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Radon numbers grow linearly
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Abstract

Define the k-th Radon number rk of a convexity space as the smallest number (if it exists)
for which any set of rk points can be partitioned into k parts whose convex hulls intersect.
Combining the recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods
of Bukh, we prove that rk grows linearly, i.e., rk ≤ c(r2) · k.

1 Introduction

Define a convexity space as a pair (X, C), where X is any set of points and C, the collection of convex
sets, is any family over X that contains ∅,X, and is closed under intersection. The convex hull,
conv(S), of some point set S ⊂ X is defined as the intersection of all convex sets containing S, i.e.,
conv(S) = ∩{C ∈ C | S ⊂ C}; since C is closed under intersection, conv(S) is the minimal convex
set containing C. This generalization of convex sets includes several examples; for an overview, see
the book by van de Vel [26] or for a more recent work, [20]. It is a natural question what properties
of convex sets of Rd are preserved or what the relationships are among them for general convexity
spaces. A much investigated function is the Radon number rk (sometimes also called partition

number or Tverberg number), which is defined as the smallest number (if it exists) for which any
set of rk points can be partitioned into k parts whose convex hulls intersect. For k = 2, we simply
write r = r2.

In case of the convex sets of Rd, it was shown by Radon [23] that r = d + 2 and by Tverberg
[25] that rk = (d + 1)(k − 1) + 1. Calder [7] and Eckhoff [11] raised the question whether rk ≤
(r − 1)(k − 1) + 1 also holds for general convexity spaces (when r exists), and this became known
as Eckhoff’s conjecture. It was shown by Jamison [16] that the conjecture is true if r = 3, and that
the existence of r always implies that rk exists and rk ≤ r⌈log2 k⌉ ≤ (2k)log2 r. His proof used the
recursion rkℓ ≤ rkrℓ which was later improved by Eckhoff [12] to r2k+1 ≤ (r−1)(rk+1−1)+rk+1, but
this did not significantly change the growth rate of the upper bound. Then Bukh [6] has disproved
the conjectured rk ≤ (r − 1)(k − 1) + 1 by showing an example where r = 4, but rk ≥ 3k − 1 (just
one more than the conjectured value) and has also improved the upper bound to rk = O(k2 log2 k),
where the hidden constant depends on r. We improve this to rk = O(k), which is optimal up to a
constant factor and might lead to interesting applications.
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versity (ELTE), Budapest, Hungary. Research supported by the Lendület program of the Hungarian Academy of
Sciences (MTA), under grant number LP2017-19/2017.
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Theorem 1. If a convexity space (X, C) has Radon number r, then rk ≤ c(r) · k.

Our proof combines the methods of Bukh with recent results of Holmsen and Lee [15]. In
particular, we will use the following version of the classical fractional Helly theorem [17].

Theorem 2 (Holmsen-Lee [15]). If a convexity space (X, C) has Radon number r, then there is an

f such that for any α > 0 there is a β > 0 such that for any finite family F of convex sets if at

least an α fraction of the f -tuples of F are intersecting, then a β fraction of F intersects.

There are several other connections between the parameters of a convexity space [26]; for exam-
ple, earlier it was already shown [19] that in convexity spaces the Helly number is always strictly
less than r, while in [15] it was also shown that the colorful Helly number [4] can be also bounded
by some function of r (and this implied Theorem 2 combined with a combinatorial result from
[14]).∗ It was also shown in [15] that it follows from the work of Alon et al. [2] that weak ε-nets
[1] of size c(ε, r) also exist and a (p, q)-theorem [3] also holds, so understanding these parameters
better might lead to improved ε-net bounds. It remains an interesting challenge and a popular
topic to find new connections among such theorems; for some recent papers studying the Radon
numbers or Tverberg theorems of various convexity spaces, see [8, 9, 10, 13, 18, 21, 22, 24], while
for a comprehensive survey, see Bárány and Soberón [5].

Restricted vs. multiset

In case of general convexity spaces, there are two, slightly different definitions of Radon numbers
([26]: 5.19). When in the point set P to be partitioned we do not allow repetitions, i.e., P consist of

different points, the parameter is called restricted Radon number, which we will denote by r
(1)
k . If

repetitions are also allowed, i.e., we want to partition a multiset, the parameter is called unrestricted

or multiset Radon number, which we will denote by r
(m)
k . The obvious connection between these

parameters is r
(1)
k ≤ r

(m)
k ≤ (k−1)(r

(1)
k −1)+1. In the earlier papers multiset Radon numbers were

preferred, while later papers usually focused on restricted Radon numbers; we followed the spirit of

the age, so the results in the Introduction were written using the definition of r
(1)
k , although some

of the bounds (like Jamison’s or Eckhoff’s) are valid for both definitions. The proof of Theorem

1, however, also works for multisets, so we will in fact prove the stronger r
(m)
k = O(k), and in the

following simply use rk for the multiset Radon number r
(m)
k .

A similar issue arises in Theorem 2; is F allowed to be a multifamily? Though not emphasized
in [15], their proof also works in this case and we will use it for a multifamily. Note that this could
be avoided with some cumbersome tricks, like adding more points to the convexity space without
increasing the Radon number r to make all sets of a family different, but we do not go into details,
as Theorem 2 anyhow holds for multifamilies.

2 Proof

Fix r, and a collection of points P with cardinality tk, where we allow repetitions and the cardinality
is understood as the sum of the multiplicities. We will treat all points of P as if they were different
even if they coincide in X, e.g., when taking subsets.

∗We would like to point out that a difficulty in proving these results is that the existence of a Carathéodory-type
theorem is not implied by the existence of r.
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We need to show that if t ≥ c(r), then we can partition P into k sets whose convex hulls
intersect. For a fixed constant s, define F to be the family of convex sets that are the convex hull
of some s-element subset of P , i.e., F = {conv(S) | S ⊂ P, |S| = s}. Since we treat all points of
P as different, F will be a multifamily with |F| =

(

tk
s

)

. We will refer to the point set S whose
convex hull gave some F = conv(S) ∈ F as the vertices of F (despite that some of the points might
be in the interior of F ). Note that for some S 6= S′, we might have conv(S) = conv(S′), but the
vertices of conv(S) and conv(S′) will still be S and S′; since P is a multiset, it is even possible that
S ∩ S′ = ∅.

The constants t and s will be set to be large enough compared to some parameters that we get
from Theorem 2 when we apply it to a fixed α. (Our arguments work for any 0 < α < 1.) First
we set s to be large enough depending on α and rf (recall that rf ≤ rlog f is a constant [16]), then
t to be large enough depending on s and β (that belongs to our chosen α). In particular, we can

set s = log( 1
1−αs

)rff
frf and t = max(s

2

β
; (fs)2

k(1−αt)
), where 0 < αs, αt < 1 are any two numbers such

that αs · αt = α. Also, we note that the proof from [14, 15] gives f ≤ rr
log r

and β = Ω(αrf ) for

Theorem 2. Combining all these would give an upper bound around of rr
rlog r

for t.
Theorem 1 will be implied by the following lemma and Theorem 2.

Lemma 3. An α fraction of the f -tuples of F are intersecting.

Proof. Since t is large enough, almost all f -tuples will be vertex-disjoint, thus it will be enough to
deal with such f -tuples. More precisely, the probability of an f -tuple being vertex-disjoint is at

least (1− fs
tk
)fs ≥ 1− (fs)2

tk
≥ αt by the choice of t. We need to prove that at least an αs fraction

of these vertex-disjoint f -tuples will be intersecting.
Partition the vertex-disjoint f -tuples into groups depending on which (fs)-element subset of

P is the union of their vertices. We will show that for each group an αs fraction of them are
intersecting. We do this by generating the f -tuples of a group uniformly at random and show
that such a random f -tuple will be intersecting with probability at least αs. For technical reasons,
suppose that m = s

rf
is an integer and partition the fs supporting points of the group randomly

into m subsets of size frf , denoted by V1, . . . , Vm. Call an f -tuple type (V1, . . . , Vm) if each set of
the f -tuple intersects each Vi in rf points. Since these Vi were picked randomly, it is enough to
show that the probability that a (V1, . . . , Vm)-type f -tuple is intersecting is at least αs.

The (V1, . . . , Vm)-type f -tuples can be uniformly generated by partitioning each Vi into f equal
parts of size rf . Therefore, it is enough to show that such a random f -tuple will be intersecting
with probability at least αs. Since |Vi| ≥ rf , there is at least one partition of the first rf points of
Vi to f parts whose convex hulls intersect. Since we can distribute the remaining (f − 1)rf points
of Vi to make all f parts equal, we get that when we partition Vi into f equal parts of size rf , the

convex hulls of these parts will intersect with probability at least
(

frf
rf ,rf ,...,rf

)−1
≥ f−frf . Since these

events are independent for each i, we get that the final f -tuple will be intersecting with probability

at least 1− (1− f−frf )m ≥ 1− e−mf
−frf

≥ αs by the choice of s.

Therefore, if s is large enough, the conditions of Theorem 2 are met, so at least β
(

tk
s

)

members of
F intersect. In other words, these intersecting sets form an s-uniform hypergraph H on tk vertices
that is β-dense. We need to show that H has k disjoint edges to obtain the desired partition of
P into k parts with intersecting convex hulls. For a contradiction, suppose that H has only k − 1
disjoint edges. Then every other edge meets one of their (k − 1)s vertices. There are at most
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(k−1)s
(

tk
s−1

)

such edges, which is less than β
(

tk
s

)

if (k−1)s < β tk−s+1
s

, but this holds by the choice
of t. This finishes the proof of Theorem 2.

Concluding remarks

It is an interesting question to study how big f can be compared to r and the Helly number h
of (X, C). The current bound [15] gives f ≤ hrh ≤ rr

log r

. We would like to point out that the first
inequality, f ≤ hrh , can be (almost) strict, as shown by the following example, similar to Example
3 (cylinders) of [20]. Let X = {1, . . . , q}d be the points of a d-dimensional grid, and let C consist
of all axis-parallel affine subspaces. (Note that for q = 2, X will be the vertices of a d-dimensional
cube, and C its faces.) It is easy to check that h = 2, r = ⌊log(d + 1) + 2⌋ and f = d + 1; the last
equality follows from that for α = d!

dd
we need β = 1

q
when F consists of all qd axis-parallel affine

hyperplanes (if q is large enough).

It is tempting to assume that Theorem 1 would improve the second inequality, hrh ≤ rr
log r

,
as instead of rh ≤ rlogh we can use rh = O(h). Unfortunately, recall that the hidden constant

depended on r, in particular, it is around rr
rlog r

. We have a suspicion that this might not be
entirely sharp, so a natural question is whether this dependence could be removed to improve

rk ≤ rr
rlog r

· k to rk ≤ c · r · k. This would truly lead to an improvement of the upper bound on f

in Theorem 2 and would be enough for several applications [5].

Acknowledgment

I would like to thank Boris Bukh and Narmada Varadarajan for discussions on [6], Andreas
Holmsen for calling my attention to the difference between restricted and multiset Radon numbers,
espcially for confirming that Theorem 2 also holds for multisets, and Gábor Damásdi, Balázs
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