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Abstract— This brief proposes a new linear fractional transfor-
mation (LFT) modeling approach for uncertain linear parameter-
varying (LPV) multibody systems with parameter-dependent
equilibrium. Traditional multibody approaches, which consist
of building the nonlinear model of the whole structure and
linearizing it around equilibrium after a numerical trimming,
do not allow to isolate parametric variations with the LFT form.
Although additional techniques, such as polynomial fitting or
symbolic linearization, can provide an LFT model, they may be
time-consuming or miss worst case configurations. The proposed
approach relies on the trimming and linearization of the equa-
tions at the substructure level, before assembly of the multibody
structure, which allows to only perform operations that preserve
the LFT form throughout the linearization process. Since the
physical origin of the parameters is retained, the linearized
LFT-LPV model of the structure exactly covers all the plants,
in a single parametric model, without introducing conservatism
or fitting errors. An application to the LFT-LPV modeling of a
robotic arm is proposed; in its nominal configuration, the model
obtained with the proposed approach matches the model provided
by the software Simscape Multibody, but it is enhanced with
parametric variations with the LFT form; a robust LPV synthesis
is performed using MATLAB robust control toolbox to illustrate
the capacity of the proposed approach for control design.

Index Terms— Linear fractional transformation (LFT) model-
ing, linear parameter-varying (LPV) system, multibody dynam-
ics, robust control.

NOMENCLATURE
(*u) Skew symmetric matrix of vector u, such
that u x v = (*u)v.
[X]z, X (vector or tensor) projected in frame R,.
X X (scalar or vector) evaluated at
equilibrium.
oX First-order variations of x around

equilibrium.

I. INTRODUCTION

ULTIBODY systems have applications in various fields
such as aeronautics, aerospace, or robotics, with numer-
ous modeling and formulation approaches [1]. Even though

This
work was supported in part by Institut Supérieur de 1’Aéronautique et de
I’Espace (ISAE-SUPAERO and in part by Centre National d’Etudes Spatiales
(CNES) (French Space Agency—Grant 51/18660). Recommended by Associate
Editor M. Ariola. (Corresponding author: Ervan Kassarian.)

Ervan Kassarian, Francesco Sanfedino, and Daniel Alazard are with
ISAE-SUPAERO, 31055 Toulouse, France (e-mail: ervan.kassarian@isae.fr;
francesco.sanfedino @isae.fr; daniel.alazard @isae.fr).

Charles-Antoine  Chevrier and Johan Montel are with CNES,
31055  Toulouse, France (e-mail: charlesantoine.chevrier@cnes.fr;
johan.montel @cnes.fr).

Digital Object Identifier 10.1109/TCST.2022.3167610

, Daniel Alazard

, Charles-Antoine Chevrier”, and Johan Montel

multibody dynamics are inherently nonlinear, it is often useful
to linearize them at equilibrium to study the stability, perform
modal analysis, or apply classical linear control methods.
In practical engineering problems, many parameter uncertain-
ties impact the dynamics of the system and must be taken into
account for robust analysis and control. When working on the
uncertain linear model, a representation of the uncertainties
with a bounded and unknown operator A, based on the linear
fractional transformation (LFT), enables powerful tools to per-
form worst case robust analysis and control such as 4 analysis
or H synthesis [2]. Furthermore, the nonlinear system can
often be approximated by a linear parameter-varying (LPV)
model around a slowly varying equilibrium, where the varying
or nonlinear terms are also represented in the operator A of
the LFT. Finally, some mechanical parameters, such as masses
of some elements, may be considered as decision variables
and included in the LFT to be optimized simultaneously
with the controller in multidisciplinary co-design approaches.
In this brief, the uncertain, varying, and decision parame-
ters are referred to as the parameters of interest. Classical
multibody approaches, consisting of building the nonlinear
model of the structure by assembly of the individual models
and then linearizing this nonlinear model around equilibrium,
are unable to directly provide the LFT-LPV model. This is
due to the trim conditions depending on the parameters of
interest: for example, consider the small angles’ variations in
a pendulum with an uncertain mass—the gravity introduces a
stiffness which depends on the uncertain mass, and a numer-
ical trimming preceding the linearization will only capture a
single parametric configuration of this stiffness rather than a
parameterized LFT model taking into account the parametric
uncertainty on the mass. For a more general class of systems,
the use of symbolic linearization was proposed in [3] and
[4] to overcome this issue, but it is computationally costly
for complex systems, especially when dealing with many
parameters or high-order dynamics. Consequently, the most
common practice for systems with parameter-dependent trim
conditions is to perform numerical linearizations around a grid
of equilibrium points corresponding to particular values of the
parameters and to generate a model covering all the linear
time-invariant (LTI) models of the grid using multivariable
polynomial fitting techniques [5], [6]. However, this procedure
may introduce conservatism or miss worst case configurations
and may be time-consuming when there are many parameters
or when a fine grid is required.

For the modeling of large space structures such as satellites
with flexible solar panels in micro-gravity conditions, a general
framework was introduced in [7] and implemented in a generic
toolbox named satellite dynamics toolbox (SDT) [8], to build
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linear models of flexible multibody systems. Based on the
Newton—Euler equations, this tool allows to build the dynamic
model of the whole structure by assembling the individual
models of each substructure based on the two-input two-output
(TITOP) formalism [9]. Some assets of this approach include
the compliance with various substructure models and boundary
conditions, and support of the interfacing with finite element
software when the model includes complex substructures [10].
The resulting model is provided under the form of a block
diagram with minimal number of states, and the parameters
can be isolated to obtain a minimal LFT model, allowing
robust control [11] or integrated control/structure co-design
with the Hy synthesis [12].

In this brief, the framework from [7] to [12] is extended
to the modeling of multibody systems undergoing variations
around a uniformly accelerated motion, e.g., for systems
subject to gravity (robotic arms, aircrafts, civil machinery,
stratospheric balloons...) or space systems during a thrust
phase (launchers, spacecrafts). It was motivated by the need
for robust control for stratospheric balloons, which are com-
plex multibody systems subject to gravity with uncertain
masses [13] that cannot be modeled with current multibody
software due to the parameter-dependent trim conditions.
Rather than linearizing the nonlinear model of the multibody
structure, the proposed approach linearizes each individual
substructure and kinematic joint and assembles them to build
the LFT model of the structure, after an analytical computation
of the parameter-dependent equilibrium. It allows to only
perform operations that preserve the LFT form throughout the
linearization process. The LFT model regroups all the para-
metric configurations in one single model, enabling modern
analysis and control tools like x analysis or H, synthesis,
and is obtained without resorting to symbolic trimming of the
nonlinear model or polynomial fitting of a set of LTI plants;
in particular, the LFT model exactly covers all the plants
within the specified bounds without introducing conservatism
or fitting error. Since the linearization procedure only relies on
basic block diagram manipulations, the LFT model is obtained
in a reasonable amount of time. From the control engineer’s
point of view, the proposed approach can be implemented
in MATLAB-Simulink to build complex multibody structures
by interconnecting the individual bodies. Targeted engineering
applications include modeling of uncertain LPV multibody
systems and lumped-parameter modeling of uncertain flexible
systems, for the purpose of robust control, gain scheduling,
vibrations control, or integrated control/structure co-design,
along with control design tools such as MATLAB robust
control toolbox. To the authors’ knowledge, this approach is
the first contribution addressing parametric model linearization
around parameter-dependent equilibrium in the general context
of uncertain multibody systems.

The dynamics of rigid bodies are modeled with the
Newton—FEuler equations in Section II, and the equations of the
revolute joint are presented in Section III. Section I'V discusses
the equilibrium and linearization of the individual models of
rigid body and revolute joint and the compatibility with LFT
formalism. The assembly, trim, and linearization algorithm,
allowing to keep the LFT dependency of the model on the
parameters of interest during the linearization, is detailed in

Section V. Finally, Section VI presents an application to LFT
modeling of an LPV robotic arm; the model is validated with
a comparison to Simscape Multibody, and an LPV control
design is performed to illustrate the capacity of the proposed
approach for control design.

II. RIGID BODY DYNAMICS
A. Description of the Motion

Definition 2.1: Uniformly accelerated reference frame R
Let R = (0O, X,Yy, z) be a reference frame in uniform acceler-
ation, represented by 3 x 1 vector a, with regard to an inertial
reference frame R;.

In this brief, the motion is described in the reference frame
‘R. This equilibrium condition can represent a gravity field or
an acceleration during a thrust phase for a space system.

Definition 2.2: Motion in the reference frame R Let us
define the following vectors.
opP
08
P, with OP the 3 x 1 position vector of P and 85 the
3 x 1 vector of Euler angles of 5 with regard to R.

1) xfﬁ = :| the 6 x 1 pose vector of body B at point

B
2) xXF = [Z)’é} the 6 x 1 dual velocity vector of body B at
point P, with fo = ((dO—f)’)/dt)ln and ®® the angular
velocity of B with regard t% R.
3) xXIB = ((dxB)/d)|r = Z){; the 6 x 1 dual accelera-

tion vector of body B at point P.
4) mE = [aT, BT, xB)T, x5)T17 is defined as the
motion vector of body B at point P.

. a . .
Noting ag = 0 , the linear and angular accelerations of
3x1
body B at point P with respect to R; are
B

a

[ .’;"Rf ] = X + ag. )
0|,

B. Newton—Euler Equations for Rigid Bodies

Let us consider a body B of mass m?” and matrix of inertia
J5 at center of gravity B. The Newton—Euler equations read
at B

F5 _ mBI 03,3 a?!R,. " 03,1 ?)
|\ 033 J5 || |, (*w®)J5w?
—_—— —_—
Wi Djf
B
where W5 = 23 is the 6 x 1 wrench vector (force FZ and
B

torque Tg) applied to the body B at point B. Definition 2.3
and Property 2.4 were introduced in [7] to transport equation
(2) to any other point P of body B.

Definition 2.3: E}nematic model [7] The 6 x 6 tensor
e — [ I, (*PC)

033 Iy

between two points P and C.

Property 2.4: Transport of the vectors [7]:

1) Dual velocity vector: X'}? = ‘L'pcx’ég ;

:| is defined as the kinematic model



2) Dual acceleration vector:

%, B\ (% DA B
X8 = zpexfB + (e )( PC)w ;
03,1

3) Wrench vector: W5 = 7] -W5;

4) Inverse kinematic model: T;é = Tcp;

5) Transitivity: TpcTep = Tppr.

Using Property 2.4 to transport the vectors from point B
to another point P of body B, and since tgpas = ag, (2) is
transported to P

B _ _T B nB
W, —rBPDBer(xP +a6)
——

D

NL(P.05)

where NL(P, ®®) regroups the nonlinear terms, and fo is
defined as the direct dynamics model of body 5 at point P.

C. Projection in the Body’s Frame

To describe each body independently of the others, (3) is
projected in the reference frame R, attached to B

[WEle, = (D5, (1%, + taclw, ) + [NL(P. "),
“)
The kinematic and direct dynamic models are conveniently

written in the body’s frame. The inertial uniform acceleration
vector a is defined in the inertial frame R;, or equivalently,

in frame R: [a]g, = [a]lr. With the notations of Defini-
tion 2.5, its projection in R, reads

lalg, = Py; (6°)lal,. ®

Definition 2.5 (Direction Cosine Matrix): The  direction

cosine matrix (DCM) between the body’s frame

Ry = (0,%Xp,¥5,25) and the frame R;, containing the

coordinates of vectors X, yp, Z, expressed in frame R;,
is noted Ph/i(()B). The inverse function, which converts
a DCM P;,,; into the equivalent Euler angles, is noted
O (P, (65)).

Definition 2.6 (From Euler Angles Rates to Angular Veloc-
ity): The relationship between the body frame angular velocity
vector and the rate of change in Euler angles is

["’B]Rb =T (65)6" (6)

where T'(#®) depends on the chosen Euler sequence and
expresses the relationship between the angular velocity vector
and the rate of change in Euler angles [14].

III. CONNECTION WITH A REVOLUTE JOINT

In this section, we consider two bodies A and B inter-
connected with a revolute joint (one degree of freedom in
rotation).

A. Change in Frame

Since the equations describing the motion of B (respectively
A) are projected in the reference frame R, (respectively
Ra), the change in frame operation is necessary to write the
interconnection of A and B.

Property 3.1 (Change of Frame): Given the DCM P,
between two frames R, and R; according to Definition 2.5,
let us define Pax/zb = diag(P,/p, Py/p). Then:

1) For X, a dual velocity, acceleration, or wrench vector:

[XIr, = P} [X]R,;
2) Direct dynamics model: P;zb[Dﬁ]RaPaX/sz = [D“;‘]Rh;
3) Py = P;/lb = PZ/b'

B. Model of the Revolute Joint

Let 0, 0, and 6 be the angular configuration, rate, and
acceleration, respectively, inside the revolute joint between
bodies 5 and A at the connection point P, r be the vector of
unit norm aligned with the joint’s axis, and 7, be the driving
torque along r. The revolute joint J is modeled as a body
with two ports (it is connected to A and B), to which are
added an input # and an output 7;. It is assumed that 7 is a
mass-less body attached to the body A, with a matrix of inertia
J‘]Z = J7rr”. From (2), the dynamic model of J reads

0; 0;][vi+a
WB/J,PvLW,c\/J,PZ[02 J}?i|[ Pd,A i|

n 03,1
(*Q)A)JJ(L)'A

o 03><1
B |:J‘P7(a')6 +0r) + (*wA)J}ZwA}
@)

The driving torque 7, is the projection of the torque Tg, 7 p
applied by B on J at P along r

T, =r¢Wp7.p

= J7 ("0 +0) — v} Wazp +1" (F0) I 0* (8
—_—
=0

where rg =

0 L o
3:1 . In most applications, it is preferred to

invert the channel from (0, 0, 9) to 7, to take into account a
driving mechanism actuating the revolute joint

. 1 .
b= J—j(T,. +1{Wa7.p) — 1t 6", 9)

The motion vector, projected in each body’s frame, is trans-
formed through the revolute joint as follows.

Property 3.2: Transformation of the motion vector through
a revolute joint between two bodies: The motion vector at
point P can be expressed from body 5 to body A, connected
at point P with a revolute joint

)
A | XP IR,
(7 )e, =1 It

[Xé]né,



Py (@)alg,
P L O[XP] +0lrelr,
P;/za(e)[x ] +0[rslz,

|:Ph/a(9)[0P] ]

@,{/a (65,0)

where 04 = @‘b7a(05 0) is defined as @b/a(OB,H) =
O (P, (07 )Pb/a(ﬁ))

IV. LINEARIZATION OF THE INDIVIDUAL MODELS

In this section, the equations describing the equilibrium
and the linear variations around the equilibrium are derived
individually for each model of rigid body and revolute joint
obtained in Sections II and III. This way, the parametric
dependencies are analytically derived on simple models; it
is shown why this step is necessary to capture the LFT
dependency on certain parameters of interest.

A. Equilibrium

The system is said to be at equilibrium when it has no
motion in the reference frame R. For a body B and a point
P, it corresponds to: {x5 = x5, x8 =0, x’;,B = 0}. For a
revolute joint 7, it corresponds to {§ = 8, 6 = 0, 6 = 0}.
The Euler angles at equilibrium are noted 5. Around the
equilibrium, the vectors defined in Section II-A, projected in
Ry, verify to the first-order

d(3[xF]z,)

) XNB —
i1z, dt d(a[ £ ) (10)
_ Xplr
1B i B b
5[XP ]R d1ag<I3,I'(0 )) P
and the linearized motion vector projected in R, is
T T r 7
omf = [olalk, . o[xP]r, . o[xF g, . olxE]R, | - (D
B. Linearized Model of the Rigid Body
Equation (4) is evaluated at equilibrium
—B _
[Wr] . = [D5], [, (12)
b
with
T (pB
6], = [Ph/f((? )[a]Rf } (13)
3x1

Equation (12) shows that the wrench applied to B at equi-
librium depends on the DCM Pb/i(éB) and on the direct
dynamics model [Dg]m of body B, which can be an LFT
of the following parameters: mass, matrix of inertia, and
position of the center of gravity B relatively to point P.
This observation induces that the internal wrenches of the
multibody system may be LFTs of these parameters, which
will be of importance when linearizing the model of revolute
joint in Section IV-C.
Equation (4) is linearized around the equilibrium

o[WEl, = [DE]g, (3041, + dlacle, ). (14)

Remark: including the acceleration vector a in the motion
vector mff allows (14) to be linear in the linearized motion
vector 5[m§ Ir,» and thus to be compliant with LFT formalism.
This is possible because d[a]g, can be propagated through
the revolute joints (see the linearization of Property 3.2,
in Section IV-C). If it was not the case, we should instead
write d[a]r, as

dlalg,

TL 508

€q

dlalg, = 5)

but the matrix ((d[a]r,)/(d07))leq cannot generally be
obtained as an LFT because it depends on Euler angles (see
Appendix).

The transport of the motion vector (following Property 2.4)
can be linearized around the equilibrium:

[5[m§f] = [Yrclg,d[m B]’Rl, (16)

[Yrclr, = diag(Is, [trclr, . [Trclr, » 1)

Finally, consider a body B where the motion is imposed at
parent port P, and external wrenches W 5 ¢, are applied at
N child ports C;. From (14) and (16), the linearized inverse
dynamics LFT model is represented by the block diagram in
Fig. 1(a). Using additionally (10), the linearized 12th-order
forward dynamics LFT model is represented by the block
diagram in Fig. 1(b) for a body with N ports C; where only
external wrenches are applied (no imposed motion). The green
and blue blocks represent the nominal models and the A
operators, respectively.

Remark: a multibody system has a base which is either
the ground (imposed motion) or a body with forward dynam-
ics (no imposed motion, the equilibrium is determined by
the wrenches). In the latter case, the orientation of the
base at equilibrium is explicitly defined. Then, the matrix
((dlalR,)/(d8%))|eq can be obtained as an LFT of the Euler
angles. However, for inverse dynamics, the Euler angles are
propagated from the base to the body through the joints,
and since this transformation is not compliant with the LFT
(see the discussion in Appendix), it is necessary to use the
acceleration propagated with the motion vector.

C. Linearized Model of the Revolute Joint

The linearization of the revolute joint must take into account
the dependency of the DCM P, /, on the variable 0: if X is a
vector such that [X]r, = Py, (0)[X]R,

dPy, <
i |, 0[X]g,  AD
————

=(r*)Py, (9)

IX]r, = Pyu(0)0X]z, +

Remark: the DCM Py, (@) can be expressed as an LFT of
the parameter t = tan(d/2) (respectively ¢ = tan(f/4)) with
2 (respectively 4) occurrences (cf. [15, p. 191 to 195]).
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Fig. 1.

The projections of equation (7) in the frame R, and of
equation (9) along r read

[(Ws/7.7]r, +Pi@O[Waz.ply,

_ [ 03,1 ]

7 1r, ([65]r, +0irlx,) + [(e*) 3 0],

. 1 .
0= (T4 ] [Wargrl,) = [ 1, [6]5,
(13)

It can be noted that [r]z, and [J }37]72;, are independent of 6.
Indeed, noting R(#) the rotation matrix around r, the DCM
reads Py, (0) = R(0)P;/,(0). Then

[rlr, =P, (0) R (O)[rlg,
———

=[rlgr,

19)

and

(3715, = P O[3 ] Poja®)
= J7P} () RO)[rlg, [r" ] R©)Pya(0)
—/_/_/_/

=[rlgr, :[rT]Ra

=P}, 0)[I7] Pp/a(0). (20)

Equation (18) is evaluated at equilibrium
(Wam.rlg, =Bip0)[Was.rlg, en

0=T,+[rg]r, [Was.rlg,
and linearized around the equilibrium
rvy 0 JE—
5[WB/.7,P]Rh + [(0) (r*):|PaX/2b @) [WA/J,P]RGM
+P;5(0)0[Wayz.p ]y,

03)( 1 (22)

|

B [ 71, (0165]x, + 00lrlr,)
1
= =5 (07 + [x{ 1 o[ W], )

[ ] o105,

50

Linearized model of a rigid body B: (a) inverse dynamics and (b) forward dynamics.

Equation (22) shows that the wrench applied to the joint at
equilibrium, represented by the vector [W A/7,PIR,, 1ntro-
duces a stiffness in the motion of the revolute joint (factor
multiplying 066). In addition to some possible wrenches applied
to the system and defining the equilibrium (such as a buoyant
force compensating for the gravity acceleration in the case of
a stratospheric balloon, or a thrust providing the acceleration
in the case of a launcher), the wrench [W A)7.plR, results
from the wrenches applied by rigid bodies given by (12),
and it must be evaluated at equilibrium before linearization.
Therefore, following the discussion on (12), [W 4 17.plR, may
depend on some parameters of interest (masses, lengths, etc.).
A numerical evaluation of the trim point, as it is done with
current available software, is not adequate to capture it as an
LFT (it will only evaluate a single, nominal configuration);
on the contrary, evaluating [WA/j,P]Ru while preserving its
LFT structure allows to correctly re-inject it in the linearized
model of the revolute joint. This observation justifies the
need for the analytical derivation of the trim conditions and
analytical linearization presented in this section, as well as for
the dedicated procedure presented in Section V.

Example 1: Pendulum—Consider a pendulum around its
stable equilibrium, composed of a revolute joint, a mass-less
link, and an point mass, and assume that the mass is uncertain
and represented by an LFT. The stiffness is proportional to
the mass and must be computed as an LFT to be re-injected
in the linearized model of the revolute joint. It is worth
emphasizing that a system as simple as the pendulum has
a parameter-dependent equilibrium in the sense of this brief,
even though the equilibrium angle is fixed, and must be treated
with the proposed approach to derive a multibody LFT model.

Example 2: Robotic arm—Consider a robotic arm with
several bodies and revolute joints. It is sought to derive an LPV
model where the scheduling parameters, whose variations are
isolated with LFT formalism, are the equilibrium angle of each
joint. In addition to rigid bodies’ parameters (masses, etc.), the
internal wrenches also depend on the equilibrium angles of
the bodies. Therefore, it is first necessary to derive the DCM
P, :(85) of each body as the product of the individual DCMs
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Fig. 2. Assembly, trim, and linearization algorithm.

of the revolute joints, which are LFT-LPV rotation matrices.
Then, the wrenches are evaluated as LFTs of the equilibrium
angles and rigid bodies’ parameters, and finally re-injected in
the linearized models of the revolute joints.

The transformation of the motion vector (Property 3.2) is
also linearized

dlalr, = (*)Py.(0)[al,00 + Py (0)dlalr,
5[X;A]Ra =P (9)d[x "B]Rb + 30[rslr,
5["'154] = Pbx/i( )[x 'B] R, + 90[rslR,
Pyu(0) 0
o[xp], = 0o 2% o[xF ], (23)
‘ 205 b
eq
)Py (0)[OP],
+ 207, 00.
a0
eq

Once again, the position vector at equilibrium [W]Rb must be
computed analytically because it may have LFT dependency
on the lengths or angles at equilibrium.

From (22) and (23), the linearized model of the revolute
joint takes 6[W 4,7 plr,, 5[m§]7gb and 07, as inputs and
returns 5[mﬁ]7gu, o0lW 7,5 plr, and (55,59,56) as outputs.
With the proposed evaluation of the vectors (W aas
and [W]Rb as LFT models, the linearized revolute joint
is also an LFT model except for gains ((6@0/1))/89”eq and
((6@)0 1)/ (608))|eq which are used to propagate Euler angles
(see the discussion in Appendix).

V. ASSEMBLY, TRIM, AND LINEARIZATION ALGORITHM

As discussed in Section IV, it is necessary to perform an
analytical trimming to preserve LFT dependencies. This is
possible by assembling the model of the structure at equilib-
rium from the individual models (12) and (21). Then, the trim
conditions, expressed as LFTs, are re-injected in the assembly
of the individual linearized models [see Fig. 1, (22) and (23)].
This procedure is schematized in Fig. 2.

More precisely, let us consider a tree-like structure com-
posed of: 1) a base, which is either a parent body described
by its forward dynamics (six DOF) or the ground (no DOF);
2) children bodies described by their inverse dynamics (no
additional DOF); and 3) n revolute joints (n DOF). Each body
may be connected to any number of other bodies or joints,
as long as there is no closed kinematic loop.

Step 1 (Geometry at Equilibrium, or Forward Recurrence):
This step aims at computing the geometrical trim conditions

as LFTs of the parameters of interest: the DCM Ph/i((;B) for
each body and the position vector [W]Rb at each revolute
joint. These quantities are initially defined at the base (either
a parent body or ground) and are propagated from the base to
the other bodies and joints. The DCM is transformed at each
revolute joint: Pb/,-((;B) =P, /i((;A)Pb/a (@); and the position
vector is transformed at each revolute joint: [W]Rb =

a/;,(ﬁ)[O Plg,, and at each rigid body: from a port P to a
port C: [OClg, = [OP Plgr,+[CP]g,. The DCMs Py, (@) and
the positions [C P]r, can be LFT models, and these operations
preserve the LFT form; hence, all Py/;(0%) and [O P]g, are
finally obtained as LFT models.

Step 2 (Wrenches at Equilibrium, or Backward Recurrence):
This step aims at computing the wrenches at equilibrium
(W A;7.plR, in the revolute joints as LFTs of the parameters
of interest. For this, the wrenches are propagated from the
outer bodies (end of the open kinematic chain) to the base
using the models (12) and (21), which are also compliant with
the LFT formalism (and where the matrices [Dg]Rb can be
LFT models as well). Note that step 2 requires the DCMs
Pb/i(éB) computed at step 1 [see (13)].

Step 3 (Linearized Model): Finally, the individual linearized
models [see Fig. 1, and (22) and (23)] are assembled while
re-injecting the trim conditions obtained as LFT models in
steps 1 and 2. Therefore, the resulting model is a fully para-
meterized LFT model accounting for the parameter-dependent
equilibrium.

Since the physical origin of all the parameters has been
preserved during the whole procedure, the LFT model exactly
covers all the plants without introducing conservatism or
fitting error. In practice, the procedure can be implemented on
MATLAB-Simulink; in this case, the trim conditions computed
as LFT models in steps 1 and 2 are evaluated as input-output
transfers after implementation of models (12) and (21) as static
LFT models. Since only basic block diagram manipulations are
applied, the procedure can be executed in reasonable time even
for complex systems. However, although the trim conditions
calculated in steps 1 and 2 can be expressed with minimal
parametric dependency on the parameters of interest, since
they are in turn re-injected at step 3, there can be redundant
occurrences in the linearized LFT model; reduction techniques
can be used to reduce the order of the block A [16].

VI. APPLICATION EXAMPLE
A. Presentation of the System

The two-link robotic arm presented in Fig. 3 is subject to
the gravity represented by the vector g, which is equivalent
to an acceleration a = —g in the proposed approach. The
reference frame in acceleration is noted R = (O,Xx,y,z).
The arm is composed of three bodies B;, B,, and Bs. The
revolute joints J; and ./, which allow the rotation around
x, are actuated with torques 77 and 7. B3 is a point mass
representing the end-effector carrying a load, and it is rigidly
connected to B, (no degree of freedom). The characteristics
of the rigid bodies are indicated in Table I. The position of the
center of gravity (CoG) is the distance of the CoG from the
body’s left tip (in Fig. 3), normalized by the length of the body.



Fig. 3. Two-link robotic robotic arm.
TABLE I
PHYSICAL PARAMETERS OF THE ROBOTIC ARM
‘ 81 B Bg
Mass m; (kg) 3 (£ 20%) 2 5 (£ 20%)
Moment of inertia J; (kg.mz) 0.2 (£ 20%) 0.1 0
Length L; (m) 1 1 (£ 20%) 0
Position of the CoG p; (-) 0.3 (4 20%) 0.5 0
L om > J
m_| Ji(8) [Ssw By W
57— 66, ™ |
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Fig. 4. Multibody LFT model of the robotic arm.

Uncertainties of £20% have been set on some parameters. The
scheduling parameters #; = tan(¢,/2) and t, = tan(60,/2) are
defined as uncertain parameters in the revolute joints’ blocks.

B. Multibody LFT Modeling

The proposed approach is implemented on MATLAB with
the robust control toolbox. The uncertain and scheduling para-
meters are declared with the routine ureal. The trim conditions
(DCMs, position vectors, wrenches) are evaluated with the
routine ulinearize as static input—output transfers in separated
Simulink files, where the individual static LFT models of each
body at equilibrium are assembled (see steps 1 and 2). Once
the trim conditions are obtained as LFT models, they are
re-injected in the linearized models which are assembled as in
Fig. 4 (see step 3). For readability, it is indicated whether the
connections represent a motion vector m or a wrench 6W, but
the full nomenclature adopted in previous sections is omitted.
The LFT dependencies of the trim conditions are carried by the
blocks A of the revolute joints. A damping K; = 0.1 Nsrad™!
and a stiffness K, = 0.1 Nrad~! are added to the linear
models of the revolute joints. The procedure took 20 s on
an Intel Core 17 processor.

C. Comparison With Simscape Multibody

To validate the proposed approach, the model of the same
robotic arm is built with Simscape Multibody and linearized
around the equilibrium. The proposed LFT model matches
Simscape’s model in the nominal configuration of the uncer-
tain parameters and across all the angular configurations,
as shown in Fig. 5, where the relative error between the
two models stays small even in the worst case configurations
around #, = #90°. Non-nominal configurations were also
tested and matched the corresponding Simscape’s model.

-150 -100  -50 0 50 100 150

Fig. 5. || (G| — Gz)Gz_] ||leo across angular configurations, where G is
the nominal LFT model (no parametric uncertainty) and G, is the Simscape
Multibody’s model.

——LFT model
| |— Simscape model

20

Singular Values (dB)

-80 -
10" 10° 10"
Frequency (rad/s)

Fig. 6.  Singular values of [6T}, 6T>]" — [601, 66,17 for 6 = 70° and
6, = 30° (300 samples of the LFT model).

Moreover, Fig. 6 presents the singular values of the transfer
0Ty, 6T>1" — [00,, 660,]7 for both the models in one angular
configuration. Let us emphasize that the proposed LFT model
contains all the configurations of the scheduling parameters
t; and t, as well as the parametric uncertainties in one single
model, while the Simscape model needs to be reevaluated,
trimmed, and linearized for every geometric or parametric
configuration.

D. Robust LPV Control

To conclude, a robust LPV controller is proposed to illus-
trate the compatibility of the proposed approach with classical
robust control tools and to show the advantages of the LFT
model. The angles are limited to the following operating
ranges: 6, € [45°,90°] and 6, € [45°, 135°], and the set of
scheduling parameters is noted t = {f, 1, }.

Noting d0,.r = [59{ef s 59£ef]T the vector of reference angles,
e = 50ref — [501 , 592]T, and 0T = [5T1 , 5T2]T, the LPV
controller K(s, t) is such that

ST = K(s, T)de. (24)

Let the real matrices of appropriate dimensions A(t), B(7),
C(tr), and D(t) define the state-space representation of
K(s, 7). The scheduling surface S(t) is defined as

A(r)| B(r)

S(r) = [C(r) D(r)i| =My +Mity + My,  (25)
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Fig. 7. Singular values of K(s, 7), 0; = 45°, 0, € [45°, 135°].

where the matrices My, M;, and M, are to be tuned, and the
LPV controller K(s, 7) reads

L,
N

K(s, ) = F, (S(r), ) = F.(K(s), AX) (26)
where F, refers to the upper LFT, n; is the number of states
of the controller, and the block Af isolates the occurrences
of ¢, and £,.

The value ny = 3 was chosen, and after defining the weight-
ing functions Wy = 1/15001, (to limit the actuator’s efforts)
and W,(s) = (s + 1/2s 4+ 0.02) I, (to penalize low-frequency
tracking error), the robust, structured H, problem

minimize 7y,
My, M, M,
subject to: r?an{H 00.er — Weoe ||} <71 <1

s.t. I?E}sx{” 50ref - WT5T ||oo} <72
(27)

was solved with MATLAB routine systune, based on the
algorithm presented in [17]. A performance (y; = 0.97,
y2» = 0.69) was obtained (corresponding to the worst case
He norms of the transfers), and Fig. 7 represents the LPV
controller. Since the proposed modeling approach provided
all the parametric configurations of both the uncertain and
scheduling parameters in one single LFT model, the robustness
and the LPV controller synthesis were addressed together in
one single control design iteration, and the resulting perfor-
mance is guaranteed across all the parametric configurations.

VII. CONCLUSION

After introducing a multibody modeling framework based
on the Newton—Euler equations, it was shown why a numerical
trim computation is not adequate to derive an LFT model, and
a specific assembly procedure, based on the linearization of the
equations of motion at the substructure level, was proposed to
solve this issue. An application to a robotic arm was outlined
to show how the proposed approach can be implemented on
MATLAB and used for control design.

APPENDIX

The transformation ©(.) from Definition 2.5 cannot
be expressed as an LFT of uncertain or varying Euler
angles, because it includes trigonometric functions. Therefore,

propagating Euler angles from one body to another (with
the function @;7/51 from Property 3.2) cannot be done while
preserving the LFT form. As a consequence, if Euler angles
are defined as output measurements, the corresponding output
gains cannot always be obtained as exact LFTs, and rational
approximations of G)f/b and its derivatives may be necessary
(it can be noted that for problems in a single plane, the
transformation ®;7/b becomes trivial and this issue disappears).
Nonetheless, the dynamical model can always be obtained
because the inclusion of the acceleration vector a in the motion
vector allows to dispense with Euler angles in the equations
of the dynamics (see (14) in Section IV-B).
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