANE FOULING IN MBRS 

In WWTP facilities, the coagulant is generally used to instill chemically enhanced 

phosphorus removal (CEPR). The CEPR in MBR is relatively different than CASP 

due to i) limited or no soluble phosphorus going with MBR effluent, and thus the metal 

carryover is comparatively less than CASP, or even negligible, ii) operation of MBRs 

at higher SRT and thus higher MLSS which improved the flocculation and coagulation 

potential of phosphorus iii) addition of the coagulant at the downstream of the process 

in case of MBR, and iv) interaction of metal ions with EPS and membrane surface that 

may cause or reduce membrane fouling, which is controversial in the literature. This 

section is dedicated to exploring the interaction of the coagulant addition with the 

mixed liquor and how it constitutes an overall role in membrane fouling. 

The precipitant is usually added downstream of the CASP. In contrast, in the MBR 

systems, a coagulant is added in the mixed liquor before the filtration process or 

sometimes directly into the membrane tank (Gómez et al., 2013; Song et al., 2008). 

Therefore, the logistics and control of chemical additives, the dynamics, and the 

reliability of chemical P-removal are all more complicated in the MBR process than 

in CASP ( Zhang et al., 2015). In addition to P-removal, the addition of precipitant (if 

dosed inadequately) into the MBR is likely to impact organic, inorganic, and 

biofouling (Hai et al., 2018; Meng et al., 2017). Table 2-4 is dedicated to summing up 

the role of the coagulant in MBR for CEPR and fouling abatement / enhancement.  

As discussed in the MBR fouling literature, inorganic fouling in MBRs is caused by 

bioprocesses and chemical precipitation of metal cations (e.g., Fe3+ and Al3+) and 

physiological anions (e.g., PO4
3- and SO4

2-) onto the membrane (Iorhemen et al., 2017; 

Wang et al., 2008). Several studies investigated the addition of a small coagulant 

concentration into the MBR to control the membrane fouling. It reduced the extent of 

the TMP evolution, which is assumed to be attributed to the large-sized floc formation 

(formed due to neutralization); it also reduced organic concentration in the supernatant 

(reduction of organic fouling), limiting the pore blockage (Fan et al., 2007; Fleischer 
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et al., 2005; Koseoglu et al., 2008; Wu et al., 2006; Zhang et al., 2008). In addition, it 

has been perceived that an optimum coagulant addition decreases the compressibility 

of the sludge flocs, changes the particle size distribution (PSD), reduces the 

concentration of EPS (and thus the fouling), increases the porosity of the membrane- 

associated with sludge cake, and increases the MLSS filterability (Gómez et al., 2013; 

Song et al., 2008; Sun et al., 2019). Finally, it is assumed to pose an unknown risk to 

the membrane life when operated over extended periods (Gnirss et al., 2003) and 

requires further research. 

As described by Song et al.(2008), the hydraulic resistance of the cake is influenced 

by the coagulant addition, and a noticeable reduction was observed with the addition 

of coagulant above 200 mg.L-1. Usually, higher concentrations than the coagulant 

(Fe/P in the range of 2-4) are used for phosphorus removal. Therefore, the results of 

these studies might be insufficient to understand the trade-off between P-removal and 

membrane fouling. If the objective is complete P-removal, the Fe/P ratio is adjusted in 

the range of 1.5 and 4 (Sun et al., 2019; Takács et al., 2011; Z. Zhang et al., 2015). 

Thus, it is essential to look at different studies about P-removal and membrane fouling 

to conclude. 

The coagulant (alum) addition enhanced membrane filtration performance and reduced 

fouling due to the incorporation of the colloidal solids into the flocs (later removed 

with sludge) rather than sticking onto the membrane surface (Fleischer et al., 2005). 

In a lab-scale study by Song et al. (2008), the effects of ferric chloride and alum 

addition were investigated on P-removal and membrane fouling. The authors found 

that the alum addition (13.3 mg Alum/mg P) resulted in 98% P-removal and reduced 

the specific cake resistance due to increased sludge particle size (from 45 µm to 

57 µm). It was further found that the nitrification process was not impacted by the 

addition of FeCl3, while the phosphorus was removed and the membrane fouling 

effectively controlled. However, the coagulant reduced the pH to almost half (≈3.4) of 

its initial value as the dose increased from 0 - 500 mg.L-1. 

In another lab-scale study, the addition of FeCl3 (Fe/P ratio =2) successfully removed 

99.7% of the phosphorus from the synthetic wastewater. It decreased the fraction of 

SMPs by 50% (having protein and carbohydrate sizes falling between 0.1-0.4 µm), 
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thus reducing the membrane fouling propensity due to increased floc size (Mishima 

and Nakajima, 2009). Another pilot-scale study by Yang et al. (2011) employing 

polymeric ferric chloride (PFC) revealed increased membrane fouling. The authors 

analyzed the cake using a three-dimensional excitation-emission matrix (EEM) and 

gel filtration chromatography (GFC). The study indicated that higher molecular weight 

organics (>1000 kDa) were the main contributors to membrane biofouling. Fourier 

transform infrared spectrum (FTIR) analysis further confirmed that these higher 

molecular weight organics were mostly proteins and polysaccharides, differently from 

Meng et al. (2017), wherein it was mainly polysaccharides. The same authors also 

observed the formation of a dense and nonporous gel layer onto the membrane surface 

with clusters of bacteria and biopolymers with the help of a scanning electron 

microscope (SEM). Besides, X-ray elemental diffractometric analysis revealed that 

ferric metal was the most prominent foulant responsible for inorganic fouling of the 

membrane. 

Holba et al. (2012) investigated the effect of low coagulant concentration on P-removal 

and SMP production at pilot and full-scale. A fixed coagulant solution dose of 

3.5 mgFeSO4.7H2O.L-1, equivalent to 0.34 g.L-1 of Fe+2, was used for all three systems 

(one pilot and two full-scales). A better P-removal efficiency (84.7%) with a 68% 

reduction of SMPs was observed in the pilot-scale plant. However, large load 

fluctuations and constant coagulant dosing in the full-scale plant caused unsatisfactory 

P-removal (% age removal not reported by the authors). In another pilot-scale MBR 

study by Wang et al. (2014), similar effects have been documented where the 

coagulant dosing required optimization to balance the enhanced P-removal and 

coagulant-driven membrane fouling. In another study, the addition of metal salt (i.e., 

FeCl3) resulted in 89%–97% phosphorus removal efficiency and produced more 

sludge (Chae et al., 2015). In a lab-scale investigation by Sun et al. (2019), the addition 

of metal salt (20 mgAl2(SO4)3.L
-1), equivalent to 3.15 g.L-1 of Al3+, resulted in 

achieving over 90% phosphorus removal and reduced TMP (from 11.3 kPa.d-1 to 

0.57 kPa.d-1) due to a decline in EPS concentrations and in accumulated particles on 

the membrane surface, and also an increase in the particle size. The study by Asensi et 

al. (2019a) revealed that the addition of FeCl3 (in neutralized conditions ) linearly 

increased the floc size and resulted in a more compact floc structure. It also increased 

the settling properties of the sludge to an extent where the coagulant concentration 
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reached an optimum level; beyond this optimal concentration, the floc cannot retain 

the coagulant, and the settling properties are then negatively impacted. This suggests 

that while modeling the membrane fouling using phenomenological models, changes 

in the settling properties of the sludge due to the addition of the coagulant should not 

be ignored. Furthermore, if a model predicts the phenomena, it is a way to prove it. In 

another pilot-scale study by Gómez et al. (2013), the addition of 12.4 mgFeCl3.L
-1 

improved the phosphorus removal efficiency from 54.7% to 84.7%. The authors 

observed a reduction in SMPs concentration with the addition of the coagulant. The 

X-ray elemental diffractometric analysis of the cake layer found a significant increase 

in the Fe3+ concentration and a substantial contribution to inorganic fouling. The same 

authors further noticed that, at lower coagulant concentrations, it was not easy to 

ascertain the trade-off between the fouling reduced by the SMPs removal and Fe3+ 

deposition and the resulting inorganic fouling. The higher coagulant doses resulted in 

a significant pH decrease and precipitated TP present in the sludge, resulting in a lack 

of available phosphorus for PAO to grow and participate in the EBPR process. This 

becomes more pertinent for MBR systems, which are operated at higher biomass 

concentrations than CASP since the coagulant is added before recirculation. 

Phosphorus is essential for microbial communities other than PAOs to participate in 

nitrification and de-nitrification processes (Daigger et al., 2010). Similarly, Zhang et 

al. (2015) found that the precipitant dosing lowered the irreversible membrane fouling 

with the Fe/P molar ratios < 1. However, phosphorus removal was compromised, and 

severe irreversible fouling (due to the Fe-rich gel layer) was observed with higher 

molar ratios due to the formation of Fe-SMPs complexes and amorphous ferric 

hydroxides (Fe/P >2). The severity of the membrane fouling was observed when the 

coagulant was dosed in the anoxic zone compared to dosing in the aerobic zone (much 

closer to the membrane). The authors further found that a molar ratio of 2 for Fe3+/P 

successfully removed 99% of the phosphorus without impeding the nitrification and 

de-nitrification. However, it impacted the nitrification process significantly with a 

higher dose (molar ratio of 4) due to increased consumption of alkalinity associated 

with a decrease in the pH value to almost 4 and thus required the pH adjustment. 

Minimizing overall iron dosage is also important for cost reasons and to avoid 

unwanted side effects like membrane fouling. 



Chapter 2: Membrane Fouling in MBRs and its Control 

24                                                                                                                                  PART-II: LITERATURE REVIEW 

Table 2-4: Coagulant addition for phosphorus removal and fouling 
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1 (Gnirss et al., 2003) RW Lab A/O 
 

998 70 41 0.4 
 

10.5 GFH 2.12 40 99.0% 0.1 NC NE 

RW Pilot A/O 
 

740 61 43 ~~ 
 

9.1 GFH 2.45 40 98.9% 0.1 NC NE 

2 (Adam et al., 2002) RW Lab UCT 
 

998 69.7 41.3 0.42 
 

10.5 FeCl3 1.3 25 99.5% 0.05 NC NC 

3 (Song et al., 2008) SW Lab 
  

45 35.4 
   

11.1 AlCl3 1.51 30 98.0% 0.05 NC ↓ 

SW Lab 
  

27 30.8 
   

13.1 FeCl3 1.28 30 98.0% 
 

NC ↓ 

4 (Mishima and 

Nakajima, 2009) 

SW Lab A/O 
 

560 
     

FeCl3 1.0 2260 92.5% 
 

↓ ↓ 

SW Lab A/O 
 

25 
     

FeCl3 2.0 4520 99.7% 
 

↓ ↓ 

5 (Gómez et al., 2013) RW Pilot A/O 130 250 
 

49 1.4 4.6 4.7 FeCl3 2.0 12.4 84.7% 0.7 ↓ NC 

6 (Yang et al., 2011) RW Pilot A/O 
 

196 20.5 18.5 1.2 
 

2.9 PFC 2.4 12.5 91.0% 0.26 ↓ ↑ 

7 (Holba et al., 2012) RW Pilot MLE 757 724 
 

40.8 
 

4.2 4.3 FeSO4 0.5 3.5 84.7% 
 

↓ NC 

RW Full MLE 
 

1140 
 

105 
  

8.7 FeSO4 0.2 3.5 85% 
 

↓ NC 

RW Full MLE 155 655 
 

73.4 
  

14.5 FeSO4 0.1 3.5 
  

↓ NC 

8 (Wang et al., 2014) RW Pilot UCT 
 

400 50 25 
  

9 FeCl3 2 
 

>96% 0.05 ↓ ↑ 

RW Pilot FeSO4 2 
 

>96% 0.05 ↓ ↑ 

9 ( Zhang et al., 2015) 
 

SW Lab UCT 
 

400 60 25 
  

10 FeCl3 4 
 

99.8% 0.02 ↓ ↑ 

Fe2(SO4)3 2 
 

99.6% 0.03 ↓ ↑ 

10 (Wu et al., 2015) SW Pilot A/O 
 

400 50 
   

8 AlCl3 2 
 

95.2% 0.384 NC NC 

Pilot FeCl3 2 
 

96.7% 0.264 NC NC 

11 (Li et al., 2017) RW Lab 
  

50 17 15 
  

2 Ferric 5.6 20 80.3% 0.29 ↓ ↓ 

AlCl3 17.2 30 80.3% 0.33 ↓ ↓ 
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12 (Lee et al., 2017) SW Lab UCT 
 

293 24.3 20.7 0.4 
 

4.25 PAC  3.4 
 

85.5% 0.62 ↑ ↑ 

13 (Li et al., 2018) RW Lab 
  

360 28.5 
   

6.35 FeCl3 1.8 20 95.60

% 

0.28 ↓ ↓ 

14 (Wu et al., 2019) RW Pilot UCT 
     

3.05 
 

Fe2(SO4)3 2 
   

↓ ↓ 

15 (Sun et al., 2019) RW Lab UCT 
 

268.1 40.4 38.6 
  

4.97 AlCl3 2.3 10 85.40

% 

0.73 ↓ ↓ 

16 ( Ren et al., 2019) SW Lab A/O 
 

425 45 27.5 
  

10 Fe2(SO4)3 2 
 

96.9% 0.31 NC ↓ 

1 
 

96.2% 0.38 NC ↓ 

17 (Alibardi et al., 2021) RW Full A/O 338 579 
 

26.9 
  

9.18 Fe2(SO4)3 3.75 14 95% 0.46 NC NC 
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Furthermore, the same authors found that lowering the phosphorus concentrations to 

0.1- 0.2 mgP.L-1 using higher coagulant doses did not inhibit nitrification. As reported 

by Philips et al. (2003), the harmful effects of the chemical coagulants (Fe2+ and Fe3+) 

were blamed for suppressing nitrification and de-nitrification due to the toxicity 

induced by the metals. Some studies used dissolved air flotation (DAF) and 

biologically aerated filters (BAF) as post/pre-treatment to membrane filtration to 

improve the P-removal performance as well as to counter the inorganic fouling caused 

by metal deposition onto the membrane surface (Lee et al., 2016; Li et al., 2017). 

Similarly, Ren et al. (2019) reported the change in the microbial composition due to 

the addition of ferrous in a ceramic MBR with a molar ratio of 2. The authors found 

that the relative abundance of the aerobic denitrifying bacterial community "Zoogolea" 

increased consistently. While the population of other bacterial communities, including 

"Dechloromonas, Hyphomicrobium, and Thauera (anoxic denitrifying bacteria), 

Nitrospira (NOB) and Candidatus Accumulibacter (PAO) which is responsible for 

BioP-removal, is reduced sharply due to the toxic effects of iron dose on bacterial 

physiology. 

A trade-off between coagulant dose, fouling, and phosphorus removal is reported 

differently for different studies, and hence further research is needed to explore the 

relationship between the type (cake formation, pore blocking, etc.) and quantum of the 

fouling induced (Loderer et al., 2015; Z. Zhang et al., 2015). The majority of the MBR 

studies summarized in Table 2-4 are either lab-scale or pilot-scale units, whereas 

experiences with P-removal and fouling abatement/fouling increase are limited, 

implying that more research in this area is required. 

Chemically enhanced phosphorus removal (CEPR) is a well-established yet poorly 

understood process because of the formation of unknown metal complexes and 

multiple pathways involved. P-removal in MBR differs from in CASP due to 

specificities involved in its functioning and the risk of fouling development (Mbamba 

et al., 2019; Sun et al., 2019). Moreover, the effect of MLSS concentration and floc 

size (smaller in MBRs) on CEPR performance should be investigated, considering the 

competing mechanism for MeP and MeOH production. Most of the bench-pilot scale 

studies have reported opposite trends for fouling and phosphorus removal, while 

experiences of phosphorus removal and fouling abatement/fouling increase are 
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limited. Dedicated research is needed to investigate how coagulant addition affects 

membrane fouling and how much and what kind of fouling is caused by the addition 

of coagulant. 

 FOULING MITIGATIONS  

Several fouling control strategies have been developed and deployed, including: 

▪ Reducing flux to under critical or low TMP (Gkotsis et al., 2014; Instituto 

Mexicano de Tecnología del Agua et al., 2015; Kimura and Uchida, 2019; Lee 

et al., 2018),  

▪ Refining of infeed through fine screens (Krzeminski et al., 2017),  

▪ mechanical cleaning sweeping and use of abrasive materials (Zuthi et al., 

2017),  

▪ Backwashing with the permeate (Akhondi et al., 2017; Aslam et al., 2017; Azis 

et al., 2018; Lee et al., 2018; Gkotsis et al., 2014; Di Bella et al., 2018) , 

▪ Relaxation or cyclic operation (Lee et al., 2018),  

▪ Air scouring or enhanced shear (Akhondi et al., 2017; Aslam et al., 2017; Di 

Bella et al., 2018; Azis et al., 2018; Lee et al., 2018; Gkotsis et al., 2014), 

▪ Chemical cleaning shear (Krzeminski et al., 2017; Akhondi et al., 2017; Aslam 

et al., 2017; 2018; Azis et al., 2018; Lee et al., 2018; Gkotsis et al., 2014; Meng 

et al., 2017a; Busch et al., 2007),  

▪ Chemically enhanced backwashing,  

▪ Sonication (Azis et al., 2018; Gkotsis et al., 2014),  

▪ Mechanically assisted cleaning using granular media like activated carbon 

(Busch et al., 2007a; Krzeminski et al., 2017; Lee et al., 2018),  

▪ Vibrations, rotations, and reciprocations (Krzeminski et al., 2017), electric 

field (Gkotsis et al., 2014; Krzeminski et al., 2017; Meng et al., 2017),  

▪ Chemical modification of mixed liquor through the addition of coagulants, 

suspended particles, and carriers (Azis et al., 2018; Gkotsis et al., 2014; 

Krzeminski et al., 2017; Lee et al., 2018; Meng et al., 2017; Zuthi et al., 2017)  

▪ Modification of membrane surface (with Nano-particles coating, patterning, 

grafting),  

▪ Quorum quenching (Gkotsis et al., 2014; Krzeminski et al., 2017; Lee et al., 

2018)  
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▪ Chemical reaction on the membrane surface (Gkotsis et al., 2014),  

▪ Integration of advanced oxidations process with MBRs (Gkotsis et al., 2014; 

Krzeminski et al., 2017),  

▪ Introduction of microbial fuel cells (Krzeminski et al., 2017),  

▪ Use of patterned membranes, plasma treatment (Gkotsis et al., 2014), 

▪ Systematic optimization of aeration and operational parameters (Meng et al., 

2017a; F. Zuthi, 2014) 

The above means for fouling abatement have been investigated and proved their 

effectiveness at the lab scale, while few of these are implemented in commercial-scale 

MBRs. In addition to the above control measurements, some other parameters have 

recently been studied, such as reactor design modification timing and intervals for 

filtration, backwashing, and /or relaxation are important along with the backwashing 

flow rates (Akhondi et al., 2017; Lee et al., 2018). 

 SUMMARY AND PROSPECTIVES  

From the literature survey, it has been seen that extensive research has been dedicated 

to the understanding of the fouling phenomenon, dealing with a range of topics 

assessing the effects of various controlled variables (e.g., HRT, SRT, DO 

concentrations), and feed water characteristics like F/M ratio, COD/N/P ratio, 

temperature, pH, salinity, etc. Research has also been dedicated in the last decade to 

the development of fouling and/or mitigation strategies and the development of fouling 

control systems and characterization methodologies. The following points conclude 

the literature survey related to fouling and its control: 

▪ Too low or high SRT may alter the sludge characteristics, such as the 

production of smaller sludge flocs and the release of higher concentrations of 

EPSs/SMPs which are more prone to intrude to the membrane pores and cause 

severe fouling. An optimum SRT of 20-40 days for synthetic wastewater has 

been suggested, while for real municipal wastewater, the recommended SRT 

value is 20-30 days. Some studies have reported the SRT value is between 20 

and 50 days for real wastewater, depending on the size of the system and on 

the mode of operations. 
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▪ Short HRT (<10 hours) is found to be responsible for i) production of 

filamentous bacteria, ii) increase in MLSS concentration (high EPS/SMPs), iii) 

high sludge viscosity, and iv) development of thick and compact cake layer and 

thus more severe fouling. It has also been reported that high SMPs are produced 

and flocs with small sizes when dealing with synthetic wastewater containing 

toxic substances. An optimum HRT of more than 10 hours is suggested with 

the optimum SRT. 

▪ Dissolved oxygen concentrations or aeration intensity are affected by the 

duration of aeration, position, diffuser type, and sludge viscosity. An optimum 

level of aeration is required as too high aeration may alter the sludge properties 

by altering the floc size (small flocs at high aeration intensities) and increase 

the release of the SMPs/EPSs. On the contrary, low aeration is unable to break 

the cake layer due to limited shear on the membrane surface and is unable to 

remove the cake layer. Similarly, an optimum temperature of between 15 and 

30 C is required for membrane performance. At low temperatures, sludge 

properties are negatively affected, such as: changes in the viscosity, increased 

SMPs and EPSs concentrations, and the formation of smaller flocs. Similarly, 

too high temperature is also responsible for the poorer MBR performance.    

▪ High organic loading (i.e., higher F/M ratio) increases the concentration of 

EPSs, which aggravates the membrane fouling. In contrast, under a low organic 

loading or F/M ratio, cell lysis may induce higher fouling due to the famine 

conditions and death of the microbes. The low COD/N ratio reduces the fouling 

rate as it increases the EPSs concentration, protein fraction, and sludge 

deposition on the membrane surface. At the same time, it has been found that 

a high COD/N ratio led to an elevated production SMPs. It has also been found 

that higher concentrations of nitrogen and phosphorus in the feedwater reduced 

the settle-ability, flocculation tendency, and dewater-ability and enhanced the 

release of SMPs, which cause higher fouling. 

▪ Salinity is a crucial factor for fouling control in MBR. Higher salinity increased 

the density and viscosity, they lead to the release of the SMPs due to the 

incomplete degradation of organic substances and the release of cell contents 
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to protect microbial cells from salt toxicity, which thus may cause irreversible 

fouling.   

▪ Asymmetric membranes with enhanced hydrophilicity, less surface roughness, 

higher zeta potential, and chosen pores sizes, also linked with the membrane 

material, have been suggested in the literature to control the fouling in the 

MBRs. 

▪ Several fouling control techniques, including chemical, physical, physio-

chemical, and biological (quorum quenching), are being used and studied. The 

addition of the chemicals may change the properties of the sludge and fouling 

behavior. A literature review has revealed that the addition of coagulant for 

CEPR has been controversial regarding fouling. Therefore, more dedicated 

research is needed to establish the precise contribution of the coagulant added 

for CEPR in fouling, especially at a full-scale.
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 Operating Cost and Energy 

Consumption in Full Scale 

MBRs  

This section examines peer and non-peer-reviewed published data to present state of 

the art on the operating costs of full-scale MBRs. This clarifies the global patterns of 

operating costs compared to the Seine Aval MBR. It also focuses into the energy 

consumption data distribution in the MBR process and the membrane air scouring, 

which is a hot topic for energy optimization studies, especially at the full-scale.   

 OPERATING COSTS OF FULL-SCALE MBRS 

There is a dearth of data on detailed operating and energy consumption of full-scale 

MBR plants published in peer-reviewed papers. Gabarrón et al.(2014) surveyed three 

full-scale sMBR facilities (capacities varied in the range of 1,100 - 2,160 m3.d-1), 

equipped with HF membranes, and evaluated their global operational cost, which 

varied in the range of 0.46 - 0.57 €.m-3 or 0.52 - 0.64 US$.m-3. A few more studies 

have recently been published with operating cost data from several full-scale facilities. 

As per the findings of the Iglesias et al. (2017), based on a detailed investigation of 14 

MBRs with capacities in the range of 288–35,000 m3.d−1 located in multiple cities in 

Spain; the OPEX of the studied MBRs ranged from 0.23 to 0.51 US$.m-3. Similarly, 

Xiao et al. (2019) published the findings of a survey focused on large-scale MBRs in 

China. The ranges of operating costs, energy consumption, and chemical costs of 

large-scale MBRs (10,000 m3.d-1) for municipal wastewater treatment in China are 

depicted in Fig. 3.1. According to the findings of this survey, when the membrane 

depreciation cost is not included, the operating cost is associated with energy 

consumption (40 %–60 %), chemical consumption (10%–30%), sludge disposal (5 %–

15 %), labor costs (10 %–30 %) and others (5 %–20 %). The operating cost depends 

on the loading capacity of the MBR system, with larger hydraulic capacity and 

maximum utilization corresponding to a narrower distribution of operating costs. 

Overall, the operating cost is mainly in the range of 0.12–0.2 US$ m-3 for MBRs 
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commissioned in 2006–2014 and mainly in the range of 0.11–0.18 US$.m-3 for MBRs 

commissioned thereafter.  

 

Fig. 3.1: Major operating costs in large scale MBRs (Xiao et al., 2019) 

 

Operating costs of MBR (excluding membrane depreciation) could be comparable to 

those of CAS with tertiary treatment process with increasing effluent quality 

requirements (Brepols et al., 2010; Iglesias et al., 2017; Young et al., 2014). The model 

based study by Arif et al. (2020) for MBR and CASP with a capacity of 300,000 m3.d-1 

reported an operating cost of 0.43 US$.m-3 and 0.2 US$.m-3. In summary, the MBRs 

still have a higher operating cost than the conventional CASP process but comparable 

with tertiary treatment. 

 ENERGY CONSUMPTION IN FULL-SCALE FACILITIES  

As a general trend, the specific energy consumption tends to decrease when the size of 

the plant, the flow rate, or the served population equivalent (PE) increases, and the 

actual utilization of the hydraulic capacity of the plant is maximum or close to its peak 

flow design capacity (Gabarrón et al., 2014; Krzeminski et al., 2012). This is due to 

the ability to exploit economies of scale in larger systems, which results in larger but 

more efficient equipment, better performing automation and regulation, and, in many 

cases, more and better-trained personnel operating the plant. Barillon et al. (2013) 

found that hydraulic and organic loads are the most important operating parameters 
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influencing MBR energy efficiency. Most of the investigated MBR facilities are 

operated at lower loads, resulting in higher specific energy consumption due to the 

significant fraction of fixed energy consumption. 

Typically, the processes and their associated energy spent on membrane operations 

include i) membrane aeration, ii) membrane feed pumps (supply), iii) sludge 

recirculation, iv) permeate extraction, v) backwash, and chemical cleaning pumps. 

Energy consumption associated with biological treatment processes such as aeration 

for biological purposes, propellers, and/or mixers is considered related to the 

biological treatment component. Other energy consumption required for plant 

operation is generally referred to as "the rest". This may include influent pumping, pre-

treatment, sludge post-treatment, building heating, electricity for offices, and control 

systems. 

Additionally, the components of the treatment plant included in the data considered 

for analysis should be verified, as different plants are designed differently and may 

incorporate additional processes not found in other plants. For example, post-treatment 

of activated sludge such as thickening, dewatering, or incineration may vary between 

locations. A comparison of the various MBRs is almost certainly incomplete without 

these details. Nonetheless, such information is frequently omitted, making it difficult 

to conduct a fair comparison. Most of the published studies have distributed the energy 

consumption data among different consumers and varied from study to study, making 

it hard to reasonably draw generic components.  

 Specific energy consumption  

Energy cost in the MBRs contributes, on average, 48% of the total operating cost 

(Wang et al., 2020), out of which total aeration cost lies in the range of 40 -80% 

(Gabarrón et al., 2014; Kimura and Uchida, 2019; Sun et al., 2016; Xiao et al., 2019). 

According to the literature survey of peer-reviewed publications from the last decade, 

energy consumption in 25 full-scale facilities (1000- 20,000 m3.d-1) located in different 

geographical locations ranged between 0.46 - 2.2 kWh.m-3 (Barillon et al., 2013; 

Gabarrón et al., 2014; Iglesias et al., 2017; Krzeminski et al., 2012). According to the 

most  recent study from China, MBRs with treatment capacities ≥ 50 000 m3.d-1 cost 

0.3–0.5 kWh.m-3 for municipal wastewater (Zhang et al., 2021).  
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 Energy consumption distribution by consumer  

As per the analysis of the data collected from the literature survey and presented in 

Fig. 3.2, the share of membrane scouring to mitigate fouling varies in the range of 23-

74 % (Park et al., 2015; Krzeminski et al., 2012; Barillon et al., 2013; Fenu et al., 

2010c; Maere et al., 2011). In the recent past, several efforts have been dedicated to 

reducing and optimizing the cost of membrane aeration associated with the mitigation 

of membrane fouling. However, no definitive solution has been proposed (Krzeminski 

et al., 2017). The biological process aeration accounts for 1–40% of the total.  

 

Fig. 3.2: Energy consumption distribution in full-scale MBRs 

 

Data related to other energy consumers such as mixers, influent pumping, permeate 

production, chemical cleaning, permeate pumping, recirculation, foaming breaking, 

and coagulant addition sensors is not reported in all studies, making it difficult to 

compare their energy use with energy spent on aeration. Nonetheless, from the studies 

above, the part of mixing ranges from 7 to 43%. It ranges from 0.1 to 6% for permeate 

pumping and recirculation ranges from 6 to 22%. 

 SUMMARY AND IMPLICATIONS  

Operational cost data, and in particular energy consumption data, from full-scale MBR 

facilities is scarce and not completely available in the public domain. Based on the 

available data from the full-scale MBR with design capacities in the range of 1000 - 

20,000 m3.d-1 located in different geographical locations, the specific energy 
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consumed varied in the range of 0.46 - 2.2 kWh.m-3. While MBRs with treatment 

capacities ≥ 50 000 m3·d-1 cost 0.3–0.5 kWh·m-3 for the municipal wastewater. 

Data from limited peer-reviewed papers are generally available in the format of 

kWh.m-3 and are rarely reported in the form of kWh.kg-1 pollutants removed. The 

frequently used metric, i.e., kWh.m-3 can be misleading, for comparisons of different 

regions, as systems with input wastewater of low pollution load would appear more 

efficient. Practical research should be dedicated to exploring the operational cost with 

a detailed breakup of the distribution of the various energy consumption units. 
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 Mathematical Modelling of 

MBRs 

In most cases, the full-scale MBR plants are operated and maintained as per the 

recommendations and guidelines of the manufacturers, and further optimization is not 

usually practiced. In terms of time and resource requirements, modeling is a valuable 

tool for assessing and simulating the performance of various alternatives, providing 

knowledge on the mechanism occurring within the given system and affecting the 

performance of the MBR, resulting in a reduction in operational costs. The design, 

prediction, and control of MBR systems are greatly aided by calibrated and validated 

models that depict the MBR process. The advantages of MBR technology may be fully 

realized with the help of comprehensive and fully integrated models that are also useful 

in real-world applications. 

This chapter presents models for individual (e.g., biological, filtration, and chemical 

processes) as well as integrated aspects of the MBR wherein several processes are 

interacting, and it is necessary to consider those aspects. The unmodified and modified 

ASMs applications to model biological processes in MBRs are discussed with 

reference to published works. Furthermore, models that describe the filtration and 

fouling phenomena in MBRs are presented with respect to their real applications at 

various scales. 

 MATHEMATICAL MODELS AND MODELING APPROACHES  

A model is characterized by describing and depicting the properties in mathematical 

terms of systems functioning and associated events happening in reality (Stockburger, 

1996). Nonetheless, a model does not contain every aspect of the real system because 

of the simplicity to be maintained and the number of aspects of the system under 

consideration. A model is the mathematical representation of a system in the form of 

multiple equations of various kinds and orders used to relate the inputs to outputs for 

the system being modeled. A well-defined mathematical model helps to accurately 

understand and predict the process evolution and analyze and manipulate it for process 

optimization for specific purposes, including nutrient removal optimization and energy 
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optimization. A model provides an alternative to laboratory scale, pilot scale, and even 

full-scale experiments, which are usually not possible in reality due to a number of 

limitations, including time and resource constraints, and to run experiments, especially 

at the full-scale.  

Mathematical models can be divided into three distinct types (Truong-Meyer, 2012), 

i.e., i) mechanistic (white-box) approaches, which use chemical, physical and 

biological laws to describe a process; (ii) empirical (black-box) methods, which are 

based on empiricism and do not use laws; (iii) semi-empirical (grey-box) models, use 

both mechanistic and empirical knowledge (Gernaey and Sin, 2011; Robles et al., 

2013; Sin and Al, 2021) as presented in Fig. 4.1. It means the more mechanistic the 

model is the greater is its explanatory power. 

 

Fig. 4.1: Different types of models and their relative ranking (Truong-Meyer, 2012)  

 

 Empirical models 

Data-driven models do not need any knowledge of the phenomena occurring in the 

system; by learning from input and output data, their parameters are adjusted in order 
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to predict the functioning of the system (Gernaey and Sin, 2011). Data-driven models 

have a structure of their own, but this is totally predetermined by the modeler in order 

to achieve the desired match and has nothing to do with the actual inner physical, 

biological, or chemical process knowledge. These are solely based on linear or non-

linear correlations between inputs and outputs (Liang et al., 2006). This approach is 

preferable to the mechanistic method when the physical principles at the basis of the 

observed behavior are not clearly understood or when a mechanistic model is too 

complex or too difficult to calibrate. These models are often called black-box models 

when the inner model structure is totally inaccessible or grey-box models when a 

partial internal description is possible (Sin and Al, 2021). Several data-driven models 

are used to predict the effluent quality and develop robust and intelligent data-driven 

process control systems. For example, depending upon the mathematical approach, the 

most popular being the principal components analysis –PCA (Praus, 2019), 

autoregressive moving average –ARMA (Boyd et al., 2019), autoregressive exogenous 

–ARX with external input models (Jonsdottir et al., 2007), neural networks –NNs 

(Byliński et al., 2019), long short term memory - LSTM models (Wu et al., 2021; 

Yaqub et al., 2020) and fuzzy models –FMs (Nadiri et al., 2018; Suard et al., 2019) 

are widely used in wastewater process modeling. In all cases, the model structure is 

dependent on the method, and its dimensionality is selected through a compromise 

between model performance and computational complexity. This is generally 

accomplished by optimization (using algorithms, e.g., Bayesian ) of the hyper-

parameters of the model (Sin and Al, 2021). 

 Semi-empirical or hybrid models  

Stochastic grey-box or hybrid models combine black-box models (e.g., artificial neural 

network-ANN) with trusted white-box model equations (Gernaey et al., 2004), with 

the objective of improving physical knowledge as explained in Fig. 4.2. The 

motivation behind the adaptability of the hybrid modeling in WWT process modeling 

is to improve the predictions of the first principles models, i.e., mechanistic ASMs or 

filtration models, and hence correct the errors/uncertainties present in the mass 

balances. Often, hybrid models are used to predict complex process phenomena, such 

as full-scale wastewater treatment plants. Anderson et al. (2000) integrated a white 

box model (ANN) to learn from the biological kinetic rates from the process data in 

the mechanistic model (ASM2d) using a parallel combination. The application of their 
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approach to a more complex problem involving phosphorus kinetics was not 

successful. Similarly, Lee et al. (2002) also designed a hybrid neural network based 

on a simplified mechanistic model (ASM1) and achieved much more accurate 

predictions with good extrapolation properties than purely mechanistic and data-driven 

approaches. 

 

Fig. 4.2: Hybrid or grey-box models (Sin and Al, 2021) 

In another work, Fang et al.(2010) used a serial combination to model the errors from 

a mechanistic model (ASM3-BioP) with a neural network to improve the predictions 

of effluent COD, NH4, and PO4
3-, similar to the application of extended Kalman filter 

to learn from the errors (Miron et al., 2017). 

 Phenomenological models  

The most widely used wastewater treatment process modeling approach is 

phenomenological or mechanistic (Gernaey and Sin, 2011; Hvala and Kocijan, 2020). 

A mechanistic model uses equations that represent the phenomena occurring in the 

system. When solved, these models predict the behavior of the system. The 
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unquestionable advantage of this modeling approach is to gather knowledge about 

phenomena happening within the system.  

4.1.3.1 Mechanistic biological models  

The ASM family is a set of mathematical models in the form of algebraic and ordinary 

differential equations (ODEs) to kinetically describe the biological transformation of 

pollutants such as COD, nitrogen, and phosphorus, depending upon the type of ASM 

model; carried out by the micro-organisms. The biological processes are represented 

as biochemical reactions with stoichiometric relationships and kinetic equations based 

on Monod-type kinetics in a matrix format (commonly known as “Petersen” or “Gujer” 

matrix). A stoichiometric and composition matrix, a rate vector, and other information 

like units and names are all included in the matrix format. Gujer (1985) introduced the 

matrix notation, enabling modelers to communicate in a more ordered and organized 

manner  for an easy implementation of the model in any computational system or 

software. 

A couple of detailed reviews have been published during the last two decades, focusing 

on comparing the model structures, limitations, and differences among the processes 

such as hydrolysis, growth, and decay of organisms, including their limitations for 

phosphorus removal. The first detailed review was conducted by (Baetens, 2001), 

considering all the published models, metabolic and ASM (original and modified), and 

combinations till 2000. Following that, Gernaey et al., (2004) published a detailed 

review of the white-box kinetic models (ASM1, ASM2, ASM2/ASM2d, ASM3 

TUDP, Barker & Dold’s model, and ASM3-BioP ) and discussed that how the 

objective of the modeling influences the model selection from the available range, data 

gathering, and model calibration. The authors addressed the grey box, black-box, and 

hybrid models and their potential applications in WWTPs, such as supervisory control 

system development. Following this, Hauduc et al. (2013) compared seven published 

models, including ASM1, ASM2d, ASM3, ASM3-BioP, ASM2d-TUD, Barkers & 

Dold’s model, and UCTPHO+ using a structured approach and dealt with the 

difficulties in comparing models as highlighted by Baetens (2001).  

These models are compared based upon several standard processes, including i) 

hydrolysis, ii) fermentation, iii) growth and decay of OHOs, iv) growth and decay of 

ANOs, v) growth and decay of PAOs, vi) storage of PHA and vii) storage of 
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polyphosphate. Following the works of Gernaey et al. (2004) and Hauduc et al. (2013), 

the mini-review of Zuthi et al. (2013) compared the five models (ASM2, ASM2d, 

TUDP, UCTPHO+, and ASM3-BioP) which took into account the phosphorus removal 

for the CASP and MBR along with the advantages and disadvantages of these models. 

The referred studies may be consulted for a detailed understanding of ASM models. 

All these models can be organized under three groups as presented in Fig. 4.3, i.e., i) 

models considering the role of denitrifying PAOs, ii) models without considering the 

role of denitrifying PAOs, and iii) models with the incorporation of the PAO and 

GAOs.  

 

 

Fig. 4.3: Evolution and classification of the activated sludge models (Nadeem et 

al.,2022) 

The applications of ASM are presumably meant for modeling the activated sludge 

processes operating conditions. These last ones are depend on the particular treatment 

process, varying within a typical range e.g., range of SRT 3-15 d, range of HRT 3-5 h, 
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and range of MLSS 1.5 - 4 g.L-1 for completely mixed systems (Tchobanoglous et al., 

2003). The following sections present the applications of the available unmodified and 

modified ASMs incorporating the SMPs and EPSs as major membrane foulants in the 

MBRs functioning. 

4.1.3.2 Applications of ASMs to MBR 

A detailed review by Fenu et al. (2010a), comprehensively presented the applications 

of the ASMs in MBRs, although no full-scale modeling study was carried out by that 

time. Therefore, the review did not address the concern of applying the ASMs to full-

scale MBRs, but only to lab and bench scales. 

Un-modified ASMs: Following section reports the major conclusions from the 

detailed review of Fenu et al. (2010a), in case ASMs are applied without incorporating 

the concepts of EPS/SMPs: 

 

▪ The difference in the operational specificities (see Table 4-2 ) between CASP 

and MBR had the greatest impact on nitrification parameters. However, 

depending on the hydrodynamic and operational conditions of the MBRs, it is 

recommended to determine the kinetic parameters as a cohesive set for each 

new study.  

▪ Denitrification rates and characteristics seemed identical in MBR and CASP, 

except for the dissolved oxygen half-saturation constant KOH, which describes 

oxygen toxicity in anoxic zones. This was due to the smaller floc size in MBRs 

compared to CASP. 

Furthermore, based on the comprehensive review paper published as a separate study 

(Nadeem et al., 2022) under this Ph.D. work, it was concluded that ASMs could 

successfully simulate the BioP- removal in MBRs when fundamental differences in 

MBR functioning compared to CASP are considered (refer to section 4.2). However, 

due to complete biomass retention in MBRs and especially the PAOs due to their 

increased size, several PAOs related model parameters required adjustments through 

calibration approaches. In some cases, batch tests were conducted to establish the 

stoichiometry of the PAOs and GAOs. Most of the studies considered calibrating the 

kinetic parameters, while a few studies even calibrated the stoichiometric parameters 
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as well, which seemed necessary to accommodate the effects due to different 

stoichiometric rates induced by the GAOs and PAOs competition for phosphorous 

uptake. In the absence of modeling experience from full-scale MBRs, Fenu et al. 

(2010a) suggested carrying out full-scale modeling studies to rule out the difference 

between lab-scale and full-scale applications. Considering the needs, Delrue et al. 

(2010) and Fenu et al. (2010a) contemporarily presented full-scale MBR modeling 

studies with ASM-1 and AM2d with plant capacities of 1,600 m3.d-1 and 5,000 m3.d-1, 

respectively.  

Delrue et al. (2010) found AMS-1 suitable for modeling nitrogen removal in full-scale 

MBR (special precautions were taken), especially considering the biological tanks as 

completely mixed and the volume of the membrane tanks equal to zero with 100% 

solids retention and ignoring the fouling phenomenon. The validity of the model is 

limited to configuration and continuous DO setpoint < 1.5 mg.L-1 allows simultaneous 

nitrification-denitrification (SN-DN). Despite complex configuring (recirculation, 

variation in tank filling, backwashes), the prediction of sludge production was 

accurate. The presence of two simultaneous aeration systems (fine and coarse bubbles) 

- a non-ideal mixing system and limitations in oxygen transfer made it challenging to 

predict the DO concentrations. The oxygen transfer coefficient was not calibrated but 

extracted through a long-term mass balance approach. SN-DN and non-ideal mixing 

required a high half-life saturation coefficient for nitrate up to 3.0 gN.m-3 Autotrophic 

growth rate was found to be time-dependent. 

Fenu et al. (2010c) calibrated the ASM2d model for oxygen transfer, nitrogen, and 

phosphorus removal as well as for aeration energy optimization. ASM2d model was 

adopted, and ASM parameters and the half-saturation coefficients were adjusted. A 

lower KOA_AUT theoretically improved the aeration energy performance by increasing 

the O2 mass transfer. It was found that a variation of the parameter from 0.5 (default) 

to 0.2 mgO2.L
-1 yielded a very modest decrease in the aeration power consumption. At 

the same time, the TN removal increased significantly by 2.5%. The TN performance 

increase is significant despite the irrelevant energy saving since the O2 mass transfer 

rate improvement applies to both fine and coarse bubble aeration systems. The 

phosphate removal could not be modeled successfully with ASM2d. The modeled PO4 

concentration in the effluent was higher than the observed values. The phosphate 
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accumulating organisms (PAOs) were outcompeted in the model since PHA could not 

be sufficiently stored, even though the storage rate was arbitrarily increased. The 

coarse bubbles provided for scouring purposes in the membrane chambers could 

potentially have a role in the biological process if a different process layout were used. 

Similarly, Daigger et al. (2010) modeled the Traverse city full-scale MBR plant with 

a capacity of 32,000 m3.d-1 and the Broad Run pilot plant using ASM2d. The 

publication provided no details about the model structure, calibration, and validation 

processes. 

Maere et al. (2011) used ASM-1 as a basis to devise a benchmark simulation model, 

i.e., BSM-MBR, to simulate a full-scale MBR facility with a capacity of 1,800 m3.d-1 

and a membrane surface area of 71,500 m2, to evaluate operational and control 

strategies in terms of effluent quality and operating costs. Default kinetic and 

stoichiometric parameters were used to simulate COD, TSS, NH4, and energy 

consumption in various processes, particularly in process aeration. Steady-state and 

dynamic simulations revealed that BSM-MBR, as expected, outperformed 

conventional BSM1 for effluent quality, mainly due to complete retention of solids 

and improved ammonium removal from extensive aeration combined with a higher 

biomass level. It is pertinent to mention that the simulation results were not validated 

with experimental data. 

Gabarrón et al. (2015) used ASM2d in WEST simulation software to model a full-

scale MBR with a capacity of 7,000 m3.d-1, and default kinetic and stoichiometric 

parameters were used for the system description, while the data from the experimental 

campaigns were used to calibrate and validate the model. The model was able to 

simulate the system for NO3−–N, NH4+–N, and TSS with accuracy, in terms of mean 

square relative error (MSRE) of 13%, 15%, and 1.5%, respectively. This demonstrated 

that the unmodified ASM could be applied to the full-scale system, subject to the 

availability of sufficient data from the plant SCADA system of the plant. In usual 

practice, it is not the case. The modelers may require additional data sets acquired 

through dedicated experimental campaigns, which are time-consuming and often 

costly.  

Large fractions of flocs, bacteria, biopolymers such as polysaccharides, proteins, and 

organic colloids are mostly retained in the bioreactor of an MBR, which may 
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significantly affect biodegradation kinetics within the bioreactor. The ASM models do 

not specifically consider the impacts of these retained particles on the bio-kinetics. 

However, in MBR systems with typically low organic loads, the retained molecules 

may significantly affect the metabolic path allowing further use of carbon-based 

metabolites. Furthermore, ignoring SMP and EPS formation may lead to a general 

overestimation of true cellular growth rates, and this would severely underpredict the 

COD effluent concentrations (Fenu et al., 2010a; Jiang et al., 2009).  

Applications of modified ASMs: this section presents the application of the modified 

ASMs in MBRs. Similar to applications of unmodified ASM, there is a dearth of full-

scale modeling studies with modified ASMs.  

Fenu et al. (2010c) used the ASM2d-SMP model originally developed by Jiang et al. 

(2008) to simulate the MBR part of a full-scale municipal hybrid MBR. The authors 

pointed out the defects in the utilization associated products (UAP) calibration 

protocols suggested by Jiang et al. (2008) and the poorly represented degradation 

kinetics of UAP. The UAP was found to be significantly more prevalent than the 

biomass associated products (BAP), and the SMP rejection rate of the membranes was 

found to be susceptible to influent dynamics. Employing a single fixed SMP retention 

factor (as most studies do) would thus appear inappropriate. The model was fairly able 

to describe SMP, COD, NH4, and NO3 measurements on a daily basis, but detailed 

dynamics and results were not available in the publication. Based on their findings, the 

authors concluded that the modeling of SMPs did not improve the predictions for 

nutrient removal, sludge production, or energy consumption. Fenu et al. (2010a) 

concluded that using ASMs extension with the EPSs/SMPs approach is appropriate 

only if the following goals are pursued:  

- Integrated modeling with a focus on linking biology with membrane fouling 

- Prediction of soluble chemical oxygen demand (COD), and  

- Modeling systems with high SRTs.  

Extending the ASMs with EPS-SMPs modules, without absolute necessity, makes the 

calibration cumbersome, especially in integrated models where a number of aspects of 

the process are considered altogether, and the structure of the model is already 

complex.  
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4.1.3.3 Mechanistic chemical precipitation models  

Several chemical precipitation models were developed for phosphorus removal in 

wastewater systems, and very few of them have been adopted for precipitation 

modeling in CASPs and MBRs. The precipitation model commonly used in 

combination with ASMs is briefly discussed regarding its conceptualization and 

processes involved, application in MBR modeling, and the -phosphorus removal 

limitations.  

ASM2d is mainly being used for modeling chemical P-removal in MBRs. Chemical 

precipitation models employ three main approaches: i) chemical equilibrium approach, 

ii) kinetic model approach, iii) combined chemical equilibrium-kinetic approach, and 

geo-chemical complexation (De Haas et al., 2000; Smith et al., 2008). These 

precipitation models are briefly reviewed for quick comparison in terms of processes 

considered, limitations, and their usefulness for coupling with the biological and 

filtration models in the MBR. Table 4-1 presents a comparative summary of available 

chemical precipitation models, and further details could be assessed from a section of 

a review published under this Ph.D. work (Nadeem et al., 2022).  

The literature review has revealed that chemical precipitation models now have 

improved the ability to predict the effluent phosphorus removal for even low 

concentrations. However, these are still unable to reliably describe the removal 

kinetics and impacts of the metal complex aging with higher SRTs. Not even a single 

study has been reported for their application and validation with the system operating 

at higher SRTs such as MBR. The most recent model (Hauduc et al., 2015) yet requires 

validation at full-scale. Furthermore, the models have not been tested to predict 

chemical phosphorus removal behavior in complex waters, where organics and other 

organisms could obstruct removal mechanisms. Improving the models' ability to 

explain these processes would result in more stable effluent phosphorus levels and 

chemical sludge output at lower coagulant dose rates, resulting in cost savings in 

chemical and sludge treatment. 
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Table 4-1: Comparative assessment of the chemical phosphorus removal models 
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Modeling Approach  
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Chemical equilibrium Model √ √ 
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√ √ 

Combined kinetic-equilibrium model 
  

√ 
    

Geo-chemical reaction modeling  
     

√ √ 

System behavior (change in concentration over time) 

  

steady state √ √ 
 

√ 
 

√ √ 

dynamic 
  

√ √ 
 

√ √ 

Removal Mechanisms Considered  

hydrolysis 
 

√ √ 
   

  

dissociation 
 

√ √ 
   

  

 precipitation 
 

√ 
  

√ 
 

√ 

Co-precipitation √ 
 

√ √ 
 

√ √ 

adsorption 
 

√ √ 
  

√   

De-sorption 
  

√ 
   

  

surface complexation/aging  
      

√ 

biological nutrient requirements 
  

√ 
   

  

dissolution 
  

√ 
   

  

Coagulants Considered  

Aluminum  √ 
 

√ √ 
   

Ferric  
 

√ √ √ √ 
 

√ 

Type of model concerning calculations 
      

  

Empirical  √ √ √ 
   

  

Mechanistic 
    

√ √ √ 

pH dependence  √ √ √ 
   

  

Alkalinity Dependence 
      

  

Influence of Aging/surface consolidation 
      

  

Ability to Predict Low P-Concentration 
      

  

Limited  √ √ √ 
   

  

Excellent 
   

√ √ 
 

√ 

P-species Considered  
      

  

Orthophosphate √ 
 

√ √ √ 
 

√ 

Total Phosphorus 
 

√ 
    

  

Influent P-Fractionation     √         

Further research is needed to explore the applicability of these precipitation models at 

full-scale MBRs operating at higher SRTs and with smaller floc size, generally 

undesirable for effective coagulation, and operating under higher shear induced by the 

coarse bubble aerations. 
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4.1.3.4 Mechanistic fouling models 

The membrane performance in the MBR system, both qualitative and quantitative, 

usually decrease over time due to fouling resistances discussed in section 2.2. Multiple 

stand-alone mechanistic models of membrane fouling that account for the combined 

impacts of the many distinct fouling resistances to the physical fouling phenomena are 

available, which could be classified into three different categories, i.e., i) empirical 

hydrodynamic model (Liu et al., 2003), ii) fractal permeation model (Meng et al., 

2005), and iii) resistance in series (RIS) models (Li and Wang, 2006). Multiple reviews 

have thoroughly covered filtration and fouling models (Guo et al., 2012; Hamedi et 

al., 2021; Naessens et al., 2012; Ng and Kim, 2007). RIS is mainly used to explain the 

effect of various fouling processes on the membrane permeability (Naessens et al., 

2012) and is therefore discussed here in terms of its applicability for modeling full-

scale MBRs.  

4.1.3.4.1 RIS fouling model  

In the RIS model, membrane resistance to flux is calculated using Darcy’s law (Choo 

and Lee, 1996), assuming that the osmotic pressure is negligible (see Eq. 4.1), while 

total membrane resistance is given by Eq. 4.2. 

 

 
𝐽 =

𝑇𝑀𝑃

𝜇𝑝 ∙ 𝑅𝑡𝑜𝑡𝑎𝑙
 4.1 

  

 

 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑚 + 𝑅𝑝 + 𝑅𝑐 4.2 

The resistance Rm is the non-varying intrinsic resistance of the membrane typically 

determined by Darcy’s law and refers to an initial state of the membrane, i.e., newly 

bought or newly cleaned. Rp is the pore fouling resistance caused by solute deposition 

inside the membrane pores, and this can be calculated by Eq. 4.3 (Li and Wang, 2006). 

 𝑅𝑝 = 𝑟𝑝 × 𝑉𝑝 4.3 

Cake layer resistance (Rc) in Eq. 4.2 can be calculated according to the Eq. 4.4 

proposed by Lee et al. (2002), where 𝑟𝑐 is the specific cake resistance, Vp is the total 
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volume filtered, Am is the surface membrane filtration area, XTSS is the total suspended 

solids, and k is a coefficient with value in the range of 0 - 1.     

 
𝑅𝑐 =

𝑟𝑐 × 𝑘 × 𝑉𝑝 × 𝑋𝑇𝑆𝑆

𝐴𝑚
 4.4 

Cho et al. (2005) derived a logistic relationship (Eq.          4.5) among specific cake 

resistance, MLSS, bound EPS (bEPS), TMP and expressed the specific cake resistance 

(rc) as a function of bEPS, TMP, MLVSS, and viscosity (μ)  

 
𝑟𝑐 =

𝑇𝑀𝑃

𝜇2
(9.3𝐸12 + 1.803𝐸4 (1 − (−115 (

𝑏𝐸𝑃𝑆

𝑀𝐿𝑉𝑆𝑆
)))

36.66

    )  
          

4.5 

Later, Zarragoitia-González et al. (2008) modified the equation assuming bound EPS 

(bEPS) is associated with SMP and expressed the bEPS in terms of SMP concentration 

in the bioreactor (SSMP) with an appropriate coefficient, and the modified Eq. 4.6.  

 

𝑟𝑐 =  
𝑇𝑀𝑃𝑃𝑟 

𝜇2
× ( 𝑎 + 𝑏 (1 − exp (−𝑐 (

𝑆𝑆𝑀𝑃

0.8 × 𝑋𝑇𝑆𝑆
)))

𝑑

) 4.6 

Where, a, b, c, d and pr are empirical constants. 

The advantages associated with the RIS model are that it accounts for cleaning cycles 

and characterizes fouling development over time with varying sludge concentrations, 

filtration fluxes, aeration intensities, and backwashing. Several MBR modeling studies 

have used the RIS approach to model reversible and irreversible fouling (Wintgens et 

al., 2003; Zarragoitia-González et al., 2008; Mannina et al., 2018; Gabarrón et al., 

2014).  

The specific cake resistance equation given by Cho et al. (2005) has been adopted by 

several researchers without re-determining its coefficients linked to the specificities of 

the MBR system under consideration. Especially, the EPS, SMP, and TMP are likely 

to vary from system to system and with variations in the sludge composition. It should 

also be taken into consideration that the system used by Cho et al. (2005) was a dead-

end module and therefore was under direct pressure, while the membrane in the MBR 

module is not under direct pressure. The adopted values of the coefficient in the large 
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variety of studies change a lot (Mannina et al., 2018; Zarragoitia-González et al., 

2008), and this presents a calibration challenge for the modelers. 

The specific cake resistance equation proposed by Cho et al. (2005) is not universally 

applicable for all kinds of MBR systems (lab-full scale), especially considering the 

fact that the equation was developed for a lab-scale system, which is quite different 

from full-scale ones, with specific sludge characteristics and operating TMP. 

Furthermore, at the time when this equation was proposed, precise definitions for 

today’s known variations of biopolymers such as EPSs, bound EPSs, loosely bound 

EPSs, extracted EPSs (eEPSs), free EPSs, bio-polymeric clusters (BPCs, i.e., group of 

SMPs and EPSs), and SMPs were not set up. Keeping in view of the recent 

understanding of the EPSs and SMPs, further experiments for expressing the specific 

cake resistance as a function of TMP, MLSS, SRT, F/M ratio, SMPs, EPSs, coagulant 

dose and rate of chemical cleaning is expected (Mannina et al., 2020). 

 CONSIDERATIONS FOR MECHANISTIC MBR MODELING  

It is well understood that MBRs operate under different conditions than CASP and 

require a comprehensive understanding of the processes and adjustments in models 

initially developed for CASP to successfully simulate the transformation of pollutants 

and biomass evolution. The need for adjustments in ASMs’ applicability to MBR is 

mainly attributed to: i) different microbial compositions leading to the calibration /re-

adjustment of stoichiometric and kinetic parameters ii) higher biomass concentration 

leading to reduced oxygen transfer and uptake, iii) production of EPSs (linked to flocs) 

and SMPs (dissolved) and their accumulation onto the membrane surface iv) additional 

aeration involved in membrane scouring and re-circulation of oxygen saturated sludge 

from MBR to the aerated/unaerated zones, and v) the role of membrane filtration on 

nutrient removal (Fleischer et al., 2005; Hai et al., 2018; Judd, 2010; Maere et al., 

2011; Verrecht et al., 2008). The comparison of these parameters for CASP and MBR 

is proposed in the tabulated format in Table 4-2. 
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Table 4-2: Consideration in applying ASMs to the MBRs process modeling 

Parameter/Factor Conventional Activated 

Sludge  

Membrane Bioreactor 

Microbial 

Composition  
CASPs are operated at lower 

SRTs ranging between 4-15 

days (Hai et al., 2018; Judd, 

2010) 

SRT of MBRs ranges between the 

same to three-time the CASP’s ones 

(Hai et al., 2018). MBR promotes 

slow-growing micro-organisms such 

as nitrifiers and micro-organisms 

usually washed out in a CASP system 

while the membrane retains 100%.  

MLSS  CASP is operated at MLSS 

concentrations ranging 

between 1500 to 3000 g.m-3 

(Hai et al., 2018) 

MBRs are operated at higher MLSS 

concentrations ranging between 4000–

15,000 g.m-3 (Hai et al., 2018) and, 

therefore, lower F/M ratio. Higher 

MLSS, in combination with higher 

SRT, causes stress to the micro-

organisms in an MBR, which requires 

more energy for cell maintenance and 

leaves less energy for cell production. 

Higher MLSS may induce the 

competitive advantage of GAOs over 

PAOs. 

EPS/SMP EPS/SMP produced in CASP 

are washed away and/or 

removed through sludge. 

EPS/SMPs are not 

considered in unmodified 

ASMs 

Accumulation of the EPS/SMPs onto 

the membrane surface may affect the 

fouling and the biological process. 

EPS/SMP concentration in MBR 

sludge may differ from the CASP 

sludge due to different microbial 

communities and the F/M ratio. 

Fine Bubble 

Aeration  
Aeration is used for carbon 

matter degradation and 

nitrification conversion.  

Aeration is used for carbon matter 

degradation and nitrification. 

However, due to higher MLSS 

concentration (unfavorable) and 

smaller floc size (favorable), mass 

transfer limitations have been reported 
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Parameter/Factor Conventional Activated 

Sludge  

Membrane Bioreactor 

differently in MBRs than in CAPs 

(Fenu et al., 2010a). 

Coarse bubble 

aeration  

Coarse bubble aeration is not 

involved.  

In addition to fine bubble aeration, 

coarse bubble aeration aims at 

scrubbing the membrane surface to 

mitigate the membrane fouling. It 

creates turbulence and affects the floc 

size and mass transfer processes. 

Separation  separation is carried out by 

the clarifiers (secondary), 

and the phenomenon is 

modeled through 

clarifier/settling models (Hai 

et al., 2018; Henze et al., 

2008) 

Separation is carried out by physical 

media (membrane). MBR requires a 

sub-model to simulate filtration–

fouling phenomenon and retention of 

the soluble/dissolved fraction of COD 

and nutrients (Di Bella et al., 2008; 

Mannina et al., 2018). 

 INTEGRATED MBR MODELS AND THEIR APPLICATIONS  

An integrated MBR model incorporates both the biological and filtration processes 

(Mannina et al., 2021), i.e., one that considers the reciprocal effect of MBR biology 

on membrane fouling. An integrated model requires a biological sub-model (ideally a 

suitable activated sludge model with an additional chemical precipitation module), a 

hydrodynamic sub-model (flow), a filtration-fouling sub-model, and an interface (via 

suitable variables) to fully connect these models. Sometimes, additional modules such 

as process aeration, COD fractionation, and pH general models are added based on the 

intended requirements and level of complexity. These integrated models are proved to 

better simulate/model the MBR system’s behavior (Hamedi et al., 2021; Mannina et 

al., 2021). 

In the last two decades, several efforts have been dedicated to developing an integrated 

model capable of simulating the bio-kinetic and filtration-fouling performance of 

MBR. However, the majority of these efforts are limited to bench-scale (<0.05 m3.d-1) 

and pilot-scale (<1 m3.d-1) systems (Di Bella et al., 2008; Janus, 2014; Y. Lee et al., 

2002; Mannina et al., 2011; Sarioglu et al., 2017; Zarragoitia-González et al., 2008; 

Zuthi et al., 2017) while only a few integrated models have been developed for full-
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scale (>10,000 m3.d-1) MBR systems (Gabarrón et al., 2015; Suh et al., 2013; Wintgens 

et al., 2003). Only, Gabarrón et al.(2015) successfully validated the ASM2d-RIS 

model with data from a full-scale facility of 15,000 m3.d-1, while studies by Wintgens 

et al. (2003) and Suh et al.(2013) were not validated.  

To date, no study has been found for the super-large scale (≥100,000 m3.d-1) facilities 

(Nadeem et al., 2022) even though the total number of super-large scale facilities has 

now increased by over 62 (Xiao et al., 2019) with a cumulative treatment capacity over 

10 million m3.d− 1 (Xiao et al., 2019; Zhang et al., 2021). The following sections briefly 

assess several literature-based integrated model development attempts. 

 Integrated models state of the art  

A detailed summary of several studies involving integrated MBR modeling is 

presented in Table 4-3 with a comparative assessment of the size, bio-kinetic models, 

and its components, as well as considerations involved therein. In all these previously 

published integrated modeling studies, ASM1 is widely used as the bio-kinetic model 

for simulating the biological processes in MBRs, with EPS or EPS-SMP modules to 

describe the organic matter degradation and nitrification-denitrification as well as 

production and fate of SMPs and EPSs. 

In order to integrate fouling in MBR in the simulation, Lee et al. (2002) combined an 

ASM1-SMP model from Lu et al. (2001) with a resistance-in-series fouling model. In 

this way, the authors considered MLSS an important factor for fouling. They 

considered the concentration of SMPs negligible compared to MLSS, thus ignoring 

the pore fouling, and largely focusing on cake resistance. The model of Lu et al. (2001) 

was not balanced in terms of COD (i.e., biomass loss (Mannina et al., 2011b)) and did 

not include the deep-bed filtration effect in the filtration model as used by Di Bella et 

al. (2008). Later, Zarragoitia-González et al.(2008) and Di Bella et al. (2008) 

contemporarily presented rigorous integrated models incorporating SMP and EPS 

production and their fate. Both models became the basis for today’s improved 

integrated models from this onwards. The biological model (ASM1-EPS-SMP) 

presented by Zarragoitia-González et al.(2008) is based on the modified bio- kinetic 

models of Lu et al. (2001) and Cho et al. (2003) to mimic the carbon and nitrogen 

removal performance of MBR. In this model, the filtration process is modeled based 

on the approach proposed by Li and Wang (2006), and dynamic specific cake 
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resistance is modeled by considering the approach proposed by Cho et al. (2005). The 

model of Zarragoitia-González et al.(2008) takes into account the dynamic effects of 

sludge cake attachment/detachment from the membrane under the influence of 

filtration and coarse bubble aeration. The model, however, did not include the 

influence of backwashing (Mannina et al., 2021) and the role of the cake layer as filter 

media based on deep-bed theory to remove organics and soluble fractions of the 

pollutants (Cosenza et al., 2013). Furthermore, the bio-kinetic model was not 

calibrated nor validated except for the oxygen transfer coefficient (KLa), which was 

measured experimentally though kept constant throughout the simulation runs. In 

addition, it did not include the adverse effects of elevated sludge concentrations on 

aeration efficiency and did not take into account the potential mass transfer limitations 

associated with MBR (Insel et al., 2011; Naessens et al., 2012). Furthermore, the 

model did not satisfy the continuity check for COD due to imbalanced stoichiometry 

(Cosenza et al., 2013; Hamedi et al., 2021; Mannina et al., 2011b).  

The model presented by Di Bella et al. (2008) involved the same bio-kinetic as the one 

included in the model of Zarragoitia-González et al. (2008), while the filtration model 

of Wang et al.(2006) is modified to incorporate the role of cake layer as filter media 

(deep-bed theory) to remove the fraction of the soluble COD. In addition, backwashing 

is used as a driving force for attachment and detachment of the cake layer from the 

membrane instead of coarse bubble aeration as used by Zarragoitia-González et al. 

(2008). The model, however, did not include the role of EPS or SMPs in biofilm/cake 

formation. The specific cake resistance is assumed to be constant and independent of 

the MLSS and EPS/SMP concentrations and thus unable to explore the mass transfer 

limitations of MBR at higher MLSS concentrations. In addition, the filtration flow rate 

distributed over the membrane surface is averaged, which is a significant 

approximation for submerged MBR with hollow fiber membranes transfer capacities. 

It also ignored the influence of aeration on cake detachment and attachment (Mannina 

et al., 2011b; Zuthi, 2014). Similar to Zarragoitia-González et al. (2008), the model of 

Di Bella et al.(2008) used fixed KLa and did not take into account the actual aeration 

flow rates. Although the bio-kinetic model was calibrated using a sensitivity analysis 

approach and was validated with the experimental data of MLSS, COD, NH4-N, and 

N-NO3 but lacked validation of the TMP and fouling profiles.  
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The model of Di Bella et al.(2008) was later improved by Mannina et al.(2011) by 

including the sectional approach to accommodate the uneven filtration distribution in 

hollow fiber membrane and replacing the model of Lu et al. (2001) with a modified 

bio kinetic-model of Jiang et al. (2008), taking into account, the effect of coarse bubble 

aeration. The model was calibrated using global sensitivity analysis and validated for 

COD, MLSS, NO3 -N, and total resistance. Similar to previous studies, the model did 

not consider the real aeration flow rates and used the fixed KLa value for the entire 

simulation period. Furthermore, the model was again based on the assumption of Cho 

et al.(2005), wherein the TMP in case of dead-end filtration is assumed to be influential 

for the specific cake resistance increase. In the case of SMBR, the membrane reactor 

is not under any direct pressure (Suh et al., 2013), and therefore this assumption may 

require re-consideration.  

Thus far, the models lack capabilities to describe the biological nutrient removal in 

MBRs. In a bid to improve integrated models, the model proposed by Cosenza et 

al.(2013) incorporated the ASM2d-SMP bio-kinetic model proposed by Jiang et al. 

(2008) and the filtration models proposed by Di Bella et al. (2008) and Mannina et al. 

(2011b). This enabled the MBR to fully describe the nutrient removal capabilities and 

filtration mechanisms. Again, the model carried forward the limitations of the model 

proposed by Mannina et al. (2011b). Furthermore, the model did not consider the 

removal of ortho-phosphate (PO4
3-) by chemical precipitation. Suh et al. (2013) used 

a modified ASM3-EPS-SMP model of Janus and Ulanicki (2010) for EPS and SMP 

generation and degradation, and they also integrated it with the RIS model of Wang et 

al. (2006) for membrane fouling simulation. The authors have still not considered the 

contribution of SMP to membrane fouling and have only considered the concentration 

of EPS according to the logistic equation originally proposed by Cho et al. (2005). The 

model was calibrated to the extent of the RIS model using sensitivity analysis. 

However, due to the unavailability of the data from the full-scale facilities, this adopted 

model was not validated. 

Most recently, Lindamulla et al. (2021) presented an integrated model which combined 

the ASM-1 with the EPS model suggested by Janus and Ulanicki (2010) and the SMP 

model of Jiang et al. (2008) for bio-kinetic modeling of MBR. The fouling is modeled 

using the approach suggested by Zuthi et al. (2017), considering the SMP as a major 
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foulant. The model, however, did not consider the specificities associated with 

dynamic KLa and specific cake resistance. Furthermore, the model did not consider the 

effect of coarse bubble aeration and backwashing on the attachment-detachment of the 

cake. Neither did it account for the effect of filtration –relaxation sequencing, which 

is generally the case for all commercial MBRs. Therefore, this model could be used 

for a specific system but cannot be universally applied for full-scale facilities operating 

with multiple fouling abatement controls. 

Almost all the above discussed models lacked energy consumption modeling, except 

for the Zarragoitia et al. (2009), wherein energy consumption only due to coarse 

bubble aeration is modeled as a function of TMP, filtration-idle time, aeration flow, 

and filtrate volume. The study by Suh et al. (2013) presented a mathematical model 

with ASM3-EPS-SMP bio-kinetic model borrowed from Janus (2014) and a filtration 

model by Li and Wang (2006). In this way, they have modified the specific cake 

resistance equation of Cho et al. (2005), assuming that the MBR is not under any 

pressure, unlike dead-end filtration, and therefore, replacing the TMP with a fixed 

coefficient without describing the approach to estimate and calibrate this newly 

introduced coefficient. Similarly, another study by Janus (2014) used the bio-kinetic 

ASM1-EPS-SMP model in combination with the fouling model of Wang et al. (2006). 

At the same time, the specific cake resistance is dynamically modeled as a function of 

EPS/MLVSS by modifying the original approach of Cho et al. (2005). In the studies 

of Suh et al. (2013) and Janus (2014), the formation of the SMP had no link with the 

irreversible fouling phenomenon. Moreover, the integrated models presented were not 

validated due to a lack of experimental data from full-scale facilities. 

 OPEN LICENSE AND COMMERCIAL SIMULATION SOFTWARE 

The modelers have used various special-purpose simulation software, which is far less 

straightforward than the general-purpose simulation environments such as MATLAB 

/ SIMULINK and spreadsheets. The most frequently used simulation software in 

simulation studies in academia and industry are: BioWin, GPS-X, SIMBA, WEST 

(previously EFOR), SUMO, and EAWAG’s AQUASIM. Simulators like ASIM, 

STOAT, Lynx, and JASS are primarily used in academia for research and teaching 

purposes. The wastewater treatment industry is also using relatively new simulators 

like DESASS (design and simulation of activated sludge systems) and EPD 

https://envirosim.com/
https://www.hydromantis.com/GPSX.html
https://www.inctrl.com/software/simba/
https://www.mikepoweredbydhi.com/products/west
http://www.mpassociates.gr/software/environment/efor.html
http://www.dynamita.com/
https://www.eawag.ch/en/department/siam/software/
https://www.eawag.ch/en/department/eng/software/asim/
https://www.wateronline.com/doc/stoat-0001
https://lynxsimulations.com/en/
http://www.it.uu.se/research/project/jass/
https://www.iiama.upv.es/iiama/en/technology-transfer/software/desass-i.html
https://www.intelligen.com/products/enviropro/


 Chapter 4: Mathematical Modelling of MBRs 

 

PART-II: LITERATURE REVIEW 57 

(EnviroProDesigner) to design and optimize WWTPs. The comparative assessment of 

these simulation software could be found in already published study (Nadeem et al., 

2022). The choice of the simulation environment depends upon the modeler’s 

familiarity with the coding languages. It also depends upon the complexity of the 

system being modeled and leverage to kept for the flexibility of adapting/developing 

new modules for unit processes. 

 

 

 



Chapter 4: Mathematical Modelling of MBRs 

58                                                                                                             PART-II: LITERATURE REVIEW 

Table 4-3: Features of the published integrated MBR modeling studies  
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bench scale [< 0.05 m3.d-1] √ 
 

√ 
      

 
 

pilot Scale [≥ 0.05 ≤ 10 m3.d-1] 
   

√ √ 
  

√ √  √ 

full scale [>10 m3≤ 100,000 m3.d-1] 
 

√ 
    

√ 
  

√ 
 

Super-large scale [> 100,000 m3.d-1] NO -SUPER-LARGE-SCALE MODELING STUDY TILL DATE  

membrane surface area [m2] -- -- 0.3 0.93 2.5 
 

28,000 0.93 1.4  0.273 

Reactor Volume[m3]  -- -- 0.105 0.013 1.0 0.19 6000 0.616 - 0.2 0.19 

MBR configuration 
 

A/O A/O A/O A/O A/O 2-stage A/O UCT UCT A/O A/O 

Wastewater [real or synthetic municipal]  
 

Real Real Real Real Real Real Real Real real Synthetic  

activated sludge model ASM1 ASM3 ASM1 ASM1 ASM1 ASM1 ASM3 ASM2d ASM2d ASM1 ASM1 

modified with EPS /SMP  SMP 
 

SMP-EPS SMP SMP-EPS SMP SMP-EPS SMP SMP SMP SMP-EPS 

Number of additional processes 4 0 2 2 2 4 6 7 7 6 2 

pollutants considered  C,N C,N C,N C,N C,N C,N C,N C,N,P C,N,P C,N C,N 

dynamic/steady state (SS) simulation dynami

c 

steady dynamic dynam

ic 

dynamic dynam

ic 

dynamic dynami

c 

dynami

c 

dynam

ic 

dynamic 

chemical precipitation of PO4
3-  

         
 

 

sectional approach 
  

√ 
 

√ √ 
 

√ √  
 

deep bed filtration (COD removal) 
   

√ 
 

√ 
 

√ √  
 

Dynamic specific cake resistance  
  

√ 
 

√ √ √ √ √ √ 
 

specific cake resistance is related to 

bound EPS or soluble EPS (SMPs)  

  
SMPs  SMPs SMP bEPS SMPs SMPs bEPS SMP 

static cake layer resistance √ √ √ √ √ √ √ √ √ √ √ 

dynamic cake layer resistance 
  

√ √ √ √ √ √ √   

Pore fouling 
 

√ √ 
 

√ √ √ √ √  √ 

effect of backwashing 
   

√ 
 

√ 
 

√ √ √ 
 

effect of intermittent coarse bubble 

aeration  

  
√  √ 

  
√ 

 
√ 

 

effect of aeration intensity  
  

√  √ √ √ √ √ √ 
 

effect of filtration-relaxation cycle 
  

√ √ √ √ √ √ √ √ √ 
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full energy estimation model 
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√ 
 

aeration model 
      

√ 
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GHGs emission model 
        

√  
 

Calibration protocol  
         

 
 

Stochastic (sensitivity analysis)  
   

√ 
 

√ √ √ √  √ 

Heuristic   
       

 
 

No calibration  √ √ √  √     √  

Bio-kinetic sub-model validation     √  √  √ √  √ 

Filtration sub-model validation   √ √  √ √   √  √ 

Berkeley Madonna (BM), FORRTAN 

(F), R 

  
BM F BM 

  
F R  

 

MATLAB/SIMULINK √ √ 
   

√ √ 
  

√ 
 

Commercial software           Aquasim 
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 SUMMARY AND PERSPECTIVES 

The literature review showed that the activated sludge models in standalone as well as 

in integrated configuration with mostly used RIS fouling models are validated and are 

successful in simulating the pollutants removal and fouling evolution of the MBR 

systems with design capacities in the range 0.3-7,000 m3.d-1. No study has been found 

for the super large-scale facilities (≥100,000 m3.d-1), even though the total number of 

super-large-scale facilities has increased now. Furthermore, most of the modeling 

studies have used rigorous calibration of the model parameters, including both 

heuristic and mechanistic (i.e., through sensitivity analysis tools), and the values of 

model parameters vary to a large extent, posing a difficulty in adapting the values for 

a new system. 

Large-scale modeling studies should be carried out to explore the utility of the existing 

models and to use these validated models for the development of advanced controls 

for optimization of pollutant removal processes, fouling prediction, and automatic 

controls. Moreover, the comprehensiveness of the model should be improved by 

considering the incorporation of the sub-modules i.e., i) COD, N, and P fractions, ii) 

full-scale dynamic aeration based on the actual aeration system in place, iii) coagulant 

addition along with particle size distribution, iv) energetic consumption, vi) the 

contribution of coarse bubble aeration to the overall O2 supply in aerobic reactor, v) 

accurate hydraulic modeling to fully characterize the anaerobic/aerobic/anoxic 

reactors and vi) GHGs emissions modeling.  
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 Objectives of Thesis  

Global and specific objectives of this thesis work are based on the gaps identified in 

the literature review presented heretofore and in alignment with the objectives of the 

umbrella program of SIAAP, i.e., “Modélisation Contrôle et Optimisation des 

Procédés d'Epuration des Eau (MOCOPEE) and are presented in this chapter. 

 GLOBAL OBJECTIVES  

Global objectives are listed considering the overall contribution of this work in the 

domain of the MBR modeling.  

 Development of integrated and comprehensive model for full-scale MBR 

The integrated model developed in this work aimed to link all the components of the 

MBR processes including biological processes (carbon oxidation and nutrient 

removal), oxygen supply for biological process, and diffusion limitation associated 

with the higher MLSS concentrations and diffusers fouling, filtration -fouling 

mechanisms and energy consumption associated with multiple energy consumption 

installations, and in particular air-scouring. The model is intended to simulate: 

▪ Removal kinetics of COD, NH4
+ and ideally NOx and PO4

3- with regards to 

activated sludge process variables in combination with filtration-fouling model 

▪ Dynamic KLa based on the actual design of the aeration system and oxygen 

supply,  

▪ TMP and total filtration resistance under the influence of filtration-relaxation, 

backwashing, and intermittent aeration mechanisms.  

▪ Specific energy consumption and the bifurcation of the energy consumed by 

various unit operations.  

 Validation of the integrated model at a super large-scale  

The measured data from the full-scale / super-large scale MBRs is relatively limited 

and is usually not maintained by the plant operator in line with the requirements of the 

modeling work. One of the global objectives of this work is to collect, treat and manage 
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the missing data sets (through experiments) required for validation of the model at a 

super large-scale. 

 SPECIFIC OBJECTIVES  

The 3 specific objectives of this work are split into 1 operational and 2 scientific 

objectives: 

▪ To develop a fully calibrated and validated model to be used as a basis for 

optimization and development of control systems for process improvement and 

consumption of energy and chemicals. 

▪ To explore to what extent modeling of super-large scale is different than 

modeling a laboratory scale and pilot scale systems. 

▪ To investigate the influence of the input and parameters uncertainties on model 

output. 
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 Seine Aval MBR Wastewater 

Treatment Plant  

This chapter presents the general arrangements and specificities of the Seine Aval 

MBR wastewater treatment facility. It is the experimental data provider for the 

integrated modeling in the current work. It is a super large scale (>100,000 m3.d-1) 

facility, being one of its original characteristics. It includes the plant schematics, 

specifications of biological and membrane basins, hydraulic characteristics, and the 

overall functioning status of the plant. According to Petersen et al.(2002) and Rieger 

et al.(2012), plant design data are needed for model configuration and its successful 

calibration. 

 SEINE AVAL WASTEWATER TREATMENT PLANT  

This MBR facility is a part of Europe’s largest wastewater water treatment plant 

located on the Seine River at Achères-France and has been operational since 2017.  

 

Fig. 6.1: Seine Aval wastewater treatment plant, Paris, adapted and modified from 

(SIAAP, 2014)  
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The Seine Aval wastewater treatment plant receives around 1.70 million m3.d-1 of 

municipal wastewater generated by approximately 70% of the Parisian population. 

From the total wastewater received at the Seine Aval plant, the MBR facility is 

currently handling around 200,000-328,000 m3.d-1(upper design limits of 4 m3.s-1 is 

only for 13 hours) of pre-treated influent, while the rest of it is being treated by the 

conventional processes as presented in Fig. 6.1. This work, however, concerns only 

MBR process, and does not include the conventional treatment processes. 

The MBR feeding consists of settled wastewater from clarifiers, mixed with by-passed 

pre-treated wastewater, if necessary. The mixed influent is already sieved by 1 mm 

sized rotary screens to remove suspended and filamentous materials and by the way to 

protect the downstream membrane units from clogging. The MBR is composed of an 

activated sludge process used for the secondary treatment, and a solid-liquid separation 

is accomplished with Zenon’s ZeeWeedTM 500D braid-reinforced membranes. MBR 

plant is divided into two lanes. Each activated sludge treatment lane further consists 

of 3 biological reactors feeding 14 MBR tanks operating in parallel. The schematic of 

a single lane is presented in Fig. 6.2 below, while the overall schematic of the facility 

is presented in Fig. 6.3. 

 

Fig. 6.2: Schematics of a single lane of the Seine Aval MBR (SIAAP, 2014) 
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 ACTIVATED SLUDGE TREATMENT PROCESS CONFIGURATION  

Each of the six biological reactors is designed in a modified University Cape Town 

(mUCT) configuration with pre-anoxic as the first zone (see Fig. 6.4). It helps in the 

removal of any residual nitrates coming from the recirculation streams as well as in 

the influent. This zone is not mixed. The second zone is the anaerobic zone, where 

biological phosphorous removal takes place without any oxygen supply. The anoxic 

zone is the third stage of the biological treatment, and denitrification takes place here. 

The last zone of the biological basin is the aerobic zone, where residual BOD is 

removed, and allows further nitrification. The total available volumetric capacity of a 

single bioreactor is 19,573 m3, out of which 90% is normally used. A summary of the 

biological reactor configuration is given in Table 6-1. 

Table 6-1: Volumetric distribution of biological reactors into zones  

Zone 

Unit vol per 

biological 

reactor (V) in 

m3 

Number of 

biological 

reactors (N) 

Volume of each 

Zone (V×N) in 

m3 

Total volume of 

biological basin ( 

(PA+AN+AX+AO) in 

m3 

Pre-Anoxic (PA) 373 

6  

(3 in each line) 

2,238 

117,438 
Anaerobic (AN) 4,400 26,400 

Anoxic (AX) 6,000 36,000 

Aerobic (AO) 8,800 52,800 

 

 Biological process aeration system  

In wastewater treatment processes, biological process aeration introduces air into 

liquid, providing an aerobic environment for microbial degradation of organic matter. 

The purpose of biological process aeration is two-fold: 1) to supply the required 

oxygen for microorganisms metabolism, and 2) to provide mixing so that the 

microorganisms come into intimate contact with the dissolved air and suspended 

organic matter (Gebara, 1999).  

The overall nominal flow throughput per tank is 14,000 Nm3.h-1. In the aerobic zone 

of each of the six biological reactors, there are 1,568 fine bubble diffusers installed on 

17 ramps located at the bottom of the basin (see Fig. 6.4), leading to a nominal airflow 

rate of 9 Nm3.h-1.
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Fig. 6.3: Layout of the full-scale Seine Aval MBR facility 
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This configuration results in different dissolved oxygen concentrations in each of the 

four sub-zones of the aerobic with different oxygen transfer rates. The distribution 

summary of the diffusers in one bioreactor, as well as entire facility, is given in Table 

6-2. 

 

Fig. 6.4: Aeration system configuration in aerobic zones of the bioreactors  

 

Biological nitrogen and phosphorus removal processes are sensitive to dissolved 

oxygen (DO) concentrations which means that the aeration system is required to be 

modeled with reasonable accuracy to show the system dynamics (Rieger et al., 2012).  

Table 6-2: Distribution of air diffusers per biological basin and the entire facility  

Zone 

Surface 

Area 

(m2) 

Numbers 

of ramps 

(N) 

Number 

of 

rackets 

per 

ramp (n) 

Number 

of 

diffusers 

per 

racket 

(R) 

No. of 

diffusers per 

bioreactor 

K1=(n×R) 

Total 

diffusers 

K=K1×6 

Zone -I 270 4 8 52 416 2,496 

Zone -2 240 5 10 48 480 2,880 

Zone -3 270 4 8 44 352 2,112 

Zone -4 180 4 8 40 320 1,920 

 Total diffusers  1568 9,408 

The detailed information about the installed aeration system would be helpful in 

calibrating the model for nitrification and the EBPR process.  
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 Coagulant addition for phosphorus removal  

Municipal wastewater usually contains total phosphorus (TP) concentrations in the 

range 1− 20 mg.L-1 (Nadeem et al., 2022). EBPR performance of the full-scale MBR 

facilities is normally low, and chemically enhanced phosphorus removal (CEPR) is 

used to meet the stringent regulatory requirements. Coagulant dosing has been reported 

to decrease the membrane fouling if applied at low-to-moderate concentrations (Fe:P 

molar ratios < 1). However, much higher concentrations (Fe:P molar ratio in the range 

of 1.5−4.0) are needed when almost complete P-removal is the aim. Ferric chloride 

(FeCl3) is efficient in removing phosphorus without affecting the microbiology in the 

sludge. Further details about the P-removal by CEPR process in MBR and factors 

affecting its performance can be found in work separately published (Nadeem et al., 

2022) and is placed in Annexure-A. 

There are two injection points for FeCl3 at SAV MBR, as demonstrated in Fig. 6.5. 

The primary injection point is at the end of the anaerobic tank, while the secondary 

injection is at 3⁄4 of the aerobic zone. 

 

Fig. 6.5: Primary and secondary coagulant injection locations 

Thus, each of the two activated sludge lanes has six (06) dosing pumps (3 for the 

primary injection and 3 for secondary injection), making it 12 coagulant dosing pumps 

for the entire facility. The metering pump flow rate is set in the range of 50-290 L.h-1. 

The commercial solution of FeCl3 with a purity of 41% is commonly used. The average 

injection rate is 23.3 mgFeCl3.L
-1 and this can increase up to 39.3 mg FeCl3. L

-1 during 

peak period. 
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 Control systems 

The plant is equipped with multiple control systems to regulate flow, biological 

process aerations, recirculation, and coagulant addition for Phosphorus removal. The 

following sections briefly present these controls.  

6.2.3.1 Inflow control to the MBR facility  

The instantaneous flow for the MBR facility is defined according to the incoming flow 

to the Seine Aval WWTP. It can vary between 1 and 4 m3. s-1, which is the maximum 

design capacity of the MBR facility (see Table 6-3). However, the maximum flow of 

4 m3 sec-1 is limited to 13 hours per 24-hour period. 

Table 6-3: Inflow guidelines for the MBR facility at Seine Aval (SIAAP, 2016) 

Flow rate at Sine Aval (QSAV) MBR flow rate setpoint 

QSAV<7 m3 sec-1 1 m3.sec-1 

7 m3.sec-1≤ QSAV<12 m3.sec-1 1.5 m3.sec-1 

12 m3.sec-1≤ QSAV<14 m3.sec-1 2 m3.sec-1 

14 m .sec-1≤ QSAV<18 m3.sec-1 2.5 m3.sec-1 

18 m3.sec-1≤ QSAV<21 m3.sec-1 3 m3.sec-1 

21 m3.sec-1≤ QSAV<25 m3.sec-1 3.5 m3.sec-1 

25 m3.sec-1≤ QSAV 4 m3.sec-1 

 

6.2.3.2 Recirculation control  

In order to achieve a sufficient biological nutrient removal, tanks in series (pre-anoxic, 

anaerobic, anoxic, and aerobic tanks) with conditions for the proliferation of 

Fig. 6.6: Sludge recirculation scheme 
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autotrophs, heterotrophs, nitrifies-denitrifies, and phosphate accumulating organisms 

are required.  

There are three different sludge mixing and recirculation among them. recirculation 

within each biological tank as explained in Fig. 6.4 and Fig. 6.6 and further explained 

below. 

▪ The recirculation from anoxic zone to pre-anoxic zone: it represents 130% of 

the daily volumetric inflow. The sludge is returned to the pre-anoxic zone for 

removal of residual nitrates coming from the anoxic zone. The recirculation 

also contributes to develop the phosphorus accumulating organism (PAOs) and 

to reduce the phosphorus concentrations in the aerobic tank. 

▪ The recirculation of mixed liquor from the aerated zone to the anoxic zone: it 

represents 240% of the daily volumetric inflow. It allows to eliminate the 

nitrate produced in the aerobic zone. 

▪ The recirculation of membrane tanks to the aerobic zone: It generally 

represents 400% of the daily volume and allows recirculation of the nitrifying 

biomass but may vary depending upon the action of the MLSS control system. 

This recirculation also helps at maintaining a TSS concentration in the 

membrane tanks and is required to sweep the membrane surface. If the 

recirculation rate is too low, the MLSS in the membrane tank may increase 

rapidly, making the physical separation difficult and increasing fouling 

propensity. The main objective of the high recycle rate is to redistribute the 

sludge concentration and minimize the membrane fouling associated with 

higher MLSS concentrations. It is important to note that the recirculation of 

MLSS from the membranes zone to the aerobic zone may be fully saturated 

with high concentrations of DO varying in the order of 2 -6 mg.L-1, depending 

upon the DO concentration from the sludge in the aerobic zone. This oxygen 

cannot be significantly controlled because the airflow provided by the air scour 

blowers is mandatorily required to provide a minimum shear across the surface 

of the membranes to mitigate the potential membrane fouling. 

From the modeling point, recirculation flow information with MLSS concentrations is 

essential, and the gathered information has been used for model structure design and 

its further calibration.  
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6.2.3.3 Biological process aeration control 

The aeration system installed at the SAV MBR has four aerated zones in the aerobic 

reactor (based on the different number of diffusers), with two different 𝑂2 set points. 

The DO concentration is reported by two sensors installed at two different locations. 

Each zone has an airflow rate adjusted by a PID controller based on the O2 setpoint. 

The controller has a manually selected setpoint. Under normal operation (i.e., 

continuous aeration), a secondary controller based on a setpoint on the effluent NH4
+ 

measured online is used to modify, in a cascade mode, each O2 setpoint in the aerobic 

tank with a correction factor. If the ammonia analyzer is not working, the manually 

selected O2 setpoint is used without corrections. The PID controller for O2 setpoint 

corrections using ammonia measurements and setpoints can be disabled manually.  

The measured O2 values used for control are the average measurements of the three 

aerated tanks (average per zone) of each lane. This implies that each activated sludge 

lane is controlled in a similar way and should receive a similar airflow rate. Lanes A 

and B could, however, be controlled differently if needed. If for some reason, the 

average measurement is not available, then the average value of the other process lane 

is used. If the average measurement is not available for both lanes, the influent 

ammonia loading rate measured online after the sieving/screening step is used, along 

with a lookup table provided by the supplier to decide on an airflow rate. If even that 

analyzer fails, then a default, constant aeration flow rate is used. 

The PID controllers for airflow rates calculations using O2 setpoints output results in 

% of air valve opening. These outputs are once again limited by a maximum and a 

minimum value. There is only one air flowrate measurement in each activated sludge 

lane, consisting of the combined air demand for zone-1 and zone-2. 

There is also an option to use aeration in a sequential on/off mode. In this mode, the 

aeration is on, normally for around 120 minutes, and off for around 60 minutes. The 

DO related setpoint values used during the study period are given in Table 6-4 as 

reference. 



Chapter 6: Seine Aval MBR Wastewater Treatment Plant 

76                                                                                                           PART-III: MATERIALS AND METHODS 

Table 6-4: Biological process aeration controller settings  

Aeration control loop parameters Units Before July 

2018 

July 18 -Nov 

2019 

Sequenced aeration mode ON 
 

  

Aeration time during sequenced aeration Min 120 90 

Non-aeration time during sequenced aeration Min 60 60 

O2 setpoint in aerobic zone 1 mgO2.L-1 1.5 1.8 

O2 setpoint in aerobic zone 2 mgO2.L-1 0.8 1.2 

Maximum value of the O2 correction factor 

(NH4
+ driven) 

…. 1.2 1.2 

Minimum value of the O2 correction factor 

(NH4
+ driven) 

…. 0.8 0.8 

NH4
+ setpoint mgN.L-1 0.5 0.5 

6.2.3.4 Coagulant addition control 

Under normal operation, both injection points are in use and aeration turned on. The 

injected FeCl3 volume/flowrate in the anoxic reactor is computed using a PID 

controller according to the influent wastewater flow rate. At the secondary injection 

point, the controller uses a second setpoint of the effluent PO4
3- measured online to 

decide on a cascaded mode of the FeCl3 flow rate setpoint. Each FeCl3 setpoint has 

both a minimum and a maximum value.  

Each of the commands of these injection points can be manually disabled. Also, each 

lane (A and B) can be operated differently, but each of the three bioreactors (inside A 

or B) is operated in the same way. The secondary injection point is also automatically 

disabled when there is no aeration in the aerobic tank. When some injection point is 

not available (i.e., involuntarily not in use), a simple Eq.6.1 is used to increase the 

other injection setpoint.  

 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑋,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑋,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝐾𝑌 . 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑌,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 6.1 

Where X is the number of the available injection point, and Y is the number of the 

unavailable ones. K2 is normally higher than one, and K1 is lower than one. The 

reasoning for this is that the primary injection is considered more efficient than the 

secondary one. Note that when the aeration is off in the aerobic tank, the secondary 

injection point is unavailable, and the primary setpoint compensation is activated. 

Also, note that a second set of maximum and minimum setpoint values can be reached 

after compensation. 
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Table 6-5: Phosphorus removal control system setpoints  

PO4
3- control loop parameters Units 

Before July 

2018 

July 18 -Nov 

2019 

Primary FeCl3 concentration mg.L-1 25 15 

Primary coefficient (KY)  …. 0.8 0.8 

Maximum primary FeCl3 concentration mg.L-1 30 20 

Secondary coefficient (Ky)  …. 1.5 1.5 

Maximum secondary FeCl3 concentration 

(before applying the secondary coefficient) 

mg.L-1 20 30 

Maximum secondary FeCl3 concentration 

(after applying the secondary coefficient) 

mg.L-1 30 30 

Minimum secondary FeCl3 concentration 

(before applying the secondary coefficient) 

mg.L-1 5 10 

Default secondary FeCl3 concentration  mg.L-1 10 15 

PO4
3- setpoint  …. 0.35 0.25 

 

When the PO4
3- analyzer is offline, the secondary injection point falls back to a 

manually selected FeCl3 setpoint, similar to what is used for the primary one. The 

PO4
3- related setpoint values used before and after 18th July 2018 are given in Table 

6-5. 

 MEMBRANE FILTRATION  

The SAV MBR facility has two membrane lanes with 14 tanks each (i.e., 28 Tanks in 

total) and is equipped with ZeeWeedTM 500D as shown in the Fig. 6.7 with 

specifications provided in Table 6-6. Each of the tanks contains ten cassettes, and each 

cassette consists of 48 modules (see Fig. 6.8). In addition, 26 tubular diffusers (13 per 

half cassettes) are fed by two air ducts and permeate drawn out via a single duct. 
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Fig. 6.7: Schematic of the 14 MBR tanks of lane-A operating in parallel 
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 Functioning of the tanks  

The sludge from the aerobic zones of each lane flows to the 14 membrane aerated tanks 

of the corresponding MBR lane, as shown in Fig. 6.7. The filtration cycle varies in the 

range of 7-15 minutes (adjusted to 11 minutes) and is regulated by the operator. Each 

tank can be individually programmed, automatically as well as manually (different 

operational sequences such as backwashing filtration, degassing cycle, maintenance 

cleaning, intensive recovery cleaning, tank emptying, rinsing, aeration sequencing, 

etc.) 

Table 6-6: Specifications of ZeeWeedTM 500D module 

Parameter Value  

External/Internal diameter  1.9/0.8 mm 

Filtration flux direction  Outside -in  

Material  Polyvinylidene fluoride (PVDF) 

Pore size 0.04 micron  

Total surface area/module  34.4 m2 

Total Available surface area  462,336 m2 

Module Dimension (H×W×D) 2198×844×49 mm 

Surface properties  Non-ionic & hydrophilic 

 

Fig. 6.8: Module, cassettes, and single MBR tank 
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It takes 20 seconds for degassing, followed by eight filtration-relaxation cycles of 

660 seconds and 45 seconds, respectively. The 8th relaxation cycle is extended by 

35 seconds of backwashing. In total, it takes 5,695 seconds until the next de-gassing. 

Considering that on each tank, there are ten membrane cassettes, the tanks are paired, 

and two compressors per pair are installed, the aeration cycles are operated as follows: 

▪ 10/10 configuration: when both compressors are operational, five cassettes on 

each tank are aerated simultaneously for 10 seconds (5 from one tank with one 

compressor and five from the coupled tank with the other compressor) with a 

relaxing period of 10 seconds while the other 5 cassettes of each tank are non-

aerated. Thus, the cycles are about 20 seconds plus 5 seconds (approx.) 

required to open and close the valves. 

▪ 10/30 configuration: when only one compressor is operational, 5 cassettes in 

one tank are aerated for 10 seconds with a relaxing period of 30 seconds (while 

the other cassettes are non-aerated, 5 cassettes at a time). In this case, the entire 

cycle takes 40 seconds, plus 5 seconds (approx.) to open and close the valves. 

The aeration is operated in alternation within tanks, i.e., (1) aeration of 5 

cassettes in tank-1, (2) aeration of 5 cassettes in tank-2, (3) aeration of the other 

five cassettes in tank-1, (4) aeration of the other five cassettes in tank-2. 

▪ Special configuration: When a tank is at standby, it is aerated as its coupled 

tank, either operated like 10/30 or 10/10. However, when both coupled tanks 

are on standby, the aeration mode is automatically, 10/30 for energy savings.  

Furthermore, backwashing is applied to remove part of the fouling, which is apparently 

not removed by the relaxation and/or air scouring. Backwashing involves permeate 

injection against the flow through the membranes for a programmed sequence that the 

operator could modify. This phase of backwashing may be replaced by a relaxation 

stage. 

 MLSS control in MBR tank 

MLSS from the membrane tanks is re-circulated back to the aerobic zone of the 

biological tanks to maintain the MLSS concentrations and nitrification rates. The 

recirculation rate (R) concentration factor (K= 
𝑅+1

𝑅
) is given by Eq. 6.2. 
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 𝑀𝐿𝑆𝑆𝑀𝐵𝑅 = 𝐾 × 𝑀𝐿𝑆𝑆𝑎𝑒𝑟𝑜𝑏𝑖𝑐 𝑡𝑎𝑛𝑘 6.2 

Standard K values are given in Table 6-7, these values are used to prevent excessive 

accumulation of TSS in membrane tanks. The control loop of the feedback system 

regulates the K factor and keeps close the value fixed by the operator by altering the 

recirculation ratio. For this, the controller relies on the measurement of four TSS 

sensors. 

Table 6-7: Setpoints for TSS regulation in MBR tank  

 Unit Case-I Case-II Case-III Case-IV 

Inflow to the membrane 

lines 

m3.d-1
 143,000 200,000 248,711 300,000 

TSS concentration in 

Aerobic Zone 

g.L-1 7.0 7.0 8.0 7.2 

Recirculation ratio % 700 600 500 400 

K values - 1.14 1.17 1.2 1.25 

TSS concentration in 

Membrane tanks 

g.L-1 8.0 8.2 9.6 9.0 

 

With this MLSS control system in place, the following three scenarios are possible for 

regulation of K value: 

i. If the TSS measurement in the membrane tank is equal to the set value, the 

pumps will continue pumping the MLSS at the same rate back to the aerobic 

zone. 

ii. If the TSS measurement in the membrane tanks is higher than the pre-set value, 

the control system will increase the recirculation rate by increasing the 

pumping rate. 

iii. If the TSS measurements in the membrane tanks is lower than the pre-set value, 

the control system will decrease the recirculation rate through decreasing the 

pumping rate. 

 Chemical Cleaning of the membrane  

Two kinds of the chemical cleaning processes are used at the SAV MBR plant i.e., 1) 

maintenance cleaning (in-situ), which lasts about 2 hours per tank to prevent the risk 

of fouling and clogging, and ii) intensive cleaning (ex-situ), which lasts about 24 hours 

per tank to regenerate the filtering capacity of the membranes. The frequency and 

chemicals used in both kind of chemical cleaning process are given in Table 6-8. 
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Table 6-8: Description and frequency of the chemical washes 

 Chemicals Type of cleaning 
Conc. 

(mg/L) 

Frequency 

per tank  
pH 

Maintenance 

Cleaning (In-Situ) 

Bleach Organic 200 
Twice per 

week 
10.5 Max 

Acid Mineral 1100 
Once per 

week 
2.5-3.5 

Intensive Cleaning 

(Ex-Situ) 

Bleach Organic 1100 
twice per year 

per tank 
10.5 Max 

Acid Mineral 2200 
twice per year 

per tank 
2.5-3.5 

 

 INSTALLED ENERGY CONSUMERS IN SAV MBR  

The energy requirements in several processes of the MBR plant operations with fixed 

(i.e., mixers and foam breakers) and variables (influent pumping, fine and coarse 

bubble aeration, recirculation, permeate pumping, and backwashing). A list of such 

equipment and their installed power, along with necessary information is provided in 

Table 6-9. All these power consumers are used for energy consumption estimation 

and simulation.  

Table 6-9: Energy consumers installed at Seine Aval MBR facility 

Main process Equipment Functions/locations 

Number 

of Units 

installed 

Installed 

Power 

(kW) 

Controls/state 

Influent 

pumping  

Submersible 

centrifugal 

pump  

Influent pumping 

from station to 

MBR  

04 1250 Variable 

frequency drive 

(VFD)/dynamic  01 

Recirculation 

pumps 

Submersible 

pump 

Anoxic →pre-

anoxic 

18 90 VFD/ dynamic 

Aerobic –anoxic  18 VFD/ dynamic 

Membrane tank 

→aerobic 

28  

Mixers/agitators Horizontal 

axial mixers 

Anaerobic reactor 24 288 Fixed speed  

Anoxic reactor  36 432 Fixed speed 

Foam 

breaking/de-

gasification  

Foam 

breakers 

submersible 

motor. 

Breaking of foam 

and removal of air 

in the anoxic zone  

06 1080 Fixed speed 
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Main process Equipment Functions/locations 

Number 

of Units 

installed 

Installed 

Power 

(kW) 

Controls/state 

Dosing pumps  Lobe pumps Coagulant addition 

in anoxic and 

aerobic tanks  

12 384 Fixed speed 

Fine bubble 

aeration  

Centrifugal 

compressors 

Biological process 

aeration  

06 4650 VFD/ dynamic 

Membrane 

scouring  

lobe 

compressors 

Fouling abatement 

control  

28 2100 Fixed speed. 

dynamic 

Permeate 

suction and 

backwashing  

Lobe pumps Permeate extraction 

and backwashing of 

the fouled 

membranes  

28 21 Fixed speed 

Sludge 

extraction 

centrifugal 

pump 

Extraction of sludge 

from the membrane 

tank  

12 16 Variable 

frequency drive 

(VFD)/dynamic 

 

 SUMMARY  

The Seine Aval MBR is a super-large-scale facility and is the 4th largest in the world 

with a peak flow design capacity of 348,000 m3.d-1 (not exceeding 4 m3s-1 for 

13 hours). Other important design aspects are summarized in Table 6-10. All these 

data were used for the configuration of the model as well as its calibration. 

Table 6-10: Summary of the SAV-MBR design features  

Design feature  units Descriptions  

Screen Size  mm 1.00 

Number of process lanes -- Two (02) 

Number of ASP bioreactors in 

each lane  

-- Three (03) 

Bioreactor configuration type   Modified University Cape Town  

Biological reactor’s volume  m3 117,438  

Volumetric distribution of 

bioreactor  

% Pre-anoxic (1.79%); anaerobic 

(21.06%); anoxic (28.72%); aerobic 

(42.12%); MBR-bioreactor (6.32%)  

Aeration system  -- Sub-surface aeration systems 9408 

diffusers backed by 6 HOWDEN’s 

blowers  

Recirculation   Anoxic (130%); aerobic (240%); 

MBR-bioreactor (400%) and 

controlled by PID  
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Design feature  units Descriptions  

Membrane material  - Polyvinylidene fluoride (PVDF) 

Membrane pore size and surface 

properties 

µm 0.04 (Non-ionic & Hydrophilic) 

Membrane manufacturer & model  - Zenon, hollow fiber (HF), 

ZeeWeedTM 500D 

Number of MBR lanes  -- Two (02) 

Number of tanks in each lane  -- 14  

Number of cassettes in each tank  -- 10 

Number of modules in each 

cassette  

-- 48 

Surface area of a single module  m2 34.4 

Surface area of a single Tank  m2 16,512 

Total membrane area  m2 462,336 

De-gassing, filtration-relaxation, 

and backwashing sequencing of 

MBR 

- 20 seconds of degassing, followed by 

eight filtration-relaxation cycles of 

660 seconds and 45 seconds 

respectively. 35 seconds of 

backwashing. In total, it takes 5,695 

seconds until the next de-gassing. 

Aeration -relaxation sequencing   10/10; 10/30 or can be programmed  

Type of chemical cleaning   - Maintenance cleaning 

(2/week) 

- Recovery cleaning (2/week) 
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 Existing Data and Additional 

Experimental Campaigns   

In addition to an accurate understanding of the functioning of the plant, sufficient and 

high-quality data is essential for the knowledge-based modeling and trustable quality 

of simulation results. Keeping this in mind, this chapter presents a comprehensive data 

set required for the configuration, calibration, and validation of an integrated MBR 

model for the Seine Aval plant. It also presents the approach used to collect, treat, and 

adjust multiple datasets collected from the supervisory control and data acquisition 

(SCADA) system and daily laboratory analysis data. In addition, a data-driven 

approach used to reduce the complexity of the plant layout is presented.  

 DATA REQUIREMENTS 

Configuration, calibration, and validation of the phenomenological model required 

multiple data sets, including i) physical data related to plant design, ii) operational 

settings, iii) input data, iv) output data, and v) additional data sets related to bio-

kinetics of the biomass. The physical data has already been presented Chapter 6:. This 

chapter is dedicated to presenting and analyzing the input, operational, and output data 

sets and cleaning these before using them in the modeling work. Two kinds of data set 

from the available data were gathered. The first one-week long data set (13/05/2019-

19/05/2019) was used for the steady-state and dynamic calibration of the model, and 

the other 3 months long (01/11/2018- 31/01/2019) were used for the long-term 

dynamic validation of the model. A third data set of 2 weeks duration (20/9/2020-

04/10/2020) was also gathered to re-validate the integrated model. 

 DATA SOURCES AT SEINE AVAL MBR PLANT  

Input data is available from two sources, i.e., i) routine laboratory measurements and 

ii) installed flow quantity and quality reporting sensors. The schematic of the data 

availability with respect to data sources is presented in Fig. 7.1.
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Fig. 7.1: Data sampling and sensors installation points  
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Monitoring data is available, whatever the measuring frequencies described in Table 7-1. 

All the data sets are not available with 15 minutes measurements frequencies. 

Furthermore, most of the process information is available from the aerobic tank, and very 

little is known about the processes happening in pre-anoxic, anaerobic, and anoxic 

reactors. In addition, almost all bio-kinetic models required COD in fractionated form. 

While, at SAV-MBR, data related to CODs and CODtot is available only, and no 

information about the EPS and SMPs concentrations is available from the membrane 

and/or aerobic reactors. 

Table 7-1: Available data and frequencies of measurements  

Data type Parameters Units  Measuring 

Locations  
Measuring Frequency 

15 

Minutes 
Daily 

Weekly 

/Fortnightly 

Influent 

Flow 

Qinf m3.d-1/ m3.h-1 P5 
🗸 🗸  

In
fl

u
en

t 
Q

u
a

li
ty

 (
🗸

) 

E
ff

lu
en

t 
Q

u
a

li
ty

 (
※

) 

 

TSS mgTSS.L-1 

A
ft

er
 s

ie
v

in
g

 

P
er

m
ea

te
 o

f 
L

an
e-

A
 a

n
d

 L
an

e-
B

 

 
🗸 🗸※  

CODtotal mgO2.L-1  🗸※  

CODsol mgO2.L-1  🗸  

BOD5 mgO2.L-1  🗸  

TKN mgN.L-1  🗸※  

NH4 mgN.L-1 🗸※ 🗸※  

NO3 mgN.L-1 ※ 🗸※  

NO2 mgN.L-1  🗸※  

PO4 mgP.L-1 ※ 🗸※  

TP mgP.L-1  🗸※  

Alkalinity  molHCO3
-1  🗸※  

pH  🗸 🗸※  

P
ro

ce
ss

 C
o

n
d

it
io

n
s 

&
 S

lu
d

g
e 

P
ro

p
er

ti
es

 

QFeCl3 m3.d-1/ m3.h-1 Anoxic & 

Anerobic  
🗸 🗸  

ORP mV Anoxic  🗸   

DO mgO2.L-1 aerobic 🗸   

MLSS g.TSS.L-1 aerobic 🗸  🗸 

Temperature  C aerobic 🗸   

Air 

consumption  

Nm3.d-1/ 

Nm3.h-1 

Aerobic  
🗸 🗸  

CODsol mgO2.L-1 Aerobic   🗸 

Recirculation m3.d-1/ m3.h-1 Tanks in 

series 
🗸 🗸  

Extracted 

Sludge 

VSS g.L-1 Sludge    🗸 

DVM % Sludge   🗸 

TTF sec Sludge   🗸 
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Data type Parameters Units  Measuring 

Locations  
Measuring Frequency 

15 

Minutes 
Daily 

Weekly 

/Fortnightly 

Qsludge   🗸 🗸  

M
e
m

b
ra

n
e 

F
il

tr
a

ti
o

n
 a

n
d

 s
lu

d
g

e 
p

ro
p

er
ti

es
 

Flux- Inst. L.m-2.h-1  🗸   

Flux-Average L.m-2.h-1  🗸   

TMP mbar  🗸   

Permeability  L-1 .m-2.bar-1   🗸  

SADm m3h-1m-2   🗸  

Tanks in 

production  
No. 

 
 🗸  

TSS g.L-1  🗸   

Chemical 

consumptions 

in cleaning  

L.d-1 

 

 🗸  

Number of 

tanks on 10/10 

aeration-

relaxation 

sequencing  

No 

 

 🗸  

Number of 

tanks on 10/30 

aeration-

relaxation 

sequencing 

No. 

 

 🗸  

Chemical 

washes  
No. 

 
  🗸 

 

 DATA TREATMENT AND ADJUSTMENTS  

A four-tier approach suggested by Rieger et al. (2012) and presented in Fig. 7.2 was 

adopted for the cleaning of the datasets. This section explains and presents the data 

cleaning and reconciliation procedure used for 3 months long data. The same procedure 

has been adopted for the other two data sets collected from the laboratory and SCADA 

system with standardized excel tools prepared under this work.  



     Chapter 7: Existing Data and Additional Experimental Campaigns 

PART-III: MATERIALS AND METHODS      89 

 

Fig. 7.2: Data cleaning and approach 

 

 Preliminary checks 

Preliminary checks included the data visualization through time series and box plots, to 

see the trajectories of the mass flow and faults linked to sensor calibration, statistical 

outliers (beyond upper and lower quartiles in the box plots and time series analysis), and 

elimination of unjustified zero values. The information on the minimum detection limits 

for the sensors installed at SAV-MBR and the lab analysis methods being used at the 

SIAAP was helpful to rule out the possibility of data discrepancies. Table 7-2  and Table 

7-3 respectively, summarizes the minimum detection limits of sensors installed at various 

locations of the plant and the detection limits of laboratory methods used in SIAAP 

laboratory. The errors related to sensors error as well as the statistical errors were 

eliminated from each of the data sets available from the sensors and/or laboratory analysis. 

As an example, influent NH4 data is visualized using box plots and time series chart with 

minimum and maximum limits of the outliers and is presented in Fig. 7.3. 
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Fig. 7.3: Influent NH4 data visualization for sensor error and statistical outlier detection  
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Table 7-2: Minimum and Maximum detection limits of the sensor installed at various 

locations of the SAV plant  

Location of 

sensor 

Measure

ment 
Unit 

Measuring 

Frequency 
Range Precision 

Sieving Output  COD mgO2.L-1 15 Minutes  0-600  1 mgO2.L-1 

TSS mg.L-1 0-500 Unspecified  

NH4 mg.L-1 0-100 3%±0.05 mg.L-1 

Anoxic Zone ORP mV 15 Minutes 50-500 (-ve) Unspecified 

Temp 0C 0-50 Unspecified 

Aerobic Zone/  Diss. O2 mg.L-1 15 Minutes 0-10 ± 2% 

Recycle 

stream from 

aerobic to 

anaerobic 

TSS mg.L-1 15 Minutes  0-10 Without 

calibration < 

5% of the 

measured 

data ± 0,01 

FNU/NTU 

Outlet of the 

MBR Tanks 

(Permeate 

Testing)- Each 

tank 

Turbidity  NTU 15 Minutes 10-3 -103 

 

± 0,008 FNU ±1 

% of the 

measured data (0 

– 10 FNU) 

Outlet of the 

MBR Lane  

NO3 mg.L-1 15 Minutes 0.1-100 ± 0.1 mg.L-1 

PO4 mg.L-1 0.05-15 2 % of the 

measured data + 

0.05 mg.L-1 

NH4 Mg.L-1 0.05-20 3 % of the 

measured data + 

0.05 mg.L-1 

Turbidity  NTU 10-3 -103 

 

± 0,008 FNU ±1 

% of the 

measured data (0 

– 10 FNU) 

pH -- 0-14 Unspecified 

 Basic sanity checks  

Basic sanity checks were further used to eliminate any discrepancies in the data. This was 

ensured by verifying simple relationships for each data sets of the influent and effluent 

(see Fig. 7.4). In case the logical relationship was not true for a given data, data entries 

for that specific day/time were removed. 
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Table 7-3: Minimum detection limits of the laboratory analysis methods at SIAAP 

Measurement  Units  Location Minimum 

Limit 

Expanded 

Uncertainty 

TSS mg.L-1 Influent & Effluent  2  15% 

BOD5 mgO2.L-1 Influent  3  15% 

BOD5 (permeate) mgO2.L-1 Effluent  0.5  15% 

COD mgO2.L-1 Influent & Effluent  15  10% 

TKN mgN.L-1 Influent & Effluent  1  5% 

NH4 mgN.L-1 Influent & Effluent  0.25  10% 

NO2 mgN.L-1 Influent & Effluent  0.02  10% 

NO3 mgN.L-1 Influent & Effluent  0.25  10% 

PO4 mgP.L-1 Influent & Effluent  0.05  10% 

Ptot mgP.L-1 Influent & Effluent  0.20 10% 

Alkalinity  °F Influent & Effluent  2 – 40  Unspecified 

pH  Influent & Effluent  2 - 12 Unspecified 

 

The outliers observed for the phosphorus may be due to testing inaccuracies because in 

most of these cases the values for Ptot and PO4
3- are the same. 

 

Fig. 7.4: Basic sanity checks for influent and effluent data 

 Advanced sanity checks 

Advanced sanity checks were used to further identify and remove the faulty data points. 

Mass load ratios are more relevant than individual pollutants concentrations because, they 

are less reliant on rain (Petersen et al., 2002; Rieger et al., 2012). Mass load ratios are 

Date TKN>NH4 Ptot>PO4 CODtot>BOD5 CODtot>CODsol Ntot = TKN+NO2+NO3 Date TKN>NH4 Ptot>PO4 CODtot>BOD5 CODtot>CODsol Ntot = TKN+NO2+NO3

11/1/2018 TRUE TRUE TRUE TRUE TRUE 11/1/2018 TRUE TRUE TRUE TRUE TRUE

11/2/2018 TRUE TRUE TRUE TRUE TRUE 11/2/2018 TRUE TRUE TRUE TRUE TRUE

11/3/2018 TRUE TRUE TRUE TRUE TRUE 11/3/2018 TRUE TRUE TRUE TRUE TRUE

11/4/2018 TRUE TRUE TRUE TRUE FALSE 11/4/2018 TRUE TRUE TRUE TRUE TRUE

11/5/2018 TRUE TRUE TRUE TRUE FALSE 11/5/2018 TRUE TRUE TRUE TRUE TRUE

11/6/2018 11/6/2018

11/7/2018 11/7/2018

11/8/2018 TRUE TRUE TRUE TRUE FALSE 11/8/2018 TRUE FALSE TRUE TRUE TRUE

11/9/2018 TRUE TRUE TRUE TRUE TRUE 11/9/2018 TRUE FALSE TRUE TRUE TRUE

11/10/2018 TRUE TRUE TRUE TRUE TRUE 11/10/2018 TRUE TRUE TRUE TRUE TRUE

11/11/2018 TRUE TRUE TRUE TRUE TRUE 11/11/2018 TRUE TRUE TRUE TRUE TRUE

11/12/2018 TRUE TRUE TRUE TRUE TRUE 11/12/2018 TRUE TRUE TRUE TRUE TRUE

11/13/2018 TRUE TRUE TRUE TRUE TRUE 11/13/2018 TRUE FALSE TRUE TRUE TRUE

11/14/2018 TRUE TRUE TRUE TRUE TRUE 11/14/2018 TRUE FALSE TRUE TRUE TRUE

11/15/2018 TRUE TRUE TRUE TRUE FALSE 11/15/2018 TRUE FALSE TRUE TRUE TRUE

11/16/2018 TRUE TRUE TRUE TRUE FALSE 11/16/2018 TRUE FALSE TRUE TRUE TRUE

11/17/2018 TRUE TRUE TRUE TRUE TRUE 11/17/2018 TRUE FALSE TRUE TRUE TRUE

Influent  Quality Pragamatic Check Effluent  Quality Pragamatic Check

NO Data No Data 
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visualized through box plots and time series to identify and exclude the outliers. A single 

instance of the influent Ntot/CODtot is presented in Fig. 7.5 as an example. 

 

 

 

Fig. 7.5: Ntot: CODt influent ratio with daily average data 
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 Data Imputation  

After removing the outliers identified in all previous 3 steps, the missing values were 

replaced by the moving averages of the last 3 days (daily data) for all the influent, effluent, 

and process data, with 24 hours moving average in case of 15 minutes sensor data.  

 Hydraulic and mass balancing 

7.3.5.1 Hydraulic balance  

As part of the hydraulic balance, data analysis was carried out on average daily flows for 

the 3 months data. The balance sheet is the sum of the inflow rates (influent, coagulant 

addition, chemicals for membranes cleaning ) and the outflows ( including permeate, 

sludge, and drain). The system boundary for the calculation of the hydraulic balance is 

shown in Fig. 7.6. 

 

Fig. 7.6: boundary for the hydraulic balance of SAV MBR 

 

It should be noted that the outflow rates for discharge materials at the screening areas are 

not known and are considered negligible compared to other flows. Similarly, permeate 

volumes used to clean the screens (up to 4% of the influent) and getting back to process 

are not included in the hydraulic balance. Eqs 7.1 -7.2 represent the hydraulic balance at 

Seine Aval. 
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𝑄𝑖𝑛𝑓 + 𝑄𝐹𝑒𝐶𝑙3 + 𝑄𝐶𝐼𝑃 = 𝑄𝑃 + 𝑄𝑠 7.1 

Here,  

Qinf: influent flow rate (m3.d-1) 

QFeCl3 : Coagulant solution addition at anoxic and anerobic tanks (m3d-1) 

QCIP : Acetic acid and bleach consumption in in-situ membrane cleaning (m3d-1) 

Qp: Permeate production rate (m3.d-1) 

Qs: Sludge extraction rate (m3.d-1) 

The balance is considered reasonably closed at 100 ± 10% (Rieger et al., 2012) while for 

the SAV-MBR, 3 months long data, the average balance is evaluated to be 102% with 

variations in the range of ± 4% without considering the influence of the rain and 

recirculated of the permeate to the screens for cleaning (see Fig. 7.7 ).  

𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (%) =  
∑ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒𝑠

∑ 𝐼𝑛𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒𝑠
× 100 7.2 

 

 

Fig. 7.7: Hydraulic balance for 3 months data 
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7.3.5.2 Mass balances  

Since almost all activated sludge models are mass balance-based, feeding the balanced 

data would improve the accuracy of the simulations. Mass balances can also help identify 

systematic errors in wastewater treatment plant data sets (Petersen et al., 2002). The mass 

balances were carried out for COD, nitrogen (N), and phosphorus (P) for the entire SAV 

MBR system. These balances are carried out on flows averaged over long periods, at least 

three times the sludge retention time (Rieger et al., 2012), i.e., 92 days in the present case. 

Mass balance was calculated for all 92 days of average data, while the hydraulic balance 

was performed with daily flow datasets. The basic principle of the mass balance is 

described by the conservation Eq.7.3. 

Input +Reaction = Output + Accumulation 7.3 

Phosphorus balance: Phosphorus being the refractory wastewater component, is 

considered to conserve its mass as the influent, effluent, and sludge, leaving the MBR 

system to retain the mass and the phosphorus is not converted into any gaseous form. The 

balance is represented by Eq. 7.4 . An excel-based tool was developed for phosphorus 

balancing, considering the balanced hydraulics achieved in section 7.3.5.1 and the 

available influent and effluent concentrations from the daily laboratory measurements for 

92 days. Though actual Phosphorus concentrations in the sludge being extracted were 

unknown (as the Phosphorus in the sludge is not measured at SIAAP), an average 

concentration of 110 mg.L-1 for the period without the addition of coagulant and 

140 mg.L-1 for the period with coagulant addition was assumed (based on data available 

from other plants of SIAAP). It was later confirmed under dedicated experimental 

campaigns, presented in Chapter 9:. As per the experimental campaigns, the average 

values in the extracted sludge varied in the range of 140-160 mgL-1.  

𝑄𝑖𝑛𝑓 × 𝐶𝑖𝑛𝑓 = [𝑄𝑠 × 𝐶𝑠 + 𝑄𝑝 × 𝐶𝑝 + 𝑉
𝑑𝑇𝑃

𝑑𝑡
] 7.4 

Where, Cinf is the concentration (g.m-3) of TP in the influent; Cs is the concentration (gm-

3) of TP in sludge, and Cp is the concentration (gm-3) of the TP in the effluent. The average 
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daily phosphorus balance varied between 70% and 109%. The outliers were removed and 

replaced with acceptable moving average values to bring the balance within the acceptable 

range of 100 ± 20%. Although the ideal acceptability is within the range of 100 ± 10% 

(Rieger et al., 2012), in the current case, the precise data for the phosphorus flow in the 

extracted sludge is not available for 92 days, and an average value is adopted. Therefore, 

the results obtained are said to be acceptable.  

Oxygen consumption balance: On a 24-hour basis, the daily oxygen consumption of the 

entire plant was calculated using non steady-state mass balances for COD and total 

nitrogen (TN) by simplifying the approach suggested by Racault et al. (2011). The oxygen 

consumption balance is termed as “open” because several reactive flows are not measured. 

Indeed, a fraction of the flow is used to convert the pollutants into the gaseous phase i.e., 

CO2, N2, N2O, etc. (see Fig. 7.8). This balance makes it possible to estimate the oxygen 

consumed to degrade the carbonaceous and nitrogenous organic matter. Oxygen 

consumption was calculated from measurements of overall oxygenation yields and 

operating parameters of the aeration system installed at the Seine Aval and presented in 

the Chapter 6: 

 

Fig. 7.8: Mass balance boundary and terms for COD and Nitrogen balance 
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The total oxygen consumption (OCtot, kgO2.d
-1) is calculated from the oxygen 

requirements for the oxidation of organic matter (OC COD, kgO2d-1) and the treatment of 

nitrogen by nitrification (OCNOx, kgO2.d
-1) and by denitrification (OCDN, kgO2.d

-1). The 

overall balance of oxygen consumption is expressed in Eq. 7.5. 

𝑂𝐶𝑡𝑜𝑡 = 𝑂𝐶𝐶𝑂𝐷 + 𝑂𝐶𝑁𝑂𝑥 − 𝑂𝐶𝐷𝑁 7.5 

Considering the COD mass flow (kgCOD.d-1), the oxygen consumption balance for 

degradation of the carbonaceous matter at SAV MBR in the aerobic zone is expressed as 

Eq.7.6. The oxygen consumed in nitrification process is estimated using Eq. 7.7, while 

for denitrification, it is estimated using Eq. 7.8. 

𝑂𝐶𝐶𝑂𝐷 = 𝐶𝑂𝐷𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − 𝐶𝑂𝐷 𝑠𝑙𝑢𝑑𝑔𝑒 − 𝐶𝑂𝐷𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑉
𝑑𝐶𝑂𝐷

𝑑𝑡
 7.6 

It should be noted that, some of the organic matter in the shape of the particulate matter is 

removed at the screening stage, and due to the absence of any data about that extraction, 

it is not considered for COD balance.  

𝑂𝐶𝑁𝑂𝑥 = [𝑇𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑇𝐾𝑁𝑠𝑙𝑢𝑑𝑔𝑒 − 𝑇𝐾𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑉
𝑑𝑇𝑁

𝑑𝑡
] × 4.57 7.7 

 

𝑂𝐶𝐷𝑁 = [𝑇𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑇𝑁𝑠𝑙𝑢𝑑𝑔𝑒 − 𝑇𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 − 𝑉
𝑑𝑇𝑁

𝑑𝑡
] × 2.86 7.8 

Since the TN, TKN, and CODtot flows in the extracted sludge are not measured in routine 

at Seine Aval, these calculations are based on 3 days average values measured during the 

experimental campaign.  

Once the total oxygen consumption (𝑂𝐶𝑡𝑜𝑡) was estimated using Eqs. 7.5-7.8, the 

volumetric air consumption data available from the SCADA system of the SAV MBR, 
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was used for estimation of the daily mass of oxygen i.e., MO2 (kgO2.d
-1) transferred to the 

aeration basin by using Eq. 7.9 

𝑀𝑂2 = 𝑄𝑎𝑖𝑟 × 𝐸𝑑 × 𝜌𝑎𝑖𝑟 × 𝑋𝑂2
 7.9 

Where, Qair is the daily oxygen consumption (Nm3.h-1), Ed is the efficiency of the diffuser 

system installed at SAV per meter depth (5.1%) and XO2 is the fraction of the oxygen in 

the air (21%) and 𝜌𝑎𝑖𝑟 is the density of the air (1.204 kg.m-3) at 20 0C. Moreover, in these 

calculations, the quantity of oxygen injected into the membrane tank is assumed to be non-

influential for biological processes and COD and N conversions.  

Taking into account the estimated oxygen consumed (Eq. 7.5) and actual oxygen supplied 

(Eq. 7.9), the global oxygen balance was estimated using the Eq. 7.10.  

𝑂2 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 % =
𝑀𝑂2

𝑂𝐶𝑡𝑜𝑡
× 100 7.10 

The daily oxygen balance varied in the range 87- 137%. This variability of the oxygen 

balance might be associated with the air consumption in the MBR tank, which is not 

considered. In addition, data related to sludge COD and TKN were not available, and 

average values were used instead for entire 92 days.  

In summary, the mass balances of phosphorus and oxygen consumption are not accurate 

but acceptable to an extent that is much better than the raw data. Indeed, the differences 

are reduced, and the averages tend towards 100±10%. However, these assessments are not 

complete because of the several hypotheses made for each stage of the reconciliation 

process due to the lack of available datasets, mainly related to extracted sludge (not 

measured in routine). However, adopting average TP and TN concentrations is not helpful 

for achieving accurate mass balance results due to large variations in the inlet wastewater. 

 EXPERIMENTAL CAMPAIGNS  

In the previous chapter, it was explained that existing data from the SCADA system and 

routine laboratory measurements were collected and reconciled. However, these data were 

not sufficient for model configuration, steady- state/dynamic calibration, and validation 
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of the model. Dedicated experimental campaigns were carried out to compensate for the 

deficiencies in the available datasets in order to achieve higher simulation performance. 

This paragraph presents the methodologies adopted for the collection and analyses of the 

data applied to two experimental campaigns and their corresponding results. Experimental 

campaigns were carried out for the following objectives: 

▪ To compensate for the missing datasets needed for mass balance analysis 

(discussed in the previous chapter). 

▪ To establish initialization conditions for setting up the model and validate. 

▪ To validate the steady state simulation of the model for each of the reactors.  

▪ To understand the pollutants and biomass transformations, through their balances, 

within each of the reactors. 

 Targeted datasets 

7.4.1.1  Pollutants removal profile each of bioreactor zone 

The first experimental campaign (13/05/2019-19/05/2019) was designed to collect the 

influent and sludge samples for analysis from positions (S1-S8) marked in Fig. 7.9, while 

in the second experimental campaign (20/9/2020-04/10/2020), membrane permeate 

analysis was carried out instead of the extracted sludge. Several analytical methods have 

been used to determine the concentration of nutrients, organic matter, and suspended 

solids in the influent and effluent. Most of these methods applied are in accordance with 

the French standard based on EN-ISO regulations (see Table 7-4). Likewise, the non-

standardized methodologies used are based on cited references and methodologies already 

published or established by commercial labs. Grab samples from the plant were collected, 

with proper labeling on pre-supplied bottles by Carso.  

In order to analyze influent, effluent, and sludge, the samples during the first campaign, 

were prepared without filtration leading to unreliable results for soluble species due to on-

going chemical and biological reactions within samples. While, in the 2nd experimental 

campaign, for the nitrates (NO3
-), nitrites (NO2

-), Ammonium (NH4
+), and phosphates 

(PO4), sludge samples were centrifuged at 5000 rpm for 15 minutes and the liquid was 

extracted and sent to the laboratory for further analysis.  

https://www.groupecarso.com/
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Fig. 7.9: Sampling locations during experimental campaigns 

Table 7-4: Analytical methods used for the analysis of influent, effluent, and sludge 

Analysis Units Sample type Method 
Standard’s 

reference 

TSS mg.L-1 Influent/Effluent  Gravimetric + filter-

filtration (Whatman 934 

AH) 

NF EN 872 

NF EN 872 MLSS mg.L-1 Sludge 

BOD5 mgO2.L-1 Influent/Effluent/sludge Dilution and seeding 

method with 

allylthiourea (ATU) 

addition 

NF EN ISO-5815-1 

BODsoluble mgO2.L-1 Influent/Effluent/sludge Dilution and seeding 

method with 

allylthiourea (ATU) 

addition (after filtration) 

NF EN ISO-5815-1 

COD mgO2.L-1 Influent/Effluent/sludge spectrophotometric  ISO 15705 

 mgO2.L-1    

CODsoluble mgO2.L-1 Influent/Effluent/sludge spectrophotometric 

(after filtration) 

ISO 15705 

TKN mgN.L-1 Influent/Effluent/sludge Distillation  NF EN 25663 
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Analysis Units Sample type Method 
Standard’s 

reference 

TKNsoluble mgN.L-1 Influent/Effluent/sludge Distillation (after 

filtration) 

NF EN 25663 

NH4
+ mgN.L-1 Influent/Effluent/sludge Continuous Flow 

Analysis (CFA) 

NF EN ISO 11732 

NH4
+

, soluble  mgN.L-1 Influent/Effluent/sludge CFA (after filtration) NF EN ISO 11732 

NO3
- mgN.L-1 Influent/Effluent/sludge CFA (after filtration) NF EN ISO 13395 

NO2
- mgN.L-1 Influent/Effluent CFA (after filtration) NF EN ISO 13395 

PO4
3- mgP.L-1 Influent/Effluent CFA (after filtration) ISO 15681-2 

TP mgP.L-1 Effluent/Effluent/sludge Mineralization and 

spectrophotometric 

(Ganimede) 

NF EN ISO 6878 

MVSS  mg.L-1 Influent/Effluent/sludge Gravimetric M_J004 (CARSO) 

pH - Influent/Effluent/sludge Electro-chemical NF EN ISO 10523 

 

7.4.1.2 Influent fractionation and biomass concentrations   

Influent fractionation is a critical step in model calibration considering the form and 

complexity of MBR. A precise data about the influent components’ fractionation is 

essential. A practical approach is to estimate the average fractions required by the 

biokinetic model used in this study. The hypothesis is that these ratios between the 

measured total compounds and their fractions are constant over time. However, these may 

change depending upon changes in the influent characteristics, and re-estimation of the 

influent fractions would be required in case of changes in the influent quality (Rieger et 

al., 2010). Since the ASM3-BioP-EPS-SMP model is used in this study, therefore COD 

fractionation is required by the model and is presented in the following sections.  
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Respirometry tests were carried out as per the procedure followed by the SIAAP using 

BIOS-R-respirometer (INSA, Toulouse-France) to estimate the soluble readily 

biodegradable (SB) and slowly biodegradable particulate substrate (XCB) fractions of 

COD. A wastewater to sludge ratio of 0.25 was used to estimate the volume of the 

wastewater and sludge for the COD fractionation experiment and was evaluated to be 

1.9 L and 0.55 L, respectively. 50g ATU (Allylthiorea) was added to a 2.5 L reactor to 

inhibit nitrification during the specific investigation of heterotrophic substrate 

degradation. The respirometry monitored the DO concentration through the O2 sensor 

installed in the reactor vessels. The respiration rate of the biomass was estimated from the 

decrease of the oxygen concentration in the BIOS-R vessel using Eq. 7.11 below. 

𝑑𝑂2

𝑑𝑡
=  −𝑂𝑈𝑅 7.11 

Then by separately integrating the two decreasing OUR parts in the Respiro-graph and 

considering that only a part (1-YH) of the substrate is oxidized for energy and can be 

detected with the respirometer, one is finally able to determine XCB (slowly biodegradable 

particulate substrate) and SB (readily biodegradable substrate). Additional respirometry 

tests were carried out to estimate YH using the protocol of SIAAP, and it was evaluated to 

be 0.639 g O2/gO2. 

𝑆𝐵 =
1

1 − 𝑌𝐻
∫ 𝑂𝑈𝑅 (

𝑉𝑖𝑛𝑓 + 𝑉𝑠𝑙𝑢𝑑𝑔𝑒

𝑉𝑖𝑛𝑓
)

𝑡1

0

 7.12 

 

𝑋𝐶𝐵 =
1

1 − 𝑌𝐻
∫ 𝑂𝑈𝑅 (

𝑉𝑖𝑛𝑓 + 𝑉𝑠𝑙𝑢𝑑𝑔𝑒

𝑉𝑖𝑛𝑓
)

𝑡2

𝑡1

 7.13 

The COD data from treated sludge at the aerobic reactor was used to estimate the soluble 

unbiodegradable (SU) fraction, which is estimated to be around 90% of the COD in the 

aerobic reactor tank (STOWA protocol). 

𝑆𝑈 = 0.90 × 𝐶𝑂𝐷𝑠𝑜𝑙 7.14 
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𝑋𝑈 = 𝐶𝑂𝐷𝑡 − 𝑆𝐵 − 𝑋𝐶𝐵−𝑆𝑈 7.15 

This data collection was performed on 1 sample for the first experimental campaign and 

on two samples for the second one. 

7.4.1.3 Total and soluble extra polymeric substances  

The analyses of total EPS and soluble EPS or SMP (Drews, 2010) in mixed liquor taken 

from anaerobic, aerobic, and membrane aerated reactors were carried out. EPS 

concentrations were quantified as glucose and proteins through Anthrone and Lowry 

methods, respectively (Raunkjær et al., 1994), and were then expressed as mg.CODL-1 

using appropriate conversion factors adopted from Aquino & Stuckey (2004). The 

analytical deviation for the Lowry method is 20% for the protein concentration  ≤ 25 mgL-

1 and 10% for the protein concentration ≥ 25 mg.L-1, while for measurement of 

polysaccharides using the Anthrone method is about 10% (Stricot, 2008). 

7.4.1.4 Specific cake resistance measurements 

In order to measure the filtration resistance of the sludge cake, filtration experiments were 

performed with the dead-end filtration method to determine the order of magnitude of the 

specific sludge cake resistance.  

 

Fig. 7.10: Experimental setup for measurement of specific cake resistance 
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The fouling potential of the sludge is tested in a system comprising a cylindrical filtration 

cell of 60 ml volume (Sartorius filtration pressure cell). A compressed air circuit makes it 

possible to work at constant pressure. The volume of filtered water is measured and 

recorded over time using an electronic balance, as shown in Fig. 7.10. The filtration 

surface is circular with a diameter of 45 mm. 

Flow monitoring was done by the permeate weighing over time through automated data 

acquisition. The membranes used are cellulose nitrate filters (Sartorius Stedim) having 

0.45μm pores. By following the evolution of the filtration through the representation of 

time / Volume as a function of Volume, it is possible to make a linear regression of the 

data and obtain the slope (∆) of the line and to get the product α according to the Eq. 7.16 

below. 

𝛼 =
2 × ∆ × 𝑇𝑀𝑃 × 𝐴2

𝐶 × 𝜇
 7.16 

With, C, the concentration of MLSS in the mixed liquor (g.L-1), TMP the transmembrane 

pressure in Pa, A the membrane surface in m², and μ the dynamic viscosity of the 

permeate/water in Pa.s , α is the specific resistance of the deposit, expressed in m.kg-1.  

 SUMMARY  

The collected data were treated and reconciled for model configuration, calibration, and 

validation. Several steps were necessary: statistical and technical outliers, logical checks, 

and ratio checks, followed by data imputation and validation checks, including hydraulic 

and mass balance. However, missing datasets related to sludge quality were major 

impediments to meet the desired accuracy. In addition, available data from the SCADA 

system and routine laboratory measurements were not sufficient to initialize and calibrate 

the model due to missing data from the zones other than aerobic. Despite data 

reconciliation has largely helped in improving the quality of the data required for 

modeling, further experimentation was required to produce the missing data sets. 

Dedicated experimental campaigns were carried out to complete the missing data sets 

needed for calibration and validation of the model.
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 Description and Structure of the 

Integrated MBR Model   

This chapter describes the different sub-models of the processes chosen to demonstrate 

the integrated process dynamics of MBR for pollutants removal and their interactions with 

the fouling development, as well as the role of various fouling abatement controls in place 

at the SAV-MBR plant. Each sub-model is chosen based on the targeted objectives i.e., 

pollutants and considered phenomenon considering the SAV-MBR processes and design 

configurations. 

 SETTING UP THE INTEGRATED MODEL  

This part presents the global approach of the modeling, pointing out the interactions of the 

sub-models presented in the following sections. The comprehensive, integrated model 

presented in this study is applied to a super-large scale MBR to simulate; a) biological 

processes through the description of the stoichio-kinetic activity of the biomass for carbon 

oxidation and nutrient removal coupled with EPS-SMP production and degradation 

processes; b) the role of biological process aeration in carbon oxidation and nitrification 

under the influence of MLSS; c) the numerical balance of the volumes of the influent, 

effluent, sludge wastage and all internal and external recirculation; d) coagulant addition 

inducing chemically enhanced phosphorus removal (CEPR) in addition to enhanced 

biological phosphorus removal (EBPR); e) fouling dynamics associated with 

synchronized filtration-relaxation, intermittent air-scouring and backwashing under the 

influence of transmembrane pressure (TMP), temperature, MLSS, and bound EPS 

concentration, and f) energy consumed by the various installations in the plant. The 

scheme of the integrated knowledge-based model is given in Fig. 8.1. It depicts the 

connectivity of various sub-models and the flow of information during the simulation run. 

The bio-kinetic sub-model transfers the real-time information of simulated 𝑋𝑇𝑆𝑆 and 𝑋𝐸𝑃𝑆 

to the aeration sub-model to dynamically estimate the specific cake resistance required in 
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the filtration/fouling sub-model. Furthermore, the precipitation sub-model takes the 

volumetric addition of ferric chloride (FeCl3) and transmits the processed information of 

metal hydroxide complex (MeOH) concentration to the bio-kinetic model. While the 

aeration sub-model considered the 𝑋𝑇𝑆𝑆 information from the biological part of the model 

to provide an integrated model with real-time dynamic 𝐾𝐿𝑎. Finally, total energy 

consumption in the plant is modeled with the results from the integrated model. The details 

of each of the sub-models are given in the following sections. 

 

Fig. 8.1: Schematic of integrated MBR processes and energetic model 

The model was coded in a MATLAB environment (Math Works, R2020a) due to the 

flexibility of configuration as per the requirements compared to commercial software 

(Gernaey et al., 2004). The simulations were run on a system with Intel (R) Core (TM) i5-

7300 HQ CPU@2.5GHz and 4-logical processors specifications. 

 BIOKINETIC SUB-MODEL  

The bio-kinetic sub-model presented in this work employed the coupling of models 

proposed by Fan et al. (2011) and Janus (2014) by considering pathways for the formation 

of SMPs, including substrate utilization, biomass decay, EPS hydrolysis, and 

consequently adapting and modifying the stoichiometric coefficient and rate expressions 

(Laspidou and Rittmann, 2002). In order to further enhance the nutrient removal modeling 

mailto:CPU@2.5GHz
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capabilities of the bio-kinetic sub-model, the Bio-P removal module was borrowed from 

Rieger et al. (2001a) to describe the Bio-P removal as well as the denitrification carried 

out by the phosphate accumulating organisms (PAOs). Bio-P module was further extended 

by adding two chemical processes, i.e., precipitation and re-dissolution (Henze et al., 

1999), to simulate the CEPR process.  

 

Fig. 8.2: simplified schematic of MBR used for model configuration 

The model can describe the carbon oxidation, nitrification, de-nitrification, and bio-

chemical phosphorus removal kinetics of the wastewater treatment process. The entire 

bio-chemical sub-model has collectively been termed “ASM3 EPS-SMP-P” in this thesis. 

The simplified layout of the SAV-MBR considered for the biokinetic model structuration 

is presented in Fig. 8.2. 

Since the objective of this work is to simulate the carbon-oxidation, nitrification, 

denitrification, and phosphorus removal. IWA basic models ASM2d and ASM3 were 

subjectively compared, and ASM3 was chosen based on the following considerations: 

- Influent fractionation in ASM3 is relatively easier than in ASM2d, which is 

essential in full-scale applications due to the scarcity of information related to 

influent fractions. 

- ASM3 is designed to be the core of several wastewater models (for example, 

EAWAG modules on biological phosphorus removal can be easily connected as 

well module for CEPR can be added) and to satisfy primarily the requirements of 

practical model applications (Henze et al., 1999; Petersen et al., 2003) 
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- Literature review revealed that ASM1 followed by ASM2d are widely used models 

in MBR studies at lab and full-scales. ASM3 (modified and unmodified) has been 

applied to pilot and full-scale systems but has never been validated at super-large 

scales.  

 COMPONENTS OF THE BIOKINETIC SUB-MODEL  

Bio-kinetic sub-model components are divided into soluble (S) and particulate (X). It has 

been assumed that particulate components are associated with the activated sludge, which 

can be concentrated by the membrane, and the soluble components can pass through the 

membrane surface. Table 8-1 provides a short definition of the dissolved (bold) and 

particulate (normal) components of the bio-kinetic model. 

Table 8-1: Definition of the bio-kinetic components concentrations 

# Definition  Component Units  

1 Dissolved oxygen SO2 gCODm-3 

2 Particulate biodegradable organics XCB gCOD m-3 

3 Soluble biodegradable organics SB gCOD m-3 

4 Soluble Utilization Associated Products SUAP gCOD m-3 

5 Soluble Biomass Associated Products SBAP gCOD m-3 

6 Soluble undegradable organics SU gCOD m-3 

7 Ammonia (NH4
+ + NH3) SNHx gN m-3 

8 Nitrate and nitrite (NO3
-, NO2

-) SNOx gN m-3 

9 Dissolved nitrogen gas SN2 gN m-3 

10 Particulate undegradable organics XU gCOD m-3 

11 Extra Polymeric Substances  XEPS gCOD m-3 

12 Ordinary heterotrophic organisms XOHO gCOD m-3 

13 Storage compound in OHOs XOHO,Stor gCOD m-3 

14 Autotrophic nitrifying organisms (NH4
+ to NO3

-) XANO gN m-3 

15 Inorganic soluble phosphorus SPO4 gP m-3 

16 Phosphorus accumulating organisms XPAO gCOD m-3 

17 Stored polyphosphates in PAOs XPAO,PP gP m-3 

18 Stored poly-β-hydroxyalkanoate in PAOs XPAO,Stor gCOD m-3 

19 Alkalinity (HCO3
-) SHCO mol HCO3 m-3 

20 Total suspended solids XTSS gTSS m-3 

21 Metal hydroxide compounds XMeOH g TSS (Fe) m-3 

22 Metal phosphate compounds XMeP g TSS(Fe)m-3 
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 Biokinetic sub-model presentation 

Three groups of microorganisms i.e., heterotrophs (XOHOs), autotrophs (XANOs), and 

phosphate accumulating (XPAOs) organisms are relevant to several unknown parameters in 

each of the processes. The adapted and modified bio-chemical sub-model consisted of 22 

state variables and 37 biochemical processes described by the Peterson matrix in Table 

8-2. The process rate equations for each process are given in Table 8-3. The conservation 

factors for COD, nitrogen (N), phosphorus (P), electric charge (e), and TSS are also 

presented in Table 8-3. While, considering the size of the matrix, full expression of the 

stoichiometric parameters used in the matrix are given in Annexure-B. The use of a 

matrix simplified the presentation of stoichiometric, kinetic, and process rate equations in 

the simulation environment.  

The elemental mass-balance of each transformation was checked by the approach 

suggested by Hauduc et al. (2010) to ensure the mathematical accuracy of the model. The 

mass balance was verified by using Eq. 8.1. 

 
37 22

, ,1 1
0; COD, N,P,e,TSS

j k

j k l kj k
li

= =
•

= =
=    8.1 

Where ѵ is the stoichiometric coefficient, i is the conversion factor for COD, N, P, 

electrical e, and TSS. The subscripts j, k, and l represent the Peterson matrix rows 

(processes), composition matrix column, and Peterson matrix columns (components), 

respectively. Furthermore, when implementing the bio-kinetic sub-model, the effect of 

temperature on the kinetic parameters was considered by applying the Arrhenius equation. 

 Hydraulic and mass balance sub-models 

The hydraulic sub-model helps to ensure the volumetric balances of the flows in each of 

the reactors in series, considering influent flow, recirculation, and sludge wastage. The 

volumetric balances and hydraulic retention times of each of the reactors in series are 

based on the simplified scheme of the plant given in Fig. 8.2.  
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Table 8-2: Peterson Matrix to describe the stoichiometry and process kinetics of the bio-kinetic sub-model 

No

. 
Processes (j) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
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p1 Hydrolysis  -1 c1   f1 g1        u1    y1 z1   pr1 

p2 Aerobic storage of XOHO,Stor based on SB a2  -1    iN_SB      m2  iP_SB    y2 z2   pr2 

p3 Aerobic storage of XOHO,Stor based on SUAP a3   -1   iN_SUAP      m3  iP_SB    y3 z3   pr3 

p4 Aerobic storage of XOHO,Stor based on SBAP a4    -1  iN_SBAP      m4  iP_SB    y4 z4   pr4 

p5 Anoxic storage of XOHO,Stor based on SB   -1    iN_SB h5 (-h5)    m5  iP_SB    y5 z5   pr5 

p6 Anoxic storage of XOHO,Stor based on SUAP    -1   iN_SUAP h6 (-h6)    m6  iP_SB    y6 z6   pr6 

p7 Anoxic storage of XOHO,Stor based on SBAP     -1  iN_SBAP h7 (-h7)    m7  iP_SB    y7 z7   pr7 

p8 Aerobic growth of XOHO based on SB a8  c8 d8   g8    j8 k8   u8    y8 z8   pr8 

p9 Aerobic growth of XOHO based on SUAP a9   d9   g9    j9 k9   u9    y9 z9   pr9 

p10 Aerobic growth of XOHO based on SBAP a10    e10  g10    j10 k10   u10    y10 z10   pr10 

p11 
Aerobic growth of XOHO based on 

XOHO,Stor 
a11   d11   g11    j11 k11 m11  u11    y11 z11   pr11 

p12 Anoxic growth of XOHO based on SB   c12 d12   g12 h12 (-h12)  j12 k12   u12    y12 z12   pr12 

p13 Anoxic growth of XOHO based on SUAP    d13   g13 h13 (-h13)  j13 k13   u13    y13 z13   pr13 

p14 Anoxic growth of XOHO based on SBAP     e14  g14 h14 (-h14)  j14 k14   u14    y14 z14   pr14 

p15 Anoxic growth of XOHO based on XOHO,Stor    d15   g15 h15 (-h15)  j15 k15 m15  u15    y15 z15   pr15 

p16 Growth of XANO (Nitrification) a16   d16   g16 1/YANO   j16   n16 u16    y16 z16   pr16 

p17 Hydrolysis of XEPS   c17  e17  g17    -1        y17 z17   pr17 

p18 Aerobic respiration of XOHO,Stor -1            -1       z18   pr18 

p19 Anoxic respiration of XOHO,Stor        -1/iNO3_N2 1/iNO3_N2    -1      y19 z19   pr19 

p20 Aerobic endogenous respiration of XOHO a20    e20  g20   i20 j20 -1   u20    y20 z20   pr20 

p21 Anoxic endogenous respiration of XOHO     e21  g21 h21 (-h25) i21 j21 -1   u21    y21 z21   pr21 

p22 Aerobic endogenous respiration of XANO a22    e22  g22   i22 j22   -1 u22    y22 z22   pr22 

p23 Anoxic endogenous respiration of XANO     e23  g23 h23 (-h23) i23 j23   -1 u23    y23 z23   pr23 

p24 Aeration 1                      pr24 

p25 Storage of XPHA   -1    iN_SB        u25  w25 1 y25 z25   pr25 

p26 Aerobic storage of XPP a26              -1  1 x26 y26 z26   pr26 

p27 Anoxic storage of XPP        h27 (-h27)      -1  1 x27 y27 z27   pr27 

p28 Aerobic growth of XPAO a28      -iN_XBio        -iP_XBio 1  x28 y28 z28   pr28 
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p29 Anoxic growth of XPAO       -iN_XBio h29 (-h29)      -iP_XBio 1  x29 y29 z29   pr29 

p30 Aerobic endogenous respiration of XPAO a30      g30   i30     u30 -1   y30 z30   pr30 

p31 Anoxic endogenous respiration of XPAO       g31 h31 (-h31) i31     u31 -1   y31 z31   pr31 

p32 Aerobic lysis of XPP               1  -1  y32 z32   pr32 

p33 Anoxic lysis of XPP               1  -1  y33 z33   pr33 

p34 Aerobic respiration of XPHA -1                 -1  z34   pr34 

p35 Anoxic respiration of XPHA        h35 (-h35)         -1 y35 z35   pr35 

p36 Precipitation               -1    y36 1.42 -3.45 4.86 pr36 

p37 Redissolution               1    y37 -1.42 3.45 -4.86 pr37 
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Table 8-3: Kinetic rate expressions for the ASM3-EPS-SMP-P biokinetic sub-model  

Process  process rates expressions  

pr1 qXCB_SB_hyd*𝐌𝐬𝐚𝐭𝐗𝐂𝐁_𝐗𝐎𝐇𝐎_𝐊𝐂𝐁_𝐡𝐲𝐝 *XOHO 

pr2 fSTO*qSB_Stor* 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 * 𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐎𝐇𝐎 *XOHO 

pr3 fSTO*qSUAP*𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐔𝐀𝐏_𝐎𝐇𝐎 * XOHO 

pr4 fSTO*qSUAP*𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐁𝐀𝐏_𝐎𝐇𝐎 * XOHO 

pr5 fSTO*qSB_Stor*nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎* 𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐎𝐇𝐎*XOHO 

pr6 fSTO*qSUAP_stor *nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 * 𝐌𝐬𝐚𝐭𝐔𝐀𝐏_𝐎𝐇𝐎 * XOHO 

pr7 fSTO*qSBAP_stor*nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎* 𝐌𝐬𝐚𝐭𝐁𝐀𝐏_𝐎𝐇𝐎 * XOHO 

pr8 (1-fSTO) * μOHO_Max * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 * 𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐎𝐇𝐎 * 𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎   ∗ 𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎 * 𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐎𝐇𝐎 *XOHO 

pr9 (1-fSTO) *μOHO_SMP_max *𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐔𝐀𝐏_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐎𝐇𝐎 *XOHO 

pr10 (1-fSTO) *𝜇OHO_SMP_max *𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐁𝐀𝐏_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐎𝐇𝐎 *XOHO 

pr11 μOHO_Max*𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎* 𝐌𝐬𝐚𝐭𝐗𝐒𝐓𝐎_𝐗𝐎𝐇𝐎_𝐪𝐒𝐁_𝐬𝐭𝐨𝐫*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐎𝐇𝐎*XOHO 

pr12 (1-fSTO) * 𝜇OHO_Max *nuOHOAX
∗ 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎* 𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎 *XOHO 

pr13 (1-fSTO) *𝜇OHO_SMP_max*nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 *𝐌𝐬𝐚𝐭𝐔𝐀𝐏_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎*XOHO 

pr14 (1-fSTO) *𝜇OHO_SMP_max*nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐁𝐀𝐏_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎*XOHO 

pr15 μOHO_Max*nuOHO_AX*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐗𝐎𝐇𝐎_𝐪𝐒𝐁_𝐬𝐭𝐨𝐫 *𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎*XOHO 

pr16 𝜇ANO_Max *𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐀𝐍𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐀𝐍𝐎 *𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐀𝐍𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎 *XANO 

pr17 𝑞XEPS_SBAP_hyd *𝐌𝐬𝐚𝐭𝐗𝐄𝐏𝐒_𝐡𝐲𝐝*XOHO 

pr18 mStor_Ox * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎  * XOHO_Stor 

pr19 mStor_Ax*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 * XOHO_Stor 

pr20 mOHO_ox * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 * XOHO 

pr21 mOHO_Ax * 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎* XOHO 

pr22 mANO_ox *𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐀𝐍𝐎* XANO 

pr23 mANO_Ax * 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐀𝐍𝐎 * 𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 *XANO 

pr24 KLa*(SO2sat- SO2) 

pr25 qPAO_SB_Stor *𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐬_𝐟𝐏𝐏_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐏𝐀𝐎*XPAO 
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Process  process rates expressions  

pr26 qPAO_PO4_PP * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎  * 𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐗𝐏𝐀𝐎_𝐬𝐭𝐨_𝐗𝐏𝐀𝐎_𝐊𝐟𝐬𝐭𝐨𝐫_𝐏𝐀𝐎* 𝐌𝐢𝐧𝐡𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐈_𝐟𝐏𝐏_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐏𝐀𝐎 *XPAO 

pr27 qPAO_PO4_PP*nuPAO * 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐏𝐏 *𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐬_𝐟𝐏𝐏_𝐏𝐀𝐎*𝐌𝐢𝐧𝐡𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐈_𝐟𝐏𝐏_𝐏𝐀𝐎* XPAO 

pr28 μPAO_Max* 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐏𝐀𝐎* 𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐗𝐏𝐀𝐎_𝐬𝐭𝐨_𝐗𝐏𝐀𝐎_𝐊𝐟𝐬𝐭𝐨𝐫_𝐏𝐀𝐎 * XPAO 

pr29 μPAO_Max*nuPAO *𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐗𝐏𝐀𝐎_𝐬𝐭𝐨_𝐗𝐏𝐀𝐎_𝐊𝐟𝐬𝐭𝐨𝐫_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐏𝐀𝐎*XPAO 

pr30 mPAO * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎 * XPAO 

pr31 mPAO*nmPAO*𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎 *𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐏𝐀𝐎 * XPAO 

pr32 bPP_PO4 * 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎 * XPAO_PP 

pr33 bPP_PO4*nbPP_PO4* 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐏𝐀𝐎* XPAO_PP 

pr34 mPAO_stor* 𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎 * XPAO_Stor 

pr35 mPAO_stor*nmPAO_stor* 𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎*𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐏𝐀𝐎* XPAO_Stor 

pr36 qP_pre *SPO4*XMeOH 

pr37 qP_red*XMeP*(SHCO)/(Kalk_pre+SHCO) 

Whereas, saturation and inhabitation terms used in the process rates calculations are as follows;  

𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐎𝐇𝐎 =
SO2

(KO2_OHO+SO2)
;𝐌𝐬𝐚𝐭𝐒𝐎𝟐𝐊𝐎𝟐𝐎𝐇𝐎

=
SB

(KSBOHO
+SB)

; 𝐌𝐬𝐚𝐭𝐔𝐀𝐏_𝐎𝐇𝐎 =
SSUAP

(KSUAP_OHO+SUAP)
;𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐎𝐇𝐎 =

SNHx

(KNHX_OHO+SNHx)
 

𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐊𝐍𝐎𝐱_𝐎𝐇𝐎 =
SNOx

(KNOx_OHO+SNOx)
;𝐌𝐬𝐚𝐭𝐁𝐀𝐏_𝐎𝐇𝐎 =

SBAP

(KBAP_OHO+SBAP)
;𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎_𝐊𝐀𝐥𝐤_𝐎𝐇𝐎 =

SHCO

(KAlk_OHO+SHCO)
; 𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐎𝐇𝐎 =

SSPO4

(KPO4_OHO+SPO4)
 

𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐎𝐇𝐎 =
KO2_OHO

(KO2_OHO+SO2)
;  𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐏𝐀𝐎 =

SO2

(KO2_PAO+SO2)
;𝐌𝐬𝐚𝐭𝐒𝐁_𝐊𝐒𝐁_𝐏𝐀𝐎 =

SB

(KSB_PAO+SB)
; 𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐏𝐀𝐎 =

SNHx

(KNHx_PAO+SNHx)
 

𝐌𝐬𝐚𝐭𝐒𝐇𝐂𝐎𝐊𝐀𝐥𝐤𝐏𝐀𝐎
=

SHCO

(KAlkPAO
+SHCO)

;𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒𝐊𝐏𝐎
=

SPO4

(KPO4PAOnut
+SPO4)

; 𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐏𝐀𝐎_𝐮𝐩𝐭 =
SPO4

(KPO4_PAO_upt+SPO4)
; 𝐌𝐬𝐚𝐭𝐒𝐍𝐎𝐱_𝐏𝐀𝐎 =

SNOx

(KNOxPAO
+SNOx)

;  

𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐏𝐀𝐎 =
KO2_PAO

(KO2_PAO+SO2)
;  𝐌𝐬𝐚𝐭𝐒𝐏𝐎𝟒_𝐊𝐏𝐎𝟒_𝐀𝐍𝐎 =

SPO4

(KPO4_ANO+SPO4)
;𝐌𝐬𝐚𝐭𝐒𝐍𝐇𝐱_𝐊𝐍𝐇𝐱_𝐀𝐍𝐎 =

SNHx

(KNHx_ANO+SNHx)
;𝐌𝐬𝐚𝐭𝐒𝐎𝟐_𝐊𝐎𝟐_𝐀𝐍𝐎 =

SO2

(KO2_ANO+SO2)
;𝐌𝐢𝐧𝐡𝐒𝐎𝟐_𝐀𝐍𝐎 =

KO2_ANO

(KO2_ANO+SO2)
; 

𝐌𝐬𝐚𝐭𝐗𝐏𝐀𝐎_𝐬𝐭𝐨_𝐗𝐏𝐀𝐎_𝐊𝐟𝐬𝐭𝐨𝐫_𝐏𝐀𝐎 =
(XPAO_stor XPAO⁄ )

(Kfstor_PAO+(XPAO_stor XPAO⁄ ))
;𝐌𝐬𝐚𝐭𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐬_𝐟𝐏𝐏_𝐏𝐀𝐎 =

(XPAO_PP XPAO⁄ )

(fPP_PAO_Max+(XPAO_PP XPAO⁄ ))
;𝐌𝐬𝐚𝐭𝐗𝐒𝐓𝐎_𝐗𝐎𝐇𝐎_𝐪𝐒𝐁_𝐬𝐭𝐨𝐫 =

(XOHO_stor XOHO⁄ )

(KfStor_OHO+(XOHO_stor XOHO⁄ ))
 

𝐌𝐢𝐧𝐡𝐗𝐏𝐏_𝐗𝐏𝐀𝐎_𝐊𝐈_𝐟𝐏𝐏_𝐏𝐀𝐎 =
(KS_fPP_PAO −(XPAO_PP XPAO⁄ ))

(KI_fPP_PAO+fPP_PAO_Max −(XPAO_PP XPAO⁄ ))
; 𝐌𝐬𝐚𝐭𝐗𝐂𝐁_𝐗𝐎𝐇𝐎_𝐊𝐂𝐁_𝐡𝐲𝐝 =

(XCB XOHO⁄ )

(KXCB_hyd+(XCB XOHO⁄ ))
;  
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The reactions described by the model were solved through a set of ordinary differential 

equations (ODEs) for a known initial concentration of pollutants in each of the tanks 

considered as reactor in series with assumed complete mixing. The differential Eqs. 

8.2-8.3, describing the mass balances of the soluble and particulate components of the 

Peterson matrix for known compositions in the membrane aerated reactor, 

respectively, is presented as an example, respectively. These differential equations 

were then solved using 𝑂𝐷𝐸15𝑠 algorithm of the MATLAB. The values of the 

stoichiometric and kinetic parameters adopted from Fan et al. (2011), Janus (2013), 

and Rieger et al.(2012) are given in Annexure-B. 
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Where; 𝑄𝑟4 is sludge flow (m3.d-1) to the membrane aerated reactor; 𝑆𝑠𝑘  and 𝑆𝑋𝑘  are 

the concentration of the soluble and particulate components of the Peterson matrix 

respectively, the subscripts, ‘in”, “out” and “w” represent, influent, effluent and waste 

sludge respectively. The notation, 𝑉𝑗,𝑘 represents the stoichiometric coefficient 

corresponding to the process “j” and component “k” of the Peterson matrix, while 𝜌𝑗  

represents the corresponding conversion rate by which each of the processes in the 

Peterson matrix is governed. The first terms on the left-hand side of both expressions 

reflect the accumulation process within the reactor, while the second terms describe 

the conversion rate of the given pollutant and thus its removal.  

 CHEMICAL PRECIPITATION SUB-MODEL  

Chemically enhanced phosphorus removal is accomplished by adding FeCl3 .Two 

chemical processes are adapted from ASM2d to empirically model the phosphorus 

precipitation with FeCl3 and production of hypothetical complexes i.e., Fe (OH)3 and 

FePO4 , by considering their reaction rates and stoichiometry. The precipitation and 

re-dissolution are assumed to be reverse processes, which are balanced at steady state 

according to Eq. 8.4,. At the same time, the concentration of FeCl3, in terms of 
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available MeOH, is computed using Eq. 8.5. The ODEs related to the addition of FeCl3 

in the overall code are activated only if the coagulant is being added and the duration 

of which is specified.  

3
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Where; 𝑄𝐹𝑒𝐶𝑙3 is the flow rate (m3.d-1) of the ferric chloride solution; ρ is the density 

of the FeCl3, φ is the percentage purity of the solution (decimal), MFe is the molar 

mass of ferric (55.845 g.mol-1), M𝐹𝑒𝐶𝑙3 is the molar mass of the ferric chloride (162.2 

g.mol-1), 𝑀Me (OH)3 is molar mass of ferric hydroxide and 𝑄𝑠 is the flow rate of sludge 

in anoxic/aerobic reactor. The average Fe/ P molar ratio of 2.17 was calculated from 

data available for influent P-loading and FeCl3 additions. It was found to be sufficient 

to reduce the PO4
3- below set point and within the optimum range found in the literature 

(Nadeem et al., 2022) 

The precipitation model adapted in this work is easy to implement and calibrate (due 

to the limited number of parameters), as concluded in the section 4.1.3.3 

 AERATION SUB-MODEL 

Fine bubble aeration allows maintaining a DO concentration for nitrification and 

organic carbon removal in the activated sludge process in the aerated zone of the MBR. 

A dynamic oxygen transfer coefficient (𝐾𝐿𝑎) is used, considering the actual airflow 

rates. The aeration sub-model is based on the theory developed by Boyle et al. (1989) 

with an extension to consider the correlation between αSOTE, SRT, tank geometry, 

and the airflow, proposed by Rosso et al.(2005). This aeration sub-model is adapted 

and modified to estimate the dynamic KLa considering the actual airflow rate being 

provided by the blowers and taking into account the design configuration of the 

aeration system at SAV-MBR. 

Keeping in view the similar configurations of the aeration system in all the six 

biological basins and to simplify the aeration model complexity, it was hypothesized 
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that all aeration basins are operated on a single set point (2.5 g.m-3). This assumption 

is also used to calculate a daily average dynamic KLa value considering the total 

airflow rates, the number of diffusers and their associated bubbling surface area, 

diffuser submergence, SRT, standard oxygen transfer efficiency (SOTE) of the 

installed aeration system, temperature of the sludge, MLSS concentrations, sludge 

density, and state of the diffusers (fouling).  

As suggested by Rosso et al.(2005), the diffuser-specific area was adopted from the 

design specifications manual provided by the aeration system supplier of the SAV 

MBR plant. In this procedure, only the actual bubbling or active surface area was 

considered, and the normalized airflow per diffuser was calculated from Eq. 8.6. 

air

s dd

Q
Qn

NA H
=

   

8.6 

 

Where: 𝑄𝑛 is the normalized air flow rate (sec-1) per diffuser; 𝑄𝑎𝑖𝑟  is air flow rate (m3 

.sec-1); 𝐴𝑠 is the diffusers specific area (m3); 𝑁𝑑 is the number of the diffusers and 𝐻𝑑 

is submergence height (m) of the diffuser. Rosso et al.(2005) used characteristic 

number Ӽ (days. sec) to group all operating parameters and calculated by Eq. 8.7 

below. 

 

n

SRT

Q
 =

 
8.7 

Regression analyses of αSOTE as linear functions of log Ӽ is presented by Eq. 8.8 

where, A and B are coefficient of regression analysis. 

 

10
( )logSOTE A B =  −   8.8 

According to Boyle et al. (1989), diffuser submergence affects the oxygen transfer rate 

as depicted in the relationship Eq. 8.9. Where, α is an empirical factor (unit less) and 

SOTE is standard oxygen transfer efficiency (% per meter depth). The α value is 

known to be highly correlated with MLSS concentrations (Insel et al., 2011). 

100
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Standard oxygen transfer rate (SOTR) at 20 0C and 1atm is given by the Eq. 8.10. 

Where, 𝜌𝑎𝑖𝑟  is density of the air (kg.m-3) and 𝑋𝑂2 is fraction of oxygen in the air (%). 

  

2

100 100

d O

air air

SOTE H X
SOTR Q 


=      8.10 

Field oxygen transfer rates (OTR𝑓) is the basic parameter used to quantify the ability 

of the aeration system to transfer oxygen into the water per unit of time, kgO2.d
-1, while 

OTR𝑓 is the total weight of oxygen from the input air which is transferred (dissolved) 

into the water. The OTR𝑓 while taking into account the oxygen diffusion limitation 

and diffuser fouling (Boyle et al., 1989; Jenkins, 2013; Suh et al., 2013) can be given 

by Eq. 8.11 below. 

( )
20

20
_

( )L
tensionT

f diff foulingoxygen

C C
OTR SOTR F

C


 

 −



−
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Where 𝛽𝑡𝑒𝑛𝑠𝑖𝑜𝑛 is the salinity surface tension correction factor, 𝛼𝑜𝑥𝑦𝑔𝑒𝑛 is the clean to 

process water correction factor, which is calculated from Eq. 8.12, Ѳ is the 

temperature correction factor for O2 transfer, and 𝐹𝑑𝑖𝑓𝑓_𝑓𝑜𝑢𝑙𝑖𝑛𝑔  is the correction factor 

for fouling of an air diffuser. While 𝐶∞ is the DO saturation concentration for clean 

water in an aeration reactor, is calculated from Eq. 8.13. 𝐶𝐿  is the required O2 

concentration (2.5 mg.L-1) in the aerated tank. 𝐶∞20 is the DO saturation concentration 

in clean water at 20 °C and 1 atm (gO2m
-3). 

exp
XTSS

oxygen





=   8.12 

Where, ω is the αoxygen factor exponent coefficient and 𝑋𝑇𝑆𝑆 is the total suspended solid 

concentration of mixed liquor (g.L-1). The dissolved oxygen saturation concentration 

for clean water in Eq. 8.15 is calculated from Eq. 8.13 : 
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Where, 𝑃𝑑 is the pressure at the bottom of an aeration reactor which is calculated from 

Eq. 8.14, 𝑃𝑎𝑡𝑚 is the atmospheric pressure (101,300 Pa), and 𝑂𝑜𝑢𝑡 is the percentage of 

oxygen in the air leaving the surface of an aerated reactor (%), which is calculated 

from Eq. 8.15.  

d d atms
gP H P=   +   8.14 

 

Where; 𝜌𝑠  is the density of sludge (kg.m-3), calculated using Eq. 8.19 and g is the 

gravitational acceleration (9.81 m.s-2). 

 

( )2 1 oxygendOout SOTE HO X =  −    8.15 

Based on the actual calculated OTR𝑓 , the dynamic 𝐾𝐿𝑎 for the biologically aerated 

reactor is calculated using Eq. 8.16 which is assumed to be the same for the membrane 

aerated reactor. While the 𝐾𝐿𝑎 for non-aerated reactors is assumed to be close to zero.  
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Where, VT is the volume (m3) of the aerated reactor. While other parameters have 

already been defined heretofore. The values of parameters used in aeration-sub model 

are summarized in Table 8-4.  

Table 8-4: Values of parameters used in aeration sub-model 

Symbol description unit range references 

𝒇𝒅𝒊𝒇𝒇_𝒇𝒐𝒖𝒍𝒊𝒏𝒈 Correction factor for diffuser 

fouling  

-- 0.8 - 1 (Suh et al., 2013) 

SOTE standard oxygen transfer efficacy 

of diffuser 

% 1.5 - 5 (Hai et al., 2018 ; 

Jenkins, 2013; Suh et 

al., 2013) 

𝜷𝒕𝒆𝒏𝒔𝒊𝒐𝒏 Salinity surface tension correction 

factor 

-- 0.9 - 0.99 (Jenkins, 2013 ; Suh 

et al., 2013) 

𝝆𝒂𝒊𝒓 density of air kg.m-3 1.28 (El-Said et al., 2017) 

𝝎 𝛼𝑜𝑥𝑦𝑔𝑒𝑛 coefficient for O2 transfer 

correction associated with XTSS 

concentrations  

-- 0.046-0.087 (Germain et al., 2007; 

Krampe and Krauth, 

2003; Muller et al., 

1995) 

 FOULING SUB-MODEL  

In this work, the resistance in series (RIS) model with the sectional approach proposed 

by Li and Wang (2006) is adopted to take into account the incremental development 
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of the fouling. The RIS model is chosen over several available fouling models (see 

section 4.1.3.4 ) due to the fact that, it is likely the most complete, universally 

acceptable, easy to use, and able to more comprehensively describe the fouling 

evolution (Bella and Trapani, 2019). 

It has been hypothesized that the immersed membrane surface experiences non-

uniform distribution of shear induced by the air scouring, resulting in uneven 

deposition of the cake layer and variable flux across the membrane surface. To 

accommodate this phenomenon, the membrane surface was assumed to be static and 

divided into 128 dimensionally (i,j) equal sections. In addition, the following 

modifications and assumptions were considered: 

a) In addition to filtration and aeration mechanisms, intermittency of relaxation 

and coarse bubble aeration, as well as sequenced backwashing, were 

considered in synchronization with filtration-relaxation 

b) Instead of static specific cake resistance (see section 9.2.1.3), dynamic specific 

cake resistance is considered. 

c) Considering the low concentration of soluble EPS (or SMPs, which is modeled 

as the sum of SUAP and SBAP) compared to XEPS (<1% of the total EPS) and 

XTSS, the SMPs contribution to the development of the cake layer is ignored. The 

specific cake resistance, however, is linked to several other factors, including 

i) chemical properties of the foulants, TMP, MLSS concentration, the viscosity 

of the sludge, and XEPS concentrations (Cho et al., 2005; Lee et al., 2002); 

d) The effect of the chemical cleaning and coagulant addition on the particle size 

distribution and sludge properties is not considered. The coagulant addition 

impacts the fouling only by the increase of XTSS 

e) Effect of the cake layer as filter media to retain soluble COD is not considered. 

Keeping in view the functional specificities of the Seine Aval MBR plant, the 

mathematical structure of the RIS model is presented in the following sections. 

8.5.1. Net cake layer during filtration mode and under the influence of aeration  

When MBR is in the filtration mode, the suspended flocs of sludge approach (XTSS) 

the surface of the membrane under the force exerted by the permeate cross flow, 

however shear exerted by the coarse bubble aeration prevents sludge deposition onto 
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the membrane surface. Under these opposing forces, the net accumulation rate of the 

dynamic sludge cake (
𝑑𝑀𝑑𝑐

𝑑𝑡
) for each of the 128 sections is described by the 

conservation equation (Eq. 8.17). The first part of the equation describes the 

attachment rate of the sludge particles, from the deposit result probability leant on the 

effect of opposite drag forces for suction and lift force from aeration. It increases with 

the increase in permeate flux (J) and XTSS concentration and decreases with the 

increase in transverse lift (𝐶𝑑. 𝑑𝑝) and aeration shear intensity (G). The second part of 

the Eq. 8.17 describes the rate of biomass detachment during the filtration process and 

under the influence of aeration, which is a function of the sludge stickiness 

(𝛼𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑒𝑠𝑠), sludge compressibility (𝛾) and filtration time (𝑡𝑓), permeate production 

per unit area of the membrane (𝑉𝑓), erosion rate coefficient (𝛽𝑑𝑐) and the shear 

intensity. Therefore, at a given shear intensity, a stickier cake layer (associated with 

the higher 𝛼 values) is more difficult to remove. Similarly, higher filtration time and 

compression coefficient also reduce the sludge detachment rates, thus increase the net 

cake layer accumulation. 

2
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The sine curve expression proposed by Li and Wang (2006) is adopted to estimate the 

apparent shear intensity (G) for each of the membrane sections .   

  

( ) . ..
0.1 0.45 1 sin . . ; ......( )

( )

. .
; ..............................................................( )

2
2
i a s a

i a

a s

s a

i a

s

g
a

G i

g
b

q

q

  
 


 

•

   −
   + + 
      

=  
 
 
 
 

  
8.18 

First part of the Eq. 8.18 (a) describes the distribution of shear in first 85 sections. 

Where, 𝜀𝑖 is the accumulated surface area of these (<85) fractions, while second part 

of Eq. 8.18 (b) describes the shear on, 𝜀𝑎 which is membrane surface fractions (>85) 

with maximum shear intensity. Whereas 𝜌𝑠 and 𝜇𝑠 are density (kg.m-3) and viscosity 

(Pa.s) of the sludge, which can be estimated by Eqs. 8.19-8.20, respectively. While 𝑞𝑎 

(L.m2.s-1) is the specific aeration intensity given by Eq.8.21. 
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8.21 

Where 𝜌𝑤 is the density of the water (kg.m-3), T is the temperature (◦C) of 

permeate, 𝑄𝐶𝐵 is the airflow rate (L.sec-1) and 𝐴𝑚 is the surface area (m2) of the 

membrane under operation at a given time. 

8.5.2. Dynamic cake detachment under relaxation mode  

The dynamic sludge cake layer is time-dependent, and it is assumed that it would 

probably be removed by the air scouring action during the relaxation stage of the cycle. 

The dynamic sludge cake layer is not further compressed during relaxation time and 

can proliferate in the absence of permeate suction. Li and Wang (2006) assumed at 

least a one-tenth reduction in the original value of compressibility coefficient (𝛾) 

under idle-cleaning mode. Therefore, the detachment part of Eq.8.17 is modified to 

accommodate the cake influence of relaxation or idle cleaning cycle and the rate of 

stable sludge cake detachment (
 𝑑𝑀𝑠𝑐 

𝑑𝑡
) is given by Eq.8.22 below. 

( )
2(1 )

0.1

sc i dc stickness

f dc

M dc
dM G

dt V M

 



−

+
= −  8.22 

8.5.3. Dynamic cake detachment due to backwashing 

In addition to intermittent aeration and relaxation sequencing, a portion of the stable 

cake layer is detached during the backwashing cycle with a fixed flow rate which is 

scheduled after every seventh filtration-relaxation cycle in the considered SAV-MBR 

system. This means only detachment force caused by the sum of the local shears due 

to aeration and permeate backwashing is dominating. The detachment of the stable 

cake layer during the backwashing period is described by the coefficient of sludge 

detachment η𝑐 and is given by Eq.8.23 (Di Bella et al., 2008; Mannina et al., 2011b). 

The values of η𝑐 varies between 0.9-0.9999 (Mannina et al., 2011b). 
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8.5.4. Total membrane filtration resistance and TMP 

Total resistance (𝑅𝑡) for each of the sections was divided into i) intrinsic resistance of 

the membrane (𝑅𝑚), which was assumed to be constant and was estimated using the 

operational TMP and flux data for the period right after the ex-situ chemical wash and 

permeability recovery of the membrane, ii) Pore fouling resistance (Rp) caused by the 

solute deposition into membrane pores, iii) dynamic sludge cake resistance (𝑅𝑑𝑐) or 

reversible fouling and iv) stable sludge cake (𝑅𝑠𝑐) and is given by Eq.8.24. Irreversible 

fouling was assumed to be the sum of 𝑅𝑚, Rp and 𝑅𝑠𝑐. The fouling attributed to 

inorganic and concentration polarization due to the presence of cations naturally 

present in the municipal wastewater as well as produced during the addition of ferric 

chloride was not considered in the current model.   

𝑅𝑡(𝑖) = 𝑅𝑚(𝑖) + 𝑅𝑝(𝑖) + 𝑅𝑑𝑐(𝑖) + 𝑅𝑠𝑐(𝑖) 8.24 

Pore fouling resistance (Rp) caused by the deposition of the soluble (solute) fraction 

of the sludge onto membrane pores was considered to increase in proportion to 

permeate flux (J) and filtration time (𝑡𝑓) and is given by Eq.8.25. 

 

( )( ) ip i p fR r tJ =  8.25 

 

Where , rp is specific pore fouling resistance of membrane (m-1) of the membrane, 

which was estimated using the Eq. 8.26 originally developed by Wiesner and Aptel 

(1996) and later modified by Zuthi et al.(2017). 
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 8.26 

Where, hm is the thickness of the membrane (m), f is the porosity of the membrane 

(%); r is the radius of the pore (m), 𝑛𝑝 is the exponential coefficient (unit-less). The 

resistances of the dynamic and stable sludge cake were assumed to be a function of 
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biomass accumulating on the membrane surface Li and Wang (2006),  and was 

modeled using calculated by Eqs.8.27-8.28, respectively.  

𝑅𝑑𝑐(𝑖) = 𝑟𝑑𝑐𝑀𝑑𝑐(𝑖) 8.27 

 

𝑅𝑠𝑐(𝑖) = 𝑟𝑠𝑐𝑀𝑠𝑐(𝑖) 8.28 

Where, 𝑟𝑑𝑐 and 𝑟𝑠𝑐 are the specific resistances per the mass of dynamic and stable 

sludge cakes, respectively, and both coefficients were assumed to be equal (∴ 𝑟𝑑𝑐 =𝑟𝑠𝑐) 

as proposed by Zarragoitia-González et al.(2008) and later by Mannina et al. (2011b). 

In order to estimate the specific cake resistance of the sludge cake, Cho et al. (2005) 

introduced a dimensionless sigmoid relationship 𝑟𝑑𝑐 , MLVSS (mixed liquor volatile 

suspended solids ), EPS (bound), and transmembrane pressure (under dead-end 

filtration). However, considering the fact the membrane in MBR module is not under 

the same pressure experienced by the membrane in dead-end filtration mode. 

Zarragoitia-González et al.(2008) modified the TMP influence by introducing an 

exponential factor (𝐶𝑇𝑀𝑃 = 𝑇𝑀𝑃𝑝) which helped to better estimate the cake 

compression under reduced direct pressure on the cake. Furthermore, MLVSS was 

modified to XTSS (using a factor 𝐶𝑓 for MLVSS/ MLSS ratio) to conveniently use the 

frequently measured data in full-scale facilities. The modified Eq.8.29 is used to 

estimate the dynamic cake resistance.   

2
1 exp.TMP EPS

dc sc

w TSS

d

C f

X
r r a b c

X

C


+ − −



     = =           

 8.29 

 

Where, 𝐶𝑇𝑀𝑃 is the coefficient of the transmembrane pressure, a, b, c, and d are 

empirical constants; 𝜇𝑤 is the viscosity of permeate (Pa.s); XEPS is the concentration 

of total EPS (g.CODm-3); and, 𝑋𝑇𝑆𝑆 is the concentration of mixed liquor suspended 

solids (g. CODm-3). The values of the empirical constants were adopted from 

Zarragoitia-González et al. (2008) with a slight modification in exponential parameter 

(p) to adjust the differences of the operating TMP in the dead-end filtration module 

and MBR system. Whereas 𝐶𝑓 was adjusted by computing it from the available data of 

MLVSS and MLSS. The total sectional resistances are added as resistances in parallel 

according to the Eq.8.30 below.  
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Where ns (i) is the surface of the ith section of the membrane, n is a total number of 

sections (i.e., 128) and Rt(𝑖) is the total resistance of the ith section while RT is total 

resistance of the membrane area under consideration. Finally, TMP (Eq. 8.31) 

evolution is modeled using the Darcy's Law (Choo and Lee, 1996).  The range of the 

values of several model parameters used by multiple researchers is summarised in 

Table 8-5 . Most of the ranges of the parameters are wide. That can be interpreted 

through two linked assumptions : the first one points out disparities of situations and 

sludge caracterstics tha should be taken into account in the model’s parameters, the 

second one focus on the inadequation to take int account multiple behaviors, of the 

model structure, due to its evolution ( added and modified equations and constants 

along time)   

𝑇𝑀𝑃 = 𝜇𝑊 × 𝐽 × 𝑅𝑇 8.31 
 

Table 8-5: Range of the parameters and coefficients used in fouling sub-model 

Symbol description unit range references 

a 
constant for specific 

cake resistance Depending on 

CTMP 

1.16E3 - 9.3E12 

(Cho et al., 2005; Cosenza et 

al., 2014; Cosenza Alida et al., 

2013; Mannina et al., 2011a; 

Zarragoitia-González et al., 

2008) 

b 
constant for specific 

cake resistance 
1.36E4 - 8.7E06 

c 
constant for specific 

cake resistance 
gTSS.gCOD-1 115 - 295.4 

d 
constant for specific 

cake resistance 
-- 2.83 - 1427 

Cd 
coefficient of the drag 

and lifting force 
-- 0.04 - 0.46 

(González-Hernández and 

Jáuregui-Haza, 2021; Li and 

Wang, 2006; J. Wu et al., 

2012; Zarragoitia-González et 

al., 2008) 

CTMP 
TMP constant for 

specific cake resistance 

Pa  

(or equivalent) 
50 - 4179 

(Mannina et al., 2011b; Suh et 

al., 2013) 

dp 
MBR sludge particle 

diameter (without 

FeCl3) 

µm 5 - 240 

(Iorhemen et al., 2016; 

Pechaud et al., 2015; Suh et 

al., 2013) 

rp 
specific pore fouling 

resistance 
m-2 9.0E9 - 1.4E14 

(Zarragoitia-González et al., 

2008; Suh et al., 2013; Di 

Bella et al., 2008; Zuthi et al., 

2017b) 

rm 
Membrane intrinsic 

resistance 

m-1 

1.0E11 - 1.2E12 

(Li and Wang, 2006; 

Zarragoitia-González et al., 

2008; Zuthi et al., 2017) 
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Symbol description unit range references 

𝜶𝒔𝒕𝒊𝒄𝒌𝒊𝒏𝒆𝒔𝒔 
coefficient of sludge 

particles stickiness 

-- 

0.113 - 0.67 

(Di Bella et al., 2008; Li and 

Wang, 2006; Mannina et al., 

2011b; Suh et al., 2013; J. Wu 

et al., 2012, 2012; Zarragoitia-

González et al., 2008) 

𝜷𝒅𝒄 
erosion coefficient of 

dynamic sludge cake 

-- 
0.00035 – 0.01 

(Di Bella et al., 2008; Li and 

Wang, 2006; Mannina et al., 

2011b; Suh et al., 2013; J. Wu 

et al., 2012; Zarragoitia-

González et al., 2008) 
𝜷𝒔𝒄 

erosion coefficient of 

static sludge cake 

-- 
0.00035 – 0.01 

𝜸 

compression 

coefficient for sludge 

cake 

kg.m-3.s-1 2.0E-5 – 3.0E-3 

(Di Bella et al., 2008; Li and 

Wang, 2006; Mannina et al., 

2011b; Suh et al., 2013; J. Wu 

et al., 2012; Zarragoitia-

González et al., 2008) 

ηbw 
Efficiency of 

backwashing 

% 

90 -100 

(Di Bella et al., 2008; Li and 

Wang, 2006; Mannina et al., 

2011b) 

 

 ENERGY SUB-MODEL  

The energy requirements in several process of the MBR plant operations with fixed 

(i.e., mixers and foam breakers) and variables power consumers such as influent 

pumping, fine and coarse bubble aeration, recirculation, permeate pumping and 

backwashing is simulated. A list of installed of energy consumers with necessary 

information is provided in Table 6-9 . The approach to model energy consumption by 

each of these devices is described in the following sub-sections.  

8.6.1. Influent pumping 

A simplified equation (Eq 8.32.) borrowed from Gernaey et al. (2006), and Zoungrana 

et al. (2020) was modified and used to model the power uptake by the submersible 

centrifugal pumps. Input data of the active number of pumps in a given time is 

considered.  

inf
[ ]

6
5

3.6 10

d
kw

p m

g QH
P



 

  
=

 
 8.32 

Where 𝑃5 is the pump power uptake (kW), 𝑄𝑖𝑛𝑓 is the volumetric flow of the fluid 

through the pump (m3.h-1), ρ is the density of the wastewater being pumped to MBRs 

(1000 kg.m-3), g is the gravitational acceleration (9.81 m.s-2); η𝑝 is the efficiency of 

the pump (decimal) and η𝑚 is the efficiency of the motor (decimal). The power (kW) 
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data was then converted to energy consumed (kWh) by multiplying it with an operating 

time. 

8.6.2. Sludge mixing 

The agitators are used in the anoxic and an anaerobic zone for continuous mixing of 

the mixed liquor. Although these are fixed energy consumers, however for the purpose 

of the modeling, Eq.8.33 is adopted to estimate the power uptake at given rotations of 

the agitator, PMixer (Pechaud et al., 2021; Tanguy and Thibault, 2002).  

53

[ ]

1000

s rp imp
Mixer kW

N DN
P

   
=  8.33 

Where, Nr is the rotation speed of the mixer (s-1);  𝑁𝑝is the power constant provided by the 

supplier (KSB®), 𝐷𝑖𝑚𝑝 is the diameter (m) of the impeller of the mixer. 

8.6.3. Process and membrane aeration  

The biological process and membrane aeration power consumption are modeled using 

Eq.8.34 modified from Jenkins (2013). However, while modeling biological process 

aeration, the efficiency of the variable frequency drive motors is considered as well.  
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 8.34 

Where, 𝑄𝑎𝑖𝑟is the blower inlet flow rate (m3.h-1), 𝑃𝑖 and 𝑃𝑑 are the blower inlet and 

discharge pressure (psia), respectively. While η𝑏 is the efficiency of the blower.  

8.6.4. Pumping energy consumption in recirculation and sludge extraction  

The energy consumed by the submersible pump in internal and external recirculation 

is modelled by using Eq.8.35 below.  
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Where 𝑓𝑎𝑛𝑜𝑥 , 𝑓𝑎𝑒𝑟𝑜 , 𝑓𝑚𝑒𝑚 and 𝑓𝑤𝑎𝑠𝑡𝑒 are the pumping energy factors for anoxic re-

circulation, aerobic-recirculation, membrane recirculation, and sludge extraction. The 

values of 𝑓𝑎𝑛𝑜𝑥 , 𝑓𝑎𝑒𝑟𝑜 , 𝑓𝑚𝑒𝑚 and 𝑓𝑤𝑎𝑠𝑡𝑒 estimated using regression analysis of the data 

for sludge recirculated/pumped and the energy consumed. 

8.6.5. Permeate pumping  

In addition to the above discussed energy consumptions, MBRs have additional 

consumption in permeate extraction as effluent (𝑃𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒) and it was modeled using 

Eq.8.36 (Judd, 2010) below. 
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=   
8.36 

Where𝑇𝑀𝑃𝑠 is the simulated transmembrane pressure (kPa), 𝑄𝑝 is the effluent flow 

rate (m3.h-1), and η𝑝 is the efficiency (decimal) of permeate extraction pump. The 

summary of the several parameters used in the energy sub-model is given in Table 

8-6. 

Table 8-6: Range of the multiple parametric values used in energy sub-model 

Symbol Description unit range references 

𝒇𝑨𝒏𝒙 energy uptake factor anoxic 

recirculation 

-- 0.0002 - 0.13 (Gabarrón et al., 

2015b; Hai et al., 

2018a; Krzeminski et 

al., 2012; Mannina et 

al., 2020; Suh et al., 

2013a) 

𝒇𝑨𝒆𝒓 energy uptake factor aerobic 

recirculation 

-- 

𝒇𝒎𝒆𝒎 energy uptake factor membrane 

recirculation 

-- 

Np power number for mixers -- 0.3 - 5 (Alleyne et al., 2014; 

Pechaud et al., 2015) 

g gravitational constant m.s-2 9.81 

parameters with 

universally accepted 

values 

n constant for air -- 0.283 

ρw density of the water kg.m-3 1000 

Patm Atmospheric pressure adjusted to 

plant location 

Pa 1.03E5 

R gas constant J.mol-1K-1 8.314 

𝜼𝒑𝒖𝒎𝒑 influent pump efficiency % 70 - 90 (Jenkins, 2013) 

𝜼𝒎𝒐𝒕𝒐𝒓 influent pump motor efficiency % 70 - 90 

𝜼𝒃𝒇 fine bubble aeration turbo blower 

efficiency 

% 70 - 90 (Jenkins, 2013; 

Mannina et al., 2020; 

Suh et al., 2013) 𝜼𝒃𝒄 coarse bubble aeration turbo blow 

efficiency 

% 70 - 90 

𝝆𝒂𝒊𝒓 density of air kg m-3 1.28 (El-Said et al., 2017) 
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 CALIBRATION PROTOCOL  

8.7.1. Calibration of the Biokinetic sub-model 

In this work, values of kinetic and stoichiometric parameters of the bio-chemical 

model have been used in the range reported in the literature and calibrated by Fan et 

al.(2011), Janus (2013) and Rieger et al. (2001), along with some adjustments in the 

values of the stoichiometric parameters to reach the balanced “Peterson” matrix. Few 

parameters were adjusted using the heuristic approach to realistically simulate the 

biological processes for P-removal. Later, sensitivity analysis was carried out to 

explore the influential parameters for parameter screening using Morris screening 

(stage-1) with dynamic simulations and to adjust the most influential parameters to 

improve the model fit, if required, followed by manual calibration. 

The experimental data of the influent COD fractionation, concentration of 𝑋𝑂𝐻𝑂 and 

𝑋𝐴𝑁𝑂 were also used to calibrate the model in a steady state. Furthermore, measured 

data of the state variables from each reactor in series helped to improve the model’s 

accuracy. In addition, dynamic 𝐾𝐿𝑎 calibration was used to further improve the 

dynamic simulation. 

8.7.2. Calibration of the fouling sub-model 

The available values of the coefficients used in the fouling sub-model varies a lot, as 

demonstrated in several modelling studies, and this presented a calibration challenge 

in this work. In order to explore the most influential parameters and to reduce the 

calibration effort due to the wide range of the available parameters, sensitivity analysis 

was carried out considering the range of the values found in several studies (see Table 

8-5). After exploring the most sensitive model parameters, the values of the influential 

parameters were manually adjusted, considering RMSE as an objective function. 

8.7.3. Indicators for performance evaluation of model 

In order to evaluate the accuracy of the model with respect to a particular variable, root 

mean square error (RMSE) and coefficient of determination (R2) were used for all 

measured state variables of the bio-kinetic and energy model. At the same time, mean 

absolute percentage error (MAPE) was also used for fouling sub-model to evaluate its 
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performance for TMP and total resistance. The Eqs.8.37-8.39 were used to estimate 

the model prediction accuracy. 
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Where N is total number of measurements,𝑦𝑜𝑏𝑠 and 𝑦𝑠𝑖𝑚 are the observed and 

simulated data at given time (𝑡𝑗), while �̅�𝑜𝑏𝑠 is the mean of the observed data. 

 SUMMARY  

An integrated MBR process model was set up in MATLAB environment-based plant 

design. The integrated model combined the biochemical (ASM3-EPS-SMP-P) and 

resistance in series (RIS) filtration models. The biochemical part of the model 

considered the stoichio- kinetic activity of the biomass for carbon, nitrogen, and 

phosphorus removal. The filtration part of the model covered the fouling dynamics due 

to intermittent air scouring synchronized with filtration-backwashing cycles and also 

considered the influence of temperature, flux, TMP, and biomass characteristics, i.e., 

MLSS and EPSs concentrations. Furthermore, the aeration model based on the actual 

design of the diffused air aeration system installed for SAV-MBR and considering the 

oxygen diffusion limitations due to higher MLSS concentration was adopted to 

calculate the real oxygen transfer rate. In addition, the energetic consumption model 

was set up to estimate the real energetic consumption and specific energy consumption 

estimations.  
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 Reconciled Data and Results of 

the Experimental Campaigns   

This chapter presents the results of the data cleaning and analysis as well the 

experimental campaigns executed to compensate for the missing data and further to 

fully depict and understand the functioning of the system. 

 RECONCILED DATASETS FOR CALIBRATION AND VALIDATION  

As explained earlier, three datasets from the SCADA system were retrieved, treated, 

and reconciled using the methodologies explained in Chapter 7:. Among the large 

amount of data that have been collected and treated, this section presents a summary 

of relevant datasets based on the reconciled data.  

 Data sets for steady state and dynamic calibration  

The SCADA data collected during the week-long experimental campaign 

(13/05/2019-19/05/2019) was treated and reconciled. A summary of the data is 

presented in Table 9-1 and Table 9-2. 

Table 9-1: Characteristics of influent and effluent data used for model calibration  

Parameter 

N
o

ta
ti

o
n

 

Units 

Influent Effluent 

Avg. Max Min Avg. Max Min 

Total Suspended 

Solids 
TSS mgTSS.L-1 150 224 49 <2   

Biological 

Oxygen Demand 
BOD5 mgO2.L

-1 152 186 86 2.9 3.7 1.7 

Chemical Oxygen 

Demand 
CODt mgO2.L

-1 385 458 225 15 16 15 

COD soluble CODs mgO2.L
-1 133 140 121 - - - 

Total Khejdal 

Nitrogen 
TKN mgN.L-1 262 56 49 2 3 1 

Ammonium NH4-N mgN.L-1 32.7 42.6 19.8 0.5 0.9 0.3 

Nitrite NO2
- mgN.L-1 0.11 0.13 0.01 0.04 0.10 0.02 
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Parameter 

N
o

ta
ti

o
n

 

Units 

Influent Effluent 

Avg. Max Min Avg. Max Min 

Nitrate NO3
- mgN.L-1 0.25 0.30 0.23 11.9 14.7 7.9 

Ortho-Phosphorus PO4
3- mgP.L-1 2.9 3.4 1.7 2.3 4.0 0.2 

Total Phosphorus Ptot mgP.L-1 4.9 5.7 3.1 2.4 4.1 0.2 

Alkalinity HCO3
 - mg.L-1 214 260 157 112 168 101 

pH pH  7.7 7.9 7.5 7.9 7.9 7.8 

COD/BOD   -- 2.6 3.50 2.09 - - - 

COD/N   -- 7.8 8.8 6.6 - - - 

COD/P  - -- 77.9 86.4 77.9 - - - 

Table 9-2: Sludge characteristics and operational settings for model calibration 

Parameter  Unit Average Max. Min. 

Flow rate  m3.d-1 188,373 206,574 163,272 

Sludge extraction  m3.d-1 3568 3746 3389 

Permeate production  m3.d-1 202,015 226,097 188,586 

MLSS- Aerobic Zone g.L-1 5.45 5.62 5.35 

MLSS -membrane aerated zone g.L-1 5.46 5.62 5.28 

Dissolved oxygen (DO) mg.L-1 1.21 1.58 0.78 

Hydraulic retention time (HRT) hours 16.05 18.43 14.56 

Sludge retention time (SRT) days 35.15 36.98 33.46 

Temperature (aerobic tank) 0C 18.83 19.56 17.52 

Specific aeration demand (SADm) L.h-1.m-2 131.13 140.80 125.6 

Instantaneous flux L. h-1.m-2 22.95 24.12 21.62 

Transmembrane pressure (TMP) Pa 5318 6016 4872 

Aeration sequencing  min/min 10/10-10/30 

Backwash flow rate  L.h-1.m-2 36   

FeCl3 addition  mg.L-1 0 0 0 

 

 Datasets for long term dynamic model validation  

Table 9-3 presents the characteristics of the raw, settled, and influent wastewaters for 

periods with (01/11/18-15/12/18) and without (16/12/18- 31/01/2019) addition of 

coagulant (FeCl3), used for the model validation. While Table 9-4 presents the 

summary statistics of the flow and operational parameters based on the analysis of the 

three months of data collected from the plant. 
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The COD/N ratio of influent is one of the most critical parameters for the wastewater 

nitrogen removal process because it directly affects functional microorganism 

populations, including autotrophic ammonium (–N) oxidizing and heterotrophic 

denitrifying bacteria. Considering the low COD/N ratio of the primary treated 

wastewater, raw influent is mixed with settled water in a 40/60 ratio to adjust the 

COD/N ratio in the range of 7-7.7, optimally required for enhanced nitrogen removal. 

Table 9-3: Characteristics of influent and effluent data used for model validation 

Parameter 

N
o

ta
ti

o
n

 

Units 

wastewater and MBR influent Effluent 

raw 

wastewater 

settled 

wastewater 

MBR feed 

Influent 

without 

FeCl3 

addition 

with 

FeCl3 

addition 

Total Suspended 

Solids 

TSS mgTSS.L-1 243.6 ± 67.8 112.8 ± 31 141.7 ± 36.9 2.00 2.00 

Biological 

Oxygen Demand 

BOD5 mgO2.L
-1 188.6 ± 37.1 n.m. 139.8 ± 35.9 2.3 ± 0.8 2.7 ± 1 

Chemical 

Oxygen Demand 

CODt mgO2.L
-1 469.8 ± 98.3 276 ± 75.6 345.3 ± 82.5 15.2 ± 0.6 15.8 ± 1.3 

COD soluble CODs mgO2.L
-1 n.m. n.m. 124.6 ± 37.2 47 + 0.45 45 + 0.67 

Total Khejdal 

Nitrogen 

TKN mgN.L-1 53.2 ± 9.9 40.2 ± 12.3 47.5 ± 10.0 1.5 ± 0.5 1.5 ± 0.4 

Ammonium NH4-N mgN.L-1 54.9 ± 10.2 40.8 ± 11.8 34.3 ± 8.2 0.5 ± 0.3 0.6 ± 0.3 

Nitrite NO2
- mgN.L-1 n.m. n.m. 0.2 ± 0.2 0.06 ± 

0.03 

0.07 ± 

0.03 

Nitrate NO3
- mgN.L-1 n.m. n.m. 1.0 ± 0.9 12.4 ± 3.1 10.2 ± 1.8 

Ortho-

Phosphorus 

PO4
3- mgP.L-1 2.93 ± 0.6 2.4 ± 0.7 2.9 ± 0.6 2.4 ± 0.7 0.3 ± 0.4 

Total Phosphorus Ptot mgP.L-1 5.62 ± 1.0 4.1 ± 1.2 4.9 ± 0.9 2.5 ± 0.8 0.4 ± 0.4 

Alkalinity HCO3
 - mg.L-1 n.m. n.m. 220 ± 51 118 ± 21 122 ± 15 

pH pH - 7.6 ± 0.1 7.6 ± 0.1 7.9 ± 0.1 7.9 ± 0.1 7.9 ± 0.1 

COD/BOD    2.4 - 2.5 n.m. 2.4 - 2.5   

COD/N  - - 8.6 - 9.0 6.7 - 7.1 7.0 - 7.7 n.m. n.m. 

COD/P  - - 80.4 - 85.8 66.3 - 69.1 65.7 – 73.7 n.m. n.m. 

Table 9-4: Flow, sludge characteristics, and operational settings for model validation  

Parameter  Unit Average Maximum Minimum 

Flow rate  m3.d-1 197,933 311,536 122,492 

Sludge extraction  m3.d-1 3688 5681 815 

Permeate production  m3.d-1 189,084 315,988 56,146 

MLSS- Aerobic Zone g.L-1 5.07 6.92 4.50 

MLSS -membrane aerated zone g.L-1 5.08 6.65 4.30 

Dissolved oxygen (DO) mg.L-1 1.70 6.90 0.09 

Hydraulic retention time (HRT) hours 14 22 9 
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Parameter  Unit Average Maximum Minimum 

Sludge retention time (SRT) days 29 43 21 

Temperature  0C 16.57 19.10 11.15 

Specific aeration demand (SADm) L.h-1.m-2 191.05 238.71 131.18 

Instantaneous flux L.h-1.m-2 27.21 53.96 10.55 

Transmembrane pressure (TMP) Pa 5204 13261 1647 

Aeration sequencing  min/min  10/30 10/10 

Backwash flow rate  L.h-1.m-2 36 - - 

FeCl3 addition  mg.L-1 30.73 54.94 4.241 

Results presented in Table 9-3 revealed that the plant amicably removes the BOD and 

COD with their removal efficiencies of 98.6% and 96.6%, respectively. The 

nitrification and de-nitrification efficiencies without coagulant addition are 97.2% and 

79.2%, respectively. 

 

Fig. 9.1: Correlation of influent ratios and removal efficiencies based on 3 months 

data analysis 

Phosphorus removal without coagulant addition was limited to 55.5%, while after 

addition (after 16/12/2018 until 31/01/2019) of coagulant it jumped to 92.8%. This 

low removal efficiency pointed out the underrated role of the anaerobic reactor for the 

biological removal of phosphorus. This might be associated with a fixed anoxic-

anaerobic recirculation ratio, irrespective of the influent P load. Table 9-4 presents the 
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summary statistics of the flow and operational parameters based on the analysis of the 

three months data collected from the plant. It was also examined that the efficiencies 

for COD removal, nitrification, denitrification, and phosphorus removal were not 

dependent on influent concentration. Only the TKN/P ratio was found to be influential 

for nitrification and denitrification processes, as presented in Fig. 9.1.   

 Datasets for dynamic model re-validation  

Another dataset was collected from SAV during the 2nd two weeks long experimental 

campaign (20/9/2020-04/10/2020) and was treated and reconciled. A summary of the 

data is presented in Table 9-5 and Table 9-6. 

Table 9-5: Characteristics of influent and effluent data used for re-validation 

Parameter 

N
o

ta
ti

o
n

 

Units 

Influent Effluent 

Avg. Max Min Avg. Max Min 

Total Suspended 

Solids 
TSS mgTSS.L-1 87 160 48 2 2 2 

Biological Oxygen 

Demand 
BOD5 mgO2.L

-1 53 58 45 2.5 3.2 2.1 

Chemical Oxygen 

Demand 
CODt mgO2.L

-1 213 280 144 15.2 16.1 15 

COD soluble CODs mgO2.L
-1 75 102 48 -- -- -- 

Total Khejdal 

Nitrogen 
TKN mgN.L-1 - - - 2.1 3.2 1.2 

Ammonium NH4-N mgN.L-1 27.8 40.7 15.1 0.33 1.16 0.01 

Nitrite NO2
- mgN.L-1 0.20 0.39 0.02    

Nitrate NO3
- mgN.L-1 0.68 1.39 0.25 7.77 11.49 4.66 

Ortho-Phosphorus PO4
3- mgP.L-1 1.2 1.6 0.7 0.78 1.92 0.09 

Total Phosphorus Ptot mgP.L-1 2.76 4.82 0.97 2.1 3.6 0.1 

Alkalinity HCO3
 - Mg.L-1 - - - - - - 

pH pH  7.6 7.9 7.3 - - - 

COD/BOD   -- 2.94 3.35 2.48    

COD/N   -- 7.35 9.36 5.06    

COD/P  - -- 89.9 186.0 47.0    
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Table 9-6: Sludge characteristics and operational settings for model re-validation 

Parameter  Unit Average Max. Min. 

Flow rate  m3.d-1 216,921 297,548 129,771 

Sludge extraction  m3.d-1 3591 4765 2839 

Permeate production  m3.d-1 213,330 294,364 126,648 

MLSS- Aerobic Tank g.L-1 4.69 4.95 4.40 

MLSS -membrane aerated tank g.L-1 4.68 4.94 4.43 

Dissolved oxygen (DO) mg.L-1 1.58 3.30 0.38 

Hydraulic retention time (HRT) hours 14.57 23.18 10.11 

Sludge retention time (SRT) days 36 44 26 

Temperature (aerobic tank) 0C 21.31 23.75 18.35 

Specific aeration demand (SADm) L.h-1.m-2 184.62 211.16 158.93 

Instantaneous flux L.h-1.m-2 29.26 38.14 19.56 

Transmembrane pressure (TMP) Pa 7224 9896 4242 

Aeration sequencing  min/min 10/10-10/30 

Backwash flow rate  L.h-1.m-2  36  

FeCl3 addition  mg.L-1 0 0 0 

Fig. 9.2 provides a comparison of the datasets used validation/re-validation in 

reference to the calibration dataset. It can be seen that most of the operational 

parameters of the validation dataset do not vary in large extent from the data used for 

calibration.  

 

Fig. 9.2: Comparison of the data sets used for calibration, validation, and re-validation  
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However, DO concentrations in validation stage are 40% higher, compared to 

calibration data. This is probably linked to higher coarse bubble aeration (SADm) at 

higher inflow and flux. Higher TMP during the revalidation stage is likely due higher 

inflow and operations at elevated SRT. Temperature variations are relevant to weather 

conditions.  This comparison will be helpful for understanding of the model results 

and interpretations thereof (Chapters 10-12). 

 Data-Driven simplification of the plant layout  

The layout of the SAV -MBR facility was simplified to reduce the complexity of the 

model and to reduce the computational cost by considering the following conditions: 

a) The design of each of the six activated sludge bioreactors, configuration 

(mUCT) with the identical dimensions of the pre-anoxic, anaerobic, anoxic, 

and aerobic zones  

b) Similar recirculation flow (i.e., fixed 1.3 and 2.4 for anoxic and aerobic 

recirculation and variable membrane recirculation within the same range) 

c) Operational process conditions in the aerobic zones (MLSS, DO, ORP, Temp), 

was found to be almost similar. 

 

Fig. 9.3: Simplified schemas of the SAV-MBR 

 RESULTS OF THE EXPERIMENTAL CAMPAIGN  

 Pollutants profile in each of the reactors 

During the first experimental campaign, the samples were taken on 3 consecutive days 

from 13/05/2019 to 15/05/2019. Summary results of pollutants with averages and 

standard deviations from mean during the 1st experimental campaign are given in 

Table 9-7 and for 2nd experimental campaign in Table 9-8. The Fig. 9.4 (a & b) 



 Chapter 9: Reconciled Data and Results of the Experimental Campaigns 

 

PART-IV: RESULTS & DISCUSSIONS 139 

 

presents the MLSS and MLVSS transformation at various stages of the plant. The 

MLVSS results refer to the activity of the activated sludge. The MLVSS over MLSS 

concentrations ratio in an MBR represents the organic components in the sludge and 

variations in this ratio indicate a change in the biomass composition.  

 

Fig. 9.4: Evolution of sludge COD, BOD5, MLSS and VSS in the SAV MBR 

The MLVSS/MLSS ratio of the influent was 4.45 which reduced to 0.60, 

0.62,0.82,0.85, and 0.56 in the activated sludge of pre-anoxic, anerobic, anoxic, 

aerobic, and membrane aerated reactors, respectively (Fig. 9.4 c-d). These results 

agree with the finding of other studies at full-scale, wherein the MLVSS/MLSS ratio 

remained constant at approximately 0.63-0.75 (Philippe et al., 2013; Rosenberger et 

al., 2000). 
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Table 9-7: Summary of the influent, effluent, and sludge at various stages of the process during 1st experimental campaign  

Parameter Unit 

Influent Pre-anoxic Anaerobic Anoxic Aerobic Membrane Waste sludge Effluent 

Avg. Std Avg. Std.Dev. Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev 

TSS/MLSS mg.L-1 126 30 3235 825 2655 625 3793 282 5225 655 6435 321 6590 490 2 0 

BOD5 mgO2.L-1 153 9 377 68 607 46 507 29 853 45 873 149 937 99 2.5 1.5 

BOD soluble mgO2.L-1 68.0 2.8 6.0 1.0 0.0 0.0 3.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0 0 

CODtotal mgO2.L-1 372 38 4073 302 3683 403 6207 502 6563 740 6730 210 7965 25 15.2 2.1 

COD soluble mgO2.L-1 148 2 42 8 31 1 33 1 33 5 41 11 42 12 0 0 

MVSS mg.L-1 275 20 1946 88 3305 181 3422 15 4559 310 4688 584 5083 226 0 0 

TKN mgN.L-1 53 6 201 8 285 69 332 19 370 44 471 20 413 98 2.1 0.25 

NH4 mgN.L-1 41 4 24.8 2.7 11.3 1.4 10.4 1.4 1.6 0.4 1.7 0.4 1.5 0.3 0.3 0.02 

Ntotal mgN.L-1 53 6 201 8 285 69 332 19 370 44 472 20 414 98 10 3.56 

NO3 mgN.L-1 <1   0.3 0.1 0.3 0.1 0.4 0.1 0.3 0.2 0.4 0.1 0.9 0.6 7.77 4.3 

NO2 mgN.L-1 <1   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0 

Ptotal mgP.L-1 4.7 0.7 53.3 4 64 14 107.3 13 114.6 21.5 132 12 129.2 43.6 2.1 0.16 

PO4 mgP.L-1 3.0 0.4 25.6 2.5 28.8 5.7 22.5 1.6 20.6 3.5 20.2 1.5 20.2 1.9 0.78 0.21 

pH - 7.6   7.3 0.05 7.1 0.05 7.2 0.1 7.1 0.1 7.3 0.2 7.1 0.0 0.1 7.6 

Note: Values in red colors were found unreliable. 
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Table 9-8: Summary of the influent, effluent, and sludge at various stages of the process during 2nd experimental campaign 

Parameter Unit Influent Pre-anoxic Anaerobic Anoxic Aerobic Membrane Effluent 

Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev 

TSS/MLSS mg.L-1 82.61 28.88 2773 580 4998 3876 3737 661 5537 819 6323 1561 3.6 0 

BOD5 mgO2.L-1 52.66 6.80 197 89 477 239 493 454 490 52 870 192 <2 0 

BOD soluble mgO2.L-1 35.33 8.74 0.0 0.0 3.3 0.0 3.0 0.0 3.3 0.6 3.0 0.1 <2 0 

CODtotal mgO2.L-1 208 47.20 2612 452 4237 625 5877 2008 6793 3000 7743 1370 31 0 

COD soluble mgO2.L-1 75.45 16.22 34 20 30 1 30 1 30 1 31 1 47 22.6 

MVSS mg.L-1 556.00 213.33 2165 339 1937 1045 2818 1338 2930 1462 2570 1897 71.3 44.5 

TKN mgN.L-1 64.99 15.98 177 37 199 16 232 67 302 102 214 87 1.83 1.88 

NH4 mgN.L-1 27.62 8.37 23.8 4.8 18.9 3.9 8.9 2.1 3.0 1.7 2.6 1.6 2.30 0.15 

NO3 mgN.L-1 0.68 0.29 3.0 1.5 2.0 0.2 6.1 6.1 10.0 7.9 13.2 9.4 15.67 3.06 

NO2 mgN.L-1 0.20 0.09 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.18 0.12 

Ptotal mgP.L-1 2.70 1.38 69.7 19.9 102.5 27.3 101.7 33.1 104.1 14.9 140.2 43.3 0.52 0.28 

PO4 mgP.L-1 1.17 0.25 24.4 10.1 19.5 8.3 7.6 2.8 5.6 4.0 2.0 1.1 0.40 0.42 

pH - 7.30 0.10 7.0 0.15 6.9 0.12 7.0 0.1 6.9 0.1 7.0 0.1 7.3 0.2 
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Similarly, the COD/BOD ratio of the influent was 3.18, which increased to 12.02, 

8.09,12.08.10.77 for pre-anoxic, anerobic, anoxic, aerobic, and membrane aerated 

reactors, respectively (refer to Fig. 9.4 c &d). 

Fig. 9.5 shows the transformation of CODsol and BODsol in the system. It can be seen 

that the major fraction of the soluble COD is consumed in the various reactors of ASP 

and is uniformly distributed in all reactors, and is helpful for the membrane (MBR) to 

produce an effluent with lower and stable total COD (≤15 mg.L-1). 

While soluble BOD is readily transformed after entering into the pre-anoxic reactor, 

its values remain ≤5 mg.L-1 all along the line until the membrane aerated reactor. 

 

Fig. 9.5: Concentration of soluble BOD and COD in SAV-MBR 

Experimental campaigns revealed that the biological processes consume around 90-

100% of the soluble BOD. Similarly, the biological process can remove 80-90% of the 

soluble COD, and 10- 20% is retained by the membrane. Thus, it could be concluded 

that the COD removal is mainly due to activated sludge, while the membrane is greatly 

helpful in achieving a higher and more consistent COD removal efficiency.  

In the MBR systems, nitrogen is removed via various stages and various mechanisms 

(Mao et al., 2020). Nitrogen compounds in the influent may either be assimilated by 

the sludge (stored in biomass) or transformed to gaseous nitrogen by the nitrification–

denitrification process (Tchobanoglous et al., 2003). Sludge waste may remove the 

cell-assimilated nitrogen, and the gaseous nitrogen would escape from the MBR into 

the atmosphere. The residual nitrogen compounds stay in the wastewater and are 

discharged along with the effluents of the MBR system. According to Henze et al. 
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(2008b), the presence of nitrogen in the biomass is estimated at around 10% of the 

total weight of the biomass. 

The performance of nitrogen transformation in the entire system is shown in Fig. 9.6. 

The influent NH4 concentration accounted for 52-72% of the total nitrogen, it dropped 

gradually in the aerobic reactor (93% reduction) to a concentration of 2.3 mg.L-1 

depicting the presence of sufficient nitrifying bacteria which helped in nearly complete 

nitrification (Fig. 9.6 c). However, NO3
- concentration in the effluent was evaluated to 

be around 14.11 mgL-1, which is 88% of the TN, suggesting incomplete denitrification.  

 

Fig. 9.6: Evolution of concentrations of nitrogen in different stages of the MBR 

The transformation and removal of the total and orthophosphate are depicted in Fig. 

9.7. The phosphate concentration is decreasing while the total concentration of the TP 

is increasing (i.e., TP/PO4 dropped to 0.01 from 0.43).  
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Fig. 9.7: Evolution of concentrations of phosphorus in different stages of the MBR 

This is due to the fact that most of the TP is retained in the sludge by the membrane, 

depicting the functioning of the EBPR and/or CEPR processes. A relatively higher 

influent COD/P ratio of 77.03 was observed, which is quite higher than the required 

optimal range of  29-45 (Nadeem et al., 2022) for successful EBPR. This situation 

could be the possible explanation for this not sufficient removal rate before the 

coagulant addition. 

9.2.1.1 COD fractions and biomass  

According to the average of three experiments, COD fraction SU, SB, XCB, and XU were 

evaluated to be 9.3%, 31.9%, 47.9% and 10.9%, respectively. COD contribution 

associated with the active biomass is often neglected in the influent, which may 

contribute up to 15% (or more) of the total COD (Sperandio and Paul, 2000). The 

results in comparison with other municipal wastewater COD fractionation studies are 

presented in Table 9-9 below. All the obtained values are in the literature ranges. 

Furthermore, 79% of the total fraction is biodegradable.  

Table 9-9: COD fractions of the influent and comparison with other studies 

SU SB XCB XU Reference  

% COD fractions of municipal wastewater 

9.3 31.9 47.9 10.9 This work 

7-11 10-20 53-60 7-15 (Kappeler and Gujer, 1992) 

4 9 77 10 (Sözen et al., 1998) 

2.2-6 50-61.7 22-34.4 8-16.2 (Płuciennik-Koropczuk et al., 2017) 

8-10 20-25 60-65 5-7 (Ekama et al., 1986) 

6.7 33.4 44 15.9 (Ignatowicz, 2019) 
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In addition to COD fractions, respirometry experiments helped in the estimation of the 

autotrophic and heterotrophic biomass in the aerobic reactor as well as their yield 

coefficients. Based on two respirometry experiments conducted during the 

experimental campaign, the heterotrophic (XOHO) and autotrophic biomass (XANO) 

were evaluated to be 1,442 mg COD.L-1 and 338 mgCOD.L-1, respectively. 

9.2.1.2 EPS and SMPs concentration  

The analytical results for EPS measurement are presented in Fig. 9.8. The average 

concentration of total EPS in the sludge was estimated to be around 988 mgCOD.L-1 

with only <1% of the soluble fraction, also known as SMPs. 

 

Fig. 9.8: Total and soluble EPS concentrations in the sludge 

9.2.1.3 Specific cake resistance  

Specific cake resistance increases linearly with increase in the TMP with Pearson’s 

correlation coefficient of 0.983, indicating a significant compressibility of the 

deposited cake. (Fig. 9.9)  
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Fig. 9.9: Variation of specific cake resistance with increasing pressure 

 SUMMARY  

Detailed analysis of the three months data revealed that the plant is functioning well 

for COD, BOD, and TSS, with removal efficiencies of 98.5%, 96.6% and 98.5%, 

respectively. The nitrification and de-nitrification efficiencies without coagulant 

addition are determined to be 97.2% and 79.2%, respectively. While Phosphorus 

removal without the addition of coagulant was limited to 55.5%, after addition of 

coagulant it increased to 92.8%. 

Experimental campaigns essentially helped in producing the required datasets for 

configuration, initialization, steady-state, and dynamic calibration, and validation. 

Data sets related to COD fractions, heterotrophic and autotrophic biomass 

concentrations, EPS and SMP (as soluble EPS), as well as pollutants profiles within 

each of the reactors in series were collected during the experimental campaigns. In 

addition, the experimental campaign helped to precise the carbon, nitrogen, and 

phosphorus transformation from the entrance to the exit of the plant as well as the 

evolution of the biomass. This information is not monitored at SAV-MBR and is 

generally not available in the published literature, especially from the full-scale 

facilities, and probably would be different for each type of reactor configuration. 
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 Calibration and Validation of 

Sub-Models of Reactive Part 

This chapter presents the methodology adopted for calibrating the sub-models used in 

the reactive part, with and without the addition of the coagulant. To ease the reading 

of this chapter, these will be referred to as biokinetic sub-models. Data from the 

experimental campaign, combined with the plant design data (see Chapter 6:) and 

influent and process parameters gathered from the SCADA system (see Chapter 9: ), 

was used for steady state and dynamic calibration. Furthermore, three months of 

historic data (summary presented in Table 9-3) were used to validate the biokinetic 

models. In addition, the model was re-validated with data from the 2nd experimental 

campaign (with 15 days of data from the SCADA system). The overall objective of 

this chapter is to present a comprehensive and fully calibrated and validated 

phenomenological model capable of simulating the biological treatment performances 

of the SAV-MBR in terms of COD, nitrogen, and phosphorus (via EBPR and CEPR) 

removal processes. It also aims to simulate the XTSS and XEPSs concentrations required 

by the fouling sub-model for dynamic computation of the specific cake resistance and, 

more globally, the filtration performance (see Chapter 11:). 

 STEP-WISE CALIBRATION PROCESS  

The optimal set of stoichiometric and kinetic parameters for the biological sub-model 

may be different and specific for various systems, owing to the differences in 

environmental conditions, influent characteristics, reactor configuration, operating 

conditions, and biomass populations (Petersen et al., 2003; Zhu et al., 2015). The 

BIOMATH protocol , adapted for calibration of the bio-kinetic sub model after the 

influent characterization, was applied in accordance with the STOWA protocol 

(Rieger et al., 2012). The calibration strategy is presented in Fig. 10.1. The calibration 

process is divided into 8 steps (or 5 stages), simulation starts from step 5, while steps 

prior to this are essential preparatory steps. 

Target definition: As stated in Chapter 5:, the target of the calibration process is to 

obtain a model capable of dynamically describing the carbon, nitrogen, and 
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phosphorus removal processes of an MBR. The biokinetic sub-model was expected to 

realistically describe the carbon-oxidation, nitrification, denitrification, oxygen 

dynamics, and evolution of the XTSS and XEPS concentrations. Based on the literature 

survey results, the targeted acceptable model fitness for COD, NH4, NOX, PO4, and 

MLSS in terms of R2 was set at ≥ 0.70 (Benedetti et al., 2008; Sin et al., 2011:Wang 

et al., 2017). 

 

Fig. 10.1: Procedure for calibration of the biokinetic sub-model 

 

Decision about information needed for calibration: This step included everything 

related to the calibration process planning, such as type of experimental data 

requirements, measuring frequencies, number, and locations of samples, and selection 

of standard methods for influent/sludge sample characterization. 

Plant design data and flow characterization: This step included a collection of 

information related to i) plant design and process description (see Chapter 6:), ii) 
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Existing data collection and analysis of the MBR performance (see methodology for 

data collection in Chapter 7:), and iii) experimental campaigns to analyses the 

pollutants and biomass evolution (see Chapter 9:). Data collected from full-scale 

facilities are often used, but the amount and quality need reconciliation, referring to 

the procedures suggested by Rieger et al.(2010). 

Choice of the model/ sub-models: This included selecting the suitable ASM model 

to simulate the targeted pollutants with a description of the sub-model considered in 

the model structure for mass transfer (aeration) and chemical precipitation (see 

Chapter 8:). This step also included influent fractionation and estimation of the 

biomass concentration in aerated sludge (see section 9.2) 

Pre-calibration: In order to reduce the calibration effort, some of the model 

parameters were determined experimentally and were fixed while the calibration was 

focused on the rest of the parameters: Heterotrophic yield coefficients, YStor_OHO_Ox, 

and YSB_Stor_OX were adjusted based on fitting of the measured (through respirometry 

experiments) and modeled oxygen uptake rate (OUR), while µOHO_max, KSB_OHO and 

qSB_Stor were set to their default. Furthermore, the yield coefficient of autotrophic 

biomass (XANO) was determined using their measured concentration (via respirometry) 

and modeled OUR fitted manually by adjusting the YANO while keeping the µANO_max 

and KNHx_ANO to their default values. 

 SIMULATION AND CALIBRATION 

Steady-state simulations were run with a one-week average flow rate, process 

conditions, influent composition, and the sludge composition data from the first 

experimental campaign. The steady state simulation was intended for the following 

purposes: 

▪ To identify the proper initialization conditions of the state variables of the 

biokinetic sub-model for all the tanks in series, i.e., pre-anoxic, anerobic, 

anoxic, aerobic, and membrane aerated tanks, 

▪ To verify whether the subset of the parameters measured and adapted from the 

literature is sufficient to proceed further for dynamic simulation or not? 
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▪ To determine whether the proposed model could simulate all the tanks in series, 

given the limited information and data sets available for pre-anoxic, anerobic 

and anoxic tanks. 

Based on the literature (Rieger et al., 2010; Sperandio and Paul 2010), the 

concentration of the active biomass (XOHO, XANO, and XPAO) in the influent was 

assumed to be 4.2% of the total COD in the model, and their values are given in Table 

10-1, along with the values of the composition of the other components in the influent. 

Table 10-1: Influent composition for steady-state simulations 

Component  Symbol Units Value  Source 

Inert soluble organic  SU gCOD.m-3 0.045×COD Estimated  

Readily biodegradable organics  SB gCOD.m-3 0.276×COD Measured 

Slowly biodegradable organics XCB gCOD.m-3 0.508×COD Measured 

Inert particulate organics  XU gCOD.m-3 0.1154×COD Measured 

Soluble utilization associated products SUAP gCOD.m-3 0.00002×COD Assumed 

Soluble biomass associated products SBAP gCOD.m-3 0.00002×COD Assumed 

Ammonium  SNHx gN.m-3 41.0 Measured 

Dissolved nitrated and nitrites  SNOX gN.m-3 0.42 Measured 

Dissolved nitrogen gas SN2 gN.m-3 1.00 Assumed  

Extra polymeric substances  XEPS gCOD.m-3 0.00002×COD Assumed 

Ordinary heterotrophic organisms XOHO gCOD.m-3 0.0415×COD Assumed 

Storage compound in OHOs XOHO_stor gCOD.m-3 0.0115×COD Assumed 

Autotrophic nitrifying organisms  

(NH4
+ to NO3

-) 

XANO gCOD.m-3 0.0002×COD Assumed 

Inorganic soluble phosphorus SPO4 gP.m-3 3.0 Measured 

Phosphorus accumulating organisms XPAO gCOD.m-3 0.0002×COD Assumed 

Stored polyphosphates in PAOs XPAO_stor gCOD.m-3 0.00002×COD Assumed 

Stored poly-β-hydroxyalkanoate in PAOs XPAO_PP gP.m-3 0.0001 Assumed 

Alkalinity (HCO3
-) SHCO molHCO3

- 4.0 Measured 

Total suspended solids XTSS gTSS.m-3 126 Measured 

Metal hydroxide compounds XMeOH gTSS.m-3 0.000001 Assumed 

Metal phosphate compounds XMeP gTSS.m-3 0.000001 Assumed 

For stoichiometric and kinetic parameters, except YStor_OHO_Ox, YSB_Stor_OX and  YANO, 

default values were used as a starting point and then adjusted manually with other 

selected parameters to obtain a reasonable (R2> 0.70) fit of the averaged measured data 

values of the pollutants transformation in all reactors in series. The values of 

parameters thus calibrated are given in Table 10-2. Considering that the averaged 

measured data of the sludge and effluent for CODtot, CODsol, TP and XTSS were fitted 
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reasonably (i.e., above threshold R2) by the simulated results, the averaged measured 

and simulated results within the tanks are presented in Table 10-3. The state variables 

used in the model were lumped in terms of CODsol, CODpart, CODtot TKN, and TP 

using Eqs. 10.1-10.5. 

CODsol = SU + Sb + SUAP + SBAP 10.1 

 

CODpart = XCB + XU + XEPS + XOHO + XOHO_stor + XANO + XPAO + XPAO_stor 10.2 

 

COD𝑡𝑜𝑡 = CODsol + CODpart 10.3 

 

TKN = SNHx + SB ∙ iNSB + iNXU ∙ XU + iNXCB ∙ XCB + iNXBio
∙ (XOHO + XANO + PAO) 10.4 

 

TP = SPO4 + SB ∙ iPSB + iPXU ∙ XU + iPXCB ∙ XCB + iPXBio
∙ (XOHO + XANO + PAO) + XPP 10.5 

Based on Morris screening, a fitting goodness criterion (i.e., R2 ≥0.7) between the 

observed data and simulation results was used to estimate parameter subset suitability 

for steady-state and dynamic simulations. 

Table 10-2: ASM3-EPS-SMP-Bio-P model parameter values used for steady state 

and dynamic calibration  

# 
Notation Units Default Estimated /Calibrated  

1 YSB_OHO_OX  0.681 0.67* 

2 YStor_OHO_Ax  0.54 0.59 

3 YSB_Stor_OX  0.85 0.81* 

4 YANO gCOD.L-1 0.24 0.241* 

5 qSB_Stor d-1 5.0 6.0 

6 KNHx_OHO gN.m-3 0.01 0.02 

7 uANO_Max d-1 1-1.8 1.70 

8 KO2_ANO gN.m-3 0.50 0.20 

9 KNHx_ANO gN.m-3 1.00 0.20 

10 qPAO_PO4_PP d-1 1.50 2.0 

11 uPAO_Max   d-1 1.0 0.40 

12 qPAO_SB_Stor d-1 6.0 8.0 

*Note: The values in bold are measured using a respirometry experiment and fitting the OUR for XOHOs and XANOs 
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Table 10-3:Averaged measured and simulated results of the calibrated ASM3-EPS-

SMP-P model using steady-state collected data from SAV-MBR during 1st 

experimental campaign. 

Measured/ 
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P

o
ll

u
ta

n
t 

P
re

-A
n

o
x

ic
 

A
n

a
er

o
b

ic
 

A
n

o
x

ic
 

A
er

o
b

ic
 

M
em

b
ra

n
e 

A
er

a
te

d
 

  1st Experimental campaign (CARSO data) 

Obs. CODtot 

gCOD.m-3 

4626±2080 3042±481 4363±813 5981±902 6653±202 

Sim. 2589 2513 4214 5848 7193 

Obs. SNOX 

gN.m-3 

- - - - - 

Sim. 0.09 0.002 0.42 11.66 12.55 

Obs. SNHX 

gN.m-3 

- - - - - 

Sim. 24.6 26.03 13.38 0.24 0.05 

Obs. SPO4 

gP.m-3 

- - - - - 

Sim. 4.23 20.78 7.07 2.4 2.1 

Obs. TP 

gP.m-3 

53±4 64.5±14.7 107±13 114±21 132±12.18 

Sim. 57 48 90 128 159 

Obs. XTSS 

g.m-3 

2523±1211 2655±625 4038±877 5225±655 5573±1009 

Sim. 1836 1856 3203 4483 5520 

Noted: measured data is based upon an average of 3 samples. 

The simulated results for particulate species, i.e., CODtot, XTSS, and TP, were found 

within the range of the measured concentrations within each tank, as shown in Table 

10-3. The reliable results for soluble species were not available from the 1st 

experimental campaign and, therefore, could not be compared with the simulated data 

for all reactors in series. The simulated concentrations of NOx, NH4
+, and PO4

-3 in the 

MBR tank were found within the range of the effluent concentrations measured at the 

exit of the membrane aerated tank. Therefore, these results were acceptable, and the 

model was further considered for dynamic simulations.  
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Fig. 10.2: Scheme for plant-wide dynamic simulations  

A dynamic calibration process was carried out using the steady state calibrated model, 

with data sets from the SCADA system for one week, i.e., 13th May 2019 until 18th 

May 2019. The values of the state variables obtained in steady state simulations and 

validated later were used as initialization for dynamic simulations. The dynamic 

influent, operating conditions (including the actual aeration, recirculation ratios among 

different reactors and temperatures) and actual design of the system were considered 

for the dynamic simulation. The dynamic simulation procedure is shown in Fig. 10.2. 

The loop-1 uploads the dynamic data to the MATLAB program, while loop-2 

simulates the reactors in series with a step size of 1 minute and runs for 24 hours. 

 

Fig. 10.3: Dynamically simulated CODtot and XTSS concentrations (left) through 

various zones of the bioreactor, with experimental influent CODtot and XTSS 

concentrations (right)  

Fig. 10.3 illustrates the simulated concentrations of the CODtot and XTSS through 

various zones of the biological reactor and the influent concentration of the CODtot and 



Chapter 10: Calibration and Validation of Sub-Models of Reactive Part 

154                                                                                                   PART-IV: RESULTS & DISCUSSIONS                                                                                    

 

XTSS. CODtot and XTSS concentrations increase along the process with an increase in 

the influent COD and TSS concentrations.  

 

Fig. 10.4: Dynamically simulated NH4
+(a), NOX(b) and TKN(c) concentrations flow 

through various zones of the bioreactor, with experimental influent NH4
+ NOX and 

TKN concentrations  

Fig. 10.4 presents the concentration of NH4, NOX, and TKN, while  Fig. 10.5 presents 

the concentration of PO4 and TP through the various zone of the bioreactor. As already 

stated, the concentration of soluble species of nitrogen and phosphorus within each 

zone of the reactors could not be measured during the experimental campaign. 

Therefore, it was not possible to validate the simulated results for each of these zones. 

However, sufficient data for the effluent concentration was available at the outlet of 

the membrane tank to validate the dynamic calibration. 
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Fig. 10.5: dynamically simulated PO4
3- (a) and TP (b) concentrations (left axis) flow 

through various zones of the bioreactor, with experimental influent PO4
3- and TP 

concentrations (right axis).  

Fig. 10.6 shows that the model is able to sufficiently simulate the effluent COD with 

RMSE of 1.27 mg.L-1 and with a coefficient of determination R2 value of 0.83. This is 

higher than the set target ≥ 0.7, and therefore, the calibration of the COD was accepted.   

 

Fig. 10.6: Model calibration results for dynamically simulated effluent COD  

Similarly, the model was able to simulate with a sufficient accuracy the NH4
+ and NOx 

concentrations with RMSE of 0.122 mg.L-1 and 1.14 mg.L-1, respectively (Fig. 10.7). 

The model fitness for NH4
+ and NOx in terms of R2 was evaluated at 0.96 and 0.856, 

respectively, and therefore, calibration was acceptable.   
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Fig. 10.7: Model calibration results for dynamically simulated effluent NH4
+ (a) and 

NOx (b) concentrations  

 

Fig. 10.8 (a) shows that the model is able to describe the PO4 removal performance 

with RMSE of 0.15 mg.L-1 and R2 value of 0.97. Similarly, Fig. 10.8 (b) presents the 

simulated and observed XTSS concentration in the membrane aerated tank. The model 

amicably simulated the XTSS concentration with RMSE of 65 mg.L-1 and with R2 value 

of 0.81.  

 

Fig. 10.8: Calibration results for dynamically simulated effluent PO4 (a) and XTSS(b) 

These observations indicated that the calibrated model performed well. The 

stoichiometric and kinetic parameters subset acquired through calibration may be used 

to validate the model with data sets from a different period.  

 SENSITIVITY ANALYSIS OF THE BIOKINETIC SUB-MODEL  

Morris Method: Parameter screening has been carried out to assess the influence of 

the stoichiometric and kinetic parameters on the model responses, namely the COD, 

NOx, NH4
+, PO4

3- and XTSS, in a dynamic state. For this, the global sensitivity analysis 
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(GSA) method, “Morris Screening”, was used due to its low computational cost among 

other time-consuming GSA methods (Król et al., 2019; Pianosi et al., 2016; Ruano et 

al., 2011). The Morris method evaluates the so-called distribution of Elementary 

Effects (EE) of each model parameter to model outputs/responses, from which basic 

statistics are computed to derive sensitivity information. The parameters are changed 

over their entire range of defined uncertainty. It computes the partial derivatives (PDs) 

of the model at evenly distributed points (often called “resolution levels”) within input 

ranges, and these derivatives are then averaged out. Morris’s method gives 2 indicators 

related to sensitivity analysis; one is the sensitivity measures mean (μ), which reflects 

the main effect of the parameter on the output, and the other is the standard deviation 

of the EE (σ). It describes the interaction with other parameters or the nonlinear effects. 

A high standard deviation indicates that a factor is interacting with others because its 

sensitivity changes across the variability space. For a model with K number of 

parameters, where x =(x1, x2,...,xK) is a vector of parameter values mapped onto the 

unit hypercube, and y(x) is the model output evaluated at point x. The elementary 

effect of parameter k can be given by Eq.10.6 . 

1, 2, , , , 1, 2( ) ( )
EE

, ,
k

Y x x xk xK Y x x xK +  − 
=


 10.6 

Where Δ, the grid jump, is chosen such that x+Δ is still in the specified domain of 

parameter space; Δ is a value in 
1

1−𝑝
,…, 1 −

1

1−𝑝
 where p is the number of resolution 

levels that partitions the model parameter space into a uniform grid of points at which 

the model can be evaluated. The grid constructs a finite distribution of size 

pK−1×[p−Δ(p−1)] elementary effects per input parameters. 

For “n.p” number of elementary effects associated with the kth parameter sampled from 

the finite distribution of EEk, the mean of the elementary effects can be given by 

Eq.10.7. 

2

1

1
( )k k
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r

r
knp EE =

= −  10.7 

The second statistical summary of interest is standard deviation of the EE associated 

with the kth parameter from all the trajectories and is given by Eq.10.8. 
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Where, np is the number of trajectories associated with the kth parameter, r is the 

number of resolution levels, and k is number of parameters.  

Particular choices and setting for GSA: Latin hypercube (LH) sampling strategy 

with radial design is used due to higher efficiency than other sampling techniques 

(Pianosi et al., 2016). In the LH-radial sampling strategy, the variations ∆i are all taken 

starting from the same (randomly selected) point in the input space.  

The minimum and maximum values for each parameter were determined by 

considering the variability limit of ±20% from the default or estimated value in this 

work. The sampling strategy builds “r” trajectories in the input space, each composed 

of a number of model parameters (K) + 1 point. The starting point of each trajectory 

is randomly selected over a uniform grid, and the subsequent K points are obtained by 

moving one factor at a time of a fixed amount ∆ so that each trajectory allows for 

evaluating one EE per factor. The number of trajectories is selected in the range of 5-

20 (Morris, 1991; Campolongo et al., 2007), and the resolution level (p) of the hyper-

grid is fixed in the range of 4 -8 (Pianosi et al., 2015). In this work, the values of r and 

p were selected as 10 and 4, respectively. The final number of model evaluations was 

equal to r×(K+1) for one week-long dynamic simulation. For each simulation run, the 

simulation output was compared with daily measured data, calculating the NSE to 

further perform the sensitivity analysis. A MATLAB based tool developed by Pianosi 

et al.(2015) was used in this work, while bootstrapping was used to analyze the 

convergence of the EEs with respect to a number of model evaluations.  

The Morris sensitivity measures (normalized between 0-1) for each response variable 

are shown in Fig. 10.9. The parameters in each sub-group are ranked according to the 

maximum overall efficiency of the model (i.e., minimum NSE).  The ranking of the 

model parameter is helpful in their selection for calibration in order of their priority. 

Furthermore, Morris’s screening can be used as a pre-step before moving to a detailed 

quantitative, sensitive analysis to reduce the high computational cost of variance-based 

sensitivity analysis (VBSA) methods. 
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Fig. 10.9: Morris’s method of sensitivity measure (normalized mean of elementary 

effects) for COD, XTSS, NH4
+, NOx, and PO4

3- 

 VALIDATION OF THE BIO-KINETIC SUB-MODEL 

For validation of the bio-kinetic model, another data set was used (details given in 

Chapter 9: and summaries in Table 9-3-Table 9-4). The system was initialized with 

state variable concentrations acquired in the calibrated stage. As stated already, there 

was no FeCl3 addition from 1st November 2018 until 15th December 2018. FeCl3 

addition started on 16th December 2018. The ODEs related to the chemical 

precipitation model were activated only after 16th December 2018. The default kinetic 

parameters related to chemical precipitation were then calibrated by the hit and trial 

method. The dynamically simulated results for effluent DO, COD, NOX, NH4
+, PO4

3- 
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and XTSS concentrations within the membrane aerobic reactor were validated with the 

experimental data for the same period.  

Fig. 10.10 shows simulated and measured DO concentrations in the aerobic tank. The 

accuracy of the model in terms of RMSE is evaluated at 0.23 mg.L-1, which is quite 

poor, as confirmed by the R2 equal to 0.67, which demonstrated that the model could 

be further improved.  

 

Fig. 10.10: Dynamically simulated and observed DO concentration in the aerobic zone 

of the reactor. 

This might be associated with the fact that the intermittency of the aeration (see Table 

6-4 ) is not considered for the biological process aeration model in this work. This 

slightly poor validation is linked to adopted values of several model parameters, 

especially the coefficient A and B in Eq. 8.8 is adjusted based on a heuristic approach, 

and a more sophisticated calibration approach may help in further improvement. Fig. 

10.11 shows the simulated and observed effluent COD (right) and total COD load (left-

area plot). Overall, the model was sufficient in predicting the COD profile with RMSE 

values of 3.12. Although, the model fit in terms of R2 is poor (0.36) due to the 

unavailability of the observed data below 15 mg.L-1, which is the minimum detection 
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limit of the standard method used by the plant operator. The model provides an 

opportunity for the plant operators to produce effluent COD data even below the 

laboratory detection limits and the COD profile within each of the reactors in series. 

Similarly, as shown in Fig. 10.12 (a,b), the model could simulate the de/nitrification 

processes with RMSE values for NOx and NH4
+ of 1.76 and 0.294 and with an 

acceptable R2 values of 0.671 and 0.709, respectively.  

 

Fig. 10.11: Dynamically simulated and measured effluent COD concentrations in the 

effluent  

 

Fig. 10.12(b) shows a significant decrease in NOX concentrations after adding FeCl3, 

which is probably linked to alkalinity consumption/precipitation or accumulation of 

ferric hydroxide in the MLSS, resulting in a pH drop to some extent. Another probable 

reason for this could be the existence of anoxic micro-zones in the center of larger 

sludge flocs that allows denitrification happening in traditional way (Nguyen et al., 

2010; Yang et al., 2009). Guo et al., (2010) got the similar results with addition of Poly 

ammonium chloride.  
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Fig. 10.12: Simulated and observed NH4 (a) and NOx (b) concentration of the effluent  

The default values of the kinetic parameters i.e., “K_pre” and “K_red” of the chemical 

precipitation model, could not sufficiently simulate the CEPR.  

 

Fig. 10.13: Dynamically simulated and measured effluent PO4
3- 

Therefore, these two parameters were calibrated by changing the K_pre from 1 to 6 m3 

g[Fe (OH)].d-1. The value of the K_red was automatically changed while conserving 

the relationship, i.e., K_red= 0.6× K_pre (Henze et al., 1999). Fig. 10.13 presents the 

model performance for simulation of ortho-phosphate removal. It could be seen that 

the model is accurate enough to predict the biological phosphorus removal (before 
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FeCl3 addition) as well as the lumped biological and chemical precipitation (after 

FeCl3 addition with Fe/P molar ratio of 2.17) with an overall RMSE and R2 values of 

0.61 and 0.931, respectively. 

Fig. 10.14 shows the simulated and observed XTSS concentration profiles in the aerobic 

tank. The model fairly simulated the XTSS with RMSE and R2 values of 383 mg.L-1 

and 0.88, respectively. SMPs and EPSs concentrations within each reactor in series 

were also simulated; however, due to the unavailability of the observed data from the 

full-scale facility, the simulated results could not be validated.  

 

 

Fig. 10.14: Dynamically simulated and observed XTSS concentrations in the membrane 

aerated tank  

 

 CONSOLIDATED VALIDATION OF THE BIO-KINETIC MODEL  

In order to re-validate the biokinetic sub-model, another dataset for two weeks was 

acquired (see section 9.1.3). The initialization conditions in each of the tanks were 

adjusted as per the data gathered from the 2nd experimental campaign and mass 
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balances of the particulates (see Table 9-8). Based on the findings of sensitivity 

analysis and results of validation stage, a set of stoichiometric and kinetic parameters 

obtained from the calibration was adapted, and the same values were then used in the 

re-validation stage. No FeCl3 addition was carried out during the re-validation period. 

The daily dynamic data acquired from the SCADA system was used for dynamic 

simulations. 

 

Fig. 10.15:Simulated and observed effluent profiles of COD (a), NOx (b), NH4
+ (c), 

and PO4
3- (d) for second consolidated validation of bio-kinetic model. 

The simulated and observed effluent profiles for COD, NOx, NH4
+ and PO4

3- are 

shown in Fig. 10.15 with RMSE values of 5.95 (a bit higher due to the fact the 

observed COD data below 15 mg.L-1 is not available since below the detection limit), 

0.73, 0.76, and 0.85 respectively. This shows that the model is sufficient to describe 

the pollution removal performance of the MBR at a super large-scale.    

 SUMMARY AND PERSPECTIVES  

The ASM3-EPS-SMP model adapted and modified in this work can predict the 

dynamic variety of the influent soluble biodegradable organic matter, which is 
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considered soluble inert organic matter by the standard ASM3 is hardly treated. The 

model was calibrated with a data set from the 1st experimental campaign. In addition 

to 3 stoichiometric parameters measured through respirometry, 9 additional kinetic 

parameters were manually adjusted to improve the model fitness (see Table 10-2). The 

model was then validated with two different data sets. The calibrated and validated 

model is capable of successfully predicting the behavior of super large-scale MBR and 

provides the profile of the routinely measured pollutants, i.e., DO, COD, NH4
+, NOX, 

XTSS, and PO4
3- with an acceptable level of accuracy. Besides, it also provides EPS 

and SMPs flow concentrations which are not usually measured in full-scale facilities 

due to tedious and expensive experimentation. Obtaining these last data is expected 

towards an improvement in the filtration model accuracy. 
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 Calibration and Validation of 

Fouling Sub-model  

This chapter presents the results of the filtration sub-model calibration, a sensitivity 

analysis of the model factors, and the validation of the model. In addition, an 

exploratory study has been proposed to interpret the results while relating the findings 

of the full-scale fouling assessment with the already published and comprehensively 

presented literature survey in section 2.3. Furthermore, the validation results of the 

fouling-sub model with three new data sets for the full-scale and for a single tank are 

presented.  

 FOULING SUB-MODEL CONNECTIVITY 

The fouling sub-model is provided with real-time MLSS and XEPS concentrations 

simulated for the membrane-aerated tank as shown in Fig. 11.1. These two data series 

are then used to estimate the real-time specific cake resistance (static and dynamic).  

 

Fig. 11.1: Fouling sub-model connectivity with the biokinetic model (top) and 

filtration (filt), relaxation (relax), backwashing (BW), and degasification cycle at the 

SAV-MBR (bottom). 
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In addition, other data sets include the average instantaneous flux of the operating 

tanks (at real temperature), sludge temperature (to consider the effect on sludge 

viscosity), operating surface area of the membranes (considering the number of tanks 

in operation at a given moment) specific coarse bubble aeration rate and TMP for 

initialization. Furthermore, the Zenon system’s operating parameters related to 

filtration relaxation, degasification, and backwashing durations were considered (see 

section 6.3) as per the data retrieved from the SCADA system. Indeed, the Zenon’s 

ZeeWeed 500D is equipped with an intermittent aeration system which could be 

operated either on 10/10 (10 seconds aeration 10 second no-aeration) or 10/30 

configuration and is manually programmable by the operators. Available configuration 

data from all twenty-eight tanks made it possible to calculate the average operating 

configuration (i.e., relaxation time).  

 PRE-CALIBRATION  

 Viscosity as a function of temperature and MLSS 

An increase in temperature leads to a decrease in the dynamic viscosity of the permeate 

and may lead to modifying the membrane fouling. In order to avoid the interference of 

the temperature effect on MBR fouling, non-linear regression between viscosity and 

temperature has been established by several researchers (Busch et al., 2007b; Huisman, 

1996; Judd, 2010; Psoch and Schiewer, 2008; Rosenberger et al., 2006) and given in 

Table 11-1. 

Table 11-1: Relationships to describe the effect of temperature on permeate viscosity 

Mathematical Relationship  Reference 

1.5

0.000479

(T + 42.5)T w
 =  

(Huisman, 1996) 

0.0239 (T 20)
T w

e  −  −=   
(Rosenberger et al., 2006) 

0.875
0.041 T1.78

T w
e  − =   

(Busch et al., 2007b) 

2

1.78

1+0.0337 T+0.000221 TT

w


=
 

 

(Psoch and Schiewer, 2008) 

(20 T)
1.025

T w
  −=   ; for T≤20 0C 

(Judd, 2010) 

(20 T)
1.033

T w
  −=   ; for T≥ 20 0C 



Chapter 11: Calibration and Validation of Fouling Sub-model 

168                                                                                                   PART-IV: RESULTS & DISCUSSIONS                                                                                    

 

Fig. 11.2 shows the results obtained from the different relationships described in Table 

11-1. All these relationships provide similar results within a range of 0-40 0C, expect 

the one derived by Judd (2010), especially beyond 20 0C.  

 

Fig. 11.2: Variations of viscosity with temperature between 5 and 40 0C considering 

different relationships found in the literature  

Multiple simulations were run with relationships explained in Fig. 11.2 and RMSE 

was monitored. After testing all relationships and their influence on the model 

performance, the one suggested by Busch et al.(2007b) provided least RMSE and  was 

used for subsequent calibration of the fouling model. 

Similarly, sludge viscosity is one of the influential factors for fouling (see section 

2.3.1), along with the temperature and XTSS concentration. The sludge has a higher 

viscosity than permeate due to increased frictional forces caused by suspended 

particles in motion associated with aeration and/or mixing (Drews, 2010). Many 

viscosity models have been successfully applied to analyze the rheology of the sludge 

suspensions, as discussed in the detailed review by Ratkovich et al.(2013). While the 

higher suspended solids concentration and aeration (shear) in activated sludge 

suspensions in MBRs affect the viscosity of the mixed liquor, other rheological 

parameters such as yield stress, non-Newtonian flow characteristics, and thixotropic 
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behavior are typically overlooked. In this way, activated sludge is considered a 

Newtonian fluid but with a viscosity higher than water. The literature shows that 

several exponential and linear correlations between dynamic viscosity of the sludge 

were introduced (Krauth and Staab, 1993; Meng and Yang, 2007; Ng and Kim, 2007), 

and their mathematical expressions are given in Table 11-2. 

Table 11-2: Relationship between sludge viscosity and MLSS  

Mathematical Relationship  Reference 

TSS0.08 X
1.05

s w e 


=    
(Krauth and Staab, 1993) 

TSS0.0861 X
0.909

s w e 


=    
(Meng and Yang, 2007) 

TSS0.07 X
1.61

s w e 


=    
(Ng and Kim, 2007) 

TSS0.1488 X +1.036
s

 =   
(Xing et al., 2001) 

The exponential expressions proposed by Krauth and Staab (1993) and Meng and 

Yang (2007) behaved almost in a  similar manner, while the expression of Ng and Kim 

(2007) resulted in higher viscosity than the other two at the same XTSS concentration.  

The linear correlation expressions derived by Xing et al. (2001) resulted in a totally 

different scenario, where the increase of the XTSS concentration linearly increased the 

sludge viscosity. Considering this variation, the expression by Krauth and Staab (1993) 

was retained for onward calibration of the model as it has also been adapted by several 

other modelers (Mannina et al., 2011b; Zarragoitia-González, 2009) for modeling 

MBR systems, and this helped to improve the model fit. Fig. 11.3 depicts the influence 

of varying the XTSS concentration (1-25 g.L-1) and temperature of the sludge (1-25 0C). 

However, the exponential correlations presented in Table 11-2 do not capture the 

underlying mechanics of fluid movement, as they are based solely on empirical data. 

These relations were primarily developed for CASP with lower solids concentrations 

having lower mixing and recirculation energy requirements. In contrast, MBR systems 

are more likely to have greater requirements. Therefore, the models may not represent 

the actual rheology of the sludge, and model of the activated sludge rheological 

properties is a complex step linked with the highly complex nature of the activated 

sludge suspensions (Ratkovich et al., 2013). The change in the viscosity of the sludge 
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also influenced sludge density, which is modeled by the expression used by Busch et 

al. (2007b) and Zarragoitia-González (2009) given as Eq. 11.1.  

 

Fig. 11.3: Sludge viscosity under the influence of varying MLSS and temperature 

 

0.0004397
0.99959

TSSX

s T e 


=     11.1 

 Dependence of specific cake resistance on EPS and MLSS 

Although the results of different research investigations on the relationship between 

EPSs content in activated sludge and specific cake resistance have not yet been 

conclusive, it is widely accepted that the specific cake resistance is affected by EPSs 

and MLSS concentrations, as used in the studies of Cho et al.(2005), Zarragoitia-

González (2009), and Ahmed et al.(2007). As explained in section 8.6, the logistic 

expression used by Cho et al.(2005) and later modified by Zarragoitia-González et al. 

(2008) is adopted to model the dynamic specific cake resistance with MLSS and EPSs 

data, simulated by the bio-kinetic part of the model. Fig. 11.4 demonstrates that the 

specific cake resistance is influenced by EPSs and MLSS concentration, and beyond 



 Chapter 11: Calibration and Validation of Fouling Sub-model 

 

PART-IV: RESULTS & DISCUSSIONS             171 

certain limits (EPS ~280 mgCOD.L-1 and MLSS ~ 5.7 g.L-1) there is no more influence 

on the specific cake resistance. 

 

Fig. 11.4: Specific cake resistance under the influence of MLSS and XEPS with 

default empirical parameters (with three months average TMP of 52 mbar) 

 SENSITIVITY ANALYSIS AND CALIBRATION OF FOULING SUB-

MODEL   

The fouling sub-model has fifteen model parameters, as listed in Table 8-5, with the 

values calibrated by multiple researchers in MBR studies. The values of these 

parameters vary within a large range, especially for empirical constants (i.e., ‘a’, ‘b’, 

and ‘d’), specific pore fouling resistance (rp), membrane resistance (Rm), the erosion 

coefficient of dynamic sludge cake (βdc), the compression coefficient for sludge cake 

(γ) and coefficient of sludge particles stickiness (αstickiness). This presented a challenge 

for robust calibration of the model parameters. Global sensitive analysis (GSA) was 

then used to identify the most influential parameters to reduce the calibration effort as 

well the response of the model. The basic purpose of the variance-based GSA is i) to 

rank (or to prioritize parameters) aiming at generating the ranking of the input factors 

according to their relative contribution to the output variability and ii) to screen or to 
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fix a list of non-influential parameters, if any, which have a negligible influence on the 

output variability and iii) to map the ranges of the parameter variability space that 

produces significant, i.e., extreme, output values.  

In order to compute the sensitivity indices of the fouling sub-model parameters, all 

parameters were regarded as stochastic and are therefore associated with a probability 

distribution within a defined range (see Table 8-5). From this defined input variability 

space, samples were randomly drawn using the ‘All-[parameters]-At-a-Time’ (AAT) 

method for a base sample of n=3,000 input combinations. First, two independent input 

samples, XA and XB, are built as a matrix of dimensions (n,M). Then, a matric XC of 

dimension (n.M, M) is generated by recombination of the samples in XA and XB; XC 

is composed of M blocks Xci (i=1,….M), each block being a (n,M) matrix whose 

columns are taken from the XB matrix, except the ith column, which is taken from the 

XA matrix. Three corresponding model outputs i.e., YA, YB, and YC were calculated 

with the objective function “NSE” as scalar outputs. The total number of model 

evaluations for approximating the main and total effect indices is [N= n.(M+2)]. Then, 

the estimation of the main and total effects according to the approximation strategy 

described by Saltelli et al. (2010) was carried out. The convergence analysis was 

performed by using the bootstraps technique provided in the MATLAB based 

sensitivity analysis tool (Pianosi et al., 2015).  

For each of the 15 model parameters, the first-order sensitivity index (or main effect) 

and the total-order sensitivity (or total effect) were computed using dynamic 

simulations and actual flux, membrane area, temperature, and SADm input data 

varying every 15 minutes. The former measures the direct contribution to the output 

variance from individual variations of a factor and is commonly used for ranking 

parameters, while the latter measures the overall contribution from both individual 

variations and through interactions with other factors and is used for screening the 

parameters (Pianosi et al., 2016). Available TMP data at 15 minutes frequency was 

used to compute the objective function and calibrate the fouling sub-model.  

As shown in Fig. 11.5 (a), first-order sensitivity indices for the fouling sub-model 

parameters show that the compression coefficient (γ or “gamma”) for the dynamic 

sludge cake was found to be slightly influential on the membrane fouling (i.e., TMP) 
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along with the both empirical constants of dynamic specific cake resistance, i.e., aR 

and pR. 

 

Fig. 11.5: Sensitivity indices calculated using the VBSA method a) main effects 

indices and b) total effect indices with 51,000 model evaluations. 

Variations in individual parameters negligibly contributed to the variation in the TMP. 

It can be seen that some of the first-order sensitivity indices are negative, even after 

51,000 model evaluations. However, the sensitivity indices could still be used and 

interpreted as suggested by Sarrazin et al. (2017). 

As VBSA-based indices are numerical approximations of their theoretical values 

(between 0 and 1), and when approximation errors are large, the sum of the exact 

values and approximation error might be lower than zero, and this is mainly associated 

with a smaller sample size (Sarrazin et al., 2017). Increasing the sample size further 

may help in eliminating the approximation error but with the higher computational 
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costs (Pianosi et al., 2016). For the total sensitivity indices, parameters “gamma”, 

“pR”, “aR”, “bR “, “alfa” and “beta_sc” were found significantly higher than the main 

effect sensitivity indices, as shown in Fig. 11.5 (b). This means these 6 parameters 

have a significant effect on the simulated TMP, not only through their individual 

effects but also through interactions.  

 

Fig. 11.6: Convergence plots of the (a) main and (b) total effects sensitivity indices 

using bootstrapping method  

The remaining 9 parameters have total and interaction effects indices in their lower 

ranges and therefore have small effects, considering both direct and indirect 

interactions. The convergence analysis shows that the main effects (or factor 

prioritization convergence) have mostly converged. In contrast, the total effects had 

not yet converged and required an extension of the sample size. Therefore larger 

sample size would be needed as suggested in the literature (Saltelli et al., 2008; 

Sarrazin et al., 2016). The lack of convergence could be due to high non-linearities in 

the fouling sub-model and very large variations of the parametric values (see Table 

8-5). Therefore, an approximate sample size required for convergence (screening) has 

not been explored further due to precision gain versus high computational cost ratio 

considerations.  
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 Dynamic simulations and calibration of fouling sub-model  

The calibration was performed with a dataset gathered during the first experimental 

campaign (i.e., 13/05/2019-19/05/2019). Dynamic simulations were performed to 

achieve the lowest possible MAPE and RMSE values.  

 

Fig. 11.7: Scatter plots of fouling sub-model parameters values as a function of RMSE, 

with highlighted 'behavioral parameterizations (simulations with poorer RMSE)' in red 

color with 3000 model evaluations. 

The first-order sensitivity indices from the VBSA help in ranking the parameters in 

their order of influence on the fouling sub-model output (i.e., TMP). The values of 

influential parameters, i.e., “gamma” “pR” “aR” “bR”, “alfa”, and “beta_sc” were 

slightly adjusted within the range reported in the literature and given in Table 8-5. 

These selected model parameters are difficult to measure, system-dependent, and are 

not uniquely quantified in the literature. Based on the generalized likelihood 

uncertainty estimation (GLUE) scatter plots with values of the parameters as function 

of RMSE as shown in Fig. 11.7. The values of the calibrated model parameters are 

given in Table 11-3. 
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The dynamic simulations helped to evaluate the fluctuating cake mass, the static and 

dynamic cake resistances, the TMP, and the total fouling resistance. 

Table 11-3: Calibrated values of fouling sub-model parameters  

Symbol Description Unit Value  

aR constant for specific cake resistance -- 1156.2 

bR constant for specific cake resistance -- 136001 

cR constant for specific cake resistance -- 172.4 

dR constant for specific cake resistance -- 150.9 

Cd coefficient of the drag and lifting force -- 0.041 

pR constant for specific cake resistance -- 0.72 

dp MBR sludge particle diameter (without FeCl3) m 0.00010 

rp specific pore fouling resistance m-1 Estimated  

Rm Membrane intrinsic resistance m-1 Estimated  

𝜶𝒔𝒕𝒊𝒄𝒌𝒊𝒏𝒆𝒔𝒔 coefficient of sludge particles stickiness -- 0.50 

𝜷𝒅𝒄 erosion coefficient of dynamic sludge cake -- 0.00035 

𝜷𝒔𝒄 erosion coefficient of static sludge cake -- 0.00028 

𝜸 compression coefficient for sludge cake kg.m-3.s-1 2.50E-05 

ηbw Efficiency of backwashing % 98 

Fig. 11.8 shows the dynamic deposition of the mass onto the surface of the membrane. 

It can be seen that no significant static deposit of the mass was found for one week. 

 

Fig. 11.8: One-week simulated deposition of the mass onto membrane surface under 

the influence of filtration-relaxation, backwashing, and intermittent aeration.  
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The hydrodynamic conditions at the vicinity of a membrane surface govern the 

deposition of the mass and air-scouring shear stress remains the main trigger to control 

consistent deposition. The temporal fluctuation in the shear stress affected cake 

detachment, in additional to fluctuating operating flux (linked with the influent flow). 

The large spikes in the graph reflect dynamicity of the mass deposition under fast 

varying conditions.   

The model results can reflect long-term cake development and residual fouling 

associated with the mass deposition on the membrane surface. However, validation of 

the mass deposition is challenging due to the fast dynamics associated with multiple 

fouling abatement operations, i.e., filtration relaxation, aeration sequencing, 

backwashing. Consequently, non-existence of any residual mass on the membrane 

surface for long term is observed. 

Similarly, Fig. 11.9 depicts the evaluation of the static (a) and dynamic (b) cake 

resistances over a period of 1 week with depiction of the one-complete degassing to 

degassing cycle (sub-figures). Static resistance plot (a) is zoomed in further to reflect 

the simultaneous effect of the fouling accumulation and the wash-off phenomenon on 

the static resistance. The incremental steps indicate the fouling development during 

the filtration-relaxation cycles (under the influence of sequenced aeration), which 

mathematically results from the residual of the dynamic resistance. The backwash step 

seems effective in a large removal of the deposited mass 

Dynamic resistance plot in Fig. 11.9(b) depicts the incremental of the temporal cake 

on the membrane surface. Each of the spike in the zoomed plot reflects the increase of 

the fouling (in the presence of the sequenced aeration) and get back near original level 

after activation of the relaxation.  

The observed and simulated data for TMP and total resistance evolution for one week 

is presented in Fig. 11.10. The mean absolute percentage error (MAPE) for TMP and 

total resistance was 4.34% and 9.32%, respectively, with an acceptable R2 values of 

0.975 and 0.72, respectively, demonstrating the acceptability of the model calibration. 

The simplification of simulation process (i.e., simulating 28 tanks as a single unit) lead 

to a discrepancy between observed and simulated TMP with an appearance of peaks 

with simulated data as shown in Fig. 11.10(a). This is due to the fact that the observed 

TMP data are averaged of 28 tanks operating in tandem. The experimental data are 

also averaged in 15 minutes frequency where temporal fluctuations of individual tanks 

are lost in the statistical averaging and are not reflected precisely. Whereas simulated 
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data is available in high frequency with one second time interval, for filtration as well 

as aeration, and therefore fast dynamics in simulated data present peaks, especially at 

higher TMP.  

 

Fig. 11.9: Evolution of static (top) and dynamic (bottom) sludge cake resistance 

under the influence of fouling abatement controls in place at SAV-MBR 
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Fig. 11.10: Simulated and observed fouling sub-model outputs a) TMP and b) total 

filtration resistance for the calibration stage. 

The extent of variation between the measured and observed total resistance is higher 

as compared to the TMP. This is probably due to the difference in the approaches 

considered for adjustment of temperature effect in calculation of the viscosity in the 

model and for SAV-MBR data. 

 MODEL VALIDATION WITH OF 90 DAYS DATA  

Some data related to the number of membrane tanks in operation and the aeration 

intensity were unavailable for the first 10 days of the dataset used for validation, i.e., 

from 1st to 10th November 2018. Therefore, these days were not considered for the 

fouling sub-model and simulations for the remaining 83 days were run, i.e., 11/11/2018 

until 31/1/2019. The data available in 15 minutes format for the number of tanks in 

operation in a given time, aeration intensity, filtration-relaxation sequencing, aeration 

sequencing, backwash time, backwash flow rate, instantaneous flux, MLSS, XEPS and 

temperature were considered. The observed and simulated data for TMP and resistance 

in series evolution for one day is presented in Fig. 11.11,a) and b), respectively. The 

mean absolute percentage error (MAPE) for TMP and total resistance are 5.11% and 

7.13%, respectively with an acceptable R2 values of 0.971 and 0.749 respectively 

demonstrating that the calibrated model performs well to fairly simulate the fouling 

evolution with time. 
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Fig. 11.11: Observed and model simulated data for (a) TMP evolution profile of on-

day, (b) Total resistance evolution profile of one day 
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Fig. 11.12: Observed and model simulated data for (a) TMP evolution profile from 

11/10/2018 until 31/1/2019 and (b) Total resistance evolution profile form 11/10/2018 

until 31/1/2019 
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The simulations were then extended for the entire 83 days and the simulated results 

for TMP and total resistance in comparison with the observed ones are presented in 

Fig. 11.12. It can be seen in Fig. 11.12 (a) that the TMP prediction accuracy of the 

model during the period 11/11/2018 until 16/12/2018 (i.e., without the addition of the 

coagulant) was pretty much stable with MAPE of 4.1% and R2 value of 0.986 which 

is almost within the range of 1-day simulation results. However, the MAPE increased 

to 11% after the addition of FeCl3, but the R2 value dropped to 0.935. Similarly, the 

MAPE and R2 values for total resistance were 5.01% and 0.68 respectively, before 

adding the coagulant (see Fig. 11.12 (b)). However, MAPE increased to 13.3% after 

coagulant addition and the R2 value reduced to 0.512. An explanation found in the 

literature that the addition of FeCl3, which linearly increases the floc size and results 

in a compact floc structure, as investigated by (Asensi et al., 2019a). This suggested 

that the changes in the filtration properties of the sludge due to the addition of 

coagulant should be considered, which is not the case in the current work.  

Some adjustments into the specific cake resistance (see Eq. 8.29) considering the other 

factors such as the influence of SMPs, particle size evolution, particle size distribution 

(PSD), or stickiness of the flocs associated with the addition of coagulant, may help to 

improve the better prediction of the specific cake resistance and thus the static and 

dynamic cake layer resistance.  

In addition, the current model does not include the effect of chemical cleaning (in-situ 

and ex-situ, see section 6.3.3) to remove the irreversible pore-fouling resistance, which 

linearly increases with time. Moreover, uncertainties in the measured inputs of the 

fouling sub-models could be a probable cause for the variations in the model output. 

A dynamic sensitivity analysis considering the model factors and inputs altogether 

could be fruitful in assessing the robustness of the models and their responsiveness to 

the variations in the inputs.  

Furthermore, influent properties such as C/N ratio, pH, alkalinity (mol HCO3
-) and 

operating parameters including organic loading rate (kgCOD.m-3.d-1), SRT (day), 

sludge temperature (0C), DO concentration (mg.L-1), ferric addition (Kg.Fe.d-1), MLSS 

(g.L-1) and operating flux (L.m-2h-1) were analyzed to explore their influence on the 

fouling (in terms of permeability decline). The correlation analysis revealed that the 
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permeability is highly negatively correlated with the flux (-0.93) and moderately 

negatively correlated with MLSS concentration (-0.38) in both MBR lanes.  

The correlation between ferric addition and permeability appeared to be linked with 

DO concentrations, as shown in Fig. 11.13. Therefore, no absolute correlation could 

be established and this still remained inconclusive (Nadeem et al., 2022). Similar to 

the results, the role of the DO (see Table 2-2) and Ferric addition towards fouling 

abatement/ promotion is not conclusive in the literature.  

 

Fig. 11.13: Correlation between the permeability and other variables 

SRT and pH, temperature, and alkalinity appeared to be positively correlated with 

permeability.  

 Re-validation with 2 weeks data at full-scale  

In order to re-validate or test the integrated model at full scale, the operating membrane 

surface of 28 tanks, average instantaneous flux, temperature, and simulated MLSS and 

EPSs concentrations has been considered. No coagulant addition was carried out 
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during this testing period. The membrane total resistance was estimated from observed 

TMP, flux, and temperature data (using Darcy’s law), and minimum value of total 

resistance is adapted for a period between two chemical washes. For each known 

chemical wash, the initialization values are updated based on the data for that specific 

period. As shown in Fig. 11.14, the simulated TMP fitted reasonably well with the 

measured TMP with MAPE and R2 values of 6.09% and 0.964, respectively.  

 

Fig. 11.14: Observed and simulated TMP with data from the 2nd experimental 

campaign  

 Validation of model with data from a single tank 

All datasets tried heretofore showed negligible to no fouling, as shown in Fig. 11.15. 

The TMP increased linearly with almost perfect correlation with increased flux, and 

no TMP jump could be identified. The slope of the fitted fouling sub-model was almost 

the same for the data used for calibration and validation (Fig. 11.15a-b). For the re-

validation period (Fig. 11.15c), the slope slightly increased from 2.66 to 3.01, 

depicting some fouling development. Although the fouling sub-model predicted the 
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TMP fairly well, the fouling model needs further test up for systems with prominent 

fouling.  

 

Fig. 11.15:Flux as a function of TMP for a) calibration period, b) validation period 

and c) re-validation period. 

In a bid to test the model with data with prominent fouling, the permeability of all 28 

tanks was investigated from November 2018 until December 2019. Only one tank (8A) 

was found with considerable permeability decline between two ex-situ chemical 

washes. It can be seen in Fig. 11.16 that the permeability dropped from 562 L.h-1.m-

2.bar-1 to 318 L.h-1.m-2.bar-1 starting from 1st Jan 2019 until 9th April 2019 (38% 

decline). 

In order to simulate one tank, the measured MLSS (from a sensor installed in the MBR 

tank) and fixed XEPS concentration (400 mgCOD.L-1) along with the measured 

instantaneous flux at the actual temperature, aeration intensity, programed 

intermittency of aeration (10/10), backlashing and filtration-relaxation cycles, for the 
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8A-tank was used to simulate TMP using fouling sub-model as a stand-alone 

component.  

 

Fig. 11.16: Daily simulated and measured TMP of a single tank (8A) for a 4-month 

period 

All model parameters were kept at their default values (set in this work during 

calibration and validation stages), except the “pR” which was adjusted to 0.68 instead 

of 0.72: this calibration deemed necessary owing to the size of the one tank versus the 

full-scale. For full-scale simulation, several simplifications were made, e.g., averaging 

the fluxes, air scouring rates, and relaxation times for all 28 tanks. The model simulates 

the TMP trend reasonably well with MAPE and R2 values of 12.11% and 0.57, 

respectively. The decline in prediction accuracy is attributed to the fact that the XEPS 

concentration is kept constant through the simulations. In addition, the daily average 

air scouring rate is used because high frequency (15 minutes) data were not available.  

It seemed that the fouling sub-model is capable of simulating systems with higher 

fouling tendencies. Although, modeling one tank alone is not a true representation of 

the super-large-scale system (>100,000 m3.d-1). However, with this validation, it could 

1
2

/3
0

/2
0

1
8

1
/3

/2
0

1
9

1
/7

/2
0

1
9

1
/1

1
/2

0
1

9

1
/1

5
/2

0
1

9

1
/1

9
/2

0
1

9

1
/2

3
/2

0
1

9

1
/2

7
/2

0
1

9

1
/3

1
/2

0
1

9

2
/4

/2
0

1
9

2
/8

/2
0

1
9

2
/1

2
/2

0
1

9

2
/1

6
/2

0
1

9

2
/2

0
/2

0
1

9

2
/2

4
/2

0
1

9

2
/2

8
/2

0
1

9

3
/4

/2
0

1
9

3
/8

/2
0

1
9

3
/1

2
/2

0
1

9

3
/1

6
/2

0
1

9

3
/2

0
/2

0
1

9

3
/2

4
/2

0
1

9

3
/2

8
/2

0
1

9

4
/1

/2
0

1
9

4
/5

/2
0

1
9

4
/9

/2
0

1
9

0

2000

4000

6000

8000

10000

12000
 TMP_Obs

 TMP_Sim

 Permeability_Obs

Date and Time

T
ra

n
s
m

e
m

b
ra

n
e
 P

re
s
s
u
re

 (
P

a
)

R2 : 0.57

MAPE : 12.11%

0

100

200

300

400

500

600

700

800

 P
e

rm
e

a
b

ili
ty

(L
.h

-1
.m

-2
.b

a
r-1

)



 Chapter 11: Calibration and Validation of Fouling Sub-model 

 

PART-IV: RESULTS & DISCUSSIONS             187 

be projected that modeling all 28 tanks in parallel using their individually programmed 

configurations could help to improve the model performance and utility. 

 SUMMARY AND PERSPECTIVES  

The selected filtration sub-model provided a reasonable level of prediction accuracy 

at the lowest computational cost and with a minimum amount of effort required for 

calibration. This model can be successfully applied to describe the membrane fouling- 

filtration process provided that the operating conditions, such as instantaneous 

filtration fluxes, mixed liquor suspended solids (MLSS), EPSs, and TMPs fall within 

the technical norms applied at SAV-MBR or any other HF-equipped full-scale facility. 

The fouling sub-model is validated with filtration data showing negligible to minimum 

fouling. Additional validation of the model would be required with data from super-

large-scale facilities showing higher fouling tendencies. Therefore, it is difficult to 

ascertain the accuracy of the model under different operating conditions and higher 

fouling tendencies at full scale. Testing the fouling sub-model at the level of one tank 

(with a membrane surface of 16,512 m2) with significant fouling, it provided a 

reasonable TMP prediction accuracy.  

A few of the following limitations of the fouling sub-model require further 

consideration for a better understanding of the fouling phenomenon in full-scale 

applications: 

a) The chemically enhanced backwashing (in-situ cleaning) is effective in 

removing a significant share of the irreversible, i.e., pore fouling (Hai et al., 

2018a; Judd, 2010), and this effect should be incorporated into the fouling sub-

model for improved accuracy. 

b) The membrane surface in the current work is assumed to be static, while HF 

membrane fibers are flexible and moving under the influence of shear produced 

by the air scouring. HF membranes enjoy the added benefit of their loosely 

bound fibers, which preliminary studies have shown to help reduce the 

membrane fouling (Liu et al., 2016; Yeo et al., 2007). This effect could be 

considered while modeling the MBR systems with HF membranes. 

Furthermore, the applicability of the model with immersed flat sheet (FS) 

membranes should be explored in future works as flat sheet membranes are 

also being used at a large scale (>10,000 m3.d-1). 
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c) Particle size distribution and stickiness of particles are impacted by the addition 

of a coagulant (Nadeem et al., 2022). This effect should be taken into account 

when modeling MBR facilities using coagulant for CEPR.  

d) The specific cake resistance equation proposed by Cho et al. ( 2005) is not 

universally applicable for all kinds of MBR systems (lab-full scale). 

Furthermore, at the times, when this equation was proposed, precise definitions 

for today’s known variations of biopolymers such as EPSs, bound EPSs, 

loosely bound EPSs, extracted EPSs (eEPSs), free EPSs, bio-polymeric 

clusters (BPC i.e., group of SMP and EPS), and SMPs were not set up. Keeping 

in view the recent understanding of EPSs and SMPs, further experiments for 

expressing the specific cake resistance as a function of TMP, MLSS, SRT, F/M 

ratio, SMP, EPSs, coagulant dose, and rate of chemical cleaning is required. 

e) The colloidal fraction of COD can be added into the filtration model (Wu et 

al., 2001). Considering this, it would be interesting to develop a biological 

model and then further link it with the impacts of the coagulant addition to 

explore the inorganic irreversible fouling associated with it.  

The fouling sub-model in the stand-alone configuration is computationally robust and 

super-fast and, therefore, could be used as a tool to simulate the weekly in-situ 

chemical cleaning and bi-annual ex-situ-chemical cleaning for each of the membrane 

tanks. Furthermore, the fouling sub-model is a basic tool for analyzing the effects of 

changing the aeration sequencing and aeration intensity on fouling development.  
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 Energy Consumption at SAV 

MBR & Validation of Energy 

Sub-model  

Energy consumption in wastewater treatment involves multiple forms of energy such 

as electrical, manual, fuel, and chemical, as classified by Singh et al. (2012). However, 

this chapter presents findings of the electrical energy audit of the SAV MBR facility 

and validation of the energy consumption sub-model with simulations based on data 

set from 11th Nov 2018 until 31st Jan 2019. Furthermore, it presents the energy 

consumptions distribution among various consumption items, including pumping, 

aeration, mixing, etc. In addition, it gives the energy consumed in terms of kWh.m-3 

as well as kWh.kg-1 pollutants (COD, N, and P) removed or transformed, and further 

explores the relationships between the energy consumption, the pollutants removal 

performances, and the hydraulic loading of the system. 

 DATA COLLECTION  

The electrical energy consumption in wastewater treatment facilities is influenced by 

multiple factors, including  influent flow, pollutants loading in the influent (BOD or 

COD, TSS, N and P concentrations), the utility of the operating loading rate of the 

plant (Gurung et al., 2018; Longo et al., 2019), dilution of pollutant loads, especially 

during storm seasons when infiltration/inflow reaches to its maximum as investigated 

by Vaccari et al.(2018). A most common practice used to compare electrical energy 

demand is in terms of kWh.m-3 treated or kWh per person; however, this could be 

highly misleading as it assumed that pollutants concentrations in the influent do not 

differ significantly among the wastewater treatment facilities. It is more likely that 

large volumes of wastewater are received by the WWTPs due to unexpected factors 

such as storm water flow and melting of ice to the sewerage system that could possibly 

offer apparent energy discount due to higher denominator in the calculation of the 

kWh.m-3. A more sensible metric to measure the financial sustainability of any 

wastewater treatment facility is suggested by comparing electrical energy consumption 
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in terms of units of the pollutants removed, for example, kWh.kg-1 removed (Bodik 

and Kubaska, 2013; Longo et al., 2019) than unit energy consumption per cubic meter 

treated (kWh.m-3). 

 ANALYSIS OF ENERGY DATA 

Analysis of energy consumption is critical to exploring energy-saving regimes. In 

order to study the current energy consumption trends, 3 months of data of influent 

loading, process conditions and energy consumption were collected, processed, and 

treated to remove statistical outliers.  

Daily energy consumption data from dynamic energy consumers were available for i) 

influent pumping (P5), ii) recirculation from anoxic to pre-anoxic (R1), iii) 

recirculation from aerobic to anoxic (R2), iii) biological process aeration (FBA), iv) 

membrane scouring (CBA) and permeate pumping (ePP). Energy consumed by the 

several fixed consumption item was estimated using the installed capacity information 

(see section 6.4) from the operator, while energy consumed in recirculation of the 

influent from membrane aerated rector to the aerobic reactor and effluent pumping was 

estimated using the mathematical approach described in section 8.7 

As shown in Fig. 12.1, energy consumed in influent pumping (a), anoxic recirculation, 

(d) aerobic recirculation (e), and permeate pumping (f) is highly correlated with the 

influent flow rate with Pearson’s correlation coefficient (r2) of 0.88, 0.86, 0.84 and 

0.81, respectively. Energy consumed in biological process aeration did not have any 

correlation (r2 ~ 0.001) with the influent flow rate, as shown in Fig. 12.1(b). This is 

probably due to a controller system in place, which regulates the DO concentration 

around a fixed set-point by adjusting the airflow rates through a variable frequency 

drive (VFD) compressor and associated with the intermittency of the fine bubble 

aeration. Moreover, this could be associated with the aeration system, equipped with 

energy-efficient fine-bubble diffusers and highly efficient compressors. Set-point 

adjustment and actual oxygen consumption depend upon the influent COD, TN, and 

TP load, which varies from day to day and within 24 hours. It can be seen in Fig. 12.1c 

that the air consumption is likely to increase with the increase in COD/N and COD/P 

ratios. However, membrane air scouring was partially correlated with influent flow 

rate with R2 value of 0.62. 
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Fig. 12.1: Dynamic energy consumption and its relations with influent flow  
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Fig. 12.2: Influent loading and aeration requirements  

  Specific energy consumption by flow  

The specific energy consumption by volumetric flow rate without any optimization 

was calculated using Eq. 12.1. It varied between 0.35 and 0.74, and the average is 

evaluated to be 0.47 kWh.m-3, which falls under the reported range of large-scale 

facilities. 

3

3

1kWh.d( )

( )kWh.m 1
.d( )m

Total energy consumption 
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 Permeate Produced 
−

−

−
=  12.1 

 

Fig. 12.3: Specific energy consumption by volumetric flow rate 
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According to the literature survey (Table 12-1), energy consumption in 25 full scale 

facilities (1000- 20,000 m3.d-1) located in different geographical locations ranged in 

between 0.46 - 2.2 kWh.m-3 (Barillon et al., 2013; Gabarrón et al., 2014; Iglesias et al., 

2017a; Krzeminski et al., 2012). According to the most recent study from China, 

MBRs with treatment capacities ≥50,000 m3.d-1 costed 0.3–0.5 kWh.m-3 for municipal 

wastewater (Zhang et al., 2021). 

Table 12-1: Review of the specific energy consumption in globally operated MBRs 

 

Data presented in Table 12-1 provided a poor correlation (0.02) between the design 

flow and kWh.m-3, suggesting using of other metrics, better suitable to describe the 

Sr.No. Flow rate (m3d-1) Country Specific Energy Reference 

1 9,464 US 1.59 (Krzeminski et al., 2012) 

2 2,990 US 0.66 (Krzeminski et al., 2012) 

3 7,500 US 1.35 (Barillon et al., 2013) 

4 4,420 France 1.12 (Barillon et al., 2013) 

5 15,600 France 1.30 (Barillon et al., 2013) 

6 1,560 France 0.86 (Barillon et al., 2013) 

7 6,250 France 1.34 (Krzeminski et al., 2012) 

8 2,000 Denmark 0.9 (Krzeminski et al., 2012) 

9 2,700 Denmark 1.36 (Krzeminski et al., 2012) 

10 1,820 Denmark 1 (Krzeminski et al., 2012) 

11 12,000 Italy 0.85 (Krzeminski et al., 2012) 

12 5,250 Italy 0.6 (Krzeminski et al., 2012) 

13 16,000 Denmark 0.9 (Krzeminski et al., 2012) 

14 8,544 Denmark 1.5 (Krzeminski et al., 2012) 

15 5,520 Belgium 0.62 (Krzeminski et al., 2012) 

16 6,000 Netherland 0.75 (Krzeminski et al., 2012) 

17 4,150 UK 1.98 (Krzeminski et al., 2012) 

18 2,000 Spain 0.898 (Iglesias et al., 2017) 

19 1,400 Spain 0.86 (Iglesias et al., 2017) 

20 3,750 Spain 1.95 (Iglesias et al., 2017) 

21 1,880 Spain 0.79 (Iglesias et al., 2017) 

22 1,575 Spain 0.9 (Iglesias et al., 2017) 

23 2,116 Spain 0.46 (Iglesias et al., 2017) 

24 20,000 Spain 0.534 (Iglesias et al., 2017) 

25 1,320 Spain 1.1 (Iglesias et al., 2017) 

26 1,100 Spain 0.714 (Iglesias et al., 2017) 

27 5520 Belgium 0.64 (Fenu et al., 2010d) 
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electrical energy consumption dependency considering the characteristics of the 

influent to be treated.  

 Unit energy consumption 

The unit energy consumption (UEC) calculated based on the inflow rate ignores the 

change in the concentration of the wastewater pollutants. It leads to the different unit 

energy efficiencies in an energy audit, and this is prominent from the fact that the 

standard deviation in kWh.m-3 values for three months data is almost negligible (see 

Table 12-2). Therefore, UEC expressed as [kWh.kg-1 pollutant removed] more 

accurately reflects the energy efficiency of WWTP and is consequently adopted here 

to benchmark energy consumption as a function of COD, TN, and TP removed. The 

UEC for pollutants is calculated as the ratio between daily energy consumption and 

daily pollutant removal rate, using Eqs. 12.2-12.3 below.  

( )

( )

-1kWh.d
1 pollutant  removedkg

-1kg .d

Total Energy Consumption
UEC

Pollutant Removed
− =  12.2 

 

( ) 1 -13.-1 dm( . ) 0kg.d Influent Flow RatePollutant Removed g LSS
−= −   12.3 

Where S0 and S are the initial and final concentrations of the pollutants in g.L-1. 

Table 12-2: Summary of the UEC per kg COD and nutrients removal 

 Specific energy consumption 

kWh.m-3 kWh.kg-1 COD 

removed 

kWh.kg-1 TN 

removed 

kWh.kg-1 TP 

removed 

Before FeCl3  0.45 1.56 14.78 252.71 

After FeCl3  0.48 1.47 13.14 109.43 

As can be seen in Table 12-2 the standard deviation of UEC is higher than that of unit 

energy consumption by flow rate (kWh.m-3), it is due to that the daily variation in 

wastewater quality. The average energy consumption in terms of kWh.kg-1 COD 

removed for SAV-MBR was found to be 1.51, which is higher than CASP 

(Christoforidou et al., 2020; Gurung et al., 2018; Li et al., 2021) wherein varied in the 

range of 0.74-1 kWh.kg-1 COD. High UEC in MBR is likely due to higher sludge 

viscosity associated with higher MLSS and active biomass, limiting aeration rates and 
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resulting in increased energy consumption (Nywening and Zhou, 2009; Verrecht et al., 

2008). A most recent study by Li et al. (2021) explored the UEC at full scale MBR 

facilities in China and found values in the range of 1.043–2.698 kWh.kg-1 COD, which 

is higher than CASP. Results from the SAV-MBR lie in this reported range from full-

scale facilities. Addition of FeCl3 slightly reduced (6%) the UEC and daily fluctuations 

were marginally reduced, explained in Fig. 12.4 below. 

 

Fig. 12.4: Unit energy consumption per kg COD removed  

 

Not enough data is reported in the literature to compare the energy consumption per 

kg of nutrient removal. Keeping in view the limitation of the data, it has been reported 

that the cost of TP removal in MBR is higher than CASP (Nadeem et al., 2022), mainly 

due to higher aeration in the biological process. The average removal cost of P-removal 

in MBR varies from 39.8 to 480 US$.Kg-1 depending on influent load, plant 

configuration, aeration intensity, and removal efficiencies. While, in CASP, it costs 

between 13.30- 101 US$.kg-1 (Arif et al., 2020; Bashar et al., 2018; Iglesias et al., 

2017a; Jiang et al., 2005). Three months data analysis revealed that the UECTN varied 

in the range of 7.39-35.83, with an average of 13.92 kWh.kg-1TN removed. It can be 
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seen in Fig. 12.5a, that UECTN marginally improved (11%) after the addition of 

coagulant (see Table 12-2). Similarly, the average UECTP was found to be 

177.88 kWh.kg-1TP removed with high variations in the range of 63-1233 kWh.kg-1TP 

(see Fig. 12.5b). 

 

Fig. 12.5: Unit energy consumption per kg nutrient removal 

 Components of specific energy  

Energy consumption distribution can be based on kWh.m-3 or kWh.Kg-1 pollutant 

removed. Since most of the literature data is available in terms of kWh.m-3 and 

therefore, it would be helpful to use kWh.m-3 as a basis to bifurcate the specific energy 

and for identification of the contributors.   

As shown in Fig. 12.6, the membrane scouring is found to be the largest energy 

consumer at SAV-MBR, being 55.4%; the energy consumed by mixers, biological 

process aeration and influent pumping is 17%, 16.1% and 8.6%, respectively. The 

remaining 5.9% is consumed by other processes, including foam-breaking, 

recirculation, permeate extraction, sludge extraction, and coagulant addition.  
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Fig. 12.6: Energy consumption distribution of Seine Aval MBR plant 

 

 OPERATIONAL LOADING RATE AND EFFLUENT QUALITY  

Given the daily variation in flow rates, the design flow rate for WWTPs is based on 

the peak flow rate. Under normal situations, the hydraulic loading rate (HLR) is 

generally less than 100% of the design flow rate, which can be calculated using Eq. 

12.4. However, on stormy/rainy days, the flow rate may exceed the design flow rate, 

and by-pass arrangements are required.  

 

Fig. 12.7: SEC as a function of hydraulic loading rate and active membrane area 
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Considering the fact that the SAV-MBR has a PFD capacity of 14,500 m3.h-1, while 3-

months data analysis revealed that on average around 55% of the hydraulic loading 

capacity is being utilized. This infers that, if the facility is operated close to design 

capacity, specific energy consumption will reduce to around 0.34 kWh.m-3 (see 

 

Fig. 12.7a). 

This is due to the fact that the energy consumed by some devices such as agitators, 

foam breaking pumps, membrane aeration, and chemical cleaning of the membranes 

is not proportional to the volumes of the permeate production. Influent pumping (P5) 

and recirculation (R1-R2) were found to have a linear relation with energy 

consumption with R2 values of 0.88 and 0.84, respectively. 

( )

( )

Actual influent flow rate
HLR

Design Capacity 
=

-13

-13

.dm

.dm

 12.4 
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Fig. 12.8: Energy consumption as a function of effluent quality  

Similarly, SEC values reduced with an increase in the active surface of the membrane 

(tanks in production in a given time), as shown in 

 

Fig. 12.7b.  

Considering the availability of an energy and effluent data set from SAV- MBR, 

further analysis was performed to explore the window for future model-based energy 

optimization projects. Fig. 12.8 shows that there is no significant correlation between 
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the specific energy consumption and efficiencies for COD removal (a), nitrification 

(a) denitrification (c), and total phosphorus removal (d).  

This implies that an energy-saving program might be established for SAV-MBR 

without direct impact on effluent quality. Similar results are concluded by Verrecht et 

al.(2010) for a small scale MBR wherein they estimated 23% energy saving without 

compromising the effluent quality.  

 VALIDATION OF THE ENERGY-SUB MODEL  

As stated earlier, the data from 11th Nov 2018 until 31st Jan 2019 were used to validate 

the energy sub-model. The energy consumed by the dynamic consumers, i.e., influent 

pumps, recirculation pumps (anoxic and aerobic), fine bubble aeration compressors, 

and coarse bubble aeration compressors, was estimated using the numerical approach 

discussed in section 8.7. The simulated results compared with the measured energy 

consumption data are given in Fig. 12.9. 

Energy consumed by the permeate suction pumps and membrane recirculation was 

also estimated by the numerical approach. However, due to the unavailability of the 

measured data from these two processes, simulated results were not validated. 

Whereas energies consumed by mixers, foam breaking pumps, and chemical dosing 

pumps were considered constant and were calculated from the installed capacity and 

operational working hours.  

The overall energy consumed by all devices installed in the facility was simulated and 

compared with measured data from 11/10/2018 until 31/1/2019. Fig. 12.10 depicts that 

the model amicably predicted the energy consumption with R2 and RMSE values of 

0.945 and 0.02, respectively. 
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Fig. 12.9: Simulated energy consumption as a function of measured energy 

consumption in a) influent pumping, b) internal recirculation i.e., anoxic, and aerobic 

recirculation, c) biological process aeration, and d) membrane air-scouring.  

 

Fig. 12.10: Measured and simulated specific energy consumption 
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Specific energy consumption between 21/12/2018 and 1/6/2019 was significantly 

higher than rest of the period. A plausible reason for this peculiarity is the less influent 

rate and working and reduced number of tanks in operation (aeration is kept on during 

the non-operating periods). 

 SUMMARY AND PERSPECTIVES  

The design flow rate of MBR, hydraulic loading rate (%), and influent pollutants 

(COD, TP, TN) concentrations have the most impact on the unit energy metric (kWh-

1.m3 or kWh.kg-1). Based on the analysis of the data and results presented in this 

chapter, the following conclusions can be derived: 

▪ The specific energy consumption at SAV-MBR in terms of conventionally 

used metric was evaluated to be 0. 471 kWh.m-3, which is reasonable, and falls 

on the lower side of the reported range of full-scale facilities data.  

▪ Unit energy consumed for COD removal was evaluated to 1.56 kWh.kg-1 

which is higher than CASP but within the range for full-scale MBR facilities. 

Similarly, unit energy consumption for TN and TP removal was 13.92 kWh.kg-

1 and 177.88 kWh.kg-1, respectively.  

▪ On average, the Seine Aval MBR plant is operated with around 55% of the 

designed hydraulic load capacity, resulting in higher specific energy 

requirements. This is reduced to 0.34 kWh.m-3 when the plant is operated close 

to its PFD design. Furthermore, specific energy consumption was found to be 

highly correlated with an active surface area of the membrane, i.e., number of 

tanks operating at a given moment.  

▪ Membrane scouring is the single largest contributor to energy requirements 

with a share of 55.4%, and this presents an opportunity to significantly reduce 

the overall energy costs in full-scale MBRs. The other large energy consumers 

were mixing, biological process aeration, and influent pumping, with a share 

of 17%, 16.1%, and 8.6%, respectively, while the remaining 5.9% is consumed 

by other allied processes. 

▪ No significant correlation between the specific energy consumed and 

efficiencies for COD removal, nitrification rate, denitrification rate, and total 
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phosphorus removal was found. This indicated the potential for energy saving 

without significantly impacting the quality of the effluent.  

▪ The energy sub-model amicably simulated energy consumed in influent 

pumping, recirculation, process aeration, and membrane. The overall simulated 

specific energy consumption fitted excellently against observed data, with R2 

and RMSE values of 0.945 and 0.02, respectively. 
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 Exploratory Dynamic 

Sensitivity Analysis of the Model 

Inputs  

Typically, conventional sensitivity analysis in wastewater modeling is used to rank the 

model parameters based on their sensitivity indices, and this knowledge is then used 

to reduce the calibration effort. In general, steady-state simulations explore the 

influence of changing the parametric values within a defined sampling method (one 

parameter at a time or all parameters at a time) within a specific range. Practically, the 

activated sludge process is a transient system and largely depends upon the influent 

composition, biological composition, and process conditions. In CASP, the parameter 

sensitivities may change with time due to evolving biology, changing inputs, or 

environment (e.g., temperature). Therefore, the calculation methods for the steady 

state cannot be an accurate reflection of reality. Dynamic sensitivity analysis could 

evaluate the influences on model responses due to variations of model parameters, 

initial conditions, and independent variables or time-dependent model inputs. The 

main difficulty in investigating the dynamics of systems under consideration is the 

infinite dimension due to the time-dependent inputs and high computational costs. The 

causes and effects of dynamic influent inputs, coupled with environmental conditions 

(e.g., temperature), have not been explored yet, particularly in the wastewater 

modeling field.  

This work is dedicated to presenting an exploratory approach for analyzing the 

influence of dynamic variation of the inputs, environmental and process conditions 

using the deep learning-based black-box model. The approach is expected to be useful 

for interpretation and explanations of the fast-changing dynamics of the system and 

their influence on the model output. This chapter is presented mainly in two parts i.e., 

1) deep-learning model development, training, and validation, and ii) using the trained 

model for dynamic sensitivity assessment of the model inputs on the output. The 

approach is being explored to reduce the computational time in sensitivity analysis as 

really high computation cost is experienced in conventional sensitivity analysis 

approaches. The model adaptation, structure and optimization are only briefly 
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discussed as the main objective is to explore the utility of the black-box models for 

dynamic sensitivity analysis. 

 SURROGATE MODEL AND UNCERTAINTY ANALYSIS  

MBR is a complex biological system with a nonlinear behavior (Yaqub et al., 2020) 

due to multiple interactions between biology and membrane (Naessens et al., 2012) as 

well linked with significant variations in the influent flow and composition (Langeveld 

et al., 2012).  

 

Fig. 13.1: Methodology for model development and uncertainty assessment   

Conventional local and global sensitivity analysis (SA) approaches for 

phenomenological models take stoichiometric and kinetic parameters into account to 

explore their best-fitting values to reduce the calibration effort. Another SA can 

consider the influence of fluctuating influent variables, processes, and environmental 

conditions, keeping stoichiometric and kinetic parameters constant. To explore this 

“dual” sensitivity analysis (parameters and functioning conditions) which is an 
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emerging field to explore, a drastic reduction of the computational cost is necessary, 

which requires innovative approaches. Alternatives can be found in data-driven 

surrogates or black-box models. Several black-box models, discussed in section 4.1.1, 

can be used in wastewater treatment modeling.  

In this work, bi-directional long short-term memory (LSTM), the recurrent neural 

network, is used because its forward and backward hidden units are combined with 

linking the inherently connected context of the past and the future data signals. LSTM 

architecture accepts its data as a series of timestamps; each can be associated with 

many features/inputs. Moreover, the LSTM model is a recurrent neural network 

trained to resolve the gradient vanishing problem using the backpropagation algorithm 

(Wang et al., 2019). This work develops two LSTM models, i.e., 1) LSTM to predict 

effluent quality, and ii) LSTM to predict the TMP. A general methodology for the 

development of LSTM based models and their application for uncertainty assessment 

of the inputs is explained in Fig. 13.1.   

 LSTM FOR EFFLUENT QUALITY PREDICTION 

 Data pre-processing for the prediction of effluent composition 

Data preparation before feeding a model is essential in machine learning techniques. 

A 15-minute interval of data from the sensors installed at various locations of the SAV-

MBR plant (see Fig. 7.1) has been chosen and summarized in Table 13-1. This choice, 

different from the one of the knowledge-based models (daily lab data), has been made 

to produce a sufficient number of data sets for developing the methodology (despite 

the discrepancy of both data sets, as explained in section 7.2). The errors or missing 

values were interpolated using forward filling interpolation. Any data leakage was 

avoided by forward filling from methods such as linear interpolation or even mean. 

The data was then clipped to remove outliers. These outliers were determined using 

the 5th and 95th percentiles of the data for each input. The preliminary data analysis 

aided the identification of trends, patterns, and anomalies of the dataset, which is an 

essential step in modeling. The randomization of the dataset affects LSTM models, 

particularly when nonlinear activation functions are used.  

Therefore, the inputs and outputs datasets were normalized using the sci-kit-learn 

library's "MinMaxScaler" (Pedregosa et al., 2011) pre-processing class. This helped in 

speeding up the learning process and resulted in faster convergence. The predicted 
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values were converted to their original values before passing to the surrogate model 

for sensitivity analysis. 

Table 13-1: Summary Statistics of the un-normalized dataset used for effluent quality LSTM 

# 
 

Units  Mean Standard Deviation Minimum Maximum 

Influent characteristics and operating parameters 

1 Qinf m3.h-1 7934 3387 1.2 15674 

2 TSS g.m-3 99.5 28.6 5.3 173 

3 COD_in g.m-3 217.9 134.0 1.2 500.3 

4 NH4-in g.m-3 36.7 12.4 0.2 77.9 

5 P_in g.m-3 1.8 1.3 0.1 6.9 

6 ORP mV -92.6 46.7 -302.7 28.3 

7 Temp °C 16.9 1.5 11.2 20.1 

8 MLSS g.m-3 5054 632 50 6900 

Output parameter 

1 COD_out g.m-3 11.2 3.3 1.3 21.2 

2 P_out g.m-3 1.4 1.2 0.1 4.3 

3 NH4_out g.m-3 0.4 0.5 0.0 4.5 

Note: n = 8774 

Lastly, correlation among the input parameters using a Pearson’s correlation 

coefficient (PCC) was estimated to measure the association between variables based 

on the covariance method. The PCC among the various inputs was checked and was 

found linearly independent within acceptable limits of < 0.80 (Dixon et al., 2016) for 

all parameters (see Fig. 13.2). The dataset was divided into three main streams; the 

first was used for model training (70%), and the second (20%) and the third (10%) 

were used for model validation and testing, respectively. 

 

Fig. 13.2: Pearson’s correlation coefficients of the input-response data sets for LSTM 

intended for effluent quality prediction. 



Chapter 13: Exploratory Dynamic Sensitivity Analysis of the Model Inputs 

208                                                                                                   PART-IV: RESULTS & DISCUSSIONS                                                                                    

 

 Model structure for the prediction of effluent composition 

The code used the sequential structure of the "TensorFlow Keras" (Abadi et al., 2016; 

Shukla and Fricklas, 2018; Tensor Flow, 2022) to create the model. The model 

comprised three LSTM layers, where the number of LSTM units decreases by half at 

each layer. The first two layers returned the whole sequences of values to pass into the 

subsequent layer. Each layer contained a recurrent dropout layer which applies dropout 

in a manner that is effective with the LSTM model. After the LSTM layers, the model 

had a dense and final activation layer. The dense layer matched the output dimensions 

of the model. The structural details of the LSTM intended for effluent quality 

prediction models are given in Annexure-C (Table C.1). The model was optimized 

using the “Adam” optimizer (Kingma and Ba, 2014). The learning rate (i.e., hyper-

parameter in optimization algorithm is related to MSE used with values in the range 

of 0-1) had an exponential decay function. This choice ensured the effective, consistent 

convergence of the model. Additionally, when optimizing the model, the method of 

“gradient clipping” was applied. This clipping avoided exploding gradients and 

infinity values allowing a better convergence of the model. For activation, the model 

used a linear activation function. This function ensures that the outputs are distributed 

uniformly when scaled into a 0 to 1 range. With a different activation function such as 

sigmoid, the results may have favor values near 0 or 1, which would then scale and 

produces outputs with far less variance, sometimes constant.  

 Hyper parameters optimization and model training for the prediction of 

effluent composition 

Bayesian hyper-parameter optimization (Nguyen, 2019) was used to ensure the 

effective convergence of the model. The implementation uses the “scikit-optimization” 

library (Louppe, 2017; Pedregosa et al., 2011; scikit, 2020). It builds a probability 

model of the objective function and uses it to select the most promising hyper-

parameters to evaluate the actual objective function. In the Bayesian optimization 

process, distributions of the hyper-parameters are generated first with the specified 

ranges. It then creates a generalized version of the model function. This function 

accepts any configuration of parameters within the distributions and develops a model. 

In the second step, a sample from the hyper-parameter space is taken. With this sample, 

a model is trained, and the performance is measured. The samples are then combined 
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into a surrogated/black-box model based on Gaussian processes to optimize the hyper-

parameter space. The hyper-parameters of the architected model were then optimized. 

These optimized values were then used for the training of model the model with 70% 

of the total loaded data. The previous step size was manually adjusted to 10, 

considering the best results. This study used the mean-square error (MSE) as a model 

performance evaluation indicator. The MSE values range from 0 to 1, and lower values 

indicate a good correlation between the experimental and model prediction.  

 Model validation and testing for the prediction of effluent composition 

The calibrated model was then provided with unseen/new data for validation and 

testing. Using optimized parameters, the model produced optimal results without over 

or under-fitting. A good fit between the observed and predicted results can be achieved 

if the value of the MSE is close to zero.  

The observed and predicted effluent COD, PO4
3-, and NH4

+ are plotted in Fig. 13.3-

Fig. 13.5, respectively. The average MSE values were 0.045, 0.086, and 0.078 for 

COD, PO43-, and NH4
+, respectively. The results are good and acceptable to proceed 

further for using the model for uncertainty assessment 

 

Fig. 13.3: Observed and predicted effluent COD (g.m-3) for training phase (1st Nov 

2918-5th Jan 2019), validation phase (6th Jan to 22nd Jan 2019), and testing phase (23rd 

Jan-30th Jan 2019). 
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Fig. 13.4: Observed and predicted effluent PO4
3-

 (gP.m-3) for training phase (1st Nov 

2918-5th Jan 2019) validation phase (6th Jan to 22nd Jan 2019) and testing phase (23rd 

Jan-30th Jan 2019). 

 

Fig. 13.5: Observed and predicted effluent NH4
+

 (g.Nm-3) for training phase (1st Nov 

2918-5th Jan 2019), validation phase (6th Jan to 22nd Jan 2019), and testing phase (23rd 

Jan-30th Jan 2019). 

 Data pre-processing & hyper parameters optimization for filtration 

The data processing approach presented in section 13.2.1 is used in the LSTM intended 

for TMP prediction. A statistical summary of un-normalized data used in this LSTM 

is given in Table 13-2. 
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Table 13-2: Summary statistics of the un-normalized dataset used for TMP prediction model  

  
Mean Standard Deviation Minimum Maximum 

Flux LMH 22.2 1.99 16.9 25.5 

MLSS g.m-3 5065.4 627.71 2300.0 6900.0 

Temp. 0C 16.6 1.38 11.2 19.3 

SADm LMH 53.6 7.07 37.1 66.3 

TMP mbar 52.6 18.60 30.8 132.6 

Note: (n = 7939). 

As shown in Fig. 13.6, no highly correlated parameters were found; thus, the data sets 

could be used for LSTM modeling. The model was trained with 70% of the data. 

Bayesian hyper-parameter optimization was carried out to select a set of most suitable 

parameters with minimum MSE (as an objective function) for 100 searches. In the 

default mode, the previous 10-step sliding window was used to predict the next value 

for TMP. The optimized values of the hyper-parameters(i.e., parameters used to 

control learning of the model e.g.  learning rate), including batch size, minimum last 

step, gradient clipping, dropout rate, number of LSTM units, number of layers, and 

learning decay rate were used for the auto generated model. This automated 

optimization helped to converge the model in minimum time and significantly reduced 

calibration effort (compared to manual adjustment of the hyper-parameters). 

 

Fig. 13.6: Pearson’s correlation coefficients of the input-response data sets for LSTM intended 

for TMP prediction. 

Similar to the LSTM model used for effluent prediction, there are two bi-directional 

LSTM layers and one dense layer with one output. Further model structure is given at 

Annexure -C (Table C.2). 
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 Model validation & testing for filtration 

The trained and optimized model was then provided with another dataset (the next 

20% for validation and the last 10 % for testing) to predict the TMP. The MSE was 

0.0046, and R2 value was 0.9074. The results are fairly well, suggesting the useability 

of the model for uncertainty assessment. 

 

Fig. 13.7: Observed and predicted TMP for training period (10th Nov 2018- 5th Jan 

2019), Validation period (6th Jan - 22nd Jan 2019), and testing period (23rd Jan- 30th jan 

2019). 

As shown in Fig. 13.7, the model is accurate enough to track the TMP profile. 

Therefore, the application of LSTM-based neural networks can be used for SA.  

 SENSITIVITY ANALYSIS  

Once the accuracy of the black-box models was confirmed (with R2 >0.80), the 

influence of the parameter was estimated individually on each of the response variables 

of the two LSTM models presented in the above sections. Several local and global 

approaches are available to assess the sensitivity contribution and interpretability: 

Global approaches including Partial Dependence Plots (PDP) and Individual 

Conditional Expectation (ICE), while local approaches, LIME (local interpretable 

model-agnostic explanations) and SHAP (SHapley Additive exPlanations), provide 

justifications for a single instance and have local fidelity (Friedman, 2001). A partial 

dependence analysis was chosen to describe the contribution of the individual 

parameters in the overall model response. The PDP adjusts one input parameter 
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(maximum two due to dimensionality constraints) for predicting the output, while the 

other inputs are kept to their original values; the ICE  is the curve of the mean values 

of the PDP (Friedman, 2001; Jalali et al., 2020). This plot discovers the linear, 

monotonic, or nonlinear relationship between the predicted response and the selected 

input variables.  

A sample of partial dependence plot of TMP with MLSS as a response variable is 

shown in Fig. 13.8.. From the ICE plot can be seen that the TMP proportionally 

increases with an increase in the MLSS concentrations. However, the behavior of the 

PDP is heterogenous with the MLSS concentrations lower than 5 g.L-1. This shows 

that, apart from the MLSS, there are other unknown actors that influence the TMP 

evolution. 

 

Fig. 13.8: An example of PDP (in blue) and ICE plot (dotted orange line) for TMP 

(Pa) function of MLSS (g.m-3) (sample size: 5000) 

SA of the effluent composition model in the Fig. 13.9, ICE curves for the predicted 

effluent PO4
3- concentration on essential variable are presented.  

Similarly, with increasing MLSS concentration, PO4
3- concentration in the effluent 

decreases due to the uptake by the EBPR (consumption by biomass) or chemical 

precipitation (Nadeem et al., 2022). Other parameters, including TSS, COD, ORP, 

influent phosphorus (P_in), and NH4, are likely not to influence the phosphorus 

removal prediction performance of the model.  
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Fig. 13.9: ICE plots of effluent PO4
3- concentration on essential variables (the pikes on the x-

axis represented the fractile of target feature values and reflected the data density).  

The results showed that phosphorus removal efficiency decreases by the increase in 

the temperature. Highest P-removal performance is achieved under 18 C0 for SAV-

MBR, representing the activation of the PAOs and maximum uptake rate at higher 

temperature. Similar results are reported by multiple researchers (Baetens et al., 1999; 

Liau et al., 2015; Sayi-Ucar et al., 2015), where higher P- removal at a temperature 

ranging between 10-17.5C and found inconsistencies at high temperatures around 

40C0. 

Fig. 13.10 presents the ICE plots of effluent NH4
+ concentration on the influent and 

operational parameters. Particulate components, including influent TSS, MLSS, and 

COD concentrations, do not influence nitrification. While the increase in influent NH4
+ 

load (linked to flow rates) and the decrease of ORP lead to reduced partial nitrification 

(i.e., higher NH4
+ concentration). The influence of P_in, and Temp are less obvious. 

Fig. 13.11 shows the ICE plots of the effluent COD concentration on inputs and 

process parameters. Since COD effluent mainly contains the soluble degradable 

fraction while the rest is retained by the membrane and therefore are shallow 

variations. This makes it difficult to conclude from the model results precisely. 
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Fig. 13.10: ICE plots of effluent NH4
+ on essential variables (the pikes on the x-axis 

represented the fractile of target feature values and reflected the data density). 

It can be noticed that effluent COD is lower with increased MLSS concentration which 

is consistent with literature i.e. more biomass and better COD removal. 

 

Fig. 13.11: ICE plots of effluent COD concentration on essential variables (the pikes on the 

x-axis represented the fractile of target feature values and reflected the data density). 
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 SA of Filtration LSTM model  

The LSTM used for TMP prediction is based on four inputs: flux, MLSS, temperature, 

and specific aeration demand (SADm). Fig. 13.12 presents the model’s response, with 

variations in each information. The influence of the flux variations on TMP is 

negligible and remains constant between the operating flux range of 16.9 and 25.5 

LMH. According to established knowledge, after a minimum value, increasing the 

MLSS concentration increases the TMP (see section 2.3.1). Similarly, an increase in 

the temperature results in a reduction of the TMP. 

The literature has reported that the sludge settleability and filterability are reduced, and 

EPS production is increased at low temperatures (see section 2.3.2). The response of 

SADm is non-linear as an increase in the SADm until 52 LHM increased the TMP, 

and after that, the further increase resulted in lowering the TMP. This is in accordance 

with the findings of Zhang et al. (2013b), wherein higher aeration intensity improved 

the membrane fouling in a specific scope. It is reported that with increasing aeration 

intensity, the quantity of EPS in suspension increased, and thus the irreversible fouling 

resistance. This approach of analyzing uncertainty can give numerous results that give 

qualitative information that still needs to be analyzed. 

 

Fig. 13.12: ICE plots of TMP on essential variables (the pikes on the x-axis represent the 

fractile of target feature values and reflect the data density). 
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 SUMMARY AND PERSPECTIVES  

The proposed LSTM model successfully captured the nonlinear behavior of the SAV-

MBR system in wastewater treatment with much less convergence time than the 

knowledge-based model. As a result, the use of LSTM-based neural networks in 

wastewater treatment plants may help in developing a sensitivity analysis 

methodology, since the machine learning model offers an opportunity to overcome the 

computational cost challenges posed by conventional uncertainty and sensitivity 

analysis methods. The preliminary results obtained for SA confirmed what is already 

known about the dependency of the response variables on the input data (for example 

huge effect of low temperature on TMP) and gave a mathematical tool to quantify 

these dependencies. Since it is a vast domain to explore, the answer about the 

robustness of the knowledge-based filtration model is yet pending as there is not 

sufficient data to confirm the fouling, but it opened new insights for further exploration 

of the field. Such results of SA may help to complete the knowledge about the implied 

phenomena, thanks to quantification. These results showed that this approach is a 

promising tool to manage the dynamic sensitivity analysis. 
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  Conclusions and Perspectives   

This chapter presents the general conclusions drawn from this thesis and perspectives 

and suggestions to conduct future research.     

 CONCLUSIONS  

MBRs offers high and consistent effluent quality, but on the other hand, their energy 

consumption is relatively higher than CASP’s, and its operational management is more 

complex too. These two major drawbacks are related to the fouling (including 

clogging) of the membranes. Available fouling abatement measures in commercial-

scale systems, especially, air-scouring, consume high energy, as extensively discussed 

in the literature review (see Chapter 3:). Mathematical models provide an opportunity 

to simulate and investigate the membrane fouling associated with the interactions 

between biological and filtration. A successfully calibrated and validated model, 

especially at a large-scale, can be helpful to explore the optimum operating conditions 

for fouling reduction and, consequently, save the air-scouring energy by using the 

calibrated and validated with good prediction accuracy. The literature review (Chapter 

4:) revealed that several integrated mathematical models have been developed in the 

last two decades. All these were validated at lab-pilot scale facilities, and no study has 

been carried out at a super-large scale, even though the number of super-large-scale 

facilities is growing.  

In this work, a comprehensive, integrated MBR model is developed, presented, 

elaborated and validated with the operational data from the globally 4th largest 

submerged MBR plant with a peak flow design capacity of 348,000 m3.d-1 and 

equipped with hollow fiber membranes. The bio-chemical part of the model considered 

the stoichio-kinetic activity of the biomass for carbon, nitrogen, and phosphorus 

removal by using the ASM3-EPS-SMP-BioP model with dynamic aeration and 

chemical precipitation modules. A resistance in series (RIS) fouling model was used 

to simulate the TMP and total resistance. The model considers the membrane intrinsic 

resistance, with the development of pore fouling resistance, dynamic and static cake 

layer resistances under the influence of filtration-relaxation cycles, periodic 

backwashing, and synchronized aeration sequencing. The model allowed the 
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simultaneous modeling of biological activities such as biomass growth, nitrification, 

denitrification, phosphorus uptake, and chemical precipitation under the influence of 

coagulant addition, as well as membrane fouling phenomena, including cake 

attachment and detachment under the shear induced by the coarse bubble aeration and 

TMP evolution over time. The major conclusions are as follows:  

 Biological sub-model  

The biokinetic part of the integrated model was calibrated and validated using chosen 

data sets, despite the scale and the complexity of the system. Thanks to initial 

fractionation of the influent, the model can sufficiently simulate the general behavior 

of the MBR for pollutants removal. The main conclusions related to the biological sub-

model are following: 

▪ Influent COD fractionation and estimation of yield coefficients of XOHO and 

XANO, greatly helped in calibration. In addition to measured YSB_stor_Ox, 

Ystor_OHO_Ox and YANO, 9 additional kinetic parameters were manually adjusted 

within a range found in the literature, to improve the model fit up to an 

acceptable level (R2>0.7). 

▪ The biological sub-model was able to predict the effluent COD, NH4
+, NOx 

(nitrates & nitrites), PO4
3- and MLSS concentrations within acceptable RMSE  

▪ The biological process model beneficially serves to provide reasonable 

estimation for SMPs and EPSs concentrations in the supernatant of the MBR, 

avoiding time consumption and expensive measurements. 

▪ The validated biological model could be used as a basis for activated sludge 

process optimization with model-based controls for aeration, recirculation (or 

MLSS control), and coagulation addition. 

▪ In order to gauge the uncertainty of the bio-kinetic-model parametric values, 

global sensitivity analysis (GSA), was further carried out to rank the biokinetic 

model parameters in their order of priority to achieve maximum model 

performance. The GSA was done for each of the model output, i.e., i) COD, ii) 

NOX, iii) NH4
+, iv) PO4

3-, v) MLSS, iv) EPS and v) SMPs. The results of GSA 

are given  Fig. 10.9 
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 Filtration-fouling sub-model  

Filtration-fouling sub-model can simulate the fouling phenomena at the super large-

scale facility, where no abnormal/severe fouling was detected, with a reasonable level 

of accuracy, low computational cost, and minimum efforts for calibration. Major 

conclusions related to fouling sub-model are as following: 

▪ Implementation of the RIS model considering the complexity of the system and 

multiple fouling abatement measures in place at the SAV-MBR (i.e., 

sequenced filtration -relaxation, backwashing, coupled with an intermittent air-

scouring) gave a complete and realistic picture of the process behavior. This is 

largely helpful in visualizing the effect of these fouling control means on cake 

attachment and detachment from the cake layer. 

▪ TMP prediction by the model for entire plant is accurate: without the addition 

of the coagulant, the prediction was pretty much stable with MAPE of 4.1%. 

Similarly, MAPE for total resistance was 5.01% before the addition of the 

coagulant. After coagulant addition, MAPE for total resistance increased to 

13.3%, probably due to a more compact floc structure and an increase in 

stickiness among sludge particles. 

▪ Variance based global sensitivity analysis revealed that six parameters ( i.e 

“gamma”, “pR”, “aR”, “bR “, “alfa” and “beta_sc”) out of 16 were found 

scientifically sensitive parameters.  

 Energy sub-model  

▪ The simulated specific energy consumption excellently reproduced the 

observed data, with R2 and RMSE values of 0.945 and 0.02, respectively. The 

specific energy consumption was evaluated as 0.471 kWh-1.m-3 which is 

reasonable and falls on the lower side of the reported range of full-scale 

facilities data (see Chapter 12:). 

▪ Membrane scouring is the single largest contributor to energy requirements 

with a share of 55.4%This presents an opportunity to significantly reduce the 

overall energy costs in full-scale MBRs. The other large energy consumers 

were mixing, biological process aeration, and influent pumping, with a share 

of 17%, 16.1%, and 8.6%, respectively, while other allied processes. remaining 

5.9% is consumed by other 
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▪ The integrated and comprehensive model presented in this work may be used 

as a digital twin and shall be useful for the process engineers and the plant 

operators in optimizing the process parameters and in predicting the effluent 

quality, membrane fouling, and energetic consumption. 

 PERSPECTIVES  

▪ Fouling sub-model is validated with filtration data showing negligible to 

minimum fouling. Additional validation of the model with data from the super-

large-scale facilities showing higher fouling tendencies would enhance the 

robustness of the sub-model and enlarge the range of its application. Therefore, 

it is difficult to ascertain the accuracy of the model with the totally different 

operating conditions and higher fouling tendencies at full scale. Since each of 

the tanks is individually programmed for aeration intensity and sequencing 

(i.e., working of compressors) and chemical cleaning (in-situ and ex-situ), 

extending the fouling sub-model for each of the tanks would increase its 

prediction accuracy.  Generally, all tanks do not experience the same level of 

fouling and simulating them one by one instead of an average in data handling, 

may provide the desired level of accuracy.  

▪ Further research is needed to improve the filtration sub-model with the 

incorporation of the in-situ and ex-situ chemical cleaning effects; this would 

be easier in the case of tanks simulated one by one as proposed above. To 

further improve the filtration sub-model, when coagulation addition is 

considered, its effect on particle size distribution and stickiness of the MLSS 

should be explored as these are directly associated with the specific cake 

resistance.   

▪ The parameters included in the filtration models vary in larger range, and this 

might be associated with their dependency on the concentration of the major 

foulants, including EPSs, SMPs, XTSS, and colloidal components. This may 

vary depending upon the design (including the reactor configuration), the scale 

of the plant, and the operating conditions of the given MBR system. This needs 

to be further verified by operating the MBR system under different operating 

conditions such as MLSS concentrations, aeration intensity, and backwashing 
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frequency etc. To develop a systematic approach to estimate the specific 

parameters of the system model may thereby reduce calibration efforts.  

▪ In the current mode, the influence of the temperature and MLSS concentrations 

have been considered to model the sludge viscosity, and the magnitude of the 

shear exerted onto the membrane surface. The influence of high aeration shear 

on the rheological properties of the sludge may be investigated and 

incorporated into the fouling model. It would be helpful for the management 

of the large bubbles, thanks to the ability of the model to accurately predict the 

relaxation effects.    

▪ EPSs and SMPs parameters are usually not measured in routine at full-scale 

facilities, and high frequency data required for the purpose of modeling are not 

available. It is therefore, suggested to explore the utility of the commonly 

measured parameters such as soluble or colloidal COD. For this, the empirical 

correlation may be established between the concentrations of the soluble or 

colloidal components and the concentration of the EPSs or SMPs in the 

membrane bioreactor. 

▪ The membrane surface in the current work is assumed to be static while HF 

membrane fibers are flexible and moving under the influence of shear produced 

by the air scouring. HF membranes enjoy added benefit of their loosely bound 

fibers which preliminary studies have shown to be helpful in reducing the 

membrane fouling. This effect could be considered while modeling the MBR 

systems with HF membranes. Furthermore, the applicability of the model with 

immersed flat sheet (FS) membrane should be explored in future works as flat 

sheet membrane are also being used at large scale (>35,000 m3.d-1), and their 

market share is growing.  

▪ Membrane bioreactor (MBR) is a transient system and largely depends upon 

the influent composition, biological composition, and process conditions. In 

MBR, the model parameter sensitivities may change with time due to evolving 

biology, changing inputs, or environment (e.g., temperature). The work has 

shown the feasibility and interest of dynamic sensitivity analysis approach to 

evaluate the influence of time varying inputs on the model outputs. 
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A dynamic sensitivity analysis, in more than one dimension (2 or more parameters 

at a time) will help to consider the dynamic inputs and process conditions 

altogether for assessment of the uncertainty and robustness of the MBR dynamic 

integrated model involving both biology and swiftly changing conditions in the 

filtration process.    
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H I G H L I G H T S

• P-removal employing combined EBPR
and chemical precipitation are success-
ful in MBRs.

• Bio-kinetic models appeared to be suc-
cessful in simulating the P-removal in
MBRs.

• Specificities of MBR functioning require
peculiar parameters for these models.

• EBPR instability at full-scale due to in-
comprehension of micro-organisms
role.

• P-removal modeling studies at full/
super-large scale MBRs are required.
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Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving
water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within
1-2mgPL−1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conven-
tional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70–98% phosphorus
without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted
by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale
wastewater treatment facilities (capacity >100,000 m3d−1). This paper documents the knowledge of P-
removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for
P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the
MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration,
and fouling. This paper analyses the design configurations and the parameters affecting the biological and chem-
ical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling
studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to
MBRs for assessing their effectivenesswith default stoichiometric and kinetic parameters and the extent towhich
these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief
overview and comparison of seven (7) chemical precipitationmodels, alongwith a quick comparison of commer-
cially available simulators. In addition to advantages associatedwith chemical precipitation for P-removal, its role
in changing the relative abundance of themicrobial community responsible for P-removal anddenitrification and
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the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dos-
ing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-
removal performance.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Phosphorus removal regulation context

Rapid urbanization, coupled with industrial and agricultural sector
growth, has increased nutrients in the effluent of wastewater treatment
plants (WWTPs) and thus in the receiving water bodies. Higher nutri-
ents concentrations exceeding the minimum permissible limits,
among which phosphorus, is largely responsible for eutrophication. It
deteriorates the aquatic environment due to excessive algal growth

and depleting oxygen, making water habitat unsuitable for marine life.
Depending upon the flow and fraction of extraneous domestic waste-
water, phosphorous (P) concentrations range between 1 and 20
mgPtotL−1, and vary seasonally from region to region (Gray, 2004;
Henze et al., 2008; Sayi-Ucar et al., 2015). Release of phosphorus
above 0.1–0.2 mgPtotL−1 in running water and 0.005–0.01 mgPtotL−1

in stagnant water is highly assistive for eutrophication (Omwene
et al., 2018; Rahman et al., 2016). Therefore, majority of the countries
have set their national regulatory discharge limits in the range of 1–2
mgPtotL−1with fewexceptions such Japan and Belarus (Table A.1). Gen-
erally, effluent discharge limits are set based upon total phosphorus
(TP) concentration. Since eutrophication is predominantly caused by
the bioavailable fraction of phosphorus (phosphate, PO4

3−), it is
necessary to determine the permissible values of these bioavailable
forms (Preisner et al., 2020). Keeping this in view, it is anticipated that
many countries will introduce more stringent regulatory measures in the
upcoming years, and the existing WWTPs might require upgradation to
meet the required discharge limits.

1.2. Phosphorus in wastewater and its removal by treatment processes

The primary sources of phosphorus in the domestic wastewater are
households (van Puijenbroek et al., 2019) with human excreta contrib-
uting about 30–50% while Gomes de Quevedo and da Silva Paganini
(2016) reported that detergents are the main contributors with
20–80% of the phosphorus load. Generally, TP inwastewater is classified
based upon its physical characteristics into soluble (can pass through
0.45 mm filter) and particulate fractions (Gu et al., 2011). Different an-
alytical approaches have been developed for better characterizing the
phosphorus including colorimetry, digestion, acid hydrolysis and parti-
cle size distribution (Gu et al., 2011; van Nieuwenhuijzen et al., 2004).
In order to better choose the technology, unit operations and appropri-
ate configurations for TP removal from the wastewater, a comprehen-
sive understanding of the phosphorus fractions is essential (Gu et al.,
2011; Yu et al., 2021). In a detailed fractionation approach, TP can be
studied under a total of 17 fractions. Among these, 6 can be directly
measured from wastewater samples while the remaining 11 could be
calculated from the results of 6 different analyses (Gu et al., 2011;
Reynolds & Davies, 2001) as depicted in Fig. 1. There is no standardized
and universally accepted approach for classifying the phosphorus frac-
tions and there is urgent need to address this issue alongwith the stan-
dardizing notations of each fraction and corresponding testing method
(Rosario et al., 2021). For convenience, TP is generally classified into
three major classes i.e. orthophosphate (PO4

3−), polyphosphate (Poly-
P) and organic phosphate. According to Rossle and Pretorius (2001),
orthophosphate (PO4

3−) is the most abundant in domestic wastewater
and constitute about 70–90% in the raw and settled wastewater while
other fractions are limited to 10–30% of the total phosphorus.

The phosphorus concentration in raw municipal wastewater tends
to change due to lifestyle, urbanization, and industrial development. It
has been estimated that around 3 million tons (Mt)/annum is lost as
human waste, and only 1.3 Mt /year is treated by the WWTPs (Van
Vuuren et al., 2010). Different technologies target a particular fraction
of the phosphorus via chemical, biological, or combined treatment pro-
cesses (Gu et al., 2011). Majority of the commercially available technol-
ogies can remove about 30% of the BioP, but high costs remain a major
challenge (Ramasahayam et al., 2014). Furthermore, Phosphorus is a
limited and non-renewable mineral resource. Globally, around 20 Mt/
annumof phosphorus ismined, anddue to this increasing consumption,
phosphorus availability is projected to hit the low availability limits by
the next 50–100 years, and the peak is expected to occur by 2034
(Azizi, 2018; Cordell et al., 2009). This emphasizes the recovery of phos-
phorus from thewastewater, which is estimated to be sufficient tomeet
15–20% of the global phosphorus demand (Cordell et al., 2009). Keeping
this view, Sweden has introduced regulatory criteria to recover 75% of
the phosphorus from the WWTPs (Bashar et al., 2018).

EQI effluent quality index;
EBPR enhanced biological P-removal;
F/M ratio food to micro-organism ratio;
FTIR Fourier transformed infrared spectrum;
GAOs glycogen accumulating organisms;
GFC gel-filtration chromatography;
HRT hydraulic retention time;
HF hollow fiber;
HSG hochschulgruppe;
HFO hydrous ferric oxides;
KOH DO half-saturation coefficient;
MeP metal phosphate
IWA International Water Association
MeOH metal hydroxide
MBR membrane bioreactor
MLSS mixed liquor suspended solids
MT multi-tubular
MABR membrane aerated bioreactor
MMBR microalgae membrane bioreactor
MLE modified Luzack-Ettinger
ML mixed liquor
NOB nitrite-oxidizing bacteria
OHO ordinary heterotrophic organisms
OH− hydroxyl radical
OCI operating cost index
PO4

3− orthophosphate
PI proportional integral
PID proportional–integral–derivative
PFC polymeric ferric chloride
PAOs phosphate accumulating organisms
PHA polyhydroxyalkanoates
PHB poly-hydroxybutyrate
PSD particle size distribution
RM real municipal wastewater
RIS resistance in series
sMBR submerged MBR
SCM surface complexation model
SRT sludge retention time
SMP soluble microbial products
SAM sequencing anoxic-anaerobic membrane
SEM scanning electron microscope
SM synthetic municipal wastewater
SRC standardized regression coefficient
SCADA supervisory control & data acquisition
TP total phosphorous
TSS total suspended solids
TMP transmembrane pressure
TUDP Technical University of Delft phosphorus
UCT University Cape Town
VIP Virginia institute process
VFA volatile fatty acids
WWTPs wastewater treatment plants(s)
WEF Water Environment Federation
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Phosphate removal before discharging can be accomplished using
various treatment methods such as physio-chemical, biological, and
combinations thereof (Hai et al., 2018; Henze et al., 2008). Biological
treatment is commonly used for domestic wastewater treatment at
large-scale WWTP. Generally, BioP-removal efficiencies varied from
58.2% to 93.9% for full-scale EBPR facilities (Bunce et al., 2018; Zhang
et al., 2011) and this large variations is mainly due to the varying high
COD/P ratio (28.6–196.2) in the domestic influents. While, for bench
sale studies the P-removal efficiencies are reported up to 99% (Bunce
et al., 2018; Denisova et al., 2020).

In the last two decades, MBRs have extensively been adopted in
wastewater treatment for municipal and industrial applications (Judd,
2010; Krzeminski et al., 2017). TheMBR system is superior over conven-
tional activated sludge process (CASP) regarding its compactness (up to
50% less footprint), robustness, better and consistent permeate quality
with excellent solids retention (less sludge production), increased volu-
metric loading due to operation at higher sludge retention time (SRT),
independence from hydraulic retention time (HRT), better disinfection,
biomass enrichment and flexibility of the process (Hai et al., 2018; Judd,
2010; Xiao et al., 2019). According to Meng et al. (2012), there were
more than 2500 MBRs operating globally by 2013 and number was
growing with a growth rate of 10.5%. As of today, globally there are
around 62 super-large scales (>100,000 m3d−1) MBR facilities contrib-
uting to the treatment of more than 10millionm3.day−1 of wastewater
(Xiao et al., 2019). Given its commercial success, the global size of the
MBR market was valued at US$ 3.09 billion in 2020 and is forecasted
to reach US$ 5.48 billion by 2028 at a compound annual growth rate
of 7.02% (Emergen, 2021). The present article aims to establish a state
of the art of the modeling, simulation and control of super-large scale
MBR for P-removal.

1.3. Scientific context

Literature screening in the current work found that the earlier re-
views on P-removal are focused on either identifying the factors affect-
ing P-removal inwastewater (Mulkerrins et al., 2004),micro-organisms
and pathways involved (Ahmed, 2012), or emerging technologies (Guo

et al., 2014). Similarly, very few reviews are dedicated to assessing the
applicability of the ASMs (modified/unmodified) for nutrient removal
in full-scale CASP/MBRs (Fenu et al., 2010; Naessens et al., 2012a,
2012b; Ng and Kim, 2007). The Scopus database was explored with
key terms for the P-removal in MBRs and for modeling studies con-
ducted from 2000 onwards. A total of 240 publications were found, in-
cluding 18 publications related to P-removal modeling in MBRs. Each
of these publications was further analyzed, as depicted in Fig. 2, consti-
tuting the basis of this review article. Furthermore, also based on Scopus
data, 442 patents have been granted in the domain of P-removal in sub-
merged MBR and 82% of these are registered in the US. They are re-
ported in Fig. 2. Their number evolution is similar to the one of
publications.

Most of these reviews are focused on CASP and/or general P-removal
in wastewater, and none of these reviews is comprehensive enough to
address all aspects of biological and chemical P-removal and its model-
ing in MBRs. Modeling approaches have been used to optimize MBRs
ranging from the lab scale to full scale (Ferrero et al., 2011; Verrecht
et al., 2008). However, very few publications have been dedicated to
assessing and optimizing full scale MBR plants for P-removal in particu-
lar. There is no published study devoted tomodeling and optimizing the
super-large scale MBR for P-removal.

Based on the articles considered in this review, theMBRs are able to
achieve 70 – 99 % P-removal with optimum operational settings and by
maintaining sufficient substrate for the phosphorus accumulating or-
ganisms (PAOs) for their normal growth (Abegglen et al., 2008; Ersu
et al., 2010; Silva et al., 2012; Smith et al., 2014). Although, better
performance is reported for the MBR systems as compared to CASP
but P-removal in MBRs is still difficult (especially in wastewater with
low F/M ratio) because of its functional specificities (e.g., longer SRT
and decoupledHRT). It is also expensive as compared to CASP due to ex-
cessive recirculation between aerobic/anoxic and anaerobic zones
(mixing in the anaerobic zone) requiring extra energy and thus addi-
tional operational cost (Daigger et al., 2010; Lee et al., 2009; Sun et al.,
2013). A recent study conducted at full-scale MBR facilities estimated
P-removal specific energy consumption as high as 71.0 kWh(kgPtot)−1

(Wang, 2020). The cost of P-removal inMBR is higher than CASPmainly

Fig. 1. Fractions of phosphorus in wastewater (modified from Gu et al., 2011).
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due to higher aeration. The average removal cost of 1 kg P-removal in
MBR varies from 39.8 to 480 US$ depending on influent load, plant con-
figuration, aeration intensity and removal efficiencies. While, in CASP it
costs between 13.30 and 101 US$/kg (Arif et al., 2020; Bashar et al.,
2018; Iglesias et al., 2017). Generally, the super-large-scale MBR plants
are operated as per themanufacturers' recommendations, and there has
been limited research on their optimization for the nutrient removals.

This review focuses on assessing the applications of the existing
mathematical models for biological and chemical P-removal in CASP
and their applicability in MBRs ranging from pilot to full-scale.
Section 2 includes a brief summary of the BioP-removal process in
MBR compared to CASP, followed by an in-depth discussion on the
role of various reactor configurations and their P-removal performance
along with detailed discussion on factor affecting the P-removal in
MBRs. Section 2.5 dedicated for assessing the applicability of the
existing mathematical models for biological phosphorus removal. It
also presents a summary of the MBRs specificities to be considered for
their modeling. Furthermore, section 3 presents chemical P-removal
process, factors affecting the chemical P-removal and its modeling
using the existingmodels. The role of coagulants as amedium for chem-
ical P-removal and fouling development or mitigation is also discussed
in this section. Section 4 is dedicated to the role of various control sys-
tems used to optimize the P-removal in CASPs and MBR and corre-
sponding operational cost reduction. Finally, the article concludes
along with knowledge gaps and future research directions.

2. Biological phosphorous removal processes and its modeling

2.1. Enhanced biological P-removal (EBPR) in MBRs

P-removal process involves inducing phosphate incorporation into
total suspended solids (TSS) and removing them via precipitation or fil-
tration (Kim and Chung, 2014). Usually, a Ptot/TSS fraction of 2–5% is es-
sential for BioP-removal in CASP, while this can be as high as 6–10% in
MBR (Abegglen et al., 2008; Adamet al., 2002; Choi et al., 2011). This in-
corporation is generally accomplished through biological and chemical
processes and combinations (Wilfert et al., 2015). No sharp limits

exist between these methods to differentiate their performance when
used in conjunction. For example, it has been observed that during the
EBPR process, a significant part of the compound is chemically precipi-
tated by the action of metal ions that were natural constituents of the
wastewater (Wang et al., 2014). A carefully designed enhanced biolog-
ical P-removal (EBPR) process may remove over 85–99% of phosphorus
(i.e. Adam et al., 2003; Ramasahayam et al., 2014) and could even re-
duce the phosphorous concentration to less than 0.1 mgPL−1 with the
addition of external carbon source (Gnirss et al., 2003; Henze et al.,
2008). The chemical precipitation processes can enhance the treatment
efficiency of the biological WWTPs (Adam et al., 2003; Henze et al.,
2008). However, it has the disadvantages of high chemical costs, chem-
ical handling, storage requirements, increased chemically enriched
sludge production, and subsequent sludge handling and disposal costs
(Bunce et al., 2018; Chae et al., 2015). Stringent regulatory pressure
and tight discharge limits have forced the WWTPs manufacturers and
operators to develop and deploy efficient technologies to reduce the
phosphorous discharge into water bodies (Gu et al., 2011; Vohla et al.,
2011; Wadood and Sarmad, 2012).

MBRs can sufficiently remove the nutrient from the domestic waste-
water and usually provide better results than CASP. Combining the EBPR
with the MBR process reduces the reactor volume while achieving sim-
ilar P-removal performance (Adam et al., 2003; Judd, 2010). MBR with
100% solids retention and chemical precipitation features could be a
useful technology for phosphorus recovery, and further research should
be dedicated to exploring the opportunities for P recovery. The under-
standing of the MBR functioning for the nutrient removal (P and N) is
essential to design and optimize the P-removal through model based
approaches. The experimental studies about the P-removal perfor-
mance (along with the N removal) help to understand the process
knowledge and to prepare a set of guidelines for a better adaptation of
the available phosphorous models for the MBR.

2.2. MBR configurations and treatment sequence for P-removal

Traditionally, MBR is configured as submerged/immersed or side
stream. In a submerged/immersed (sMBR) system, amembranemodule

Fig. 2. Number of publications related to P-removal and modeling in MBRs.
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is installed within the bioreactor, and the treated effluent is withdrawn
via negative pressure/vacuum. Air scouring is typically used to counter
the cake layer formation, which can further be assisted through addi-
tionalmeans such asfiltration-relaxation sequencing, aeration sequenc-
ing and backwashing (Burman and Sinha, 2018; Hai et al., 2018).While,
for the side stream configuration, the membrane is external to the bio-
reactor, and cake layer formation is mainly inhibited due to cross-flow-
velocity (Hai et al., 2018; Judd, 2010). Novel configurations of the sMBR
are based on an anti-foulingmechanism, such as a fixed-filmmembrane
aerated biofilm reactor (MABR), bio-electrochemical MBR (BEC-MBR)
or electrically-induced MBRs, microalgae membrane bioreactor
(MMBR) which are yet being explored at the lab/pilot scale have not
been included in this review. This review only focuses on sMBR along
with the reactor configurations adopted for P-removal.

Several reactor configurations involving plug flow or strict compart-
mentalization, such as modified Ludzack-Ettinger (MLE), anoxic-oxic
(A/O), anaerobic-anoxic-oxic (A2/O), University Cape Town (UCT),
modifiedUCT, Virginia institute process (VIP), and Bardenpho/modified
Bardenpho with multiple stages processes, have been tried and tested
for nutrient removal (Ahn et al., 2003; Ersu et al., 2008; Ersu et al.,
2010; Hai et al., 2018; Monclús et al., 2010; Vaiopoulou et al., 2007;
Zhang, 2020). The BioP-removal performance in this configurations
mainly depends upon how the anaerobic reactor is maintained and
protected from the nitrates interferences by controlling the internal re-
circulation. Table B.1 provides a brief description of each of the BioP-
removal system configuration along with its advantages and disadvan-
tages (Daigger et al., 2010; Fleischer et al., 2005; Hai et al., 2018). The
roles of various zones involved in these configurations and dominating
fractions of the microbial communities in these zones is summarized in
Table B.2. The following section is dedicated to assess the performance
of different configurations for BioP-removal in MBRs with capacity
ranging from 0.01 to 45,000 m3.d−1.

Recycling oxygen-saturated mixed liquor from the membrane zone
to the unaerated zone (anoxic/anaerobic) negatively impacts the deni-
trification process. Thus, the abundance of nitrates reduces the P-
removal performance since the occurrence of anaerobic conditions is
less likely at higher recirculation ratios. An increase in the recirculation
ratio leads to higher effluent NO3-N and PO4

3− concentrations (Fleischer
et al., 2005). This is due to the fact that denitrification and P-removal
processes compete for the same carbon source as demonstrated by an-
other study (Maere et al., 2011). Different recirculation arrangements
and rates from theMBR tank to upstreamreactors result in lower/higher
MLSS upstreamof themembrane tank, also responsible for nutrients re-
moval (Dold et al., 2010). In the last 2 decades, several attempts have
beenmade to improve the BioP-removal efficiency ofMBRbymodifying
the conventional configurations and developing the novel ones with
focus on: i) reduced nitrates interferences ii) reduced recirculation iii)
simultaneous denitrification and EBPR and iv) reduced overall footprint
of the reactor.

Early studies of Adam et al. (2003) and of Lesjean et al. (2003) eval-
uated the effect of pre and post denitrification on P-removal in UCT con-
figuration. A lab-scale study of Adam et al. (2003) found similar P-
removal (99% with coagulant addition) performances in both cases
while lower recirculation was required in post–denitrification mode
from MBR to aerobic zone. Similarly, the pilot-scale studies of Lesjean
et al. (2003, 2005) found identical P-removal performances in both
pre- and post-denitrificationmodes without external carbon source ad-
dition. The recirculations in the study of Lesjean et al. (2003)were same
as of Adam et al. (2003) and in both studies precipitation was used to
lower the effluent phosphorus below 0.1 g·m−3. Another pilot scale
study (Fleischer et al., 2005) compared the nutrient removal perfor-
mance of three configurations with multi-stage Bardenpho process.
The 5-stage configuration was comparatively effective in BioP-
removal, however it was unable tomeet the required effluent discharge
standard without addition of coagulant. The recirculation of oxygen-
saturated mixed-liquor from the MBR tank to an anaerobic zone

through the aerobic zone proved successful in improving P-removal.
However, the proposed configuration involved multiple recirculation
streams associated with higher flow rates, resulting in increased foot-
print and recirculation cost. In another study dedicated to evaluating
different MBR configurations, Ersu et al. (2008) evaluated five different
configurations (three modified A2/O and two A/O). The modified A2/O
configurationwith 300% recirculation of theMBR sludge (3 times the in-
fluent flow) to anaerobic zone and 100% permeate recirculation to an-
oxic resulted in higher P-removal efficiency (> 88%). However,
recirculation of the permeatemaynot be an economical choice since en-
ergy consumption in MBR is already slightly higher than in CASPs
(Krzeminski et al., 2017; Xiao et al., 2019). Another study (Lee et al.,
2009) evaluated the UCT and modified UCT (with step feed to anoxic
zone) configurations with weak domestic wastewater (low F/M ratio)
and found that modified UCT-configuration provided better P-removal
(> 70%) than UTC (40%). The authors concluded that feeding weak
wastewater directly to the anoxic zone provided enough substrate to
the denitrifiers to remove nitrates, and this resulted in improved P-
removal performance of the MBR. Based upon the findings of these
two full scale facilities with 4–5 stages Bardenpho process, Daigger
et al. (2010) provided guidelines for designing MBR configurations to
achieve the P-removal below regulatory level including: i) membrane
recirculation flow should be directed to the aerobic zone, ii) intense
mixing at the inlets of the anaerobic and anoxic zones, iii) consistent in-
ternal recirculation flow rates tomaintain the desiredMLSS distribution
and iv) carefully controlled metal salt addition in proportion to the
phosphorus remaining after biological removal. The study of Holba
et al. (2012) presented a comparative assessment of threeMLE configu-
rations. The highest P-removal efficiency was achieved with 2-stage
MLE having single internal recirculation from aerobic to anoxic zone
and with addition of coagulant. The study of Corsino et al. (2020) eval-
uated the nutrient removal performance of pre-denitrification A/O con-
figuration with recirculation of 500% (5 times of the influent flow) from
aerobic to anoxic tank. The authors found that the novel layout is capa-
ble to remove 97% of the phosphorus with addition of external carbon
source and without addition of coagulant.

Several efforts have been devoted to develop an innovative MBR
with intermittent aeration and recirculation to provide anaerobic and
anoxic conditions for proliferation of PAOs and to maximize the P-
removal. The study of Ahn et al. (2003) proposed an innovative
modification to MLE process by introducing an intermittently sequenc-
ing anoxic/anaerobic zone to alternate the anoxic conditions for denitri-
fication and anaerobic conditions for phosphorus release. Anoxic
conditions were imposed for 1 h after every 3 h, and anaerobic condi-
tions lasted for two hours with no recirculation. During the anoxic
stage, a recirculation ratio of 600% was maintained. This modified MLE
improved the P-removal efficiency (93%) without coagulant addition
and at much lower recirculation rates as compared to conventional
MLE. Similarly, Zhang et al. (2006) investigated a cyclic aerobic, an-
oxic/anaerobic reactor for improved nutrient removal while reducing
the number of recirculation streams, complexity and footprint of the
system. The proposed configuration successfully removed 90% of the
phosphorus without addition of coagulant and carbon source and
even at low COD/TKN ratio with anaerobic-aerobic cycle time of
40 min and 120 min respectively. In another study, Ahmed et al.
(2007) evaluated the impact of internal recirculation (IR) in sequencing
anoxic/anaerobic membrane bioreactor (SAM). The authors found
highest BioP-removal performance (55%) when the IR rate set to 2.5
times of the influent flow. The study of Yuan et al. (2008) introduced
an innovativeMBRwith alternating anoxic and anaerobic environments
for improved denitrification and P-removal. The proposed reactor
consisted of a continuously aerated MBR and an alternating anaerobic
and anoxic zone in two separate bioreactors. Controlling the recircula-
tion flow from aerobic zone by control valves to either of these two bio-
reactors, anoxic and anaerobic conditions were implemented in two
single tanks alternately. The authors found higher P-removal (> 94%)
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without addition of carbon source and coagulant. However, the
P-removal efficiency was found highly correlated to recirculation
cycle time which may vary depending upon the influent load.

MLE and 4-stage Bardenpho configurations offer limited to mod-
erate BioP-removal due to absence of the anaerobic zones essential
for growth and proliferation of the PAOs responsible for phosphate
consumption and therefore coagulant addition is required to elimi-
nate the phosphorus below the regulatory limits. While, A/O or
Pho-redox configuration provided moderate to high P-removal per-
formances depending upon, operational conditions, influent charac-
teristic, introduction of sequencing anaerobic/anoxic conditions and
controlled intermittent recirculation. A2/O, 5-stage Bardenpho (with
anaerobic as influent receiving zone), step-feed Bardenpho, UCT,
MUCT and VIP configurations offer high to excellent BioP-removal
performances. Table 1 depicts that the majority of the full-scale
MBR facilities are equipped with MLE configuration and similar re-
sults have been documented by Pellegrin et al. (2015). This is due
to fact that the CASPs with MLE configuration were upgraded to
MBRs (Itokawa et al., 2014).

Bardenpho is the secondwidely used configuration at full-scaleMBR
facilities. Whereas, UCT and MUCT configurations are widely used for
research studies at bench and pilot scales mostly with synthetic waste-
water. This presents an opportunity to conduct more studies in this do-
main to fully assess the capabilities of innovativeMBR configurations for
simultaneous carbon and nutrient removal as required by the MBRs in
majority of the cases in full-scale applications. Apart from the design
configurations, P-removal in MBR is also affected by several other fac-
tors discussed in detail in Section 2.3.

2.3. Factors affecting the BioP-removal in MBR

In order to improve the P-removal mechanism as well as its predic-
tion bymathematical model, a comprehensive understanding of the pa-
rameters affecting the BioP-removal is essential. There are limited
numbers of MBR specific publications documenting the effect of SRT,
HRT, feed composition and availability of VFA, DO concentrations,
various recirculations, bacterial community (including PAOs/GAOs),
alkalinity, pH, temperature, and other associated process and design
parameters for BioP-removal. It is established that the BioP-removal in
CASPs and the modified CASPs (such as MBR) are critically sensitive to
various parameters such as SRT (Mulkerrins et al., 2004; Tchobanoglous
et al., 2002; Wang et al., 2015). Since MBR is an extended version of the
CASP replacing the secondary clarifiers by the membranes to retain
100% suspended solids, thus providing superior P-removal than CASP
(Cho et al., 2005). Factors affecting the P-removal process in MBRs have
been analyzed considering the various configurations of the WWTPs
ranging from lab to large-scale applications from the reviewed publica-
tions.

2.3.1. Feed characteristics
COD is a limiting factor for the BioP-removal in the MBR process. It

serves as a substrate for the microbial community (specifically PAOs)
and can impede the removal efficiency if not available in the required
concentration (Kapagiannidis et al., 2012; Park et al., 2019). For MBRs,
a minimum COD/P ratio of 40–45 is required for effective P-removal
(du Toit et al., 2007). Low PO4

3− concentration in the influent resulted
in higher P-removal efficiency in MBR. It was also found that increasing

Table 1
P-removal performance of various MBR configurations.

Configuration Plants
assessed

Wastewater
type

Capacity
(m3.d−1)

Influent
TP (g·m−3)

BOD/TKN
ratio

SRT
(days)

HRT
(hours)

Coagulant
addition

P-removal
(%)

Reference

2-stage MLE 1 Municipal 0.50 4.2 17.75⁎⁎⁎ 40–45 16 YES 83 Holba et al., 2012
7 Municipal 125–2140 2.7–4.1 1.1–3.5 n.a. 10–40 NO 50–68 Itokawa et al., 2014
2 Municipal 1000-4200 2.90 0.1–1.1 n.a. 10–40 YES 65–92 Itokawa et al., 2014
5 Municipal 1100–16,000 2.8–4.9 1.7–2.6⁎ 37–45 8–9.2 YES 89–97 Chae et al., 2015
1 Municipal 7000 7.0 4.30⁎ n.a. n.a. NO 60 Gabarrón et al., 2015

2-stage MLE (SAM) 1 Synthetic 0.01 3.66 6.52⁎ 70 n.a. NO 93 Ahn et al., 2003
3-stage MLE (cascade) 1 Municipal 6520 3.9 7.90⁎ 14–21 3.5–5 NO 78 Fenu et al., 2010

1 Municipal 60 7.8 10.86⁎⁎⁎ 30–75 42 YES 45.9 Holba et al., 2012
1 Municipal 30 10.6–18.3 8.9⁎⁎⁎ 30–55 34 YES 27 Holba et al., 2012

A2/O 1 Synthetic 0.264 (1) 11.4 6.92 25 14 NO 59.1 Ersu et al., 2008
1 Synthetic 0.264 (2) 11.4 6.92 25 14 NO 88.1 Ersu et al., 2008
1 Synthetic 0.264 (5) 11.4 6.92 25 14 NO 58.7 Ersu et al., 2008
1 Synthetic 0.083 5.5 5.25⁎ n.a. 10 YES 90–95 Banu et al., 2009
1 Municipal ~45,000 3.3 7.87⁎⁎ 25 17 YES 93.9 Wang et al., 2018
2 Municipal 500–2400 8.0 7.20⁎⁎ 18 n.a. NO 74 Yılmaz et al., 2020

4-stage Bardenpho 1 Municipal 75 5.5 3.8 27 27 YES 99.45 Fleischer et al., 2005
5-stage Bardenpho 1 Municipal 42,000 5.4 6.5⁎ 14 12.6 YES 99.07 Daigger et al., 2010
Step-feed Bardenpho 1 Municipal 33,000 8 5.95 10 8.9 YES 99.13 Daigger et al., 2010
A/O (Sequencing) 1 Synthetic 0.024–0.072 4 3.4–28 n.a. 7.3–22 NO 90 Zhang et al., 2006
A/O (sequencing) 1 Synthetic 0.096 6 10⁎⁎⁎ 20 9.6 NO 94.1 Yuan et al., 2008
A/O (SAM) 1 Synthetic 0.01 5.7 7.09 50 8 NO 55 Ahmed et al., 2007
A/O/Phoredox 1 Municipal 30 20 5.1–10.5 n.a. 72 NO 70–90 Abegglen et al., 2008
A/O (modified) 1 Synthetic 0.264 (3) 11.4 6.92 25 14 NO 44.6 Ersu et al., 2008
A/O (modified) 1 Synthetic 0.264 (4) 11.4 6.92 25 14 NO 42.7 Ersu et al., 2008
A/O (Modified) 1 Synthetic 0.103 11–12.4 11–13.3 35–40 14.4–24 NO 97 Corsino et al., 2020
UCT 2 Municipal 0.01 8.4–10.5 10–14 15 18–21 YES 99 Adam et al., 2003

2 Municipal 0.01–0.122 3–7.5 4.5–5.5 15–26 11–18 YES 90 Lesjean et al., 2005
1 Synthetic lab-scale 8.8 7.97⁎ 35 5 NO 39.8 Lee et al., 2009
1 Municipal 3–4.2 3.63◊ 5.7 15–22.6 n.a. NO 80 Monclús et al., 2010
1 Municipal 0.616 4 1.93 n.a. 15.4 NO 60 Cosenza et al., 2013
1 Municipal 19–26 5.39 4.67 20 7 NO 94.1 Smith et al., 2014
1 Synthetic 0.012 4.7 7.07⁎ 25 18 NO 82 Sun et al., 2019
1 Synthetic 0.012 4.63 6.5⁎ 25 18 YES 95 Sun et al., 2019

MUCT [step feed] 1 Synthetic lab-scale 8.2 7.46⁎ 37 5 NO 72.5 Lee et al., 2009
MUCT (sequencing) 1 Synthetic 0.011 8.2–11.3 4.3–5.2⁎ 15 11–13 NO 75.2 Zhang et al., 2009
Modified VIP 1 Municipal 32,000 6.2 5.11 7.8 n.a. YES 93.87 Daigger et al., 2010

⁎ COD/TN ratio.
⁎⁎ BOD/TN ratio.
⁎⁎⁎ COD/NH4-N, ◊PO4

3−.
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the influent PO4
3− from 20 to 80mgL−1 increased the sludge production

from 2 to 6.2% (Choi et al., 2011). A recent A2/O MBR study has investi-
gated that high P-removal (82.6%) can be achieved with a low C/P ratio
(29) and relatively high nitrate (5.6 NO3-N mgL−1) concentration
(Falahati-Marvast and Karimi-Jashni, 2020) by the combination of
assimilation and EBPR processes. Sometimes despite having a favorable
COD/P ratio, P-removal is still compromised due to overloading and
consequent decay of PAOs due to limited aeration (Abegglen et al.,
2008). In the study of Oehmen et al. (2007) it was found that a COD/P
ratio lower than 50 mgCOD/mgP favors the growth of GAOs, and the
same was experienced by Monclús et al. (2010) in their UCT type MBR
pilot plant.

Theoretically, 7–12mg of VFAs are required to remove 1mg of PO4
3−

through EBPR in CASP, and this VFA/PO4
3− can be high as 20 depending

upon the soluble fraction of COD in municipal wastewater (Al-Atar,
2007; Janssen et al., 2002; Monti et al., 2007; Mulkerrins et al., 2004).
Typically municipal wastewater is VFA deficient, while MBR operated
at high MLSS/higher SRT would require an external carbon source (eth-
anol) in the anaerobic zone or side stream P-recovery unit for effective
P-removal (Monti et al., 2007).

Typically, a BOD/P ratio of 20 is considered aminimum requirement
for better P-removal efficiencies in MBR studies dealing with municipal
wastewater (Adam et al., 2003), However, this could go as higher as 45
and are still favorable for biological P-removal (Fleischer et al., 2005). It
has been validated under a study (Wang, 2020) conducted to evaluate
the nutrient removal performance of 11 full-scale MBR facilities located
in China wherein the BOD/P ratio was found in the range of
12.22–36.94, and eight MBR facilities performed good P-removal due
to the BOD/P ratio > 20. However, an external carbon source was still
essential for total nitrogen removal.

In addition to COD/P or BOD/P, it was investigated that a low COD/N
ratio between 5.3 and 7.3 resulted in satisfactory P-removal (Wang
et al., 2015), while in a more recent study, it is found that low C/N
ratio decreased P-removal (Mannina et al., 2020). A lower BOD/TKN
ratiomay result in poor denitrification and remaining nitrates, thus neg-
atively impacting the overall nutrient removal capabilities of MBR. Ex-
ternal addition of carbon source in these systems become essential
(Fleischer et al., 2005). Several studies with PAOs have also confirmed
that elevated concentrations of nitrite negatively affect phosphorus up-
take activities of PAOs under both aerobic and anoxic conditions (Saito
et al., 2004). When there is limited nitrate availability, ordinary hetero-
trophic organisms (OHOs) outcompete PAOs for nitrate, and there is a
low impact on the EBPR process.

From all these considerations, it may be concluded that the optimum
range of COD/P is around 40 and C/N in between 5.3 and 7.3. MBR is
adapted to treat wastewater with high P and N contents with COD/
TN/TP ratio in the range of 100/28.5/1.16–100/11/0.87 compared to
conventional limit of 100/5/1 (Ersu et al., 2008), This is probably ex-
plained by the fact that the total bacteria and nitrogen-cycling groups
in the MBR sludge are different than CASP (Wan et al., 2011).

2.3.2. MLSS concentration and P-removal in MBR
MBR operates at quite high MLSS concentrations (4000–

15,000 g·m−3), which lowers the oxygen transfer rate due to increased
viscosity and increase aeration expense (Judd, 2010). Thus, an adjustment
in the oxygen transfer coefficient is needed for MBR modeling studies
(Germain et al., 2007; Insel et al., 2011). Furthermore, sludge mass is dis-
proportionate through the reactor length as the MLSS concentration in
the downstream zone (membrane tank) is higher as compared to up-
stream zones of the MBR, and this is regulated through excessive inter-
reactor recirculation to achieve uniform MLSS concentrations for better
biological nitrogen andP-removal (Ramphao et al., 2005). Several studies
found that the higher MLSS concentration had little to no effect on
P-removal kinetics. Thus, parameters used for ASMs could be ap-
plied to MBR systems (Adam et al., 2003; Holakoo et al., 2005;
Parco et al., 2007). It was further concluded that the complete solids

retention by the membrane might change the microbial population
and thus impact the growth kinetics (Parco et al., 2007). Another
study found that P-removal was positively affected by increasing
the MLSS concentration to a certain level (7 g/L optimum), and be-
yond this, P-removal was negatively impacted possibly because of
the higher fraction of the dead biomass due to higher SRT (Wang
et al., 2015).

Besides, it has been further investigated that the SMPs inhibit the an-
aerobic uptake of PAOs in CASP (Ichihashi et al., 2006). It was also later
observed and confirmed by Jiang et al. (2009) for MBR with two batch
tests. The results were similar to the previously experienced in case of
CASP. Based on these results, the authors recommended to design and
to operate MBRs at lower SRTs to avoid the production and accumula-
tion of the SMPs onto the membrane surface. This inference is based
upon only two tests and it is therefore advised to conduct more studies
to explore the relationship between the SMPs and P-removal perfor-
mance of the membrane, while keeping in mind the role of SMP in
membrane fouling, and the role they could play in P retention (Gao
et al., 2004).

2.3.3. Microbial communities and P-removal in MBRs
Autotrophic nitrifying bacteria and heterotrophic bacteria (GAOs re-

spiring nitrates) compete for their growth under the same operating
conditions while it is commonly accepted that the level of BioP-
removal is directly proportional to the number of PAOs present in the
system. EBPR is a tailored process for BioP-removal based upon PAOs
property of intracellular accumulation of phosphate in poly-phosphate
(Poly-P) form under cyclic anaerobic-aerobic (mainly anaerobic). Accu-
mulated phosphorous is then carried away with the extracted sludge
(Lesjean et al., 2003) as presented in Fig. 3. Since PAOs can store excess
phosphorus in the form of polyphosphate (poly-P) granules in their
bacterial cells after their metabolic demand would be satisfied.
Whereas, P-removal by the assimilation phenomenon (which takes
place only during growth process) by non-PAO biomass is limited to
15–30% (Lesjean et al., 2009; Monclús et al., 2010; Ramasahayam
et al., 2014). The COD serves as a substrate for the growth of PAOs,
providing them volatile fatty acids (VFAs) for consumption and synthe-
sis of the poly-hydroxybutyrate (PHB while PHA when considering the
role of only specific PAO class known as “Candidatus Accumulibacter
phosphatis”) by releasing phosphorus and degrading the glycogen
under anaerobic conditions. In the second step, phosphorus is taken
up by the PAOs at higher rates in the presence of the excess oxygen pro-
vided for the oxidation of the PHBs/PHAwith an injection of the influent
at the anaerobic zone (Mulkerrins et al., 2004; Zhang et al., 2018). In
order tomeet the required phosphorus discharge target through relying
only upon the proliferation of PAOs is not practiced (PAO communities
remain very low) and even hardly possible for the large-scaleMBR facil-
ities (de-Bashan and Bashan, 2004).

In addition to phosphate uptake under aerobic environment by the
PAO, it is also consumed by theDPAO (Kishida et al., 2006) in the anoxic
environment where they consume nitrates and enhances the overall P-
removal efficiencies. In addition to the aerobic zone in theMBR process,
the membrane is intensively aerated to avoid fouling issues. This aera-
tion also improved the P-removal efficiency as noP-release occur during
the effluent production, unlike CASP. Furthermore, complete retention
of solids in MBR helps to reduce the TP concentration in the effluent
(Monti et al., 2006).

Other carbon growingmicro-organism like GAOs also consumeVFAs
without contributing to P removal. GAOs found in pilot and full scale
EBPR system are reported to cause nutrient limited conditions due to
higher consumption of substrate available for proper proliferation of
PAO organisms (Oehmen et al., 2007; Silva et al., 2012). MBRs are gen-
erally operated at higher SRTs (>20 days) and low F/M ratio, which cre-
ates starvation conditions for micro-organisms resulting in inactivation
or even death of PAOs and thus reduces sludge activity (Han et al., 2015;
Yilmaz et al., 2007). Minimizing the GAOs concentration in the EBPR
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process in MBRmay result in achieving higher P-removal efficiencies in
the laboratory and pilot-scale systems.

Most of the studies at the laboratory and pilot scale systems have
demonstrated thatminimizing theGAOs concentration in the EBPR pro-
cess in MBR resulted in achieving higher P-removal efficiencies. On the
contrary, another study conducted at full-scale investigated the role of
PAOs and GAOs for P-removal and concluded that GAOs do not appear
to be a problem. Explanation of this could be due to the presence of
competing DPAOs. It is, therefore, essential to rethink the PAO-GAO in-
teraction for full-scale plants (Stokholm-Bjerregaard et al., 2017).

Furthermore, there is a conflict between the factors that govern ni-
trifying bacteria and PAOs. Nitrifiers (GAOs) have a slow growth rate
and need a longer SRT (> 5 days)) to grow, while the PAOs favor a
shorter SRT ranging between 3 and 5 days (Onnis-Hayden et al.,
2011). A longer SRT in MBRs means low net PAO biomass growth and
thus limited phosphorus storage in new cell material and the system.
PAOs need to be exposed to alternating anaerobic and aerobic condi-
tions and thus are favored through the recycle streams, while the nitri-
fiers aremaintained in the aerobic tank. Findings of the available studies
have concluded that the type and amount of carbon source, pH, and
temperature significantly affect the balance between PAOs and GAOs
(Song et al., 2008).

Higher PAOs and DPAOs concentration help to achieve higher P-
removal efficiency in MBR (Cho et al., 2005). It has been found that
PAOs concentration in municipal wastewater varies from 0 to 1% of
total COD (Sun et al., 2013), while in the sludge, the concentration of
the PAO can be up to 7–10% of the total biomass (Mao et al., 2015;
Silva et al., 2012). The PAOs can store up to 0.17 gP/gTSS, which is com-
paratively much higher than what can be typically stored in the sludge
mass (0.015 gP/gTSS) (Henze et al., 2008). In a UCT–type,MBR operated
with weak and strong wastewater to analyze the phosphorus uptake in
an anoxic zone. DPAOs played a vital role in phosphorous removal,
along with nitrogen. The removal rate in the anoxic zone was higher
for high strengthwastewater thanweakwastewater and thus indicated
that up to 40% phosphorus could be removed through P-uptake (Lee
et al., 2009).

The roles of GAOs and PAOs have been studied for CASP full-scale
plants, but studies for full-scale MBR with higher SRT are still missing.
SRT and carbon sources seem to be determinant parameters in previous
studies.

In the early interpretation of the EBPR, the Acinetobacterwas consid-
ered as the only class of PAOs responsible for accumulating phosphorus
inWWTPs (Barnard et al., 2017). By the late 1990s, understanding of the
EBPR expanded, and it was found that the microbial class “Candidatus

Accumulibacter phosphatis” are primary organisms responsible for
PAO characteristics (Liu et al., 2019). Several mathematical models; in-
cluding, ASM2/ASM2d, TUDP, Barker and Dold's, and UCTPHO+, are
based upon the functional working of “Candidatus Accumulibacter
phosphatis” for P-removal (Hauduc et al., 2013; Ni et al., 2010) and com-
petition between the PAOs and GAOs is not considered. The study of
Mielczarek et al. (2013) investigated 28 Danish EBPR based WWTPs
and reported that 27% of the PAOs are “Tetrasphaera”. Similarly,
Stokholm-Bjerregaard et al. (2017) studied 19 full-scale EBPR based
WWTPs and found similar results to Mielczarek et al. (2013) with
“Tetrasphaera” as the most abundant PAO accounting for 10.7% of the
total active biomass. The most recent research conducted on 32 full-
scale wastewater facilities located in 12 different countries found that
“Tetrasphaera” is the most abundant (Nielsen et al., 2019) and con-
firmed the findings of the previous studies conducted on a full-scale.
Apart from the Accumulibacter, Acinetobacter, and Tetrasphaera; other
genera of PAOs are Aeromonas, Enterobacter, Moraxella, Klebsiella, and
Pseudomonas (Mielczarek et al., 2013; Stokholm-Bjerregaard et al.,
2017).

At lab-scale, mainly “Candidatus Accumulibacter phosphatis” were
found, whereas at full-scale, Tetrasphaera were the most abundant mi-
crobial community. This could affect the mechanisms of P-removal at
these different scales and their modeling and therefore require further
research and improvements in the ASM models as far as the role of
PAOs is concerned.

2.3.4. Sludge retention time and P-removal in MBRs
SRT may influence the sludge characteristics, such as viscosity, bio-

mass concentration, microbial community's composition, floc size, vis-
cosity, and cell surface properties (Hocaoglu et al., 2011). The effect of
SRT on P-removal in MBRs is still conflicting in the literature. It was ini-
tially believed that BioP-removal is difficult to achieve at higher SRTs as
experienced in MBR; however Adam et al. (2003) first demonstrated
that P-removal could be achieved in MBR operating at even higher
SRTs with influent having a higher VFA/P ratio.

Some other studies have reported even superior (> 90%) BioP-
removal at longer SRTs (25–75 days) in MBR systemswith and without
sequencing anoxic/anaerobic functioning (Ahn et al., 2003; Cho et al.,
2005; Ersu, 2006). As such, there may be an optimum SRT needed for
nutrient removal in an MBR. The evaluation of full-scale MBR facilities
showed unexpected high BioP-removal operating at higher SRTs and
technically not designed for EBPR. No explanation was provided for
this peculiar behavior (Silva et al., 2009). Higher SRTs helped in lower-
ing the rate of phosphate release during PHA storage (Adam et al., 2003;

Fig. 3. PO4
3− removal by the EBPR process under anaerobic/aerobic environment.
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Nopens et al., 2007; Rosenberger et al., 2000; Sun et al., 2019) and thus
negatively affecting the P-removal due to higher growth of AOB (higher
NO2 production) which lead to compromise the functioning of
heterotrophic non-PAOs and PAOs as explained by Mannina et al.
(2020). Whereas Lesjean et al. (2009) found that higher EBPR in MBR
can be achieved even at higher SRT. Based on these conflicting studies,
it can be assumed that others parameters are more impacting than
SRT, and it is difficult to ascertain the role of SRT in P-removal in MBRs.

2.3.5. Hydraulic retention time and P-removal in MBRs
There are limited studies focused on documenting the effect of an-

aerobic and anoxic HRTs on P-removal in MBRs. The study presented
by Cho et al. (2005) evaluated the performance of a sequencing an-
oxic/anaerobic MBR through varying HRTs and flux. The authors found
higher P-removal at shorter anaerobic HRTs (1 h) due to higher sub-
strate loading. The same authors further found that, themembrane foul-
ing increased with increasing flux linked with shorter HRT. Another
study (Monclús et al., 2010) supported the same argument wherein in-
sufficient anaerobic HRT (0.921–2.05h) reduced the conversion of read-
ily biodegradable substrates to stored PHA and negatively impacted the
P-removal due to reduced activity of PAOs for phosphate accumulation.

In another study (Song et al., 2008), the effect of change in HRT on P-
removal in MBR was evaluated. The authors found that shorter HRT be-
tween anoxic and anaerobic induced a higher F/M ratio and increased
biomass yield activity, especially in denitrification rate, which then im-
proved P-removal efficiency. Similarly, Brown et al. (2011) reported
that an optimal anaerobic HRT (2 h) is needed for PAOs to actively up-
take the phosphate and PHA and use it as an energy source. While,
Sun et al. (2013) found better P-removal efficiency with an overall
higher HRT (11.6 h) and with anaerobic HRT (3.3 h). Most recently, a
lab-scale MBR treating domestic wastewater has been investigated at
higher HRT (9.6 h) and resulted in higher P-removal (Sözüdoğru et al.,
2021). While, in another recent study (Falahati-Marvast and Karimi-
Jashni, 2020), it has been found that P-removal in A2/O-MBR slightly im-
provedwith reduction of aerobic HRT from 12 h to 6 h, presumably due
to an increased biomass concentration at constant F/M ratio and under
controlled temperature. The aerobic HRT does not seem to impact the
P-removal, although it be must be maintained within a 6–12 h. While
increasing anaerobic HRT (within range of 2–6 h) improved the P-
removal to a certain limitwhere denitrification (byDPAOs)would be fa-
vored.

2.3.6. Effect of temperature on P-removal in MBRs
There are conflicting results from various studies documenting

the effects of temperature on P-removal. A temperature ranging be-
tween 10 and 25 °C resulted in better P-removal, and inconsis-
tencies have been found at high temperatures around 40 °C (Liau
et al., 2015; Sayi-Ucar et al., 2015). Another study confirmed that
beyond 90% P-removal could be achieved with 10 °C operating tem-
perature (Wei et al., 2012). According to another study, PAOs are
lower-range mesophiles or psychrophiles and are predominated
only at 20 °C or lower temperature ranges. While on the other
hand, GAOs are somewhat mid-range mesophilic organisms with
an optimum temperature between 25 °C and 32.5 °C (Panswad
et al., 2003).

2.3.7. Dissolved oxygen concentration and P-removal in MBR
To strike a balance between the required oxygen supply for nitrifiers

in the aerated tank and creating an enabling environment for PAOs, a
DO level of 2 mgL−1 is recommended (Hai et al., 2018). It has been
found that too low (0.4–0.6 mgO2L−1) and too high (2.0–2.4
mgO2L−1) DO concentration has adverse effects on P-removal in MBR
(Roberts, 2020). Similarly, Smith et al. (2014) found improved P-
uptake in the aerobic reactor with DO concentration maintained at
2 mgL−1. Another study (Fu et al., 2009) with A/O-MBR demonstrated
that a concentration of 2.5 mgO2L−1 is enough to remove almost 90%

of the phosphorous. At concentration lower than 2.5 mgO2L−1, PHB
stored in PAOs could not be decomposed effectively because of DO defi-
ciency in the aerobic tank. Thus, no enough adenosine triphosphate
(ATP) was produced, which led to the restraint of excessive phosphorus
uptake of the continuous PHB accumulation in PAOs. On the other hand,
when the DO level was higher (2–2.4 mgL−1), a higher concentration of
nitrate was sent back to an anaerobic tank creating a competitive envi-
ronment for denitrifies (GAOs and DPAOs) and PAOs, thus limiting the
P-removal efficiency (Yuan et al., 2012). In contrast, Nopens et al.
(2007) found that the optimal P-removal can be achieved at a concen-
tration of 0.5 mgL−1 which also correspond to lower nitrates which
are known inhibitory agents. It has also been investigated that too low
DO concentration (0.3 mgL−1) in the aerated MBR zone triggered the
uncontrolled growth of filamentous micro-organism (Insel et al.,
2014). Another study evaluated no considerable effect of DO concentra-
tion (1–4.1 mgO2L−1) on biological P-removal without ascertaining the
role of PAOs and GAOs (Sayi-Ucar et al., 2015).

A DO concentration between 0.4 and 2.0 mgL−1 is found an opti-
mum range for P-removal above 80%. At the same time, there is dis-
agreement for higher and lower concentrations from this optimum
value. However, the choice for maintaining the DO level depends upon
several other factors such as feed characteristics, target removal perfor-
mance for COD and nitrogen, and the cost of biological aeration. Further
assessment of the role of DO concentration at full-scale MBR facilities
may help understand its role in EBPR. A summary of several factors af-
fecting the P-removal in MBR is given in Table 2. The summarized re-
sults reflect that further research is needed to explore and verify the
conflicting studies, especially at the full-scale.

2.4. Mathematical modeling of MBRs

It is well understood that MBRs operate under different conditions
than CASP and requires a comprehensive understanding of the pro-
cesses and adjustments in models initially developed for CASP to suc-
cessfully simulate the phosphorous removal process in MBRs. The
need for adjustments in ASMs' applicability to MBR is mainly attributed
to: i) different microbial composition leading to the calibration of stoi-
chiometric and kinetic parameters ii) higher biomass concentration
leading to reduced oxygen transfer and uptake, iii) production of EPSs
(linked to flocs) and SMPs (dissolved) and their accumulation onto
the membrane surface iv) additional aeration involved in membrane
scouring and recirculation of oxygen saturated sludge from MBR to
the aerated/unaerated zones and v) the role of membrane filtration on
nutrient removal (Fleischer et al., 2005; Hai et al., 2018; Judd, 2010;
Maere et al., 2011; Verrecht et al., 2008). The comparison of these pa-
rameters for CASP and MBR is proposed as tabulated format in Table 3.

In a detailed review article, Fenu et al. (2010) discussed the adapta-
tion of the for ASMmodels to theMBRwith and without modifications.
The unmodified ASMs required adjustments of nitrification related pa-
rameters, e.g., dissolved oxygen half-saturation coefficient (KOH),
which was assumed to be attributed to smaller floc size in MBR, which
eases the O2 transfer. For modified ASM, extension with EPS/SMPs is
justified if the modeling objective is to study higher SRT, linking the bi-
ology with the filtration, and with the necessity of predicting soluble
COD in bulk. Otherwise, it makes the calibration process cumbersome
and challenging to calibrate EPS/SMP-related parameters. It was further
proposed to undertake full-scale studies to rule out the difference in lab-
scale to full-scale models' applications. P-removal was briefly touched,
taking into account five relevant studies, and no specific conclusion
was derived due to the dearth of studies and insufficient available
data. Albeit, it was suggested to explore the biological P-removal kinet-
ics through additional research. Another comprehensive review onMBR
modelingwas conducted byNaessens et al. (2012a, 2012b). However P-
removal aspect is not discussed. Most recently, based on earlier review
on integrated MBR modeling, IWA task group has proposed best prac-
tices to be adopted to model MBR taking into account key process
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indicators such as effluent quality index (EQI), membrane fouling, aera-
tion, operating costs index (OCI), energy consumption, and mitigation
of GHG emissions (Mannina et al., 2021).

MBR involves complex interactions which are taking into account
through several combined modeling ways among i) biological pro-
cesses, ii) membrane filtration – fouling phenomenon, and iii) hy-
drodynamics (Naessens et al., 2012a, 2012b; Ng and Kim, 2007).
ASMs did not address the oxygen transfer/diffusion phenomenon,
and aeration models were later developed and used as sub-models
for MBR modeling studies (Delrue et al., 2010; Hocaoglu et al.,
2011; Insel et al., 2011; Verrecht et al., 2008; Zarragoitia-González
et al., 2008). Few integrated models have also been developed,
taking into account the biological processes, filtration, fouling, and
flow dynamics (Di Bella et al., 2008; Janus, 2014; Suh et al., 2013;
Zarragoitia-González et al., 2008), but these still require validation
at full-scale MBR plants. Their advantage for our purpose is to be
available as a set of models where P-removal mechanisms may be
integrated, with their impacts on other main variables. P-removal
can be accomplished by biological reaction and chemical precipita-
tion. Therefore different models can be classified with respect to

biological (metabolic, ASMs, and the combination thereof) and
chemical P-removal mechanisms.

2.5. Modeling and simulation of BioP-removal in MBRs

Mathematically, the BioP-removal process can be described either
by i) metabolic model, ii) activated sludge models-ASM or iii) coupling
of metabolic and ASMmodels, e.g., TUDP (Baetens, 2001; Lanham et al.,
2014). Both of these modeling approaches use a set of stoichiometric
and kinetic equations to describe the transformation steps of the EBPR
process (Oehmen et al., 2007). Metabolic models use biochemistry
knowledge of the active metabolic pathways to explain the cells' bio-
chemical transformations (Oehmen et al., 2007). Metabolic models
have been used to investigate themuch-debated GAO-PAO competition
in EBPR and reveals that the role of GAOs is negatively impacting the P-
removal. However, the yield coefficients for PAOs and GAOs in meta-
bolic models are determined theoretically based upon the reaction stoi-
chiometry for the assumed pathways. Indeed GAOs and PAOs are
challenging to be obtained in pure culture. This lack of experimental
data is therefore, the major limitation of these models. As compared to

Table 2
Summary of the factors affecting the P-removal in MBRs.

Factor Parameters Impact on P-removal Optimum
range

Reference

Influent
characteristics

PO4 loading Higher BioP-removal at lower influent PO4 concentrations. 2 –20
gTP·m−3

Choi et al., 2011; Monclús et al., 2010

COD/P ratio Higher C/P ratio positively impacts the P-removal. While lower C/P
ratio lead to unstable conditions required to achieve maximum
P-removal.

29–45 Al-Hashimia et al., 2013; du Toit et al., 2007;
Kapagiannidis et al., 2012; Monclús et al., 2010;
Wang, 2020

A lower C/P ratio may result in higher nutrients (P&N) removal in the
absence of nitrates interference.

Falahati-Marvast and Karimi-Jashni, 2020

BOD/P ratio Higher BOD/P results in higher BioP-removal 12.33–45 Adam et al., 2003; Fleischer et al., 2005; Wang, 2020
COD/N ratio A low COD/N ratio negatively impacts Phosphorus removal. 5.3–7.3 Hu et al., 2014; Lee et al., 2015; Mannina et al., 2018
Nitrite
concentration

Higher concentrations of nitrite negatively affect PAOs under both
aerobic and anoxic condition

< 1 g NO3.
m−3

Liu et al., 2011; Roberts, 2020; Saito et al., 2004;
Sin et al., 2008

MLSS
concentrations

MLSS
concentration

Little or no effect on BioP-removal kinetics <7 g TSS .m−3 Adam et al., 2003; Holakoo et al., 2005; Parco
et al., 2007

BioP-removal is positively impacted by increasing the MLSS
concentration up to an optimum concentration of 7 g/m3

Wang et al., 2015

EPS
concentration

Higher EPS concentrations result in higher BioP-removal due to the
fact that EPS act as a phosphorus reservoir (approximately 5–10% of
phosphorus in sludge is reserved in the EPS)

20–130
gCOD·m−3

Adoonsook et al., 2019; Cloete and Oosthuizen,
2001; Zhang et al., 2013

SMP
concentration

SMPs inhibit the luxury BioP-uptake by PAOs in the anaerobic reactor 24–86
gCOD·m−3

Gao et al., 2004; Ichihashi et al., 2006; Jiang et al.,
2009

Microbial
community

PAOs & GAOs
concentration

High PAO concentration resulted in higher BioP-removal in a MBR
model based study.

7–10% of total
biomass
concentration

Jadhao and Dawande, 2012; Mao et al., 2015; Silva
et al., 2012

PAOs class
and relative
abundance

In full-scale WWTPs, PAOs class “Tetrasphaera” is found in abundance
with relative fraction ranges between 10.7% and 27% of the total PAOs
population.

10.7%—27% of
the PAOs
population

Mielczarek et al., 2013; Nielsen et al., 2019

Sludge retention
time

SRT Longer SRT and high MLSS/MLVSS concentration in MBR may induce a
competitive advantage for GAOs over the PAOs, thus negatively
impacting the BioP-removal performance.

15–40 days Ersu et al., 2010; Han et al., 2015; Hu et al., 2014;
Lee et al., 2009; Nopens et al., 2007; Sun et al.,
2019; Wang et al., 2015

Longer SRTs positively impact the P-removal in MBRs. Especially when
the system worked without sludge withdrawals

Adam et al., 2002, 2003; Ahn et al., 2003; Ersu,
2006; Ersu et al., 2010; Mannina et al., 2020; Silva
et al., 2012; H.-M. Zhang et al., 2006

Hydraulic
retention time

Anaerobic
HRT

An optimal anaerobic HRT is needed for BioP-removal without
impacting the nitrogen removal.

2–2.9 h Brown et al., 2011

Higher anaerobic HRT helps in higher BioP-removal Cho et al., 2005; Monclús et al., 2010
Aerobic HRT Reduction in aerobic HRT (12 h to 6 h) slightly improved the BioP-removal

performance due to increase biomass at the constant FM ratio.
3–6 h Ahmed, 2012; Falahati-Marvast and

Karimi-Jashni, 2020; Sun et al., 2019
Total HRT Higher and stable BioP-removal efficiencies could be achieved at HRT

lower than 10 h.
<10 h Falahati-Marvast and Karimi-Jashni, 2020;

Sözüdoğru et al., 2021; Sun et al., 2013
Temperature Better BioP- removal at a temperature ranging between 10-25C and

inconsistencies at high temperatures around 40C
10–25 °C Liau et al., 2015; Sayi-Ucar et al., 2015

Dissolved
oxygen
concentrations

DO
concentration

BioP-removal was found independent of the DO concentrations. 0.4–2.5 gO2

m−3
Sayi-Ucar et al., 2015

Higher DO concentration of 2.5 mgL−1 resulted in higher BioP-removal. Fu et al., 2009
Optimum DO (0.4–2.5 mgL−1) is required for higher BioP-removal
efficiency, and concentration above 2–2.4 resulted in decreasing the
P-removal performance.

Downing et al., 2014; Hai et al., 2018; Nopens
et al., 2007; Roberts, 2020; Smith et al., 2014;
Yuan et al., 2012

Too low DO concentration (0.3 mgL−1) can help filamentous bacteria
grow and counteract BioP-removal

Insel et al., 2014
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metabolic models, ASMs use a global “mechanistic approach” to charac-
terize the energy, redox, and mass balances of cell processes within
CASP/MBR to describe the EBPR process. These are focused on macro-
scopic phenomena and depend on biochemical transformation path-
ways of soluble and particulate compounds in sludge and metabolic
activities (Baetens, 2001; Santos et al., 2020; Seviour et al., 2019). The
role of GAOs is mainly neglected in the original ASMs. However, some
modified ASMs consider the glycogen as a storage polymer in addition
to PHA, taking into account the growth and activity of the GAOs
(Baetens, 2001; Gernaey et al., 2004; Hauduc et al., 2013; Oehmen
et al., 2007). The effect of temperature, pH, and carbon source on the
competition between PAO and GAO populations has been discussed in
modifiedASM(Lopez-Vazquez et al., 2009). The yield coefficient ismea-
sured experimentally, making ASMs distinguished from metabolic
models (Baetens, 2001).

During the last two decades, a couple of detailed reviews have been
published focused on comparing the model structures, limitations, and
differences of the processes such as hydrolysis, growth, and decay of or-
ganisms, including their limitations for P-removal. The first detailed re-
view was conducted by (Baetens, 2001) considering all the published
models, metabolic and ASM (original and modified) and combinations
till 2000. Following this, (Gernaey et al., 2004) published a review on
thewhite boxmodels (ASM1, ASM2, ASM2/ASM2d, ASM3 TUDP, Barker
& Dold's model, and ASM3-BioP) and discussed that how the objective
of the modeling exercise influences the model selection from the avail-
able range, data gathering, and model calibration. The authors further
discussed the gray box (statistical), black-box (stochastic), and hybrid
models and their potential applications in WWTPs, such as supervisory
control system development. Following this, Hauduc et al. (2013) com-
pared seven published models, including ASM1 (Henze et al., 1987),
ASM2d (Henze et al., 1999), ASM3 (Gujer et al., 1999), ASM3-BioP
(Rieger et al., 2001), ASM2d-TUD (Meijer, 2004), Barker & Dold's
model (Barker and Dold, 1997), and UCTPHO+ (Hu et al., 2007) using
a structured approach and dealt with the difficulties in comparing
models as highlighted by Baetens (2001). These models are compared
based upon several standard processes among the range of models, in-
cluding i) hydrolysis, ii) fermentation iii) growth and decay of OHOs
iv) growth and decay of ANOs v) growth and decay of PAOs vi) storage
of PHA and vii) storage of polyphosphate. Following the works of
Gernaey et al. (2004) and of Hauduc et al. (2013), the mini-review of
Zuthi et al. (2013) compared the five models (ASM2, ASM2d, TUDP,

UCTPHO+, and ASM3-BioP) that takes into account the P-removal for
the CASP and MBR along with the advantages and disadvantages of
these models. All these reviews had limited discussions related to the
applications of these models to the full-scale WWTP and in particular
to MBR and their corresponding adjustments and challenges faced dur-
ing their adaptations to the MBRs.

P-removal from the wastewater can be mathematically described
using several models derived from models of COD removal (Dold
et al., 1981, van Haandel et al., 1981, Henze et al., 1987, Gujer et al.
1999), including i) ASM2 (Gujer et al., 1995) ii) ASM2d (Henze et al.,
1999), iii) SIPHOR kinetic model (Johansson, 1996), iv) Dold’s mecha-
nistic model (Barker and Dold, 1997), v) Wentzel’s model (Wentzel,
1989), vi) UCTPH model (Wentzel et al., 1992) vii) ASM2/ASM2d-
TUDP model (Wentzel et al., 1988; Meijer, 2004), viii) New UCTPH
(Hu et al., 2007), ix) EAWAG’s ASM3-BioP (Rieger et al., 2001),
x) FCASM-1 (Sun and Song, 2009), and xi) modified ASM3-BioP-N2
(Ni et al., 2010). A new bio-kinetic model (modified Barker and Dold’s
model) was developed considering the roles of GAOs and incorporating
the new process concerning the GAOs (Varga et al., 2018) and validated
at lab scale as well at full-scale CASP.

All these models can be studied under three groups i) models with
considering the role of denitrifying PAOs, ii) models without consider-
ing the role of denitrifying PAOs, and iii) Models with the incorporation
of the PAO and GAOs (Fig. 4).

2.5.1. Calibration of models
Metabolic models can be easily calibrated due to the limited number

of parameters, and kinetic parameters are calibrated only when stoi-
chiometric and kinetic reactions are changed to accommodate new pro-
cess understanding (Lanham et al., 2014). Meanwhile, ASMs required
intensive stoichiometric and kinetic parameters adjustments that com-
promise their predictive power and limit their practical applications for
long-term EBPR process evaluations (Santos et al., 2020). Although it
has been observed during the literature survey that most of the model-
ing studies involved calibration of the stoichiometric and kinetic param-
eters, albeit adjustment of the stoichiometric parameters is not
considered as a good modeling practice (Rieger et al., 2012). The
ASM's calibration process is time-consuming and complex. Therefore,
several protocols have been developed recently to cope with this com-
plexity and perform a systematic calibration of the model parameters,
including BioMATH, STOWA, HSG, WERF, and sensitivity analysis

Table 3
Considerations in applying ASMs to the MBRs for the EBPR process.

Parameter/factor Conventional activated sludge Membrane bioreactor

Microbial
composition

CASPs are operated at lower SRTs ranging between 4 and 15 days (Hai
et al., 2018; Judd, 2010)

SRT of MBRs ranges between the same to three-time of the CASP (Hai et al., 2018).
MBR promotes slow-growingmicro-organisms such as nitrifiers andmicro-organisms
that are usually washed out in a CASP system while the membrane retains 100%.
Specific stoichiometric and kinetic parameters adjustments are required while
applying ASM in order to model MBRs (Fenu et al., 2010; Naessens et al., 2012a).

MLSS CASP is operated at MLSS concentration ranging between 1500 and
3000 g·m−3 (Hai et al., 2018)

MBRs are operated at higher MLSS concentrations ranging between 4000 and
15,000 g·m−3 (Hai et al., 2018) and, therefore, lower FM ratio. Higher MLSS in
combination with higher SRT cause stress to the micro-organisms in an MBR, which
requires more energy for cell maintenance and therefore leaves less energy for cell
production. Higher MLSS may induce the competitive advantage of GAOs over PAOs.

EPS/SMP EPS/SMP produces in CASP are washed away and/or removed through
sludge. EPS/SMPs are not considered in unmodified ASMs

Accumulation of the EPS/SMPs onto the membrane surface may affect the fouling
and the biological process. As discussed earlier, EPS also affects the P-removal.
EPS/SMP concentration in MBR sludge may be different from the CASP sludge due
to different microbial community and F/M ratio.

Fine bubble
aeration

Aeration is used for carbon matter degradation and the nitrification
conversion.

Aeration is used for carbonmatter degradation and nitrification. However, due to higher
MLSS concentration (unfavorable) and smaller floc size, (favorable) mass transfer
limitations have been reported different in MBRs than in CAPs (Fenu et al., 2010).

Coarse bubble
aeration

Coarse bubble aeration is not involved In addition to fine bubble aeration, coarse bubble aeration aims at scrubbing the
membrane surface to mitigate the membrane fouling. It creates turbulence and
affects the floc size and mass transfer processes.

Separation separation is carried out by the clarifiers (secondary) and the
phenomenon is modeled through clarifier/settling models (Hai et al.,
2018; Henze et al., 2008)

Separation is carried out by physical media (membrane). With this, MBR requires a
sub-model to simulate filtration–fouling phenomenon and retention of the
soluble/dissolved fraction of COD and nutrient (Di Bella et al., 2008; Mannina et al.,
2018). Due to complete retention, the microbial composition in MBR may vary.
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based approach (Gernaey and Sin, 2008; Mannina et al., 2011; Sin et al.,
2005).

2.5.2. MBR simulation studies
This review is voluntarily limited to the ASM models (modified/un-

modified) applied to the MBRs for P-removal. As per the Scopus data,
there are 18 publications related to MBR modeling, and ASM2d is
found to be widely used model (13 studies) while ASM3-BioP (1
study), TUDP (1 study), New General Model (3 studies) has rarely
been used for MBR modeling. Table 4 summarizes selected papers re-
lated to MBR modeling. The details related to operational conditions
and influent characteristics of themodeling studies are provided as sup-
plementary material (Appendix C). The modeling and simulations case
studies are discussed below.

A six-chambered pilot MBR plant was modeled using ASM2d
(Fleischer et al., 2005). The authors concluded that the model was
able to successfully predict the BNR performance of the MBR and was
found capable to predict the phosphorus concentration below 0.1
mgPtot L−1. Although, no information has been provided about the
model structure, calibration, and validation procedures. Similarly,
Daigger et al. (2010) successfully modeled the Traverse City full-scale
MBR plant with a capacity of 32,000 m3d1 and Broad Run pilot plant
using ASM2d. The publication provides no details about the model
structure calibration and validation process as of Fleischer et al.
(2005). In the study of Monclús et al. (2010), a UCT-type pilot MBR is
modeled using ASM2d with a special focus on biological P-removal.
The model could simulate the P-removal performance without any
change in the stoichiometric and kinetic parameters. Furthermore, the
authors found that the decrease in the recirculation flow from the an-
oxic to anaerobic zone negatively impacted the P-removal.

A pilot plant receiving high strengthwastewater from toilet flushing
has been used for dynamic modeling using ASM2d (Verrecht et al.,
2010). The model was first calibrated with steady-state, where it was
required to have a correct representation of MLSS concentrations. The
model parameters including μPAO_Max (2 d−1 vs default value of 1
d−1), bPAO (0.1 d−1 vs default value of 0.2 d−1) and YPP_Stor_PAO
(0.2 gP(gCOD)−1 vs default value of 0.4 gP(gCOD)−1) were calibrated
through heuristic approachwithout batch tests. However, themodeling
of the removal of other nutrients could not be completely validated.
While, with the dynamic simulation, PAO concentration increased
without the adjustments to μPAO_Max, bPAO, and YPO and MLSS con-
centration were representative as the dynamic equilibrium was
reached. The values of the parameters including mPAO, bPAO, and
YPP_Stor_PAO, were then reverted to defaults.

The SMPs and ESP now has an established role in membrane fouling
(Meng et al., 2009) and it has been proved that higher concentration of
EPS deteriorates the P-removal performance (Ichihashi et al., 2006;
Jiang et al., 2009). Keeping this in view, Jiang et al. (2008) extended
ASM2dwith SMPmodule (ASM2d-SMP) considering the soluble utiliza-
tion associated products (SUAP) and soluble biomass related products
to investigate the role of SMPs onto the membrane fouling. The intro-
duction of SMP modules increased the model complexity and the addi-
tional parameters required calibration. Nevertheless, the ASM2d-SMP
model successfully simulated the BNR behavior of a lab-scale MBR
under steady-state conditions and was validated by the experimental
data. The authors concluded that if the objective is to remove nutrients,
an optimumSRT (17 days) agreeswith published studies as discussed in
Section 2.3.4. Following their previous research, Jiang et al. (2009) in-
vestigated ASMs' (unmodified) applicability and required adjustments
to meet the MBR system biomass kinetics. Again, a lab-scale, MBR

Fig. 4. Evolution and classification of the ASMs concerning GAOs and PAOs.

K. Nadeem, M. Alliet, Q. Plana et al. Science of the Total Environment 809 (2022) 151109

13



systemwasmodeled usingASM2d, and themodel parameterswere cal-
ibrated using the same approach as the previous study. By and large, the
ASM2d model could characterize the EPBR removal performance of
sMBRs after substantially modifying the rate constant for SVFA uptake
rate (qPAO,VFA_Stor) and rate constant for storage of XPAO,PP (qPAO,PO4,PP)
and taking into account the differences discussed in Table 3 (Jiang
et al., 2009).

In continuation to previous research, Gholikandi and Khosravi
(2012) modeled a side stream MBR using ASM2d and expanded with
an SMP module to improve the nitrification prediction capabilities of
the MBR as suggested by Jiang et al. (2009). The default ASM2d param-
eters had to modify in order to increase the anaerobic VFA up-take and
aerobic phosphorus up-take with the same protocol (Jiang et al., 2009).
However, in the current ASM2d-SMP model, the development of UAP
delayed the fermentation process and allowed the restoration of specific
PAO-related parameters (nμPAO, and qSF_VFA_max) to their default
ASM2d values (Table 5).

It is established to some extent that higher SRT in MBRs change the
biomass kinetics. Therefore, ASMsmay require calibration of the kinetic
parameters before their applications to the MBR. In order to investigate
the impact of SRT onmodel calibration, Ersu et al. (2010) used BioWin's
General Model (AS/AD) to mimic the nutrient removal behavior of a
lab-scale MBR at SRTs ranging between 19 and 75 days. The model
was calibrated with the measured data using the heuristic approach
based on sensitivity analysis. Compared to the default values, the cal-
ibratedmodel based on adjusted kinetic parameters at SRT of 35 days
accurately predicted effluent characteristics. A sensitivity analysis
revealed that effluent phosphorus concentrations were impacted
by i) heterotrophic anoxic yield, ii) anaerobic hydrolysis factors of
heterotrophs, iii) heterotrophicmaximum growth rate iv) hydrolysis
rate v) oxic endogenous decay rate for heterotrophs, and vi) oxic en-
dogenous decay rate of PAOs. The model simulated results for COD,
TN, and TP matched the experimental data reasonably well at SRT
of 35 days.

An integrated newgeneralmodel (Liu et al., 2011)was implemented
on a UCT type MBR system to characterize its P-removal performance
with/without the addition of coagulant. This integrated version couples
activated sludge anaerobic digestionmodels and is complementedwith
sub-models for pH, gas transfer, and chemical precipitation. The authors
calibrated the model against the measured data using the WERF proto-
col (Melcer, 2004). The kinetic and stoichiometric parameters related to
PAOs were set to default. The model accurately predicted PO4

3− with/
without the addition of coagulant. The authors observed BioP-removal
though it was severely impacted by the nitrates recycled from the an-
oxic zone to the anaerobic zone (in addition to influent nitrates). Similar
results were obtained in another study where an extension to standard
ASM2dwas proposed to accommodate the nitrates' inhibition (Sin et al.,
2008). Authors further found that adding excessive coagulant induced
nitrates much more than required and negatively impacted the BioP-
removal due to the limited availability of readily available COD (starva-
tion conditions) for PAOs. The model could predict the combined bio-
logical and chemical P-removal up to a concentration of 0.025 mgPL−1.

In the study presented by Cosenza et al. (2013), a UCT type, pilot-
scale MBR is characterized using an integrated and complex model
with 17 state variables and 79 kinetic parameters using domesticwaste-
water. The authors had to calibrate the rate constant for storage of poly-
P (qPAO, PO4_PP) at a much higher value than previous studies re-
ported in the literature (Gholikandi and Khosravi, 2012; Jiang et al.,
2009). This higher qPAO and PO4_PP, was demonstrated by the fact
that PO4

3− was assimilated not only in the aerobic zone but also in the
anoxic zone. The model simulation accounted for the increasing
storage rate during the K2PO4 addition and un-modeled phosphorus re-
lease due to potential anaerobic conditions occurring within the cake
layer on the membrane surface, explaining the higher qPAO_PO4_PP
value. In addition to qPAO_PO4_PP, several other kinetic and stoichio-
metric parameters were calibrated (Table 5) to improve the fit.Ta
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However, It is generally not considered as a good modeling practice
(Rieger et al., 2001). A novel calibration protocol developed by
Mannina et al. (2011) based on global sensitivity analysis (GSA) helped
in identifying the most influent parameters and reduce the calibration
effort (65% reduction in number of candidate parameters chosen for cal-
ibration).

In the study of Mannina et al. (2018), a UCT-type pilot-scale MBR
was modeled using an integrated approach employing ASM2d-SMP-
GHG modules. The rate constant for storage of Poly-P (PAO, PO4_PP)
was calibrated and the final value (2.01 gXPPgXPAO

−1 d−1) was higher
than the default (1.5 gXPPgXPAO

−1 d−1) because, during aerobic and
anoxic environments, an increase in PAO, PO4_PP contributed to an in-
crease in the rate of polyphosphate storage and thus limited the possibil-
ity of the accumulating nitrification related intermediate compounds.
Despite high values of the kinetic parameters i.e. PAO, PO4_PP, the
model simulation fitted well with the experimental data. This model
has further been used to propose ways to reduce the MBR's environ-
mental footprint using the multi-criteria optimization and estimation
of greenhouse gases (GHGs) emissions (Mannina et al., 2020).

DNN-GPmodel (Sarioglu et al., 2017) describes the BNR process of a
pilot-scale UCT type MBR, receiving real municipal waste through the

coupling of two sub-models: a) GAOs-PAOs competition and b) two
step N/DN process. The GAOs-PAOs competition is modeled by
adjusting their endogenous decay and substrate storage rates. Relative
sensitivity analysis was used to calibrate the model parameters using
the heuristic approach. Initial parameter values were selected from
the published literature, and then calibrated ones were used for dy-
namic simulations. The authors found that temperature-dependent
substrate storage and endogenous decay rateswere the critical determi-
nants of GAOs-PAOs completion. As compared to PAOs, the GAOs had a
lower decay ratewhile PAOshadmuchhighermaximumsubstrate stor-
age rates than GAOs. Besides, GAOs remained activated even at a higher
temperature and substrate, although phosphorus uptake rate was con-
siderably reduced. The model successfully simulated the EBPR process.
The P-removal performance was found around 98% even with elevated
influent VFA/COD ratio. The P-removal revealed to be sensitive to DO
concentrations in the aerobic/MBR tanks which is in agreement with
the findings of the study presented by Sayi-Ucar et al. (2015). In a recent
theoretical study (Bis et al., 2019), the CASP and MBR modeling ap-
proaches were compared. Plants were configured in a virtual environ-
ment using the GSP-X simulation tool and were characterized using
ASM2d, and for MBR, an additional filtration module in submerged

Table 5
Default and modified parameters related to P-modeling in reviewed studies (modified within parenthesis).

Reference Model

Al-Atar,
2007

Nopens
et al.,
2007

Jiang
et al.,
2008

Abegglen
et al., 2008

Ersu
et al.,
2008

Jiang
et al.,
2009

Verrecht
et al.,
2010

Gholikandi
and Khosravi,
2012

Cosenza
et al.,
2013

Cosenza
et al.,
2014

Mannina
et al.,
2018

Calibration range
(ASM2d/ASM2d-SMP)

Bio-kinetic model ASM2d
+ TUDP

ASM2d ASM2d
SMP

ASM3-BioP New
general
model

ASM2d
SMP

ASM2d
SMP

ASM2d
SMP

ASM2d
SMP

ASM2d
SMP

ASM2d
SMP

–

P-related processes 11 8 8 11 19 8 8 8 8 8 8 –
P-related kinetic parameters 27 18 18 21 11 18 18 18 18 18 18 –
P-related stoichiometric
parameters

11 3 3 4 8 3 3 3 3 3 3 –

A. Calibration of stoichiometric parameters
YPAO 0.625 0.625

(0.57)
0.639 0.625

(0.57)
0.625 0.625 0.625 0.625 0.625

(0.61)
0.57–0.61

YPP,Stor,PAO 0.4 0.4 0.52 0.4 0.4
(0.2)

0.4 0.4
(0.442)

0.4
(0.442)

0.4
(0.58)

0.20–0.58

YStor,PP, Ox 0.95
(1.50)

B. Calibration of kinetic parameters
qPAO,VFA,Stor 3

(1)
3
(1)

2 3
(1)

3 3
(5.5)

3
(3.699)

3
(3.699)

3
(4.36)

1–5.5

qPAO,PO4,PP 0.1 1.5
(1.1)

1.5
(1.1)

1.5 1.5
(1.1)

1.5 1.5
(1.0)

1.5
(2.431)

1.5
(2.431)

1.5
(2.01)

1.1–2.43

KS,fPP,PAO 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 0.01
(0.008)

0.008–0.01

KPP,PAO 0.01
(0.2)

0.01 0.01–0.2

fPP_PAO,Max 0.35 0.34 0.34 0.20 0.34 0.34 0.34 0.34 0.34 0.34
(0.71)

0.34–0.71

fGly_PAO,Max 0.50
μPAO,Max 1 1 1 0.95 1 1 1 1

(0.716)
1
(0.716)

1 0.716–1.0

μPAO,Max,lim 1 1 0.42 1 1
(2)

1 1 1 1 1.0–2.0

nμPAO 0.60 0.60 0.60 0.40 0.60 0.60 0.60
(0.45)

0.60 0.60 0.60 0.45–0.60

mPAO 0.20
(0.15)

0.04

bPAO 0.20 0.20 0.20
(0.1)

0.20 0.20
(0.235)

0.20
(0.235)

0.20 0.1–0.235

no.of kinetic processes
impacted due to changes in
kinetic parameters

3 6 6 2 0 6 6 6 6 6 6

Notes: Complete set of stoichiometric and kinetic parameters (Table C.3) along with their default values can be accessed in Appendix C. In addition the kinetic rates equation/processes
impacted are also highlighted (Table C.4).
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membrane configuration was added. The authors found a higher con-
centration of PAOs in MBR than CASP, marginally higher P-removal
was observed in MBR. The authors, however did not provide any detail
about the calibration and validation of the model used for simulations.

A lab-scale MBR (Ersu et al., 2008) with anaerobic, anoxic zones
followed by oxic plate and frame membrane zone was considered for
modeling with five different recirculation arrangements (Fig. B.2). The
model was built in a BIOWIN environment using “New General
Model” targeting carbon and nutrient removal. The model was cali-
brated using the experimental data. The model could predict well efflu-
ent TN, TP, and NO3

−N but over-predicted CODs and NH4
+. Based on

sensitivity analysis, two kinetic parameters (μPAOmax, mPAO) were
calibrated. The calibrated values against the default values can be seen
in Table 5.

In another study (Al-Atar, 2007), a UCT-type MBR pilot plant was
modeled in the AQUASIM environment. The calibrated model was able
to predict the EBPR process reasonably. The simulation reasonably fitted
well with the experimental data. However, the exact concentrations for
anoxic nitrate and effluent PO4

3− were not predicted well. The model
was slightly calibrated by adjusting the rate of poly-phosphate forma-
tion, KPP_PAO, which was increased from 0.01 to 0.2 gP(gCOD)−1 to
better predict the anoxic PO4

3− concentrations results showed that the
sludge distribution within the anaerobic and anoxic zones is critical
for P-removal.

In the study conducted by Abegglen et al. (2008), a small-scale MBR
receiving toilet wastewater is modeled using the ASM3-BioP model in
the SIMBA simulation platform. The MBR modeled in this study is sub-
ject to extreme load fluctuation. The EAWAG BioP module was imple-
mented, and the decay rate of PAO (mPAO) was adjusted only by
changing its value from 0.2 to 0.15 d−1. The implementation of the
model allows to adjust the MBR return sludge ratio to 1.2 times the in-
fluent to achieve a stable EBPR with efficiency above 90%. Theoretically,
PAOs concentration was found to be in the range of 300–1500 mgCOD
L−1 for sludge recirculation ratio of 0.6–1.7 and there was no increase
in the PAO concentration above 1.2.

As presented in Table 4, ASM2d (with and with EPS/SMP consider-
ation) is a widely used model for simulation of BioP-removal in MBRs,
for lab-scale as well as pilot systems, and very limited (5) studies have
been published for full-scale systems (10–100 m3d−1). No study has
been published for super-large scaleMBR (≥ 100,000m3d−1). Perceived
competitive advantage of GAOs over PAOs under the longer SRTs (thus
higherMLSS andMLVSS) is countered bymodifying the design configu-
rations of the MBRs to control the SRT and feed composition (e.g., step
feed configuration). ASMs can successfully simulate the BioP-removal
in MBRs when fundamental differences in MBR functioning (Table 3)
compared to CASP are considered. However, due to complete biomass
retention in MBRs and especially the PAOs due to their increased size,
several PAOs related model parameters required adjustments
(Table 4) through calibration approaches. The majority of the studies
considered calibrating the kinetic parameters, while few studies even
calibrated the stoichiometric parameters as well, which seems neces-
sary to accommodate the effects due to different stoichiometric rates in-
duced by the GAOs and PAOs competition for phosphorous uptake.

2.5.3. Wastewater simulation software
Table 4 shows that the modelers have used various special-purpose

simulation software, which is far less straightforward and easy to use
than the general-purpose simulation environments such as MATLAB/
SIMULINK or spreadsheets. The most frequently used simulation soft-
ware in simulation studies in academia and the industry are; BioWin,
GPS-X, SIMBA, WEST (previously EFOR), SUMO, and EAWAG's
AQUASIM. Simulators like ASIM, STOAT, lynx, and JASS are primarily
used in academia for research and teaching purposes. The wastewater
treatment industry is also using relatively new simulators like DESASS
(design and simulation of activated sludge systems) and EPD
(EnviroProDesigner) to design and optimize the WWTPs. A summary

of the simulators' features based on the information available in each
product's description by its respective supplier is provided as supple-
mentary material as Appendix D.

3. Chemical P-removal modeling and control

3.1. Phosphorus precipitation process

Chemical phosphorus removal, also called “removal by a salt addi-
tion,” can be applied in combination with BioP-removal as i) pre-
precipitation, ii) simultaneous iii) post-precipitation and iv) sometimes
side stream precipitation, which is usually adopted when P-recovery is
intended (Van Haandel and Van Der Lubbe, 2007). Sometimes in one
plant, metal salts are added in different points or locations along the
treatment chain resulting in two or more “places” of precipitation. The
metal salt is used to convert the dissolved inorganic phosphorus com-
pounds in the wastewater into a low solubility metal phosphate,
which can be removed in the process's subsequent stages. Among the
various pathways; i) adsorption of phosphate onto hydrous ferric oxides
(HFO) ii) co-precipitation of phosphate into the HFO structure iii) Pre-
cipitation of metal phosphate and iv) precipitation of mixed cation
phosphates (i.e., calcium, magnesium, iron, or aluminum phosphates,
or hydroxy phosphate) are the most commonly considered processes
for removing phosphorus (Smith et al., 2008). In addition, these pro-
cesses also improve the sludge properties via neutralizing the floc
charge and improving the filterability by the changing the settling prop-
erties of the sludge (Lee et al., 2001; Asensi et al., 2019). Metal ions can
bond with negatively charged groups within EPS and increase floc size,
packing density (Asensi et al., 2019), and shearing resistance (Zhang
et al., 2008).

Chemical P-removal in MBR is relatively different than CASP due to
i) limited or no soluble phosphorus in case of MBR effluent and metal
carryover is comparatively less than CASP ii) operation of MBRs at
higher SRT and thus higher MLSS which improved the flocculation
and coagulation potential of phosphorus iii) addition of the coagulant
at the downstream of the process in case of MBR, and iv) interaction
of metal ions with EPS and membrane surface to cause/reduce fouling
(a controversial in the literature). Chemical P-removal in the following
sections is discussed in details keeping in view all these aspects of
MBR functioning. Furthermore, a brief discussion on the fundamentals
of the chemical precipitation is dedicated keeping in view the metal
and hypothetical phosphate complexes assumed in chemical precipita-
tion models.

Chemical P-removal depends upon effective coagulation and floccu-
lation processes. Multivalent metals salts, e.g., ferric chloride (FeCl3),
ferric sulfate (Fe2(SO4)3), ferrous sulfate(FeSO4), ferrous chloride
(FeCl2), alum chloride (AlCl3), and lime, are generally used as a
coagulant (Van Haandel and Van Der Lubbe, 2007) in wastewater
treatment to improve P-removal and the removal of higher molecular
weight organics such as EPS and SMPs (Sun et al., 2019; Wang et al.,
2014). The coagulation is then followed by flocculation process, which
helps to form neutralized larger-sized flocs due to collision and electro-
static attraction of the sludge particles under slowmixing (Takács et al.,
2005; Zhang et al., 2015). Afterwards, the larger-sized flocs formation
(Asensi et al., 2019), alongwith phosphorus entrapped into, is removed
via separation process or sludge extraction (Tchobanoglous et al., 2002).
Ideally, 1 mol of the trivalent metal salt is required to remove 1 mol of
phosphorus (Me/P of 1:1) as described by the theoretical stoichiometric
expression (Eq. (3.1)).

Me3þ aqð Þ þ PO4
3− aqð Þ ! MePO4 sð Þ ð3:1Þ

Me3þ aqð Þ þ H2PO4
− aqð Þ ! MePO4 sð Þ þ 2Hþ ð3:2Þ

For example, when FeCl3 is used as ametal salt, the weight ratio of
Fe3+ to phosphorus is 1.8. Similarly, 1mol of aluminum is required to
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remove one mole of phosphorus. The weight ratio for Al/P is thus
0.87.

FeCl3 aqð Þ þ PO4
3− aqð Þ ! FePO4 ↓ð Þ þ 3Cl− ð3:3Þ

Al2 SO4ð Þ3 þ 2PO4
3− aqð Þ ! 2AlPO4 þ 3SO4

2− þ 14 H2O ð3:4Þ

The use of ferrous sulfate (divalent metal) in full-scale MBRs is also
preferred over ferric salts due to low cost (Wu et al., 2015) and compa-
rable efficiency to ferric salts (Wang et al., 2014).When FeSO4 is used as
metal salts, it is first oxidized to trivalent metal ions (Me3+) from
divalent (Me2+) as described by Eq. (3.5) or precipitate as vivianite
(Fe3(PO4)2.8H2O). Prediction of the chemical precipitation in MBRs is
difficult because of oxidation of ferrous to ferric combined with
several interactions between iron, phosphorus, and other ligands (Wu
et al., 2015). Furthermore, among several factors that may impact the
oxidation process including; i) DO concentration ii) the catalytic re-
sponse by the microbes or influent constituents like sulphur and iii) in-
hibition by the water matrices such as carbonate and pH (Thistleton
et al., 2001). It has been investigated that in-situ production of Fe3+

by oxidation (Eq. (3.5)) from the Fe2+ is amore efficient phosphate pre-
cipitant than the external addition of Fe3+ (Thistleton et al., 2002).

Fe2þ aqð Þ þ Hþ þ 0:5 O2 ! Fe3þ aqð Þ þ 0:5 H2O ð3:5Þ

For example, when ferrous chloride is used, theweight ratio of Fe2+/
P is 2.7 (three moles of ferrous required to remove two moles of phos-
phorus) as described by the stoichiometric reaction (Eq. (3.6)).

FeCl2 aqð Þ þ 2 PO4
3− aqð Þ ! Fe3 PO4ð Þ2 ↓ð Þ þ 6 Cl− ð3:6Þ

The trace amount of sulfide coming from the sewer system due to
longer retention times is also present in the influent, which may react
with the divalent/trivalent metal ions and form metal sulfides (and
thus remove the rotten eggs like odor) as described by the stoichiomet-
ric reactions (see Eqs. (3.7) & (3.8)). The sulfide is usually removed by
the chemical precipitation process as demonstrated in the study
(Gutierrez et al., 2010) wherein sulfide concentration were reduced
from 7.6 mgSL−1 to 0.1 mgSL−1.

Me2þ aqð Þ þ S2− ! MeS sð Þ ð3:7Þ

Me3þ aqð Þ þ 3 s2− ! Me2S3 sð Þ ð3:8Þ

For practical applications,metal salts (inorganic coagulants) are nor-
mally dosed with higher Me/P ratios (molar ratio ranges between 1 and
4) than the theoretical stoichiometric ratio (i.e. Me/P: 1). It is presum-
ably due to the higher pH of the sludge than the theoretical (between
5 and 6) required for precipitation of metal phosphate complexes (De
Haas et al., 2000; Van Haandel and Van Der Lubbe, 2007). Secondly, a
higher dose is also required because the metal ions react with water
to produce hardly soluble metal hydrated complexes, e.g., Me (H2O)63+

as described by Eq. (3.9). Thirdly, this excess dose is most likely
explained by the competition between OH− and PO4

3− and the need of
excess Fe3+ to destabilize FePO4 and other colloids, and this can be
examined through estimating the equilibrium log constants of the
reactions (Thistleton et al., 2002). Furthermore, P-removal efficiency is
affected by the influent characteristics, the discharge limit, and operat-
ing conditions (Tchobanoglous et al., 2002). The factors affecting the
P-removal are discussed in Section 3.2.

Me3þ aqð Þ þ 3H2O ! Me OHð Þ3 sð Þ þ 3 Hþ ð3:9Þ

In addition to the precipitation as insoluble metal phosphate
(MePO4), adsorption of positively charged hydrated metal complexes
(insoluble metal hydroxide such as unbound HFO with high sorption

or amorphous ferric oxyhydroxide (AFO) helps to remove phosphorus
from wastewater. If the PO4

3− concentration is lower in the influent
and higher metal salt is dosed owing to the competition between the
formation of metal phosphate and metal hydroxides, additional metal
ions will react with water (Eq. (3.9)) or OH− present in the
wastewater. As a result, an increased solids production in MBRs or
increased concentrations of metal salts in CASP effluents are noticed
(De Haas et al., 2000; Gnirss et al., 2003; Thistleton et al., 2002; Zhang
et al., 2015).

The precipitation of phosphate as calcium hydroxyapatite (Ca5(PO4)
3OH) is the primary removal process when lime Ca(OH)2 is used for
simultaneous P-removal (see Eqs. (3.10)–(3.12)). Since lime reacts
with bicarbonate alkalinity present in wastewater to form CaCO3 and
raising the pH above 8. The concentration of lime required for P-
removal is determined by the wastewater's alkalinity. The chemical re-
actions involved in P-removal through lime are:

Ca OHð Þ2 aqð Þ þH2PO4
− ! CaHPO4 sð Þ þ H2Oþ OH− ð3:10Þ

Ca2þ aqð Þ þ 3 PO4
3− þ OH− ! Ca5 PO4ð Þ3OH sð Þ ð3:11Þ

Ca2þ aqð Þ þ CO3
2− ! CaCO3 sð Þ at pH≥9:5ð Þ ð3:12Þ

Lime is not used in simultaneous P-removal applications as the pH
must be raised to a value ≥10 for calcium to react and precipitate as
phosphate and therefore not compatible for biological treatment. It in-
creases the complexities involved in handling the process and storage
of the lime in addition to complexities associated with pH handling
(Tchobanoglous et al., 2002). The usage of different salts provides differ-
ent results and associated problems. Therefore, a careful selection of the
right kind of metal salts or coagulants is essential. Ferric salts are widely
used and are more advantageous due to their low costs, least handling
complexities and are slightly more effective than aluminum salts
(Mishima and Nakajima, 2009).

3.2. Factors affecting chemical precipitation for phosphorous

Performance of chemical P-removal is linked to several factors, in-
cluding i) influent chemistry and composition ii) operational conditions
such as DO, zeta potential and pH control iii) type of coagulant, coagu-
lant/P molar ratio and dosing location and v) mixing conditions of the
coagulant with the sludge (Kim and Chung, 2014; Zhang et al., 2015).
These factors can influence the types of Fe and P species present in the
influent/sludge and the degree and magnitude of transition between
these species (Fleischer et al., 2005; Wang andWaite, 2010). For exam-
ple, when an inorganic ferric (Fe3+) salt is first added to the mixed li-
quor, it can form AFO precipitates, which can then adsorb phosphate,
organic compounds like SMP, and other dissolved constituents and
may influence the membrane fouling. The precise pH conditions and
local concentrations of sorbing species decide whether this process in-
volves successive or simultaneous precipitation/adsorption phenomena
between iron and phosphate. The factors influencing the chemical pre-
cipitation are briefly discussed in the following paragraphs and a sum-
mary is given in Table 6.

3.2.1. Influent chemistry and composition
The majority of early studies on chemical P-removal used simple

water matrices composition (i.e., hydrogen (H), metal (Me), oxygen
(DO), hydroxides, carbonates and phosphorus. Understanding the influ-
ence of more complex water chemistry is expected to enhance precipi-
tation models' ability to predict chemical P-removal in wastewater.
Chemical P-removal is affected by influent constituents, such as alkalin-
ity, soluble and total COD, and TSS concentrations. The extent of their in-
fluence on P-removal is discussed in the following sections regardless of
the technology (CASP or MBR).
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3.2.1.1. Alkalinity. An optimum alkalinity of the influent is essential
for the adequate precipitation of phosphorus. In low alkalinity
(≤ 50 mgL−1) influent, the addition of coagulant induced sudden
pH changes, creating a challenging environment and resulting in
lower P-removal (Banu et al., 2009). In an MBR study (Zhang
et al., 2015), it was observed that the addition of metal salt in ex-
cess resulted in consumption of the alkalinity at unprecedented
rates and thus decreased the pH of the sludge (≤ 4) and slowed
the hydrolysis rate of the metal. Therefore, the nitrification was
substantially impaired at these low pH values. Nevertheless, nitro-
gen reduction can be restored by adjusting the pH to neutral levels
via control system. Two other studies (Clark et al., 2000; Philips
et al., 2003) investigated the iron salts' toxicity for the microbial
community (AOB and Nitrobacter) responsible for nitrification
process. The authors found that the metal's toxicity negatively im-
pacted the nitrification rate contrary to the findings of previous
study presented by Sun et al. (2019).

The study presented by Szabó et al. (2008) explored the influence of
the P-precipitation inwastewater in the presence of excessive alkalinity
(0–600 mgCaCO3L−1). The authors found that the higher alkalinity
resulted in significantly higher residual soluble P (PO4

3−), but this
phenomenon remained unexplained. A hypothesis was that the metal
hydroxide (MeOH) formation occurs more rapidly in higher alkalinity
waters because the hydrogen ion (H+) trapping potential is greater, re-
sulting in a kinetic advantage for fastMeOHprecipitation and a less like-
lihood of metal phosphate (MeP) andMeOH co-precipitation. The same
authors also tried to explain this phenomenon by assumed competition
between bicarbonate ions (HCO3

−) and monohydrogen phosphate
(HPO4

2−) for active sites. This phenomenon, however, necessitates
further study and confirmation. While two other studies reported
contradictory findings, wherein changes in alkalinity (i.e., from 0 to
400 mgCaCO3L−1) had a negligible effect on P-precipitation (Kang
et al., 2003; Newcombe et al., 2008). A relatively recent model-based
study (Hauduc et al., 2015), with influent alkalinity of 125mgCaCO3L−1

(controlled pH at 6.5 and higher mixing) resulted in more than 95% P-
removal. Phosphorus precipitation withmetal salts consumes alkalinity
and demands supplemental addition of CaCO3 (or NaHCO₃) to avoid
dramatic pH drop to acidic range and is not suitable for the
microbiology. It is therefore essential to control the pH of the
wastewater treatment process (especially with alum and iron salts)
and therefore must be studied along with the alkalinity.

In the absence of a sufficient number of studies and contradiction in
the published literature, it is hard to establish the role of alkalinity in P-
removal. Therefore,more research is needed to determine the impact of
alkalinity on chemical P-removal, especially for the MBR, which is al-
most non-existent within the last two decades.

3.2.1.2. Initial phosphorus load. The P-removal efficiency is determined
by the raw wastewater's soluble phosphorus concentration. As dis-
cussed previously, higher the initial concentration of phosphorus,
lower is the Me/P ratio. The relative efficiency of the P-removal in-
creased with the increased concentration of initial soluble phosphorus
since low concentration of PO4

3− are more difficult to remove than
higher ones. Although, with increasing coagulant dosing P concentra-
tion decreases down to certain level (0.01 gPm−3), higher coagulant
concentration did not help to reduce any further the residual P concen-
tration (Smith et al., 2008; Szabó et al., 2008).

3.2.1.3. Presence/absence of colloidal organic matter. Several studies have
reported the influence of organic matter on P-removal (Aleta et al.,
2018; Mao et al., 2012; Szabó et al., 2008). The presence of citrate (50,
100, and 200uM) decreased P-adsorption onto the fresh HFO (Mao
et al., 2012). According to Szabó et al. (2008), increasing the influent
COD and TSS concentrations resulted in lower chemical P-removal.
The authors assumed that the corresponding decrease in the P-
removal rate may be due to the competition to fill the binding sites
available onto the metal hydroxide surface between phosphate ions
and carboxylic-phenolic groups present in the organic matter.

3.2.2. Influence of operational conditions

3.2.2.1. Dissolved oxygen concentrations. Optimum DO concentration be-
come essential with the use of ferrous salts required for Fe2+ oxidation
to ferric (Fe3+) and subsequent precipitation of vivianite (Fe3 (PO4)
2.8H2O). These processes are limited by the oxygenation rate and
sludge pH (Wu et al., 2019) specially in the anoxic chamber where DO
<0.1 mgL−1 and the oxidation is slow (Zhang et al., 2015).

3.2.2.2. Basicity/pH. Phosphate and metal reactions commonly used to
remove phosphate have been reported to be pH-dependent. The effect
of pH on P-removal has been studied extensively (Caravelli et al.,
2012, 2010; Kim and Chung, 2014; Mao et al., 2012; Smith et al.,

Table 6
Summary of the factors influencing the chemical precipitation in MBR.

Factor Description of the influence References

Alkalinity Lower influent alkalinity reduced the P-removal due to sudden changes in the pH after addition of the
coagulant The alkalinity of wastewater between 98 and 120 mg CaCO3L−1 is sufficient to maintain the
sludge pH close to circumneutral level (6–6.5) during the FeCl3 dosing and flocculation and achieving
≥98% of TP-removal

Banu et al., 2009; Kim and Chung, 2014; Li
et al., 2018

Dissolved oxygen Higher DO (1 5–2.5 g·m−3) concentration helps in better P-precipitation, mainly when ferrous (iron)
is used as a coagulant.

Kim and Chung, 2014; Ren et al., 2019;
Wu et al., 2019; Zhang et al., 2015

Basicity/pH Change in pH of the sludge in MBR did not affect the P-removal though significantly higher fouling was
observed at a pH range of 4–5.The optimal pH for chemical precipitation in MBR was found in the range of
6.5–7.

Li et al., 2017; Meng et al., 2009

Type of coagulant The P-removal performance of each of the coagulants is above 85%, depending upon several other
factors discussed in Section 2.3. The coagulant should be selected based on its price, regulatory
acceptance and toxicity risk for the receiving bodies (in case of carryover).

Alibardi et al., 2021; Holba et al., 2012; Li
et al., 2017; Ren et al., 2019;
Song et al., 2008; Sun et al., 2019; Wang
et al., 2014; Wu et al., 2015;
Yang et al., 2011; Zhang et al., 2015

Molar ratio Based on several studies presented Table 8 the optimum molar ratio varies between 1.5 and 4. Higher
molar ratios can lead to breach of regulatory iron concentration due to carryover. Carryover in MBR is
limited to soluble fraction (due to 100% solid retention) of phosphorus which do participate in floc
formation. This aspect requires further study.

Dosing location and
numbers of dosing
points

The coagulant's addition in the aerobic zone of the MBR provided the best results or P-removal. Two
points (upstream and downstream before the filtration process/secondary clarifiers) coagulant dosing
is common in full-scale plants.

Mbamba et al., 2019; Wu et al., 2015

Single point dosing (12–14 mgL−1) can also achieved 95 ± 3% of the TP removal. Alibardi et al., 2021
Mixing Mixing had little to no effect on P-removal in MBRs. Kim and Chung, 2014

Rapid mixing improved the P-removal in both MBR and CASP. It risks to damage the microorganisms
when provided with greater shear with values greater than 425 s−1 and therefor shear induced by
coarse bubble aeration is sufficient for mixing of coagulant in MBR.

Autin et al., 2016; Li et al., 2019
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2008; Szabó et al., 2008). According to Smith et al. (2008), effective P-
removal occurred between pH range of 5.5–7.0 for CASP. Due to other
chemical reactions in the wastewater, the optimum pH range is
situation-dependent. To fully remove phosphorus, the exact coagulant
dose must also be calculated as function of pH and this may vary from
case to case depending upon factors discussed in Section 2.3 as well as
other factors discussed in the current section. On the other hand,
some other studies (Caravelli et al., 2012; Szabó et al., 2008) found
low precipitation of MeOH at lower pH (< 4) and formation of soluble
P-complexes and phosphate precipitates with Mg2+ and Ca2+ ions at
higher rates at pH greater than 10 (Szabó et al., 2008). The study of
Zhang et al. (2015) investigated the effect of pH on P-removal and
membrane fouling. Although the pH of the mixed liquor in MBR was
within circumneutral region (6–7) and therefor the P-removal perfor-
mance was not compromised, it did have an impact on the nature
of membrane fouling, which was possibly due to the relative rates
of formation of Fe3+-SMP complexes and amorphous ferric
oxyhydroxides. AFO formation was especially favored at neutral
pH value (6–7), and it resulted in successful EPS removal from so-
lution, but at the expense of filtration results, either through the
formation of a Fe3+-polysaccharide gel layer or pore blocking.
Higher pH values (8–9) have been reported to increases the precip-
itation of CaCO3 and results in inorganic fouling of the membrane
(Meng et al., 2009). In another MBR study (Li et al., 2017) where
the pH after adding the coagulant was controlled between 6.5 and
7, it was possible to achieve the P-removal above 80% with ferric
and aluminum salts.

There is no general agreement on the optimum pH range for P-
removal based on the reviewed literature. However, it can be inferred
that successful removal occurs in the circumneutral pH range typical
of WWTP.

3.2.2.3. Biomass concentration. Caravelli et al. (2012) investigated the im-
pact of biomass concentration on chemical P-removal. For pH values
below 5 and 6, biomass presence had little to no effect on P-removal.
For higher pH values (7–8), biomass population significantly increased
P-removal, presumably due to sweep flocculation favoring phosphate
anions' retention under the alkaline conditions. Further research is
needed to explore if biomass concentrations reduce P-removal due to
competition mechanisms (for MeP and MeOH production) and smaller
floc sizes which is the case for MBRs.

3.2.3. Type of coagulant, molar ratio, and dosing location

3.2.3.1. Type of coagulant. As discussed in Section 3.1, multivalent salts
(such as ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3), ferrous
sulfate(FeSO4), ferrous chloride (FeCl2) and alum chloride (AlCl3)),
lime, and polymers are used to co-precipitate phosphorus in wastewa-
ter treatment. A careful selection of the coagulant is essential to achieve
the maximum P-removal efficiency in MBR while keeping the fouling
low. There is a dearth of full-scaleMBR studies focusing on performance
assessment of different coagulants and fouling development. Ferric
chloride is a widely used coagulant for P-removal and odor control via
sulfide precipitation (Tchobanoglous et al., 2002). In a lab-scale MBR
study, it was found that the ferric salt performs better (97%) as com-
pared to ferrous (95%), which is comparatively cheaper than ferric
with the same Fe/P molar ratio (i.e. 2) (Wu et al., 2015). Meanwhile
the study presented by Song et al. (2008) evaluated the aluminum
and ferric salts and found the same P-removal (98%) for both but with
a 15% higher aluminum concentration (Me/P ratio < 1.5). Several MBR
studies listed in Table 7 summarizes the type of coagulant used and
their respective P-removal efficiency. Irrespective of the type of coagu-
lant, above 85% P-removal could be achieved. However, this perfor-
mance must not be studied in isolation from the cost of sludge
production, toxicity induction, and inorganic fouling, as reported in
few studies.

3.2.3.2. Molar ratio. In practice, metal dosages are usually determined
based on the bench, and full-scale tests as current chemical precipita-
tion models do not consider competing reactions (Tchobanoglous
et al., 2002). MBR requires higher doses of metal salts than CASP due
to higher SRT, as reported by Conidi and Parker (2015). The Fe/P
molar ratio of 2–4 is optimum to achieve P-removal above 85%. P-
removal achieved with different coagulant/P molar ratio in several
MBR studies is given in Table 7. However, most of these studies have
considered coagulant addition (low molar ratio) as fouling abatement
and P-removal achieved as their secondary objective. The effect of coag-
ulant addition on the fouling development/fouling removal, in addition
to P-removal, is discussed in Section 3.3.

3.2.3.3. Dosing location. The right place for adding the precipitant to the
influent or the effluent channel of the activated sludge/MBR tanksmust
be tested in each case, particularly regarding the essential intensive and
rapid mixing with sewage flow to the treatment lane. The coagulant's
addition in the aerobic zone of the A/O MBR was found to be the most
effective, with P-removal efficiency over 85% (Zhang et al., 2015). A
pilot-scale CASP study (Mbamba et al., 2019) analyzed the dosing of
FeSO4 at three different locations: aerobic, anoxic, and RAS/DEOX
tanks. Feeding at the aerobic tank had a slightly higher effect on the
chemical P-removal; consequently, this location is preferable due to
high DO and goodmixing conditions that could maximize HFO particu-
lates and iron phosphate formation.

3.2.4. Mixing conditions
Apart from the coagulant type and dosage, mixing speed is the most

critical aspect from the engineering point, given the slow P-removal ki-
netics. Understanding the role of mixing in P-removal kinetics is essen-
tial as almost all equilibrium-based precipitationmodels are based upon
the assumption of ideal mixing and instant reactions (De Haas et al.,
2000; Smith et al., 2008; Takács et al., 2011). Several studies have re-
ported the importance of providing sufficient mixing for efficient P-
removal, and the literature review revealed diverse results.

(Szabó et al., 2008) carried out studies with pre-polymerized metal
salts rather than freshly formed salts to mimic conditions of inadequate
mixing under whichmetal hydroxides form in the absence of phospho-
rus. Pre-polymerized salt removal was found to be less effective. Thus, a
greater likelihood of interaction between P molecules and HFO flocs is
provided by adequate mixing due to increased co-precipitation and ad-
sorption. Mixing with a G value of 425 s−1 achieved almost 90% P-
removal in 10–20 min, while coagulant addition during low mixing
rate (20 rpm, G = 6 s-1) hampered P-removal (Smith et al., 2008). G
value of 425 s−1 in a wastewater treatment facility is normally undesir-
able since the strong shear can break up flocs. The earlier studies with
higher mixing rates had little to zero influence on P-removal perfor-
mance (Thistleton et al., 2002; Kim and Chung, 2014). A recent MBR
study (Li et al., 2019) documented the impact of mixing on P-removal.
FeCl3 was dosed into the MBR with rapid mixing (200 rpm) for around
5min. It was possible to achieve over 95% P-removal with rapidmixing.

Keeping view the literature discussed, it is hard to establish the role
of mixing in P-removal effectiveness. However, it can inferred that the
mixing speed of 20–200 rpm is an optimum depending upon the time
span of mixing which vary between with an inverse relationship with
the rpm.

3.3. Chemical P-removal and membrane fouling

The precipitant is usually added downstream of the CASP, while in
the case of MBR systems, it is added in the mixed liquor and before
the filtration process or sometimes directly into the membrane tank
(Gómez et al., 2013; Song et al., 2008). Therefore, the logistics and con-
trol of chemical addition and the dynamics and reliability of chemical P-
removal are all more complicated in theMBR process than CASP (Zhang
et al., 2015). It is nowwell established that the colloidal and SMPs found

K. Nadeem, M. Alliet, Q. Plana et al. Science of the Total Environment 809 (2022) 151109

19



Ta
bl
e
7

Ch
em

ic
al

P-
re
m
ov

al
in

M
BR

,S
M
P/
EP

S
pr
od

uc
ti
on

an
d
fo
ul
in
g
de

ve
lo
pm

en
ta

nd
/o
r
m
it
ig
at
io
n.

Sr
.

no
.

Re
fe
re
nc

e
W

as
te
w
at
er

Sc
al
e

Co
nfi

gu
ra
ti
on

In
flu

en
t
w
as
te
w
at
er

ch
ar
ac
te
ri
st
ic
s

(m
gL

−
1
)

Co
ag

ul
an

t
in
fo
rm

at
io
n

To
ta
l

P-
re
m
ov

al
%

Ef
flu

en
t

P
m
gL

−
1

EP
S/
SM

P/
m
ac
ro

m
ol
ec
ul
es

Co
nc

en
tr
at
io
n

Fo
ul
in
g

CO
D

TN
N
H
4

N
O
3
-N

PO
43
−

TP
Co

ag
ul
an

t
M
ol
ar

Ra
ti
o

O
pt
im

um
do

se
(m

gL
−
1
)

1
G
ni
rs
s
et

al
.,2

00
3

RW
La
b

A
/O

99
8

70
41

0.
4

10
.5

G
FH

2.
12

40
99

.0
%

0.
1

N
C

N
E

RW
Pi
lo
t

A
/O

74
0

61
43

~~
9.
1

G
FH

2.
45

40
98

.9
%

0.
1

N
C

N
E

2
A
da

m
et

al
.,
20

03
RW

La
b

U
CT

99
8

69
.7

41
.3

0.
42

10
.5

Fe
Cl

3
1.
3

25
99

.5
%

0.
05

N
C

N
C

3
So

ng
et

al
.,
20

08
SW

La
b

45
35

.4
11

.1
A
lC
l 3

1.
51

30
98

.0
%

0.
05

N
C

↓
SW

La
b

27
30

.8
13

.1
Fe

Cl
3

1.
28

30
98

.0
%

N
C

↓
4

M
is
hi
m
a
an

d
N
ak

aj
im

a,
20

09
SW

La
b

A
/O

56
0

Fe
Cl

3
1.
0

22
60

92
.5
%

↓
↓

SW
La
b

A
/O

25
Fe

Cl
3

2.
0

45
20

99
.7
%

↓
↓

5
G
óm

ez
et

al
.,
20

13
RW

Pi
lo
t

A
/O

25
0

49
1.
4

4.
6

4.
7

Fe
Cl

3
2.
0

12
.4

84
.7
%

0.
7

↓
N
C

6
Ya

ng
et

al
.,
20

11
RW

Pi
lo
t

A
/O

19
6

20
.5

18
.5

1.
2

2.
9

PF
C

2.
4

12
.5

91
.0
%

0.
26

↓
↑

7
H
ol
ba

et
al
.,
20

12
RW

Pi
lo
t

M
LE

72
4

40
.8

4.
2

4.
3

Fe
SO

4
0.
5

3.
5

84
.7
%

↓
N
C

RW
Fu

ll
M
LE

11
40

10
5

8.
7

Fe
SO

4
0.
2

3.
5

85
%

↓
N
C

RW
Fu

ll
M
LE

65
5

73
.4

14
.5

Fe
SO

4
0.
1

3.
5

↓
N
C

8
W

an
g
et

al
.,
20

14
RW

Pi
lo
t

U
CT

40
0

50
25

9
Fe

Cl
3

2
>
96

%
0.
05

↓
↑

RW
Pi
lo
t

Fe
SO

4
2

>
96

%
0.
05

↓
↑

9
Zh

an
g
et

al
.,
20

15
SW

La
b

U
CT

40
0

60
25

10
Fe

Cl
3

4
99

.8
%

0.
02

↓
↑

Fe
2
(S
O
4
) 3

2
99

.6
%

0.
03

↓
↑

10
W

u
et

al
.,
20

15
SW

Pi
lo
t

A
/O

40
0

50
8

A
lC
l 3

2
95

.2
%

0.
38

N
C

N
C

Pi
lo
t

Fe
Cl

3
2

96
.7
%

0.
26

N
C

N
C

11
Li

et
al
.,
20

17
RW

La
b

50
17

15
2

Fe
rr
ic

5.
6

20
80

.3
%

0.
29

↓
↓

A
lC
l 3

17
.2

30
80

.3
%

0.
33

↓
↓

12
Le

e
et

al
.,
20

17
SW

La
b

U
CT

29
3

24
.3

20
.7

0.
4

4.
25

PA
C

3.
4

85
.5
%

0.
62

↑
↑

13
Li

et
al
.,
20

18
RW

La
b

36
0

28
.5

6.
35

Fe
Cl

3
1.
8

20
95

.6
%

0.
28

↓
↓

14
W

u
et

al
.,
20

19
RW

Pi
lo
t

U
CT

3.
05

Fe
2(

SO
4
)3

2
↓

↓
15

Su
n
et

al
.,
20

19
RW

La
b

U
CT

26
8.
1

40
.4

38
.6

4.
97

A
lC
l 3

2.
3

10
85

.4
%

0.
73

↓
↓

16
Re

n
et

al
.,
20

19
SW

La
b

A
/O

42
5

45
27

.5
10

Fe
2(
SO

4)
3

2
96

.9
%

0.
31

N
C

↓
1

96
.2
%

0.
38

N
C

↓
17

A
lib

ar
di

et
al
.,
20

21
RW

Fu
ll

A
/O

57
9

26
.9

9.
18

Fe
2(

SO
4
)3

3.
75

14
95

%
0.
46

N
C

N
C

SM
-s
yn

th
et
ic
w
as
te
w
at
er
;R

M
-r
ea

lw
as
te
w
at
er
;N

C-
no

tc
on

fir
m
ed

;N
E-

no
ef
fe
ct
;P

A
C-

Po
ly
‑a
lu
m
in
um

ch
lo
ri
de

,G
H
F-

gr
an

ul
ar

fe
rr
ic
.

K. Nadeem, M. Alliet, Q. Plana et al. Science of the Total Environment 809 (2022) 151109

20



inmixed liquor aremainly responsible formembrane fouling (Gao et al.,
2013). These products have a similar size to membrane pores and
often appear to form impermeable gels on the membrane surface
(Meng et al., 2017). The addition of precipitant (if not dosed opti-
mally) into the MBR is assumed to be influential for organic, inor-
ganic, and biofouling in addition to the P-removal (Hai et al., 2018;
Meng et al., 2017).

As extensively discussed in the MBR fouling literature, inorganic
fouling in MBRs is caused by biological and/or chemical precipitation
of the metal cations (e.g., Fe3+and Al3+) and anions of ionizable bio-
polymers (e.g., as PO4

3− and SO4
2−) onto the membrane (Iorhemen

et al., 2017; Wang et al., 2008). Several studies investigated the
addition of a small concentration of coagulant into theMBRwith the in-
tention to control membrane fouling. It reduced the extent of the TMP
evolution, which is assumed to be attributed to the large-sized floc for-
mation (formed due to neutralization) and reduced organics concentra-
tion in the supernatant (reduction of organic fouling), limiting the pore
blockage (Fan et al., 2007; Fleischer et al., 2005; Koseoglu et al., 2008;
Wu et al., 2006; Zhang et al., 2008). In addition, it has been perceived
that an optimum coagulant addition decreases the compressibility of
the sludge flocs, changes the particle size distribution (PSD), reduces
the concentration of EPS (and thus the reduction in the biofouling), in-
creases the porosity of themembrane, and increases theMLSS filterabil-
ity (Gómez et al., 2013; Song et al., 2008; Sun et al., 2019). Finally, it is
assumed to pose anunknown risks to themembrane lifewhen operated
over more extended periods (Gnirss et al., 2003) and requires further
research.

As described by Song et al. (2008), the hydraulic resistance of the
cake is influenced by the coagulant addition, and a noticeable reduction
was observed with the addition of coagulant above 200mgL−1. Usually,
higher concentrations (Fe/P in the range of 2–4) are used for P-removal,
and therefore results of these studies might be irreverent to understand
the trade-off between the P-removal and membrane fouling. If the ob-
jective is complete P-removal, the Fe/P ratio is adjusted in the range of
1.5 and 4 (Sun et al., 2019; Takács et al., 2011; Zhang et al., 2015).
Thus, an in-depth analysis of various studies focused on P-removal
and membrane fouling is essential to derive the conclusions.

In addition to P-removal, coagulant (alum) addition enhancedmem-
brane filtration performance and reduced themembrane fouling due to
incorporation of the colloidal solids into the flocs (later removed with
sludge) rather than sticking onto the membrane surface (Fleischer
et al., 2005). Effect of ferric chloride and alum additionwas investigated
on P-removal, and onmembrane fouling in a lab-scale study (Song et al.,
2008). The authors found that the alum addition (13.3 mgAlum/mgP)
resulted in 98% P-removal and reduced the specific cake resistance
due to increased sludge particle size (from 45 μm to 57 μm). It was fur-
ther found that the nitrification process was not impacted by the addi-
tion of the FeCl3, while the phosphorus was removed and the
membrane fouling effectively controlled. However, it reduced the pH
to almost half (≈ 3.4) of its initial value as the concentration
increased from 0 to 500 mgL−1.

In another lab-scale study, the addition of FeCl3 (Fe/P ratio = 2)
successfully removed 99.7% of the phosphorus from the synthetic
wastewater and decreased the fraction of SMPs (having protein and
carbohydrates sizes falling between 0.1 and 0.4 μm) by 50% and thus
reduced the membrane fouling propensity due to increased floc size
(Mishima and Nakajima, 2009). Another pilot-scale study (Yang et al.,
2011) employing polymeric ferric chloride (PFC) revealed an increase
in membrane fouling. The authors conducted cake layer analysis using
a three-dimensional excitation-emissionmatrix (EEM) and gel filtration
chromatography (GFC). The analysis indicated that higher molecular
weight organics (> 1000 kDa) were themain contributors of themem-
brane biofouling. Fourier transform infrared spectrum (FTIR) analysis
further confirmed that these higher molecular weight organics were
mostly protein and polysaccharides. The same authors also observed
the formation of a dense and nonporous gel layer onto the membrane

surface with clusters of bacteria and bio-polymers with help of a scan-
ning electronmicroscope (SEM). Besides, X-ray elemental diffractomet-
ric analysis elucidated that ferric metal was the most prominent
foulants responsible for inorganic fouling of the membrane.

The study of Holba et al. (2012) investigated the effect of lower coag-
ulant concentration on P-removal and SMP production at pilot and full-
scale. A fixed coagulant dose of 3.5 mgFeSO4L−1 was used for all three
systems (one pilot and two full-scales). A better P-removal efficiency
(84.7%) with a 68% reduction of SMPs was observed in pilot-scale
plant. However, large load fluctuations and constant coagulant dosing
in the full-scale plant caused in unsatisfactory P-removal. In another
pilot-scaleMBR study (Wang et al., 2014), similar effects have beendoc-
umented where the coagulant dosing required optimization to balance
the enhanced P-removal and coagulant-driven membrane fouling. The
addition of metal salt (i.e. FeCl3) resulted in 89%–97% P-removal effi-
ciency and produced more sludge (Chae et al., 2015). In a lab-scale in-
vestigation (Sun et al., 2019), the addition of metal salt (20 mgL−1 of
Al2(SO4)2) resulted in achieving over 90% P-removal and reduced TMP
(from11.3kPad−1 to 0,57kPad−1) due to a decline in EPS concentrations
and accumulation of particles on themembrane surface and increase in
the particle size. The study of Asensi et al. (2019) revealed that the ad-
dition of FeCl3 (in neutralized condition) linearly increased the floc
size and resulted in more compact floc structure. This increases the
settling properties of the sludge to an extent where the coagulant
concentration reaches to an optimum level and beyond that floc is not
able to retain the coagulant and the settling properties are then
negatively impacted. This suggest that while modeling the membrane
fouling using phenomenological models, changes in the settling
properties of the sludge due to addition of coagulant should not be
ignored. In another pilot-scale study (Gómez et al., 2013), the addition
of 12.4 mgFeCl3L−1 improved the P-removal efficiency from 54.7% to
84.7%. The authors observed reduction in SMP concentration with the
addition of the coagulant. The X-ray elemental diffractometric analysis
of the cake layer found a significant increase in the Fe 3+ concentration
and a substantial contribution to inorganic fouling. The same authors
further noticed that, at lower coagulant concentrations, it was not
easy to ascertain the trade-off between the fouling reduced by the
SMP removal and Fe3+ deposition and resulting inorganic fouling. The
higher coagulant doses resulted in significant pH decrease and precipi-
tated TP present in the sludge, resulting in a lack of available phospho-
rus for PAO to grow on and participate in the EBPR process. This
becomes pertinent for MBR systems, which are operated at higher bio-
mass concentrations as compared to CASP.

As phosphorus is essential for microbial communities other than
PAOs, participating in nitrification and denitrification processes
(Daigger et al., 2010). Similarly, Zhang et al. (2015) found that the pre-
cipitant dosing lowered the membrane fouling when with Fe/P molar
ratios <1. However, P-removal was compromised and severe fouling
(due to Fe-rich gel layer) was observed with higher molar ratios due
to the formation of Fe-SMP complexes and amorphous ferric hydroxides
(Fe/P > 2). The severity of the membrane fouling was observed when
coagulant was dosed in the anoxic zone compared to dosing in the aer-
obic zone (much closer to membrane). The authors further found that
molar ratio of 2 for Fe3+/P successfully removed 99% phosphorus with-
out impeding the nitrification/denitrification. However, it impacted the
nitrification process significantly with a higher dose (molar ratio of
4) due to increased consumption of alkalinity associatedwith a decrease
of pH value to almost 4 and thus required the pH adjustment. Minimiz-
ing overall iron dosage is also important, not only for cost reasons but
also to avoid unwanted side effects like membrane fouling. Further-
more, the same authors found that lowering the phosphorus concentra-
tions to 0.1–0.2 mgPL−1 using higher coagulant doses did not inhibit
nitrification. Instead, the harmful effects of the chemical precipitants
(Fe2+ and Fe3+) were blamed for suppressing nitrification and denitri-
fication due to toxicity induced by themetals as reported by Philips et al.
(2003).
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Some studies used flotation (DAF) and biologically aerated filters
(BAF) as post/pre-treatment to membrane filtration to improve the P-
removal performance and as well as to counter the inorganic fouling
caused by the metal deposition onto the membrane surface (Lee et al.,
2016; Li et al., 2017). Similarly, Ren et al. (2019) reported the change
in the microbial composition due to addition of ferrous in a ceramic
MBR with a molar ratio of 2. The authors found that the relative
abundance of the aerobic denitrifying bacterial community “Zoogolea”
increased consistently. While the population of other bacterial commu-
nity including “Dechloromonas, Hyphomicrobium and Thauera (anoxic
denitrifying bacteria), Nitrospira (NOB) and Candidatus Accumulibacter
(PAO) which is responsible for BioP-removal reduced sharply due to
toxic effects of iron dose on bacterial physiology.

A trade-off between precipitant dose, fouling, and P-removal is re-
ported differently for different studies, and hence further research is
needed to explore the relationship between the type (cake formation,
pore blocking, etc.) and quantum of the fouling induced (Loderer
et al., 2015; Zhang et al., 2015).Majority of theMBR studies summarized
in Table 7 are either lab-scale or pilot scale units while experiences of
the P-removal and fouling abatement/fouling increase is limited and
therefore more research is needed in this direction.

3.4. Modeling chemical precipitation of phosphorous

Several chemical precipitation models were developed for P-
removal in wastewater systems, and very few of them have been
adopted for precipitationmodeling in CASP andMBRs. The precipitation
model commonly used in combination with ASM models has been dis-
cussed briefly regarding its conceptualization and processes involved,
application in MBR modeling, and the P-removal limitations. Mainly
ASM2d is being used for modeling chemical P-removal in MBRs. Chem-
ical precipitation models employ three main approaches i) chemical
equilibrium approach, ii) kinetic model approach, iii) combined chemi-
cal equilibrium-kinetic approach and geo-chemical complexation (De
Haas et al., 2000; Smith et al., 2008). These precipitation models are
briefly reviewed for quick comparison in terms of processes considered,
limitations, and their usefulness for coupling with the biological and fil-
trationmodel in theMBR case. Although this review's scope is limited to
the last two decades, it is still worth encompassing themodeling knowl-
edge briefly beyond two decades.

3.4.1. Equilibrium-based models
Chemical precipitation modeling gained importance in the late

1970s, and Ferguson and King (1977) introduced the first equilibrium-
based model using empirically derived solubility products. The model
employed co-precipitation as the sole mechanism for removing PO4

3−.
It did not consider the removal of TP or even removal of precipitated or-
thophosphate. Themolar ratio for Al/P in the precipitate is deemed to be
constant at all pH values. The model was sufficient to describe the
effects of alum dosage qualitatively and pH observed in several experi-
mental studies. However, themodel is based on a solubility equilibrium
of afictitious precipitate, i.e., Al1.4PO4(OH)1.2, and solubility products are
empirically derived. Furthermore, themodel did not consider pathways
other than co-precipitation for the P-removal. It also did not included
the effect of the competition of ions such as calcium, magnesium, iron,
or hydroxy phosphate.

The previous model's limitation led to the development of an im-
proved P-removal equilibrium model with ferric salt employing simul-
taneous precipitation and adsorption mechanisms (Luedecke et al.,
1988). The model consists of i) mass balance equations (based on equi-
librium) describing the acid-base reactions for dissociation (by hydroly-
sis) of PO4

3− species and ferric ion-pair complexationwith phosphate or
OH− ii) mass balance equations for phosphate and ferric iii) equations
defining the split between the type of precipitate formed (FerPO4(OH)
3r-3 and FeOOH) at given pH and iv) adsorption equilibrium. The
model has four parameters (Stoichiometric coefficient, solubility

product, equilibrium constants ferric phosphate, and adsorption
coefficient) with unknown values, estimated from the jar test under
aerobic conditions and pH control. The model is again based on
fictitious precipitates (FerPO4(OH)3r-3 and FeOOH), and the solubility
products are thus empirically derived. The adsorption coefficient is
modified to each experimental condition over a wide range, inferring
that the hypothetical adsorption mechanism is over-simplified and
does not fully describe the actual adsorption phenomenon (De Haas
et al., 2000; Hauduc et al., 2015).

The Water Environment Federation (WEF) suggested a chemical
equilibrium-based precipitation model that took into account the
amount of PO4

3− removed as well as the pH sensitivity and is based on
hypothetical ferric phosphate precipitate, i.e., Fe1.6H2PO4(OH)3.8,
which has been verified to be non-existent (Smith et al., 2008). The
model is provided for both ferric and aluminum salts. Stoichiometric
reactions are used to measure iron/alum dose close to a residual of 1.6
mgPO4L−1, at which point the equilibrium is reached, and the
competition reaction starts. Additional metal salt is needed to achieve
effluent P-removal below 1 mgPL−1 since stoichiometric estimations
are no longer reliable. In addition to metal phosphate precipitate,
metal hydroxide is formed. The model predicts a minimum of 35
μgPO4L−1 at an optimum pH of 6.95 (Takács et al., 2005). The model
was then recalibrated by Takács et al. (2005) by combining it with
equilibrium-based pH calculations, enabling the solution's ionic compo-
sition and termed as ‘enhancedWEF.’ Themodelwas later implemented
in BioWin tomimic the P-removal in full-scale facilities as a sub-module
to the bio-kinetic model. The current version of the WEF model avail-
able in BioWin has improved the limitation caused by the fixed Fe/P
molar ratio. The model is sufficient to estimate the pH, iron dose, and
sludge production. Although it does not takes into account the P-
removal pathways other than co-precipitation.

3.4.2. Models based on empirical kinetics
The bio-kinetic model (ASM2d) was extended with two chemical

processes (precipitation and re-dissolution) to simulate two hypotheti-
cal compounds, namely metal hydroxide (XMeOH) and metal phosphate
(XMeP). The model assumed that these two processes are opposite of
each other and are in equilibrium at steady state conditions (Gujer
et al., 1995). The precipitation and re-dissolution are modeled as simple
first-order reactions using process kinetic rate (Kpre, and Kred). The
authors used the example of ferric ion dosing in an activated sludge
environment. MeOH is assumed to be Fe(OH)3 in this situation, and
MeP is considered FePO4. The model does not account for the loss of
hydroxide ions (a reduction in alkalinity) from the bulk process during
the formation of Fe(OH)3, but pH is assumed to be near neutral. The
model does not provide any guidance for the estimation of the kinetic
rates. Neither gives any indication for the model applicability with
alum salts or other coagulants. It is mostly used in WEST software as
standalone as well as with the bio-kinetic model (ASMs).

3.4.3. Models based on combined chemical equilibrium-kinetic approaches
Based on the steady-state equilibrium model of Luedecke et al.

(1988), a dynamic model employing processes including i) co-
precipitation, ii) dissociation, iii) hydrolysis, iv) adsorption, and
v) biological nutrient requirements; was proposed by Briggs (1996).
The model's basis is almost the same as inherent one with further addi-
tion of rate expressions for the precipitation/dissolution and adsorption/
desorption. The Elovich equation (Manchado et al., 1989) is used to
model P-adsorption, with switching functions for the residual phospho-
rus and full-adsorption potential. Besides, it considers the release of the
adsorbed phosphorus during thedissociation process. Themodel further
considered the biological components affecting the chemical phospho-
rus removal. Since the model is based on the same assumptions as of
Luedecke et al. (1988), it inherited the same limitations. Furthermore,
the mode was found unable to simulate the effluent's solids concentra-
tions and thus its impacts on effluent total P concentrations.
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3.4.4. Models based surface complexation and chemical equilibrium
Current equilibrium models are based on dissociation and solubility

principles and cannot account for variable precipitate stoichiometry and
time dynamics. The model proposed by Smith et al. (2008) employs
geochemical principles in combination with chemical equilibrium.
This model takes into account the interactions between amorphous
HFO and P (i.e. adsorption and co-precipitation). The model uses an ac-
tive site factor (ASF) to describe the availability of reactive oxygen
atoms or “surface sites” for P complexation before, after, and during pre-
cipitation. The value of the ASFwas found to be a function of parameters
i.e. dosing, mixing, pH and aging conditions already discussed in detail
in Section 3.2. The surface complexation model (SCM) has many bene-
fits over previously used equilibrium and kinetics basedmodels, includ-
ing the fact that it is based on known chemical elements, as opposed to
equilibrium or kinetic models which are based on fictitious precipitates.
It also incorporates surface geochemical interactions, which were
neglected in previous equilibrium and kinetic models. The SCM is best
suitable to predicting behavior in systems with low effluent P limits.
The model is based on simple hydrogen–iron-P system and completely
ignores the variable water chemistry. Furthermore this model is not ca-
pable to describe the kinetic behavior of P-removal i.e. initial fast re-
moval followed by the slow removal and the influence of HFO aging as
observed by Szabó et al. (2008).

A recent study proposed a mechanistic chemical P-removal model-
ing method that explains HFO precipitation and flocculation, as well as
P-adsorption onto HFO particulates and co-precipitation (Hauduc
et al., 2015). All process reactions are described using kinetic rate

expressions. The aging aspect of the model described by Hauduc et al.
(2015) is one of the main modifications to the model by Smith et al.
(2008), and therefore themodel can provide more details than the pre-
vious version. There are still some limitations to address: i) HFO aging
was calibrated to experimental data with a maximum age of 30 min
and does not account for solid ages typical of wastewater treatment
and ii) The effects of pH, TSS, and COD were not investigated.

Table 8 presents a comparative summary of the briefly presented
models. The literature review has revealed that models now have im-
proved the ability to predict the effluent P-removal for low concentra-
tions. However, these are still unable to reliably describe the removal
kinetics and impacts of the metal complex aging with higher SRTs. Not
even a single study has been reported for their application and valida-
tionwith the system operating at higher SRTs such asMBR. The recently
developed model (Hauduc et al., 2015) yet requires validation at full-
scale. Furthermore, the models have not been tested for their ability to
predict chemical P-removal behavior in complex waters, where or-
ganics and other organisms could obstruct removal mechanisms. Im-
proving the models' ability to explain these processes would result in
more stable effluent P-levels and chemical sludge output at lower
dose rates, resulting in cost savings in chemical and sludge treatment.

3.5. Application of chemical precipitation models to MBRs

There is a shortage of studies reporting the chemical precipitation
model's application to MBRs operated at higher SRTs, and floc size is al-
ready smaller and sticky due to the higher concentration of EPS/SMPs.

Table 8
Comparative assessment of the chemical P-removal models.

Model reference Model characteristics

Ferguson and King,
1977

Luedecke
et al.,1989

Briggs
et al.,1996

WEF
Model,1998

IWA-ASM2d
Model, 1999

Smith et al.,
2008

Hauduc et al.,
2015

Giwa and Hasan,
2015

Modeling approach
Kinetic √
Chemical equilibrium √ √ √ √ √
Combined kinetic-equilibrium √
Geo-chemical reaction √ √
Electro-coagulation √

System behavior (change in concentration over time)
Steady state √ √ √ √ √
Dynamic √ √ √ √ √

Removal mechanisms considered
Hydrolysis √ √
Dissociation √ √ √
Precipitation √ √ √
Co-precipitation √ √ √ √ √
Adsorption √ √ √
De-sorption √
Surface complexation/aging √
Biological nutrient requirements √
Dissolution √

Coagulants considered
Aluminum √ √ √ √
Ferric √ √ √ √ √

Type of model with respects to calculations
Empirical √ √ √
Mechanistic √ √ √ √
pH dependence √ √ √
Alkalinity dependence √
Influence of aging/surface consolidation √
Ability to predict low P-concentration √ √ √ √ √ √
Limited √ √ √
Excellent √ √ √

P-species considered
Ortho-phosphate √ √ √ √ √
Total phosphorus √
Influent P-fractionation √
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Two of the reported MBR studies used ASM2d's kinetic precipitation
model (Daigger et al., 2010; Fleischer et al., 2005) and did not provide
any details about the kinetic and stoichiometric parameters and their
adjustments. Meanwhile (Liu et al., 2011) used an enhanced WEF
model available in BioWin simulation software with its default kinetic
and stoichiometric parameters.

4. Control systems for P-removal

The conventional controllers (e.g., P, PI, PID) and advanced control-
lers (e.g., predictive, robust adaptive, sliding, and multi-model) have
successfully been adopted in wastewater for process improvement
and optimization. Artificial intelligence-based model controls such as
artificial neural networks (ANN), deep learning neural networks
(DNN), fuzzy techniques, and hybrid controls (neuro-fuzzy) are
adapted in wastewater (Garikiparthy et al., 2016). However, their suc-
cess is not satisfactory for complex phenomena such as P-removal
(Sin and Al, 2021). Logarithm-based phosphorus control systems are
deployed and are automated using SCADA to reduce consumption of
the precipitants (to reduce cost) and maintain effluent compliance.
The control systems used for precipitant addition are based on:
i) continuous fixed dosing, ii) scheduled dosing, iii) influent propor-
tional flow dosing-feed ratio controller, iv) phosphorus load propor-
tional, and v) feedback control or PI controller (Garikiparthy et al.,
2016; Kern, 2016). The chemical precipitation control system can be im-
plemented with CASP and the MBRs or with any other technology re-
quiring additional P-removal to meet the discharge limits (Shiek et al.,
2020). The majority of the published studies in the precipitant dosing
control domain are related to CASPs, while few studies have been
found related to the MBR (Alibardi et al., 2021; Mbamba et al., 2019).

The most straightforward dosage controls have historically been
based on flow rate and turbidity measurements. Still, a primary feed-
back controller was used to achieve outstanding control efficiency and
substantial chemical savings with an online in situ phosphorus sensor
in place (Ingildsen, 2002). The sensor was mounted in the flocculation
chamber located near the effluent discharge point. The sensor-based
online phosphorus measurements enabled (Devisscher et al., 2002) to
monitor the chemical dose required to remove the phosphorous as
per the set-point. The study of Craig et al. (2014) evaluated the applica-
tion of a feedback-based “off the shelf” control system for precipitant
dosing on full-scale extended aeration-based CASP. The system moni-
tored the PO4

3− concentration at the secondary clarifier's exit and
controlled the ferric feeding upstream. The controller used an
advanced algorithm capable of calculating the P-load and the required
ferric dose, taking into account the stoichiometric relationship. This au-
tomated chemical P-removal system resulted in a 56% reduction in fer-
ric consumption and fully recovered the investment in just 6.8 months.
Another study (Garikiparthy et al., 2016) evaluated the application of
four different controllers, i.e., feedback, feedforward and feed-ratio,
and fixed-rate dosing, for a CASP to control the effluent phosphorus
concentration by regulating the coagulant dosing and saving the chem-
ical costs. The authors found that the feedback controller improved the
P-removal by 52.54% and performed better than others. However, the
same authors also found that the phosphorous removal (EQI) and the
P-removal (OCI) cost are conflicting and, therefore, suggested further
research of the plant-wide dosing control. In a most recent full-scale
MBR study (Alibardi et al., 2021), application of feed-forward control
based on PO4

3− load proportional, reduced the iron consumption from
14 mgL−1 to 12 mgL−1. The schematics of various control systems
discussed in this section are given in Appendix E.

5. Knowledge gaps and future research directions

This review is dedicated to summarize the current ‘state of the art’ in
progress toward understanding of the P-removal in MBR, and applica-
tion of existing bio-kinetic and chemical precipitation models. Keeping

in view the findings from large number of scientific publications consid-
ered, identified research gaps and speculations about the future re-
search are presented in this section.

The review of the global regulations (Appendix A), revealed that the
majority of the countries have based their discharge regulations consid-
ering TP concentrations while eutrophication is mainly caused by bio-
available fraction of the phosphorus (Preisner et al., 2020) which
mainly included PO4

3−. Therefore, it is recommended to revisit the
phosphorus discharge limits and should be ideally based on PO4

3−

concentrations. However, literature review revealed that there is no
standardized and globally accepted approach for classifying the
phosphorus fractions and this presents an urgent need to address this
issue along with the standardized notation of each fraction and
corresponding testing method (Rosario et al., 2021). Despite overall
effectiveness of different wastewater treatment technologies for
TPremoval is well known, there is a dearth of studies documenting the
effectiveness of various technologies for removal of specific fractions
of phosphorus. Most of the full scale application use EBPR and chemical
precipitation in conjunction to maximize the P-removal and therefore
sufficient data is not available to quantitatively describe how much of
the P-removal is due to EBPR or chemical precipitation. Further research
is required to assess the degree of BioP-removal that can be achieved in
full scale MBRs that requires chemical addition to reliably meet the dis-
charge limits.

EBPR is well established and yet poorly understood process for P-
removal from wastewater (Bunce et al., 2018). Full-scale facilities are
still being challenged by the process instability of EBPR process due to
lack of understanding of the role of microbial communities, especially
PAOs and their selection in anaerobic zone in comparison to GAOs.
Over the last five decades, primary PAO responsible for EBPR has been
changing from Acinetobacter to Accumulibacter and most recently
Tetrasphaera have been found in large number of full scale CASP facili-
ties (Hauduc et al., 2015; Mielczarek et al., 2013; Stokholm-
Bjerregaard et al., 2017). This is probably because of the fact that PAOs
responsible for EBPR have not been identified in pure culture neither
GAOs responsible for deterioration of EBPR. Theoretically, anaerobic
zone is compelling requirements for proliferation of PAOs and their se-
lection for P-removal, while some full-scale studies without having an
anaerobic zone have demonstrated 50–68% removal efficiencies with
operating conditions not suitable to EBPR process (Gabarrón et al.,
2014; Itokawa et al., 2014). Future research should be dedicated to en-
hance the EBPR process stability in MBRs by improving the MBR design
configurations and optimizing operational conditions without
compromising its capabilities to remove carbon and nitrogen. Majority
of the full-scale MBR facilities are anoxic-aerobic or MLE configurations
while UCT andMUCT arewidely in research at bench and pilot scales. To
the best of authors' knowledge, no full-scale study is dedicated to assess
the BioP-removal in relation to the microbial composition involved in
eachMBR configuration and unit cost of biological and chemical precip-
itation should be investigated to present a fair comparison.

The bio-kinetic models appeared to be successful in simulating the
P-removal in MBRs, provided fundamental differences in CASP and
MBR functioning (Table 3) are considered in the modeling approach. It
has been found that ASMs when applied to MBR require substantial
modifications of the stoichiometric and kinetic parameters (Table 5)
to adjust the lack of understanding in details and dynamics of the pro-
cess as a generalized EBPR model. Efforts dedicated to develop system-
atic calibration procedures have resulted in decreasing the required
calibration efforts. However, the calibration processes lacks identifica-
tion of bio-kinetics involved in parametric adjustments and results in
diverse range of parameters values. Moreover, the existing model con-
sider only one PAO community i.e. Accumulibacterwhile literature sug-
gested a number of PAOs communities are responsible for EBPR and
therefore bio-kinetic models require improvements to accommodate
the role of other microbial communities as well. A combination of met-
abolic and kineticmodels can be helpful in apprehension of the complex
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biological interactions in relation with their population dynamics and
thus improving the EBPR modeling (Al-Atar, 2007; Hauduc et al.,
2015). Some experimental studies have investigated that the EPS/SMP
play a positive role in BioP-removal (Adoonsook et al., 2019; Ichihashi
et al., 2006; Jiang et al., 2009; Zhang et al., 2013) while the current
ASMs do not consider this phenomenon. It is therefore proposed to un-
dertake full-scale studies to rule out the difference in lab-scale to full-
scale models' applications.

Chemically enhanced P-removal (CEP) is a well-established yet
again poorly understood because of formation of unknown metal com-
plexes and multiple pathways involved. P-removal in MBR is different
than CASP due to specificities involved in its functioning and risk of foul-
ing development (Mbamba et al., 2019; Sun et al., 2019). Moreover, the
effect ofMLSS concentration,floc size (which is smaller inMBRs) on CEP
performance should be investigated considering the competingmecha-
nism forMeP andMeOHproduction. Diverse results have been reported
for fouling development/abatement and P-removal trends in various
bench-pilot scale studies, while experiences from the full scale facilities
are yet required to be explored. A dedicated research is therefore
needed to explore the effect of coagulant addition onmembrane fouling
in addition to P-removal along with clear description of type and quan-
tum of the fouling induced. Precipitationmodels have now good predic-
tion capabilities yet unable to reliably describe the removal kinetics and
impacts of metal complex aging at higher SRTs which is the case in the
MBRs. Further research is need to explore the applicability of these pre-
cipitation models at full-scale MBRs operating at higher SRTs and with
smaller floc size, generally undesirable for effective coagulation and op-
erating under higher shear induced by the coarse bubble aerations.

The control of coagulant and carbon dosing, recirculation rates and
DO concentration are key factors in achieving maximum P-removal in
MBRs. There is a shortage of studies documenting the role of the auto-
matic controls for chemical dosing in MBRs and techno-economic as-
sessment of the proposed control systems. Future research should be
dedicated to apply the various instrumentation and control systems
for advanced automated controls for enhanced and cost effective P-
removal.

6. Conclusion

MBRs are successful in P-removal below regulatory limits by
employing combined EBPR and chemical precipitation mechanisms. P-
removal in MBR is a complex and poorly understood phenomenon
which is sensitive to design configurations (MLE, A/O, UCT, A2/O, VIP
and Bardenpho), influent characteristics and several operating parame-
ters related to EBPR (Microbial composition, MLSS, SRT, HRT, tempera-
ture and DO) and chemical precipitation (influent chemistry and
composition, DO, pH, MLSS, Me/Pmolar ratio, dosing location and num-
ber of dosing points and mixing conditions). It is hard to establish the
role of EBPR and chemical precipitationmethodswhen used in conjunc-
tion. The bench and pilot scale UCT and MUCT configurations provide
excellent control over nitrates interference in the anaerobic zone result-
ing in higher BioP-removal efficiencies (up to 90%). However, MLE and
Bardenpho are widely used configurations at full-scale facilities. MBR
can provide enhanced Bio-P removal, if:

▪ The influent COD/TP, BOD/TP, COD/TN ratio are provided in the
ranges of 2.9–45, 12.33–45, and 5.3–7.3 respectively. Furthermore,
influent nitrate are kept lower than 1 g·m−3 to keep the anaerobic
zone efficiency intact with PAOs proliferation.

▪ TheMLSS concentration is controlled under 7 g·m−3 with SRT in the
range of 15–40 days. Anaerobic and aerobic HRT are controlled in the
range of 2–2.9 h and 3–6 h respectively, while total HRT is kept
around 10 h.

▪ 7–10% of the sludge biomass are PAOs.
▪ The DO concentration of 0.4–2.5 g·m−3 is maintained in the aerobic
zone

Similarly, chemically precipitation in MBR can provide excellent re-
sults, if:

▪ Alkalinity of the influent wastewater is within 98–123 CaCO3 g·m−3

▪ The pH of the sludge is controlled near circumneutral level (6.5–7)
▪ Relatively higher DO concentration (1.5–2.5 g·m−3) are maintained
in the aerobic zone

▪ Metal to Phosphorus molar ratio is adjusted in the range 1.5–4 with
an optimum ratio of 2.5.

▪ Two point dosing is practiced, first dosing at the inlet or at 3/4th of
the anoxic reactor and 2nd dosing in the aerobic zone.

▪ Rapid mixing is provided with G values ranging between 100 and
200 s−1

Several bio-kinetic, precipitation, filtration as well as integrated
models are available to simulate the MBR process including P-removal.
The addition of the precipitant affects the relative abundance ofmicrobial
community sludge composition and fouling phenomenon. Therefore, in-
tegrated models should have provision to adjust the stoichiometric
changes induced due to change in themicrobial composition and compe-
tition among themaswell as the reduction in EPS concentration. Filtration
model must be adjusted to take into account the influence of floc size re-
duction, role of coagulant (metal ions e.g. Fe2+) in inorganic fouling and
reduction in the stickiness between the membrane and sludge particles
due to reduced deposition of EPS ontomembrane. Majority of themodel-
ing studies are focused on pilot-scale units and lab-scale units and there is
dire shortage of the full-scale MBR systems. It is therefore suggested to
undertake full-scale integrated modeling studies in future taking into ac-
count the bio-chemical P-removal and fouling development aswell as the
influence of the precipitant addition on microbial communities.

IWA standard nomenclature for model parameters

qXCB_SB,hyd maximum specific hydrolyis rate
nqhyd,An corrction factor for hydrolyis
KNHx,OHO half saturation coefficient for SNHx
bOHO decay rate of XOHO

qPAO,VFA_Stor rate constant for XPAO storage
qPAO,PO4_PP rate constant for storage of XPAO_PP

KPP,PAO half saturation coefficient for XPAO_PP

μPAO,Max maximum growth rate of XPAO

μPAO,Max_lim maximum growth rate of XPAO (when P is limiting)
nμPAO reduction factor for anoxic growth rate of XPAO

mPAO/bPAO decay rate of XPAO

μANO,Max maximum growth rate of XANO

bANO decay rate of XANO

KO2,ANO half saturation coefficient for SO2
KNHx,ANO half saturation coefficient for SNHx
KO2,hyd inhibitation coefficient for SNHx
qSF_VFA,Max Maxmum specific fermentation growth rate
μOHO,Max Max. growth rate of XOHO

nμOHO,Ax reduction factor for anoxic growth rate
YOHO Yield for XOHO growth
YOHO,Ax Yield for XOHO growth (anoxic)
YStor_OHO,Ax Yield for XOHO growth per XOHO, stor (anoxic)
fXU_Bio,lys fraction of XU generated in XOHO decay
YPAO Yield for XPAO growth
YPP_Stor,PAO Yield for XPAO,PP requirement
iN_XU N content of XU

iN_XCB N content of XCB

iP_XU P content XU

iP_XBio P content of biomass
iP_XCB P content of XCB

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2021.151109.
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Table A.1: Globally adopted regulations concerning phosphorus discharges from WWTPs 

Country/Geographic 

Region 

Total 

phosphorus 

(TP) mgL-1 

PO4
3-  

mgL-1 

Population 

Equivalent 

Other bases for 

standard 
Reference 

EU/France/ 

Germany 

2  <100,000  Directive E.U.W., 

1991 1  >100,000 receiver oriented 

Australia 0.5-3  >50,000 
Region specific and 

receiver oriented 
DPIWE, 2001 

UK 0.2-2 0.01  Daily average 
House of Parliment, 

UK, 2014 

Denmark 
1.5  >5,000  Brix & Arias, 2005 

0.4   Sensitive area Vind, 2017 

Sweden 
0.3  <100,000 Receiver oriented 

Mbamba et al., 2019; 

Morling, 2019 0.3 
 >100,000 

Belarus 
4.5  <100,000  

Preisner et al., 2020 
4.5  >100,000  

Switzerland 
 0.8 <100,000 Receiver oriented  Preisner et al., 2020 

 0.8 >100,000 

USA 1-0.1   Monthly average Gu et al., 2011 

Canada, British 

Colombia 
1 0.5 states are using their own guidelines  BCOLCMAG 2005 

Japan 8-16   

Daily average: 8 

mgL-1 for the 

discharge of 50m3 or 

more of effluent per 

day on average. 

MOE, 2015 

China 0.5   

Effluent /day on 

average and 

receiver oriented  

Sun et al., 2019 

Dubai 2   Daily average Preisner et al., 2020 
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B.1. Bioreactor configuration 

This section provided detailed elaboration on several configurations available at full scale as well as pilot 

scales for effective nutrient removal and in particular phosphorus removal. 

Table B1: Various configuration of the biological reactors used in MBR for enhanced BioP-removal 

Configuration  Description  Advantages and disadvantages   

modified 

Ludzack-

Ettinger (MLE) 

with direct 

recycle to 

anoxic reactor 

(2-stage) 

MLE is a simple process for nitrification and 

denitrification. The nitrates produced in the aeration 

zone are used as a source of oxygen for facultative 

bacteria in the event of the breakdown of raw 

wastewater in the anoxic reactor. In this 

configuration, the Influent is received by the anoxic 

zone followed by an aerobic zone and the sludge 

from the MBR tank is recirculated back to anoxic 

reactor  in the range of 200 -500 % of the influent 

flow (Chae et al., 2015; Holba et al., 2012; Itokawa 

et al., 2014). 

- Require low recycle rate 

- Good for C-BOD and ammonia 

removal.  

- Not suitable for P-removal, though it 

could be coupled with chemically 

enhanced P-removal  

- Oxygen carryover from aeration zone 

to anoxic zone may terminate the 

denitrification process, especially 

with low readily available COD in the 

influent 

modified 

Ludzack-

Ettinger (MLE) 

with cascaded 

recycle to 

anoxic reactor 

(2-stage) 

In this configuration, highly oxygenated sludge 

from the MBR tank is recycling to anoxic zone via 

aerobic zone (cascaded). The recirculation ration for 

recirculation from MBR tank to aerobic tank is 

maintained in the range of 200-500% of the influent 

flow, while the recirculation from aerobic to anoxic 

is maintained at 100% of the influent.  (Fenu et al., 

2010; Holba et al., 2012; Oleszkiewicz et al., 2015; 

Van Haandel & Van Der Lubbe, 2007) 

- Provide partial denitrification  

- Good P-removal performance  

- Maintaining higher MLSS in cascaded 

configuration is more difficult than 

conventional MLE thus more difficult 

to control. 

- Require higher recirculation between 

MBR tank and aerobic tank to avoid 

MLSS accumulation and fouling. 

Sequencing 

anoxic-

anaerobic 

modified 

Ludzack-

Ettinger (MLE) 

In this configuration, the influent is also received by 

intermittently changing anoxic/anaerobic zone 

followed by an aerobic zone and the sludge from 

the MBR tank is recirculated back to anoxic reactor. 

For denitrification, anoxic conditions are provided 

for 1 hour after every 3 hours with active 

recirculation. While anaerobic conditions are 

provided for 2 hour after every 3 hours without 

recirculation. Hydraulic retention time of this 

modified configuration is 2-3 times less than 

conventional MLE (Ahn et al., 2003). 

- Enhanced P-removal owing to strict 

anaerobic conditions and 

simultaneous phosphate uptake and 

denitrification. 

- Enhanced denitrification due to 

enhanced availability of PHBs in the 

anoxic zone as substrate for 

denitrifiers. 

- Higher recirculation ratio 

- Lowe TN removal efficiency  



Two stage 

Phoredox  

and A/O 

These configuration have been designed for both 

carbon and nitrogen removal. These are based on 

two reactors in series. First, receiving the influent is 

anaerobic while the other is aerobic for P-uptake. 

The sludge is recirculated from the final clarifier 

tank to the anaerobic reactor (1-1.5*Q) and there is 

no other recirculation stream between the two 

reactors. These configuration was developed for P-

removal in CASP with lower SRT and to provide 

optimal conditions required for EBPR. Based on the 

configuration, Phoredox and AO processes are same 

with anaerobic and aerobic reactors in series. The 

only difference between these two processes is that 

the anaerobic and aerobic reactors in A/O 

configuration compartments to induce plug flow 

regime (Chan Pacheco, 2018; Linden et al., 2001; 

Rossle & Pretorius, 2001; Van Haandel & Van Der 

Lubbe, 2007).  

- Most simple configuration  

- Simple operations with least reactor 

volume 

- Good phosphorus removal efficiency 

when the nitrates inhibitation is 

limited ( i.e. true anaerobic 

conditions) 

- Can be operated at lower SRT when 

nitrification is not intended  

- Not suitable when nitrogen removal is 

required  

- Operations at lower SRTs make it 

unsuitable for MBR 

- Not suitable for hot regions due to 

favorable conditions for nitrification.   

Alternating 

A/O/Phoredox 

This is the modified configuration of the 

A/O/Phoredox. The reticulation from the aerobic to 

either anaerobic or anoxic is controlled by a valve. 

Conditions for denitrification and P-release are 

marinated for 1 hour alternatively with recirculation 

ration of 200 % of the influent flow. The 

nitrobacteria and PAOs could make full use of the 

organic substrate present in the wastewater due to 

alternating anoxic and anaerobic conditions. (Yuan 

et al., 2008; Ahmed et al., 2007) 

- Improved P-removal with efficiency 

above 90% 

- Adjusting the duration of the 

recirculation recycle and 

recirculation rate is crucial and may 

vary according to the influent quality.  

- TN removal is limited  

 

Three stage 

Phoredox and 

A2/O 

In order to accommodate the nitrification process, 

these configurations were introduced with anoxic 

reactor in between the anaerobic (receiving influent) 

and aerobic reactors.  The external recirculation 

(from clarifier) is same as of two stage 

Phoredox/A/O process (100-200% of the influent 

flow) while additional recirculation stream from 

aerobic to anoxic reactor (400% of the influent 

flow) is introduced. 3-stage Phoredox is identical to 

A2/O but not the same as the latter is tightly 

compartmentalized. (Ersu et al., 2008; Rajesh Banu 

et al., 2009) 

- Provided partial denitrification  

- Moderate to high P-removal 

efficiency due to limited nitrate 

interference  

- Reduced aeration requirements 

- Although recycle to the anoxic zone 

results in substantial removal of 

nitrate, complete removal is not 

possible, and some nitrate is recycled 

to the anaerobic zone. 

University 

Cape Town 

(UCT) 

This is the modified version of A2/O process. In the 

configuration, the recirculation stream from the 

MBR tank is directed towards the anoxic zone and 

then from anoxic to anaerobic zone, hereby 

eliminating the introduction of nitrate to the 

anaerobic stage and improving the uptake of 

phosphorus. The anaerobic detention time should be 

1-2 h in this configuration. 

(Jiang et al., 2005; Lesjean et al., 2003; 

Oleszkiewicz et al., 2015; Smith et al., 2008; Sun et 

al., 2019; Van Haandel & Van Der Lubbe, 2007) 

- Prevents recirculation of nitrate 

- Provide flexibility to control the 

nitrate concentration in the anaerobic 

zone by controlling the recirculation 

rate from anoxic to anaerobic zone. 

- Denitrification capacity is 

underutilized. 

- influent flows directly into the 

anaerobic zone, which can result in 

unstable conditions when high flow 

rates occur, or when the wastewater 

contains high levels of dissolved 

oxygen or low substrate levels 

Modified UCT 

with additional 

anoxic zone  

Modified UCT is designed to ensure that the 

introduction of nitrates to anaerobic zone is 

impossible even with a variable nitrate 

- Complete denitrification and no 

nitrates in the anaerobic zone. 

- Simple and easy to control 



concentration in excess of the denitrification 

capacity. In this configuration, additional anoxic 

zone (2) is added after the first anoxic zone and 

nitrate rich MLSS stream from the aerobic zone is 

first directed to anoxic zone (2). 

(Oleszkiewicz et al., 2015; Sun et al., 2019; Van 

Haandel & Van Der Lubbe, 2007) 

configuration for MLSS recirculation 

and denitrification  

- In this configuration, anoxic zone as a 

whole is under-loaded with nitrate 

and therefore larger anoxic volume to 

bear this shock-load. 

- influent flows directly into the 

anaerobic zone, which can result in 

unstable conditions when high flow 

rates occur, or when the wastewater 

contains high levels of dissolved 

oxygen or low substrate levels 

Modified UCT 

with A/O 

sequencing  

In this configuration, the influent receiving reactor 

is operator as both anoxic and anaerobic reactors 

intermittently. While the aerobic tank is 

intermittently operated and aerobic and anoxic 

reactor. The sludge flow the aerobic MBR tank is 

recirculated to anoxic/anaerobic reactor 

intermittently also. The cycle time of anoxic 

/anaerobic functioning is controlled along with the 

recirculation ratio. (Zhang et al., 2006) 

- Higher NH4-N removal efficiency 

(>95%) due to presence of sufficient 

nitrifying bacteria 

- Higher BioP-removal efficiency with 

increase organic loading rate   

Step-feed UCT  

In this configuration, portion of the influent (40-

50%) is directed fed to anoxic zone aiming to 

optimize the COD allocation to enhanced nitrogen 

removal. The supply of influent COD to anoxic 

zone removed the nitrates thereby reduced the 

nitrate recycle to anaerobic zone. (Lee et al., 2009) 

- Improved nitrogen and phosphorus 

removal performance of the UCT 

system. 

- Require additional energy to pump 

influent to anoxic zone and may offer 

complexities for MLSS control. 

Virginia 

institute 

process (VIP) 

In this configuration, the influent is received by the 

anaerobic zone followed by anoxic, aerobic, post-

anoxic, aerobic process zones with a 4xQ internal 

recycle (aerobic → anoxic), a 1xQ internal recycle 

(anoxic → anaerobic), and a 1 to 1.5xQ RAS rate 

(external recirculation from MBR/clarifier → 

aerobic). This configuration is described as a high-

rate system, operating with much shorter SRT, 

maximizing the BPR efficiency.  

- The process requires low BOD/P ratio 

- Operates at much lower SRT 

- it is more complex and requires 

additional capital costs 

Bardenpho 

Process  

(Four-Stage) 

Influent is received by the anoxic zone followed by 

anaerobic, anoxic, aerobic and post-anoxic process 

zones with a side stream anaerobic zone (RAS → 

anaerobic), a 400% is internally recycled (aerobic 

→ anoxic), and a 100% to 150% of the influent is 

externally recirculated. 

- Limited on no phosphorus removal 

due to absence of the anaerobic zone 

- Complete denitrification is possible 

for low  TKN/COD 

- Excellent nitrogen removal (<3 gm-3) 

- Large reactor volumes are required 

as bulk sludge is produced 

- The best combination of reactor sizes 

is complex 

Modified 

Bardenpho  

(5-stage) 

In this modified Bardenpho, the Influent is received 

by the anaerobic reactor followed by anoxic, 

aerobic, aerobic  and post-anoxic process zones 

with a 400%  internal recycle (aerobic → anoxic) 

and a 100 to 150% of the MBR sludge to aerobic 

and a 2nd internal recirculation of 100-300% from 

anoxic to anaerobic reactor. The overall process 

SRTs and HRTs in the anoxic and aerobic zones are 

similar to the corresponding SRTs and HRTs in the 

four-stage process 

- Excellent P-removal  

- Excellent denitrification and  can 

achieve effluent  TN below < 3 gm-3 

-  

B.2. Role of Various Zones in the MBR Configurations  



This section provide a detailed information on role of various zone in the reactor configuration of the 

MBR technology.  

Table B.2: Functions of various zones in MBR configurations  

Zone  Functions  Mediating Organisms  

Pre-Anoxic 

Zone  

- Nitrates coming from the anoxic re-circulation 

stream are denitrified before the mixed liquor enters 

the anaerobic zone 

- Readily available organics in the primary effluent 

undergo rapid de-nitrification 

- This zone protects the anaerobic zone from nitrates 

which are known to impede BioP- removal.  

Heterotrophs (Non-PAOs) 

Autotrophs  

- Nitrite-oxidizing bacteria 

(NOB) 

- Ammonia oxidizing bacteria 

(AOB) 

Anaerobic 

Zone  

- This zone provides an enabling environment for the 

proliferation of PAOs  

- PAOs can use energy stored in the form of 

polyphosphate to absorb simple carbon sources 

(principally volatile fatty acids- VFAs), which are 

metabolized in subsequent anoxic and aerobic 

zones. 

- PAOs absorb carbon in this zone and have a 

competitive edge over non-PAOs (heterotrophs), 

especially denitrifying PAOs (DPAOs)  

Heterotrophs (PAOs) 

And sometimes glycogen 

accumulating Organisms (GAOs) 

 

Anoxic Zone  - Available nitrates in this zone become the oxygen 

source (electron acceptor) and thus converted into 

water and N2 released to the environment in the 

subsequent zone.  

- Use of stored poly-β-hydroxybutyrate (PHB) or 

polyhydroxyalkanoates (PHA) for phosphorus 

uptake through DPAOs. 

Heterotrophs (Non-PAOs) 

Heterotrophs (DPAOs) 

Aerobic 

Zone  

- Degradation of the residual organic matter and 

completion of the BOD/COD removal process 

- Ammonification 

- Nitrification  

- PHB degradation and uptake of excess phosphorus  

Heterotrophs (Non-PAOs) 

Autotrophs (AOB & NOB) 

Heterotrophs (PAOs) 

 

B.3. Bioreactor configuration used in various MBR studies in a bid to improve P-removal  

In this section, the schematics of configuration used in several studies dedicated to improve the P-removal 

capabilities of the MBR is presented.  



 

Figure B.1: Re-circulation configurations for P-removal adopted from (Fleischer et al., 2005) 

 

 

Figure B.2: Different re-circulation configurations for P-removal (Ersu et al., 2008)  

 

Figure B.3: Various design configuration for P-removal (Daigger et al., 2010) 

 



 

Figure B.4: MBR configuration for P-removal (Lesjean et al., 2003) 
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Table C1: influent composition and operational conditions of the system modeled in the reviewed papers 
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Temperature  (Co):  -- BOD5 133  

SRT (days) 19--23 CODt NA  

HRT (hours) 8.8 pH --  

MLSS (gL-1) 7 TKN 36 10 

DO (mgL-1) - - NH4 21  

Flux (Lm-2 h-1) 34 NOx   

TMP (kPa) 7--55 Ptot  5.5 0.01 

Membrane area (m2) 46.5 PO4 --  

Filtration/relaxation/backwa

shing cycle 
--  

EPS 

mg/gTSS 
--  

Coagulant  Alum  
Turbidity 

NTU  
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Temperature (Co): 16-24 BOD5 --  

SRT (days) 12-20 CODt 357 27 

HRT (hours) 10 CODs 113 27 

MLSS (gL-1) -- pH 6.3-7.3 -- 

DO (mgL-1) 3 TKN 33.9 0.4 

Flux (Lm-2 h-1) --- NH4 26.7 0.1 

TMP (kPa) -- NOx 0.057 8 

Membrane area (m2) 12.2 Ptot  4.26 0.1 

Filtration/relaxation/backwa

shing cycle 
-- PO4 2.61 0.1 

Coagulant  -- 
EPS mg / 

gTSS 
-- -- 
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Temperature (Co): 15 BOD5  

SRT (days) 17.55 CODt 11 

HRT (hours)  CODs  

MLSS (gL-1) 10 pH  

DO (mgL-1) 2 TKN 10.2 

Flux (Lm-2 h-1) 31.8 NH4 0.18 

TMP (kPa)  NOx 7.30 

Membrane area (m2) 0.17 Ptot   

Filtration/relaxation/backwa

shing cycle time (sec) 
475 PO4 5.63 

A
n

ae
ro

b
ic

-A
n
o

x
ic

 –
O

x
ic

-M
B

R
  

(A
O

/A
2
O

) 

L
ab

-s
ca

le
 

Plate frame Cellulose 0.2 

μm 0
.0

0
1
 

S
y

n
th

et
ic

  

1
0

0
:8

.4
:2

.2
 

Volume of reactor (m3): 0.012 TSS 75.4±8.4  

E
rs

u
 e

t 
al

.,
 2

0
0

8
 

Temperature (Co): ≤85 BOD5 295±10.9  

SRT (days)  CODt 510±9.1  

HRT (hours)  CODs 396±8 33.38 

MLSS (gL-1) 8 pH 7.7±0.2  

DO (mgL-1)  TKN   
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shing cycle time (sec) 
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Temperature (Co): 15 BOD5  

SRT (days) 17.55 CODt 11 
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Parameter Influent Effluent 

(0.03μm) HRT (hours) 6.4 CODs  

MLSS (gL-1) 10 pH  

DO (mgL-1) 1.5-2.5 TKN 10.2 

Alternating aeration 

[ON:OFF] minutes 
23:17 NH4 0.18 

Flux (Lm-2 h-1) 31.8 NOx 7.30 

TMP (kPa) 475 Ptot   

Membrane area (m2) 0.17 PO4 5.64 

Coagulant  None   
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Temperature (Co): 15 BOD5  

SRT (days) 17.55 CODt 11 

HRT (hours) 6.4 CODs  

MLSS (gL-1) 10 pH  

DO (mgL-1) 1.5-2.5 TKN 10.2 

Alternating aeration 

[ON:OFF] minutes 
23:17 NH4 0.18 

Flux (Lm-2 h-1) 31.8 NOx 7.30 

TMP (kPa) 475 Ptot   

Membrane area (m2) 0.17 PO4 5.64 

A n a e r o b i c - A n o x i c / o x i c - M B R
 

( U C T ) L a b - s c a l e Double sided, plate frame 0 . 0 0 1
 

s y n t h e t i c 1 0 0 : 8 : 2
 

Volume of reactor (m3): 0.016 TSS 71.7±6,4  E r s u  e t  a l . ,  2 0 1 0  
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Parameter Influent Effluent 

cellulose membrane 

(Kubita,Co.,Osaka, 

Japan) with nominal pore 

size of 0.2 μm 

Temperature (Co): 22.5±1 BOD5 342±11  

pH control 7-8 CODt 555±9.1  

Anaerobic ORP (mV) -340 CODs 502±11.1 34 

Anoxic ORP (mV) -235 pH 7.7±0.2  

Aerobic ORP (mV) 100 TKN   

SRT (days) ≥25 TN 43.3±1.9 8.8 

HRT (hours) 2,2,8 NH4 22.7±1.8 0.3 

MLSS (gL-1) 7.5 NOx 0.7±0.1 7.3 

DO (mgL-1) >2 Ptot  20±1.5 3.7 

Flux (Lm-2 h-1) 8-28 PO4   

Filtration –relaxation (sec) 540:60    

Backwashing  None    

TMP (kPa) <15    

Membrane area (m2) 0.15    
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Temperature (Co): -- BOD5 293  

pH control yes CODt 459 19.68 

Anaerobic recirculation ratio 1-1.29 CODs   

Anoxic recirculation ratio 0.8-0.92 pH   

Membrane to anoxic 

recirculation ratio 

1.10-

1.36 
TKN 50.6 5.88 

SRT (days) 23 TN   

HRT (hours)  NH4   

MLSS (gL-1) 1.1-12 NOx 0.3  

DO (mgL-1) 1.5 Ptot    

Flux (Lm-2 h-1) 6-12.2 PO4 4 0.48 

Membrane area (m2) 12.5    
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Parameter Influent Effluent 

Filtration –relaxation (sec) 540:60    

Backwashing  yes    

TMP (kPa)     
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Temperature (Co):  BOD5   

pH control  CODt 480.5  

SRT (days) 45-47 TN 81.58  

Aerobic-anoxic  

recirculation (%) 

2.27-

4.25 
TKN 81  

HRT (hours)  NH4 69.10 0.338 

MLSS (gL-1) 8 NOx  21.68 

DO (mgL-1) 1.25-2 Ptot  11  

Flux (Lm-2 h-1)  PO4 9.29 5.18 

Filtration –relaxation-

backwash time (sec) 

600:30:

30 

Organic 

nitrogen 
12.21  

Membrane area (m2) 139    

SADm (Nm3m-2h-1) 
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0.2 
   

Membrane aeration (Nm3h-1) 84-42    
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 Temperature (Co): 16.1 BOD5 179 0.5 

pH control  CODt 361 21.1 

SRT (days) 7.8 TN   

Aerobic-anoxic  

recirculation (%) 
 TKN 35  

HRT (hours)  NH4 27 0.1 

MLSS (gL-1) 1.5-9 NOx   

DO (mgL-1)  Ptot  6.2 0.33 

Flux (Lm-2 h-1)  PO4   
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Parameter Influent Effluent 

Coagulant Addition yes 
Organic 

nitrogen 
  

Coagulant  FeCl3    

Coagulant dose (mg(mg P)-1) 38    
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Temperature (Co):  BOD5 133  

pH control  CODt 283 11.3 

SRT (days) 14-21 TN 36 3.6 

Aerobic-anoxic  

recirculation % 
 TKN   

HRT (hours)  NH4 21 0.03 

MLSS (gL-1) 6.7 NOx   

DO (mgL-1) 1.5-2 Ptot  5.5 0.05 

Flux (Lm-2 h-1)  PO4  0.04 

Coagulant Addition Yes 
Organic 

nitrogen 
  

Coagulant  Alum    

Coagulant dose (mg(mgP)-1) 87    
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Temperature (Co): 20 CODt 327 12.7 

pH control Yes  VSS 109  

SRT (days) 51 TKN 37  

Aerobic-anoxic  

recirculation ratio 
5 NH3-N  0.61 

Anoxic-Anaerobic  

recirculation ratio 
2 NOx 4.9 6.2 

HRT (hours)  Ptot  5.3 0.032 

MLSS (gL-1) 9-10 pH 7.2  

DO (mgL-1) 2 
Alkalinity 

(mmol/L) 
3  
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  
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Parameter Influent Effluent 

Flux (Lm-2 h-1) 24    

Filtration –relaxation (sec) 720:60    

Membrane aeration (Nm3h-1) 9    

Coagulant Addition Yes    

Coagulant  Alum     

Coagulant dose  

(mg(L of influent)-1) 
17.5    
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Hollow fiber MF 
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polyethylene with 

hydrophilic coating and 
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Membrane area (m2) 1.8 BOD5  

Temperature (Co): 
10.9-

23.1 
CODt 14.2 

pH control 7.6±0.3 VSS  

SRT (days) 15-40 TN 9.45 

HRT (hours)  NH3-N 0.5 

MLSS (gL-1)  NOx 8.6 

Alternate aeration 

[ON/OFF]- minutes 
50:71 PO4 5.8 

DO (mgL-1) 1.5-2 SUAP 0.85 

  SBAP 7.1 
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0
.9

6
 

d
o

m
es

ti
c 

1
0

6
.7

5
:2

2
.7

5
:1

 

Volume of reactor (m3): 0.616 TSS 282  
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 Membrane area (m2) 0.93 BOD5 176  

MLSS (gL-1) 3-6.5 CODt 327  

Volatile fraction  of MLSS 

(%) 
70 VSS 177  

F/M ratio 

(kgCOD(kgVSSday)-1) 
0.13 TKN 91  

Temperature (Co): 21 NH3-N 16  

pH control 7.6 NOx 2  

SRT (days) 37 PO4 1.5  
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  

R
ef
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en

ce
 

Parameter Influent Effluent 

Flux (LHH) 42 Ptot 4  

TMP (kPa) 50    

Filtration –relaxation (sec) 540:60    

Backwash  yes    

Chemical cleaning  yes    
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Zenon ZeeWeed System 

(ZW10)  equipped with 

hollow fibre membranes 

having nominal pore size 

of 0.04 μm   

0
.9

6
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1
0
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Volume of reactor (m3): 0.616 TSS 282  

C
o
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n
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t 
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1
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Anaerobic recirculation ratio 5-6 BOD5 176  

Anoxic recirculation ratio 6 CODt 327  

Anaerobic recirculation  3 VSS 177  

Membrane area (m2) 0.93 TKN 91  

MLSS (gL-1) 3-6.5 NH3-N 16  

Volatile fraction  of MLSS 

(%) 
70 NOx 2  

F/M ratio 

(kgCOD(kgVSSday)-1) 
0.13 PO4 1.5  

Temperature (Co): 21 Ptot 4  

pH control 7.6    

SRT (days) 37    

Flux (LHH) 42    

TMP (kPa) 50    

Filtration –relaxation (sec) 540:60    

Backwash  yes    
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Flat sheet System form 

Hitachi, Japan.; with 

membrane cut of size of 

0.2  μm  
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Volume of reactor (m3): 5.16 CODt 785  
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Anoxic recirculation ratio 4 TKN 65  

Anaerobic recirculation  1 PO4 0.4-7.7  

ORP (anoxic)-(mV) -200 Ptot 9.9  

Membrane area (m2) 18 VFA 75-120  

MLSS (gL-1) 10-16    

Temperature (*C): 24-38    
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  

R
ef

er
en

ce
 

Parameter Influent Effluent 

pH control     

Biological aeration (m3h-1) 

Aerobic Tank 
30    

Biological aeration (m3h-1) 

Membrane Tank 
10    

Flux (Lm-2 h-1) 43    

TMP (kPa) 50    

Filtration –relaxation (sec)     

Backwash  Yes    

Chemical cleaning  Yes    
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pore size of 0.03 μm 
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Volume of reactor (m3): 0.421 TSS 
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Membrane area (m2) 1.4 BOD5 

Anaerobic recirculation ratio 1 CODt 

Anoxic recirculation ratio 3 TKN 

ORP (anoxic)-(mV) -- NH3-N 

MLSS (gL-1) -- NOx 

Volatile fraction  of MLSS 

(%) 
-- PO4 

F/M ratio 

(kgCOD(kgVSSday)-1) 
-- Ptot 

Temperature (Co): --  

pH control --  

Biological aeration (m3d-1) 

Aerobic Tank 
22.45  

SRT (days) --  

Flux (Lm-2 h-1) 21  

TMP (kPa) --  

Filtration –backwashing (sec) 540:60  

Backwash  yes  
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Process conditions  

Flow quality (mgL-1)  

Effluent> Model output  

R
ef
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Parameter Influent Effluent 

Chemical cleaning  Yes  
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No information provided  
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Volume of reactor (m3): 4525 TSS 390 10.3 

B
is
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t 
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.,
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0

1
9

 

Membrane area (m2) -- BOD5 428 3.3 

Anaerobic recirculation ratio 1.50 CODt 810 82.3 

Anoxic recirculation ratio 2.50 TN 64.5 16.1 

DO mg/L 2 TKN  2 

MLSS (gL-1) 9.8 NH3-N 51 0.88 

SRT (days) 10 NOx 0.5 14.1 

F/M ratio 

(kgCOD(kgVSSday)-1) 
0.16 Ptot 15.8 0.67 

Temperature (Co):  PO4 11.9 0.09 



Table C2: Default Stoichiometric Parameters of the various models applied for P-removal modeling in MBRs  
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Bio-kinetic model  TUDP  ASM2d 
ASM2d 

SMP  

ASM3-

BioP 

New 

general 

model 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

P-related processes 11 8 8 11 19 8 8 8 8 8 8 

YPAO  0.625 0.625   0.639 0.625  0.625 0.625 0.625 0.625 0.625 

1/YStor,PP  0.2 0.2   0.2 0.2 0.2 0.2 0.2 0.2 

YPP,Stor,PAO  0.4 0.4  0.52 0.4 0.4 0.4 0.4 0.4 0.4 

YPAO,Ox    0.60        

YPAO,Ax    0.50        

YStor,PP    0.20        

YPP,Stor,PAO    0.35        

YStor,PP, Ox     0.95        

YStor,PP, Ax     0.55       

YVFA,Stor,PAO     0.889       

YPHA,PAO,Ox 1.39           

YPHA,PAO,Ax 1.72           

YPAO,PP,Ax 3.02           

YPAO,PP,Ox 4.42           

YVFA,PHA,PAO,An 1.5           

YVFA,PHA,PAO,Ax 0.71           

YPP,PHA,PAO,An/ YPO4 0.35           

YPP_PHA,PAO,Ax 0.23           

YPAO,Gly,Ax 1.18           

YPAO,Gly,Ox 1.11           

YNADH,ATP 1.85           



Table C3: Default kinetic Parameters of the various models applied for P-removal modeling in MBRs  
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Bio-kinetic model  TUDP  ASM2d 
ASM2d 

SMP  

ASM3-

BioP 

New 

general 

model 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

ASM2d 

SMP 

qPAO,VFA,Stor  3 3  2 3 3 3 3 3 3 

qPAO,PO4,PP 0.1 1.5 1.5 1.5  1.5 1.5 1.5 1.5 1.5 1.5 

qPAO,VFA,PHA,An 8           

qPAO,VFA,PHA,Ax 1.2           

qPAO,SB,Stor    6        

qGly 0.93           

qPHA,PAO 5.51           

KS,fPP,PAO  0.01 0.01 0.05  0.01 0.01 0.01 0.01 0.01 0.01 

KfGly,PAO 0.01           

KI,fPP,PAO 0.01 0.02 0.02 0.05  0.02 0.02 0.02 0.02 0.02 0.02 

KfGly,PAO 0.01           

KfPHA,PAO            

KfStor,PAO  0.01 0.01 0.10 0.10 0.01 0.01 0.01 0.01 0.01 0.01 

KfStor,PAO,Plim     0.05       

KVFA,PAO 4 4 4  2.5 4 4 4 4 4 4 

KO2,PAO 0.20 0.20 0.20 0.20  0.20 0.20 0.20 0.20 0.20 0.20 

KNOx,PAO 0.50 0.50 0.50 0.50  0.5 0.50 0.50 0.50 0.50 0.50 

KNHx,PAO 0.05 0.05 0.05 0.05  0.05 0.05 0.05 0.05 0.05 0.05 

KPO4,PAO,upt 1 0.20 0.20 0.20 0.25 0.20 0.20 0.20 0.20 0.20 0.20 

KPO4,PAO,nut 0.02 0.01 0.01 0.01  0.01 0.01 0.01 0.01 0.01 0.01 

KPHA,PAO 0.01           

KGly,PAO 0.01           

KAlk,PAO 0.01 0.10 0.10 0.10  0.10 0.10 0.10 0.10 0.10 0.10 

KPP,PAO 0.01    0.01       

KPO4,PAO,lys            

KSB,PAO           10 

fPP_PAO,Max 0.35 0.34 0.34 0.20  0.34 0.34 0.34 0.34 0.34 0.34 

fGly_PAO,Max 0.50           

μPAO,Max  1 1 1 0.95 1 1 1 1 1 1 

μPAO,Max_lim  1 1  0.42 1 1 1 1 1 1 

nμPAO  0.60 0.60 0.60 0.40 0.60 0.60 0.60 0.60 0.60 0.60 

nqPAO 0.8           

nmPAO    0.33        

nbPP,PO4    0.33        

nmPAO,Stor    0.33        

mPAO,Stor    0.20        

mPAO    0.20 0.04       

mPAO,O2 0.096           

mPAO,Ox 0.06           

mPAO,Ax 0.09           

mPAO,An 0.05           

bPAO  0.20    0.20 0.20 0.20 0.20 0.20  

bPP,PO4  0.20  0.20 0.03 0.20 0.20 0.20 0.20 0.20  

bStor,VFA  0.20    0.20 0.20 0.20 0.20 0.20  



Table C4. Kinetic rate equation for Phosphorus modeling in various models used in reviewed studies (adapted and 

modified from Hauduc et al., 2013) 

Mod

el 
Kinetic Process 

Impacted with 

change of 

kinetic 

parameters 

P-related kinetic rate equations 

A
S

M
3

-B
io

P
 

Storage of XPHA  qPAO,SB_Stor  ₓ [SB/(KSB,PAO+SB)]  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ 

[(XPAO,PP/XPAO)/(KS,fPP_PAO+XPAO,PP/XPAO)]  ₓ XPAO 

Aerobic storage of 

XPP 
 

qPAO,PO4_PP  ₓ [SO2/(KO2,PAO+SO2)]  ₓ [SPO4/(KPO4,PAO,upt+SPO4)]  ₓ 

[SAlk/(KAlk,PAO+SAlk)]  ₓ [(XPAO,Stor/XPAO)/(KfStor_PAO+XPAO,Stor/XPAO)]  ₓ 

[(fPP_PAO,Max-(XPAO,PP/XPAO))/(KI,fPP_PAO+fPP_PAO,Max-(XPAO,PP/XPAO))]  ₓ 

XPAO 

Anoxic storage of 

XPP 
 

qPAO,PO4_PP  ₓ nμPAO  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ 

[SNOx/(KNOx,PAO+SNOx)]  ₓ [SPO4/(KPO4,PAO,upt+SPO4)]  ₓ 

[SAlk/(KAlk,PAO+SAlk)]  ₓ [(XPAO,Stor/XPAO)/(fPP_PAO,Max+XPAO,Stor/XPAO)]  

ₓ[(KS,fPP_PAO-(XPAO,PP/XPAO))/(KI,fPP_PAO+fPP_PAO,Max-(XPAO,PP/XPAO))]  ₓ 

XPAO 

Aerobic growth of 

XPAO 
 

μPAO,Max  ₓ [SO2/(KO2,PAO+SO2)]  ₓ [SNHX/(KNHx,PAO+SNHX)]  

ₓ[SPO4/(KPO4,PAO,nut+SPO4)]  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+XPAO,Stor/XPAO)]  ₓ XPAO 

Anoxic growth of 

XPAO 
 

μPAO,Max  ₓnμPAO  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ[SNOx/(KNOx,PAO+SNOx)]  

ₓ[SNHX/(KNHx,PAO+SNHX)]  ₓ[SPO4/(KPO4,PAO,nut+SPO4)]  ₓ 

[SAlk/(KAlk,PAO+SAlk)]  ₓ[(XPAO,Stor/XPAO)/(KfStor_PAO+XPAO,Stor/XPAO)]  ₓ 

XPAO 

Aerobic endogenous 

respiration of XPAO 

Yes, due to 

change in values 

of mPAO 
mPAO  ₓ [SO2/(KO2,PAO+SO2)]  ₓ XPAO  

Anoxic endogenous 

respiration of XPAO 

Yes, due to 

change in values 

of mPAO 

mPAO  ₓ nmPAO  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ [SNOx/(KNOx,PAO+SNOx)]  ₓ 

XPAO 

Aerobic lysis of XPP  bPP_PO4  ₓ [SO2/(KO2,PAO+SO2)]  ₓ XPAO,PP 

Anoxic lysis of XPP  bPP_PO4  ₓ nbPP_PO4  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ [SNOx/(KNOx,PAO+SNOx)]  

ₓ XPAO,PP 

Aerobic respiration 

of XPHA 
 mPAO,Stor  ₓ [SO2/(KO2,PAO+SO2)]  ₓ XPAO,Stor 

Anoxic respiration 

of XPHA 
 mPAO,Stor  ₓ nmPAO,Stor  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ 

[SNOx/(KNOx,PAO+SNOx)]  ₓ XPAO,Stor 

A
S

M
2

d
/A

S
M

2
d

-S
M

P
 

Storage of XStor 

 Yes, due to 

change in values 

of qPAO,VFA,Stor  

and KS,fPP_PAO 

qPAO,VFA,Stor  ₓ[SVFA/(KVFA,PAO+SVFA)]  ₓ[SAlk/(KAlk,PAO+SAlk)]  

ₓ[(XPAO,PP/XPAO)/(KS,fPP_PAO+(XPAO,PP/XPAO))]  ₓXPAO 

Aerobic Storage of 

XPP 

 Yes, due to 

change in values 

of qPAO,PO4_PP  , 

KfStor_PAO and 

fPP_PAO,Max 

qPAO,PO4_PP  ₓ [SO2/(KO2,PAO+SO2)]  ₓ [SPO4/(KPO4,PAO,upt+SPO4)]  ₓ 

[SAlk/(KAlk,PAO+SAlk)]  ₓ [(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))]  ₓ 

[(fPP_PAO,Max-XPAO,PP/XPAO)/(KI,fPP_PAO+fPP_PAO,Max-(XPAO,PP/XPAO))]  ₓ XPAO 

Anoxic Storage of 

XPP 

 Yes, due to 

change in values 

of qPAO,PO4_PP  , 

nμPAO and 

fPP_PAO,Max 

qPAO,PO4_PP  ₓ nμPAO  ₓ [SNOx/(KNOx,PAO+SNOx)]  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ 

[SPO4/(KPO4,PAO,upt+SPO4)]  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))]  ₓ [(fPP_PAO,Max-

XPAO,PP/XPAO)/(KI,fPP_PAO+fPP_PAO,Max-(XPAO,PP/XPAO))]  ₓ XPAO 

Aerobic growth of 

XPAO 

 Yes, due to 

change in value 

of μPAO,Max   

μPAO,Max  ₓ [SO2/(KO2,PAO+SO2)]  ₓ[SNHx/(KNHx,PAO+SNHx)]  ₓ 

[SPO4/(KPO4,PAO,nut+SPO4)]  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))]  ₓ XPAO 

Anoxic growth of  Yes, due to μPAO,Max  ₓ nμPAO  ₓ [KO2,PAO/(KO2,PAO+SO2)]  ₓ [SNOx/(KNOx,PAO+SNOx)]  ₓ 



Mod

el 
Kinetic Process 

Impacted with 

change of 

kinetic 

parameters 

P-related kinetic rate equations 

XPAO change in values 

of μPAO,Max and 

nμPAO 

[SNHx/(KNHx,PAO+SNHx)]  ₓ [SPO4/(KPO4,PAO,nut+SPO4)]  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))]  ₓ XPAO 

Lysis of XPAO 

 Yes, due to 

change in value 

of bPAO 

bPAO  ₓ XPAO   ₓ [SAlk/(KAlk,PAO+SAlk)] 

Lysis of XPP   bPP_PO4  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ  [XPAO,PP/XPAO]  ₓ XPAO 

Lysis of XStor   bStor_VFA  ₓ [SAlk/(KAlk,PAO+SAlk)]  ₓ [XPAO,Stor/XPAO]  ₓ XPAO 

A
S

M
2

+
T

U
D

P
 

Anaerobic Storage 

of SA 

Yes, due to 

change in value 

of KPP,PAO 

qPAO,VFA_PHA,An ₓ [SVFA/(KVFA,PAO+SVFA)] ₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ 

[KNOx,PAO/(KNOx,PAO+SNOx)] ₓ [XPAO,Gly/(KGly,PAO+XPAO,Gly)] ₓ 

[XPAO,PP/(KPP,PAO+XPAO,PP)] ₓXPAO 

Anaerobic 

Maintenance 

Yes, due to 

change in value 

of KPP,PAO 

mPAO,An*[KO2,PAO/(KO2,PAO+SO2)]*[KNOx,PAO/(KNOx,PAO+SNOx)]*[XPAO,PP/(KPP,

PAO+XPAO,PP)]*XPAO 

Anoxic storage of SA 

Yes, due to 

change in value 

of KPP,PAO 

qPAO,VFA_PHA,Axₓ [SVFA/(KVFA,PAO+SVFA)] ₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ 

[SNOx/(KNOx,PAO+SNOx)] ₓ [XPAO,PP/(KPP,PAO+XPAO,PP)] ₓ XPAO 

Anoxic PHA 

consumption 

  qPHA_PAO ₓ nqPAOₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ [SNHx/(KNHx,PAO+SNHx)] ₓ 

[SNOx/(KNOx,PAO+SNOx)] ₓ [SPO4/(KPO4,PAO,nut+SPO4)] ₓ [SAlk/(KAlk,PAO+SAlk)] ₓ 

[(XPAO,PHA/XPAO)/(KfPHA_PAO+(XPAO,PHA/XPAO))] ₓ XPAO 

Anoxic Storage of 

XPP 

  qPAO,PO4_PP  ₓ nqPAO ₓ [XPAO/XPAO,PP] ₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ [SNOx/(nKO2 ₓ 

KNOx,PAO+SNOx)] ₓ [SPO4/(KPO4,PAO,nut+SPO4)] ₓ 

[XPAO,PHA/(KPHA,PAO+XPAO,PHA)] ₓ [(fPP_PAO,Max-

(XPAO,PP/XPAO))/(KI,fPP_PAO+(fPP_PAO,Max-XPAO,PP/XPAO))] ₓ XPAO 

Anoxic glycogen 

formation 

  qGly ₓ nqPAO ₓ [XPAO,PHA/XPAO,Gly] ₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ 

[SNOx/(KNOx,PAO+SNOx)] ₓ [XPAO,PHA/(KPHA,PAO+XPAO,PHA)] ₓ [(fGly_PAO,Max-

(XPAO,Gly/XPAO))/(KfGly_PAO+(fGly_PAO,Max-XPAO,Gly/XPAO))] ₓ 

[SAlk/(KAlk,PAO+SAlk)] ₓ XPAO 

Anoxic maintenance   mPAO,Ax ₓ [KO2,PAO/(KO2,PAO+SO2)] ₓ [SNOx/(KNOx,PAO+SNOx)] ₓ XPAO 

Aerobic PHA 

consumption 

  qPHA_PAO ₓ [SO2/(KO2,PAO+SO2)] ₓ [SNHx/(KNHx,PAO+SNHx)] ₓ 

[SPO4/(KPO4,PAO,nut+SPO4)] ₓ [SAlk/(KAlk,PAO+SAlk)] ₓ 

[(XPAO,PHA/XPAO)/(KfPHA_PAO+(XPAO,PHA/XPAO))] ₓXPAO 

Aerobic Storage of 

XPP 

  qPAO,PO4_PP ₓ [XPAO/XPAO,PP] ₓ [SO2/(nKO2ₓKO2,PAO+SO2)] ₓ 

[SPO4/(KPO4,PAO,nut+SPO4)] ₓ [XPAO,PHA/(KPHA,PAO+XPAO,PHA)] ₓ [(fPP_PAO,Max-

(XPAO,PP/XPAO))/(KI,fPP_PAO+(fPP_PAO,Max-XPAO,PP/XPAO))] ₓ XPAO 

Aerobic glycogen 

formation 

  qGly ₓ [XPAO,PHA/XPAO,Gly] ₓ [SO2/(KO2,PAO+SO2)] ₓ 

[XPAO,PHA/(KPHA,PAO+XPAO,PHA)] ₓ [(fGly_PAO,Max-

(XPAO,Gly/XPAO))/(KfGly_PAO+(fGly_PAO,Max-XPAO,Gly/XPAO))] ₓ XPAO 

Aerobic 

maintenance 

  

mPAO,Ox ₓ [SO2/(KO2,PAO+SO2)] ₓ XPAO 

N
ew

 G
en

er
al

 

M
o

d
el

 Aerobic growth of 

ZP with NH3 
  

μPAO,Maxₓ [SO2/(KO2,OHO+SO2)] ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))] ₓ [SNHx/(KNHx,OHO+SNHx)] ₓ 

[SPO4/(KPO4,PAO,upt+SPO4)] ₓXPAO 

Aerobic growth of 

ZP with NO3 
  μPAO,Max ₓ [SO2/(KO2,OHO+SO2)] ₓ 



Mod

el 
Kinetic Process 

Impacted with 

change of 

kinetic 

parameters 

P-related kinetic rate equations 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))] ₓ 

[SNOx/(KNOx,OHO+SNOx)]*[KNHx,OHO/(KNHx,OHO+SNHx)] ₓ 

[SPO4/(KPO4,PAO,upt+SPO4)] ₓ XPAO 

Aerobic growth of 

ZP with NH3 / PO4 

limited 

  

μPAO,Max,Plim ₓ[SO2/(KO2,OHO+SO2)] ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO,Plim+(XPAO,Stor/XPAO))] ₓ [SNHx/(KNHx,OHO+SNHx)] 

ₓ [KPO4,PAO,upt/(KPO4,PAO,upt+SPO4)] ₓ [XPAO,PP,Lo/(KPP,PAO+XPAO,PP,Lo)] ₓ XPAO 

Aerobic growth of 

ZP with NO3 / PO4 

limited 

  

μPAO,Max,Plim ₓ [SO2/(KO2,OHO+SO2)] ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO,Plim+(XPAO,Stor/XPAO))] ₓ [SNOx/(KNOx,OHO+SNOx)] 

ₓ [KNHx,OHO/(KNHx,OHO+SNHx)] ₓ [KPO4,PAO,upt/(KPO4,PAO,upt+SPO4)] ₓ 

[XPAO,PP,Lo/(KPP,PAO+XPAO,PP,Lo)] ₓ XPAO 

Anoxic growth of ZP 

with NH3 
  

μPAO,Max ₓ ημPAOₓ [KO2,OHO/(KO2,OHO+SO2)] ₓ 

[(XPAO,Stor/XPAO)/(KfStor_PAO+(XPAO,Stor/XPAO))] ₓ [SNOx/(KNOx,OHO+SNOx)] ₓ 

[SNHx/(KNHx,OHO+SNHx)] ₓ [SPO4/(KPO4,PAO,upt+SPO4)] ₓ XPAO 

Aerobic decay of ZP   mPAO ₓ [SO2/(KO2,OHO+SO2)] ₓ XPAO 

PPP-LO lysis on 

aerobic decay 
  mPAO ₓ [SO2/(KO2,OHO+SO2)] ₓ [XPAO,PP,Lo/XPAO] ₓ XPAO 

PPP-HI lysis on 

aerobic decay 
  mPAO ₓ [SO2/(KO2,OHO+SO2)] ₓ [XPAO,PP,Hi/XPAO] ₓ XPAO 

SPHB lysis on aerobic 

decay 
  mPAO ₓ [SO2/(KO2,OHO+SO2)] ₓ [XPAO,Stor/XPAO] ₓXPAO 

Anoxic decay of ZP   mPAO ₓ [KO2,OHO/(KO2,OHO+SO2)]*[SNOx/(KNOx,OHO+SNOx)] ₓ XPAO 

PPP-LO lysis on 

anoxic decay 
  

mPAO ₓ [KO2,OHO/(KO2,OHO+SO2)] ₓ [SNOx/(KNOx,OHO+SNOx)] ₓ 

[XPAO,PP,Lo/XPAO] ₓXPAO 

PPP-HI lysis on anoxic 

decay 
  

mPAOₓ [KO2,OHO/(KO2,OHO+SO2)] ₓ [SNOx/(KNOx,OHO+SNOx)] ₓ [XPAO,PP,Hi/XPAO] 

ₓ XPAO 

SPHB lysis on anoxic 

decay 
  

mPAOₓ [KO2,OHO/(KO2,OHO+SO2)] ₓ [SNOx/(KNOx,OHO+SNOx)] ₓ [XPAO,Stor/XPAO] 

ₓXPAO 

Anaerobic decay of 

ZP 
  mPAOₓ [KO2,OHO/(KO2,OHO+SO2)] ₓ [KNOx,OHO/(KNOx,OHO+SNOx)] ₓXPAO 

PPP-LO lysis on 

anaerobic decay 
  

mPAO*[KO2,OHO/(KO2,OHO+SO2)]*[KNOx,OHO/(KNOx,OHO+SNOx)]*[XPAO,PP,Lo/XPA

O]*XPAO 

PPP-HI lysis on 

anaerobic decay 
  

mPAO*[KO2,OHO/(KO2,OHO+SO2)]*[KNOx,OHO/(KNOx,OHO+SNOx)]*[XPAO,PP,Hi/XPA

O]*XPAO 

SPHB lysis on 

anaerobic decay 
  

mPAO*[KO2,OHO/(KO2,OHO+SO2)]*[KNOx,OHO/(KNOx,OHO+SNOx)]*[XPAO,Stor/XPAO

]*XPAO 



Mod

el 
Kinetic Process 

Impacted with 

change of 

kinetic 

parameters 

P-related kinetic rate equations 

Cleavage of poly_P 

for anaerobic 

maintenance 

  
bPP_PO4*[KO2,OHO/(KO2,OHO+SO2)]*[XPAO,PP,Lo/(KPP,PAO+XPAO,PP,Lo)]*XPAO 

Sequestration of 

SCFA by ZP 
  

qPAO,VFA_Stor*[SVFA/(KVFA,PAO+SVFA)]*[XPAO,PP,Lo/(KPP,PAO+XPAO,PP,Lo)]*XPAO 

 

Nomenclature: 

Notation  Description  

SB Soluble biodegradable organics 

SAlk Alkalinity (HCO3
-) 

SVFA Fermentation product (Volatil Fatty Acids) 

SO2 Dissolved oxygen  

SPO4 Inorganic soluble phosphorus 

XPAO, stor Stored poly-β-hydroxyalkanoate in PAOs 

XPAO Phosphorus accumulating organisms 

XPAO,PP Stored polyphosphates in PAOs 

XPAO, Gly Stored glycogen in PAOs 

SNOX Nitrate and nitrite (NO3 + NO2) (considered to be NO3 only for stoichiometry) 

SNHX Ammonia (NH4
+ + NH3) 

qPAO,SB_Stor Rate constant for SB uptake rate (XPAO,Stor storage)  

qPAO,PO4_PP Rate constant for storage of XPAO,PP 

KS,fPP_PAO Maximum ratio of XPAO,PP/XPAO 

fPP_PAO,Max Half-saturation coefficient for XPAO,PP/XPAO 

KI,fPP_PAO Half-inhibition coefficient for XPAO,PP/XPAO 

μPAO,Max Maximum growth rate of XPAO 

nμPAO Reduction factor for anoxic growth of XPAO 

KfStor_PAO Saturation constant for XPAO,Stor/XPAO  

mPAO Endogenous respiration rate of XPAO 

nmPAO Reduction factor for anoxic endogenous respiration of XPAO 

bPP_PO4 Rate constant for Lysis of XPAO,PP 

nbPP_PO4 Reduction factor for anoxic lysis of XPAO,PP 

mPAO,Stor Rate constant for respiration of XPAO,Stor 

nmPAO,Stor Reduction factor for anoxic respiration of XPAO,Stor 

KSB,PAO Half-saturation coefficient for SB 

KO2,PAO Half-saturation coefficient for SO2 

KNOx,PAO Half-saturation coefficient for SNOx 

KNHx,PAO Half-saturation coefficient for SNHx 



Notation  Description  

SB Soluble biodegradable organics 

SAlk Alkalinity (HCO3
-) 

SVFA Fermentation product (Volatil Fatty Acids) 

SO2 Dissolved oxygen  

SPO4 Inorganic soluble phosphorus 

XPAO, stor Stored poly-β-hydroxyalkanoate in PAOs 

XPAO Phosphorus accumulating organisms 

XPAO,PP Stored polyphosphates in PAOs 

XPAO, Gly Stored glycogen in PAOs 

SNOX Nitrate and nitrite (NO3 + NO2) (considered to be NO3 only for stoichiometry) 

SNHX Ammonia (NH4
+ + NH3) 

KPO4,PAO,upt Half-saturation coefficient for SPO4 uptake (XPAO,PP storage) 

KPO4,PAO,nut Half-saturation coefficient for SPO4 as nutrient (XPAO growth) 

KAlk,PAO Half-saturation coefficient for SAlk 

bPAO Endogenous respiration rate of XPAO 

bStor_VFA Rate constant for respiration of XPAO,Stor 

KVFA,PAO Half-saturation coefficient for SVFA 

qPAO,VFA_PHA,An Rate constant for SVFA  uptake rate (XPAO,PHA storage) (anaerobic) 

qPAO,VFA_PHA,Ax Rate constant for SVFA  uptake rate (XPAO,PHA storage) (anoxic) 

nKO2 Reduction factor for KO2 for XPAO,PP formation 

nKNOx Reduction factor for KNOx for XPAO,PP formation 

qGly Rate constant for formation of XPAO,Gly 

fGly_PAO,Max Maximum ratio of XPAO,Gly/XPAO 

KfGly_PAO Half-saturation coefficient for XPAO,Gly/XPAO 

qPHA_PAO Rate for XPAO,PHA consumption (XPAO growth) 

KPHA,PAO Half-saturation coefficient for XPAO,PHA  

KGly,PAO Half-saturation coefficient for XPAO,Gly 

KAlk,PAO Half-saturation coefficient for SAlk 

μPAO,Max,Plim Maximum growth rate of XPAO (when P is limiting) 

KfStor_PAO,Plim Half-saturation coefficient for XPAO,Stor/XPAO (P limit) 

KO2,OHO Half-saturation coefficient for SO2 

KNOx,OHO Half-saturation coefficient for SNOx 

KNHx,OHO Half-saturation coefficient for SNHx 
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Table D.1: Comparative Assessment of the commercially available simulation software 
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Model’s features 

S
U

M
O

  

B
io

W
in

 

W
E

S
T

 

G
P

S
-X

 

S
IM

B
A

 

A
q

u
aS

im
 

E
F

O
R

 

JA
S

S
 

A
S

IM
 

L
y

n
ix

 

S
T

O
A

T
 

D
E

S
A

S
S

 

E
n

v
ir

o
P

ro
D

es
ig

n
er

 

A-Model Library                           

ASM Family                            

ASM1              

ASM2       
 

 
 

    

ASM2d        
 

  
 

  

ASM3       
 

   
 

  

ASM2d_TUDBioP              

ASM3-BioP   
 

 
 

        

UCTPHO+ (UCT)              

Extended bio-P (PAO-GAO)              

New General Model (Barker and Dold's Model)    
 

         

ASM based on BOD Balance            
 

  

Dual Nitrification Denitrification e GAO PAO 

(DND-GP) 
     

 
       

BNRM1            
 

 

BNRM2            
 

 

Anaerobic Digestion               

General Bio kinetic Model  
 

           

ADM1              

Mesophilic Digestion Model           
 

  

Settlers/Secondary              

Flux Theory              

Teckas-Reactive    
 

         

Teckas Non-Reactive     
 

     
 

  

Settlers/Primary              

Teckas- Reactive    
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Teckas- Non-Reactive              

Otterpohl and  Freund     
 

        

Lessard and Beck   
 

       
 

  

Biochemical Process    
 

       
 

  

MBR Models               

Membrane filtration model (simple)   
  

         

Fouling Model     
  

         

B-Sub-Models               

EPS/SMP   
 

          

Aeration Model   
   

        

Chemical Precipitation Model (Equilibrium)  
 

           

Chemical Equilibrium with ASM2 Kinetics    
  

         

Adsorption models    
  

        

Methanol Addition    
 

         

GHG    
  

        

Odour Model              

pH, alkalinity              

Energy   
  

         

Operating Cost    
  

         

C-Reactor/Processes /Unit Operations              

Activated Sludge Processes(fixed film and 

suspended growth) 
      

 
    

 
 

Membrane Processes/Bioreactor        
       

Filters (including trickling filters)      
        

Advanced Oxidation Processes (AOPs)      
        

Sludge Drying       
        

Anaerobic Digesters       
        

Fermentation      
        

Chlorination/Disinfection      
        

Flow control devices       
        

Phase separators      
        

Process configurations (MLE, UCT, VIP, 

Phoredox, Bardenpho) 
     

        

Flexibility to modify/unlimited               

D-Control System              

Timer Based Controllers         
 

 
 

  

ON/OFF controller         
 

 
 

  

Feed Forward-Feedback control   
   

        

P-Controller    
   

     
 

  

PI Controller    
   

        

PID controller               
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Cascade              

E-Optimisation & Sensitivity analysis              

Parameters Estimation & Calibration   
    

       

Sensitivity Analysis   
  

 
 

       

Scenario Analysis   
  

     
 

   

Multi-Criteria Optimisation   
   

    
 

   

F-Other Features              

Graphical User Interface (GUI)       
 
  

 
 

   

Model Building              

Simple          
  

  

 Intermediate Level of Complexity      
  

       

Complicated               

Model Editor/Automatic Balance Check  
  

 
    

 
    

Peterson Matrix Editor      
  

  
    

Simulations              

Steady State         
 

    

Dynamic         
 

    

Simulation Speed              

Limited          
 

 
 

  

Unlimited        
 

 
 

   

Input data (upload as)              

Excel file     
 

        

Text File (.csv /.txt)   
  

         

Copy input data to input data module     
 

         

Results Analysis and Report Generation              

Word report   
  

         

Data Export in Excel/text   
  

         

Statistical Analysis of the simulation Results    
  

         

Comparison with Measured data     
 

         

Flexibility to build  Indigenous Model  
            

Model source code              

Open      
 

 
   

 
  

Hidden  
    

        

Free Access      
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Figure E.1(a): fixed coagulant dosing strategy  (adopted and modified from Garikiparthy et al., 2016) 

 

Figure E.1(b): ratio based coagulant dosing controller  (adopted and modified from Garikiparthy et al., 

2016) 



 

Figure E.1(c): ratio based coagulant dosing controller  (adopted and modified from Garikiparthy et al., 

2016) 

 

Figure E.1(d): load proportional feedforward PI controller (adopted and modified from Garikiparthy et 

al., 2016) 



 

Figure E.2: Control strategy of combining FF and FB (Liu & Ratnaweera, 2016) 

 

 

Figure E.3: Load proportional feedforward “off the shelf” automated dosing system by HACH (Craig et 

al., 2014) 



 

Figure 4: 12 Minute cycle ON-OFF  automated dosing system (Devisscher et al., 2002) 
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their default and calibrated values 



Annexure-B 

FULL EXPRESSION OF THE STOICHIOMETRIC PARAMETERS USED IN PETERSON MATRIX AND 

THEIR DEFAULT AND CALIBRATED VALUES 

Table -1: Full expression of the stoichiometric parameters used in the Peterson matrix 

P
a

ra
. 

Expression 

P
a

ra
. 

Expression 

a2 -(1-YSB_Stor_Ox) m5 YSB_Stor_Ax 

a3 -(1-YSUAP_Stor_Ox) m6 YSUAP_Stor_Ax 

a4 -(1-YSBAP_Stor_Ox) m7 YSBAP_Stor_Ax 

a8 -(1-YSB_OHO_Ox-γSB_SUAP_Ox)/YSB_OHO_Ox m11 -1/YStor_OHO_Ox 

a9 -(1-YSUAP_OHO_Ox)/YSUAP_OHO_Ox m15 -1/YStor_OHO_Ax 

a10 -(1-YSBAP_OHO_Ox)/YSBAP_OHO_Ox n16 1-γANO_XEPS_G_Ox  

a11 -(1-YStor_OHO_Ox -γStor_SUAP_Ox)/YStor_OHO_Ox p1 -(1-fSU_XCB_hyd) *iP_SB-fSU_XCB_hyd*iP_SU + iP_XCB 

a16 -(-iCOD_NO3-YANO -γSNHx_SUAP_Ox)/YANO p8 -p16 -iP_XBio + iP_XBio*γOHO_XEPS_G_Ox 

a20 -(1-fXU_Bio_lys-γOHO_SBAP_Ox -γOHO_XEPS_D_Ox) p20-p23 iP_XBio -(f_XU*iPXU) 

a22 
-(1-fXU_Bio_lys - γANO_SBAP_Ox - 

γANO_XEPS_D_Ox) 
p25 YPP_Stor_PAO+iP_SB 

a26 -YStor_PP p30-p31 -fXU_Bio_lys*iP_XU+iP_XBio 

a28 -(1-YPAO_Ox)/YPAO_Ox w25 -YPP_Stor_PAO 

a30 -(1-fXU_Bio_lys) x26-x27 -YStor_PP 

c1 1-fSU_XCB_hyd x28 -1/YPAO_Ox 

c8 -1/YSB_OHO_Ox x29 -1/YPAO_Ax 

c12 -1/YSB_OHO_Ax y1 g1*iCharge_SNHx+u1*iCharge_SPO4 

c17 fSB_XEPS_hyd y2 iN_SB * iCharge_SNHx + iP_SB * iCharge_SPO4 

d8 γSB_SUAP_Ox/YSB_OHO_Ox y3 iN_SUAP * iCharge_SNHx + iP_SB * iCharge_SPO4 

d9 -1/YSUAP_OHO_Ox y4 iN_SBAP * iCharge_SNHx + iP_SB * iCharge_SPO4 

d11 γ Stor_SUAP_Ox/YStor_OHO_Ox y5 
iN_SB * iCharge_SNHx + h5*iCharge_SNOx+ iP_SB * 

iCharge_SPO4 

d12 γSB_SUAP_Ax/YSB_OHO_Ax y6 
iN_SUAP * iCharge_SNHx + h6*iCharge_SNOx+ iP_SB * 

iCharge_SPO4 

d13 -1/YSUAP_OHO_Ax y7 
iN_SBAP * iCharge_SNHx + h7*iCharge_SNOx+ iP_SB * 

iCharge_SPO4 

d15 γStor_SUAP_Ax/YStor_OHO_Ax y8 g8*iCharge_SNHx+u8*iCharge_SPO4 

d16 γSNHx_SUAP_Ox/YANO y9 

(iN_SUAP/YSUAP_OHO_Ox-iN_XBio*(1-γOHO_XEPS_G_Ox)-

iN_XEPS*γOHO_XEPS_G_Ox) 

*iCharge_SNHx+(iP_XBio+iP_XBio*γOHO_XEPS_G_Ox) 

*iCharge_SPO4 

e10 -1/YSBAP_OHO_Ox y10 

((iN_SBAP/YSBAP_OHO_Ox-iN_XBio*(1-γOHO_XEPS_G_Ox)-

iN_XEPS*γOHO_XEPS_G_Ox)) *iCharge_SNHx+(-

iP_XBio+iP_XBio*γOHO_XEPS_G_Ox) *iCharge_SPO4 

e14 -1/YSBAP_OHO_Ax y11 

(-iN_XBio*(1-γOHO_XEPS_G_Ox)-iN_XEPS*γOHO_XEPS_G_Ox-

γStor_SUAP_Ox*iN_SUAP/YStor_OHO_Ox) *iCharge_SNHx+(-

iP_XBio+iP_XBio*γOHO_XEPS_G_Ox) *iCharge_SPO4 

e17 1-fSB_XEPS_hyd y12 g12 * iCharge_SNHx + h12*iCharge_SNOx+ u12 * iCharge_SPO4 

e20 γOHO_SBAP_Ox y13 g13 * iCharge_SNHx + h13*iCharge_SNOx+ u13 * iCharge_SPO4 

e21 γOHO_SBAP_Ax y14 g14 * iCharge_SNHx + h14*iCharge_SNOx+ u14 * iCharge_SPO4 

e22 γANO_SBAP_Ox y15 g15 * iCharge_SNHx + h15*iCharge_SNOx+ u15 * iCharge_SPO4 

e23 γANO_SBAP_Ax y16 g16 * iCharge_SNHx + h16*iCharge_SNOx+ u16 * iCharge_SPO4 



P
a

ra
. 

Expression 

P
a

ra
. 

Expression 

f1 fSU_XCB_hyd y17 g8*iCharge_SNHx 

g1 
iN_XCB-(1-fSU_XCB_hyd) *iN_SB-

fSU_XCB_hyd*iN_SU 
y19 -1/iNO3_N2*iCharge_SNOx 

g8 

iN_SB/YSB_OHO_Ox-iN_XBio*(1-γOHO_XEPS_G_Ox) 

– iN_XEPS*γOHO_XEPS_G_Ox -iN_SUAP 

*γSB_SUAP_Ox/YSB_OHO_Ox 

y20 g20*iCharge_SNHx+u22*iCharge_SPO4 

g9 
iN_SUAP/YSUAP_OHO_Ox - iN_XBio*(1-

γOHO_XEPS_G_Ox)-iN_XEPS*γOHO_XEPS_G_Ox 
y21 g21 * iCharge_SNHx + h21*iCharge_SNOx+ u21 * iCharge_SPO4 

g10 
(iN_SBAP/YSBAP_OHO_Ox-iN_XBio*(1-

γOHO_XEPS_G_Ox)-iN_XEPS*γOHO_XEPS_G_Ox) 
y22 g8*iCharge_SNHx+u8*iCharge_SPO4 

g11 

-iN_XBio*(1-γOHO_XEPS_G_Ox) - 

iN_XEPS*γOHO_XEPS_G_Ox -

γStor_SUAP_Ox*iN_SUAP / YStor_OHO_Ox 

y23 g23 * iCharge_SNHx + h23*iCharge_SNOx+ u23 * iCharge_SPO4 

g12 

iN_SB/YSB_OHO_Ax -iN_XBio*(1-

γOHO_XEPS_G_Ax)-iN_XEPS*γ OHO_XEPS_G_Ax - 

iN_SUAP*γSB_SUAP_Ax/YSB_OHO_Ax 

y25 
iN_SB *iCharge_SNHx+ 

u25*iCharge_SPO4+w25*iCharge_XPAO_PP 

g13 
iN_SUAP/YSUAP_OHO_Ax -iN_XBio*(1-

γOHO_XEPS_G_Ax) -iN_XEPS*γOHO_XEPS_G_Ax 
y26 -1*iCharge_SPO4+1*iCharge_XPAO_PP 

g14 
iN_SBAP/YSBAP_OHO_Ax -iN_XBio*(1-

γOHO_XEPS_G_Ax)-iN_XEPS* γ OHO_XEPS_G_Ax 
y27 h27*iCharge_SNOx - iCharge_SPO4+iCharge_XPAO_PP 

g15 

-iN_XBio*(1- γ OHO_XEPS_G_Ax)-iN_XEPS* γ 

OHO_XEPS_G_Ax- 

γStor_SUAP_Ax*iN_SUAP/YStor_OHO_Ax 

y28 -iN_XBio *iCharge_SNHx+(-iP_XBio) *iCharge_SPO4 

g16 

-1/YANO-iN_XBio*(1-γANO_XEPS_G_Ox)-

iN_XEPS* γANO_XEPS_G_Ox -iN_SUAP* 

γSNHx_SUAP_Ox/YANO 

y29 
-iN_XBio *iCharge_SNHx+ h29*iCharge_SNOx- -iP_XBio 

*iCharge_SPO4 

g17 
-(1-fSB_XEPS_hyd) *iN_SBAP-

fSB_XEPS_hyd*iN_SB+iN_XEPS 
y30 g30*iCharge_SNHx +u30*iCharge_SPO4 

g20 

iN_XBio-fXU_Bio_lys*iN_XU-

γOHO_SBAP_Ox*iN_SBAP-

iN_XEPS*γOHO_XEPS_D_Ox 

y31 g31*iCharge_SNHx+h31*iCharge_SNOx+u31*iCharge_SPO4 

g21 

iN_XBio-fXU_Bio_lys*iN_XU-

γOHO_SBAP_Ax*iN_SBAP-

iN_XEPS*γOHO_XEPS_D_Ax 

y32-y33 iCharge_SPO4-iCharge_XPAO_PP 

g22 

iN_XBio-fXU_Bio_lys*iN_XU-

γANO_SBAP_Ox*iN_SBAP-

iN_XEPS*γANO_XEPS_D_Ox 

y35 h35*iCharge_SNOx 

g23 

iN_XBio-fXU_Bio_lys*iN_XU-

γANO_SBAP_Ax*iN_SBAP-

iN_XEPS*γANO_XEPS_D_Ax 

y36 -iCharge_SPO4 

g30 -fXU_Bio_lys*iN_XU+iN_XBio y37 iCharge_SPO4 

g31 -fXU_Bio_lys*iN_XU+iN_XBio z1 -iTSS_XCB 

h5 -(1-YSB_Stor_Ax)/iNO3_N2 z2 YSB_Stor_Ox*iTSS_XOHO_Stor 

h6 -(1-YSUAP_Stor_Ax)/iNO3_N2 z3- z4 YSBAP_Stor_Ax*iTSS_XOHO_Stor 

h7 -(1-YSBAP_Stor_Ax)/iNO3_N2 z5 YSB_Stor_Ax*iTSS_XOHO_Stor 

h12 
-(1-YSB_OHO_Ax-

γSB_SUAP_Ax)/(YSB_OHO_Ax*iNO3_N2) 
z6- z7 YSBAP_Stor_Ax*iTSS_XOHO_Stor 

h13 -(1-YSUAP_OHO_Ax)/(YSUAP_OHO_Ax*iNO3_N2) z8- z10 
iTSS_XBio-γOHO_XEPS_G_Ox*iTSS_XBio+γOHO_XEPS_G_Ox* 

iTSS_EPS 

h14 -(1-YSBAP_OHO_Ax)/(YSBAP_OHO_Ax*iNO3_N2) z11 
(-1/YStor_OHO_Ox)*(iTSS_XOHO_Stor)+iTSS_XBio-

γOHO_XEPS_G_Ox*iTSS_XBio+γOHO_XEPS_G_Ox*iTSS_EPS 
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Expression 

P
a
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. 

Expression 

h15 
-(1-YStor_OHO_Ax -

γStor_SUAP_Ax)/(YStor_OHO_Ax*iNO3_N2) 
z12 

iTSS_XBio-

γOHO_XEPS_G_Ax*iTSS_XBio+γOHO_XEPS_G_Ax*iTSS_EPS 

h19 -1/iNO3_N2 z13 
iTSS_XBio-

γOHO_XEPS_G_Ax*iTSS_XBio+γOHO_XEPS_G_Ax*iTSS_EPS 

h21 
-(1-fXU_Bio_lys-γOHO_SBAP_Ax-

γOHO_XEPS_D_Ax)/iNO3_N2 
z14 

iTSS_XBio-

γOHO_XEPS_G_Ax*iTSS_XBio+γOHO_XEPS_G_Ax*iTSS_EPS 

h22 
-(1-fXU_Bio_lys-γANO_SBAP_Ax-

γANO_XEPS_D_Ax)/iNO3_N2 
z15 

iTSS_XBio+iTSS_EPS*γOHO_XEPS_G_Ax-(1/YStor_OHO_Ax) 

*iTSS_XOHO_Stor-γOHO_XEPS_G_Ox*iTSS_XBio 

h27 -(YStor_PP)/iNO3_N2 z16 
iTSS_XBio-

γANO_XEPS_G_Ox*iTSS_XBio+γANO_XEPS_G_Ox*iTSS_EPS 

h29 -(1-YPAO_Ax)/YPAO_Ax*1/iNO3_N2 z17 -iTSS_EPS 

h31 -(1-fXU_Bio_lys)/iNO3_N2 z18- z19 -iTSS_XOHO_Stor 

h35 -1/iNO3_N2 z20 
(fXU_Bio_lys*iTSS_XU)-

iTSS_XBio+(γANO_XEPS_D_Ox*iTSS_EPS) 

i20-

i23 
fXU_Bio_lys z21 fXU_Bio_lys*iTSS_XU-iTSS_XBio+(γOHO_XEPS_D_Ax*iTSS_EPS) 

i30-

i31 
fXU_Bio_lys z22 

(fXU_Bio_lys*iTSS_XU)-

iTSS_XBio+(γANO_XEPS_D_Ox*iTSS_EPS) 

j8-

j11 
γOHO_XEPS_G_Ox z23 -iTSS_XBio+fXU_Bio_lys*iTSS_XU+γANO_XEPS_D_Ax*iTSS_EPS 

j12-

j15 
γOHO_XEPS_G_Ax z25 iTSS_XOHO_Stor-iTSS_XPAO_PP*YPP_Stor_PAO 

j16 γANO_XEPS_G_Ox z26- z27 -YStor_PP*iTSS_XOHO_Stor+iTSS_XPAO_PP 

j20 γOHO_XEPS_D_Ox z28 -(1/YPAO_Ox)*iTSS_XOHO_Stor+iTSS_XBio 

j21 γOHO_XEPS_D_Ax z29 -(1/YPAO_Ax)*iTSS_XOHO_Stor+iTSS_XBio 

j22 γANO_XEPS_D_Ox z30- z31 -iTSS_XBio+fXU_Bio_lys*iTSS_XU 

j23 γANO_XEPS_D_Ax z32- z33 -iTSS_XPAO_PP 

k8-

k15 
1-γOHO_XEPS_G_Ox z34-z35 -iTSS_XOHO_Stor 

m2 YSB_Stor_Ox   

m3  YSBAP_Stor_Ox   

m4 YSUAP_Stor_Ox   
 

Table -2: Stoichiometric and kinetic parameters values for biokinetic model 

Parameters Notation Units Value at 20 C 

Fraction of inert COD generated in hydrolysis fSU_XCB, hyd - 0.0 

Yield for XOHO growth per SB (Aerobic) YSB_OHO_OX - 0.681 

Yield for XOHO growth per SB(Anoxic) YSB_OHO_Ax - 0.59 

Yield of XOHO_ Stor formation per SB (Aerobic) YSB_Stor_OX - 0.85 

Yield of XOHO_Stor formation per SB (Anoxic) YSB_Stor_Ax - 0.85 

Yield of XOHO growth per XOHO_Stor (Aerobic) Ystor_OHO_OX - 0.80 

Yield of XOHO growth per XOHO, Stor (Anoxic) Ystor_OHO_AX - 0.65 

Aerobic yield of XOHO_sto per SUAP (Anoxic) YSUAP_Stor_Ax - 0.8 



Parameters Notation Units Value at 20 C 

Aerobic yield of XOHO_sto per SUAP (Aerobic) YSUAP_Stor_Ox - 0.85 

Yield of XOHO_Stor formation per SBAP (Anoxic) YSBAP_Stor_Ax - 0.8 

Yield of XOHO_Stor formation per SBAP (Aerobic) YSBAP_Stor_ox - 0.8 

Yield of XOHO growth per SUAP (Anoxic) YSUAP_OHO_Ax - 0.8 

Yield of XOHO growth per SUAP (Aerobic) YSUAP_OHO_Ox - 0.67 

Yield of XOHO growth per SBAP (Anoxic) YSBAP_OHO_Ax - 0.59 

Yield of XOHO growth per SBAP (Aerobic) YSBAP_OHO_Ox - 0.67 

Yield of XANO growth per SNO3 YANO g COD.gN-1 0.24 

Yield of XPAO growth per XPAO_Stor (Aerobic) YPAO_Ox - 0.6 

Yield of XPAO growth per XPAO_Stor (Anoxic) YPAO_Ax - 0.5 

Yield for XPAO_PP storage (SPO4 uptake) per XPAO_Stor 

utilized 
YStor_PP gP.g COD-1 0.2 

Yield for XPAO_PP requirement (SPO4 release) per 

XPAO_Stor stored (SB utilized) 
YPP_Stor_PAO gCOD XPO4.gCODSB-1 0.35 

UAP formation constant per XOHO_Stor (Anoxic) γStor_SUAP_Ax  0.2 

UAP formation constant per XOHO, Stor (Aerobic) γStor_SUAP_Ox  0.2 

UAP formation constant per SB (Anoxic) γSB_SUAP_Ax  0.3 

UAP formation constant per SB (Aerobic) γSB_SUAP_Ox  0.3 

EPS formation fraction during XOHO growth decay 

(Anoxic) 
γOHO_XEPS_G_Ax  0.12 

EPS formation fraction during XOHO growth decay 

(Aerobic) 
γOHO_XEPS_G_Ox  0.12 

EPS formation fraction during XOHO decay (Anoxic) γOHO_XEPS_D_Ax  0.05 

EPS formation fraction during XOHO decay (Aerobic) γOHO_XEPS_D_Ox  0.05 

EPS formation fraction during XANO growth decay 

(Aerobic) 
γANO_XEPS_G_Ox  0.12 

EPS formation fraction during XANO decay (Anoxic) γANO_XEPS_D_Ax 
 

0.05 

EPS formation fraction during XANO decay (Aerobic) γANO_XEPS_D_Ax 
 

0.05 

BAP formation constant per XOHO (Anoxic) γOHO_SBAP_Ax 
 

0.15 

UAP formation constant per SNHx (Aerobic) γSNHx_SUAP_Ox 
 

0.1 

BAP formation constant per XOHO (Aerobic) γOHO_SBAP_Ox 
 

0.1 

BAP formation constant per XANO(Anoxic) γANO_SBAP_Ax  0.1 

Fraction of XU generated in heterotrophic biomass 

decay 
fXU_Bio_lys  0.2 

Fraction of SU generated in XPAO decay fSU_PAO_lys  0 



Parameters Notation Units Value at 20 C 

Fraction of SB generated in hydrolysis fSB_XEPS_hyd  0.4 

Fraction of XEPS stored during XOHO growth  fEPS_Stor gCOD .gCOD-1 0.2 

N content of SB iN_SB g N.g COD-1 0.03 

N content of SU iN_SU g N.g COD-1 0.01 

N content of XU iN_XU g N.g COD-1 0.03 

N content of XB iN_XCB g N.g COD-1 0.035 

N content of biomass  

(XOHO, XPAO, XANO) 
iN_XBio g N.g COD-1 0.07 

N content of SUAP iN_SUAP g N.g COD-1 0.03 

N content of SBAP iN_SBAP g N.g COD-1 0.02 

N content of XEPS iN_XEPS g N.g COD-1 0.07 

P content of SB iP_SB g P.g COD-1 0 

P content of SU iP_SU g P.g COD-1 0 

P content of XU iP_XU g P.g COD-1 0.01 

P content of XB iP_XCB g P.g COD-1 0.005 

P content of biomass (XOHO, XPAO, XANO) iP_XBio g P.g COD-1 0.014 

Conversion factor XU in TSS iTSS_XU g TSS.g COD-1 0.75 

Conversion factor XB in TSS iTSS_XCB g TSS.g COD-1 0.75 

Conversion factor XOHO_Stor in TSS iTSS_XOHO_Stor g TSS.g COD-1 0.60 

Conversion factor biomass in TSS iTSS_XBio g TSS.g COD-1 0.90 

Conversion factor XPAO_PP in TSS iTSS_XPAO_PP g TSS.g COD-1 3.23 

TSS to COD ratio for XEPS iTSS_EPS g TSS.g COD-1 0.66 

Conversion factor for NO3 reduction to N2 iNO3_N2 g COD.g N-1 2.86 

Conversion factor for NO3 in COD iCOD_NO3 g COD.g N-1 -4.57 

Conversion factor for N2 in COD iCOD_N2 g COD.g N-1 -1.71 

Conversion factor for SNHx in charge iCharge_SNHx Charge.g N-1 0.07 

Conversion factor for NO3 in charge iCharge_SNOx Charge.g N-1 -0.07 

Conversion factor for XPAO_PP (K0.33Mg0.33PO3)n in 

charge 
iCharge_XPAO_PP Charge.g P-1 -0.03 

Conversion factor for PO4 in charge iCharge_SPO4 Charge.g P-1 -0.05 

Maximum specific hydrolysis rate qXCB_SB_hyd d-1 3 

Half-saturation coefficient for XCB/XOHO KXCB_hyd - 1 

Biomass affinity constant for SBAP KSBAP_OHO gCOD m-3 85 

Biomass affinity constant for SUAP KSUAP_OHO gCOD m-3 100 



Parameters Notation Units Value at 20 C 

Rate constant for XOHO_stor storage qSB_Stor d-1 5 

Hydrolysis rate for SUAP qSUAP_stor d-1 1.53 

Hydrolysis rate for SBAP qSBAP_stor d-1 0.057 

Max. growth rate of XOHO based on SSMP uOHO_SMP_max d-1 1 

Maximum growth rate of XOHO uOHO_Max d-1 2 

Reduction factor for anoxic growth of XOHO nuOHO_Ax ---- 0.6 

Half-saturation coefficient for SB KSB_OHO g COD m-3 10 

Half-saturation coefficient for XOHO_Stor/XOHO KStor_OHO - 0.1 

Endogenous respiration rate of XOHO mOHO_ox d-1 0.2 

Reduction factor for Anoxic endogenous respiration of 

XOHO 
mOHO_Ax - 0.1 

Endogenous respiration rate of XOHO_Stor (Anoxic) 
mStor_Ax d-1 0.2 

Endogenous respiration rate of XOHO_Stor (Aerobic) 
mStor_Ox d-1 0.1 

Half-saturation coefficient for SO2 KO2_ OHO g SO2.m
-3 0.2 

Half-saturation coefficient for SNOx KNOx_OHO g Nm-3 0.5 

Half-saturation coefficient for SNHx KNHx_OHO g N.m-3 0.01 

Half-saturation coefficient for SPO4 KPO4_OHO g P.m-3 0.01 

Half-saturation coefficient for SAlk KAlk_OHO mol HCO3
-.m-3 0.1 

Rate constant for Sac uptake rate (XPAO_Stor storage) qPAO_SB_Stor d-1 6 

Rate constant for storage of XPAO_PP qPAO_PO4_PP g PXPP.g CODXPAO
-1.d-1 1.5 

Maximum ratio of XPAO_PP/XPAO KS_fPP_PAO g PXPP.g CODXPAO
-1 0.05 

Half-saturation coefficient for XPAO_PP/XPAO fPP_PAO_Max g PXPP.g CODXPAO
-1 0.2 

Half-inhibition coefficient for XPAO_PP/XPAO KI, fPP_PAO g PXPP.g CODXPAO
-1 0.05 

Maximum growth rate of XPAO uPAO_Max d-1 1 

Reduction factor for anoxic growth of XPAO nuPAO - 0.6 

Fraction of substrate used for storage  fsto  d-1 0.67 

Saturation constant for XPAO_Stor/XPAO KfStor_PAO - 0.1 

Endogenous respiration rate of XPAO mPAO d-1 0.2 

Reduction factor for anoxic endogenous respiration of 

XPAO 
nmPAO - 0.33 

Rate constant for Lysis of XPAO_ PP bPP_PO4 d-1 0.2 

Reduction factor for anoxic lysis of XPAO_PP nbPP_PO4 - 0.33 

Rate constant for respiration of XPAO_Stor mPAO_Stor d-1 0.2 



Parameters Notation Units Value at 20 C 

Reduction factor for anoxic respiration of XPAO_Stor nmPAO_Stor - 0.33 

Half-saturation coefficient for SB KSB_PAO g COD.m-3 10 

Half-saturation coefficient for SO2 KO2_PAO g SO2.m
-3 0.2 

Half-saturation coefficient for SNOx KNOx_PAO g N.m-3 0.5 

Half-saturation coefficient for SNHx KNHx_PAO g N.m-3 0.05 

Half-saturation coefficient for SPO4 uptake (XPAO_PP 

storage) 
KPO4_PAO_upt gP.m-3 0.2 

Half-saturation coefficient for SPO4 as nutrient (XPAO 

growth) 
KPO4_PAO_nut g P.m-3 0.01 

Half-saturation coefficient for SAlk KAlk_PAO mol HCO3
-.m-3 0.1 

Maximum growth rate of XANO uANO_Max d-1 1 

Decay rate for XANO (Aerobic) mANO_ox d-1 0.15 

Decay rate for XANO (Anoxic) mANO_Ax d-1 0.05 

Half-saturation coefficient for SO2 KO2_ANO g SO2.m
-3 0.5 

Half-saturation coefficient for SNHx KNH_ANO g N.m-3 1 

Half-saturation coefficient for SPO4 KPO4_ANO g P.m-3 0.01 

Half-saturation coefficient for SAlk KAlk_ANO mol HCO3
-.m-3 0.5 

Rate constant for P precipitation qP_pre m3.g Fe(OH)3
-1.d-1 1 

Rate constant for redissolution qP_red d-1 0.6 

Half-saturation coefficient for alkalinity Kalk_pre mol HCO3-.m-3 0.5 

XMeOH requirement per SPO4 utilized fMeOH_PO4_MW g TSSXMeOH. g P-1 -3.45 

XMeP formation per SPO4 utilized fMeP_PO4_MW g XMeP. g P-1 4.86 

Conversion factor for XMeP (FePO4) 

 in P 
iP_XMeP g P.g TSSXMeP

-1 0.206 
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LSTM Models Structure 



ANNEXURE-C 

 

Table C.1: Structural details of LSTM used for prediction of effluent quality  

 

Note: (Dimension, batch size, number of neuron units), with return sequence at each time, 
is set to false. The default is 3D, and “None” means 2 dimensions. 

 

Table C.2: LSTM structure used for TMP prediction 

 

 

 

 

 

 

 



 

 

Figure C.1: Hyper parameter Optimisation of LSTM model for effluent quality prediction  

 

 

 

 

 

 

 



 

 

Figure C.2: Hyper parameter Optimisation of LSTM model for effluent TMP prediction 
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