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CHARACTERIZATION OF THE EQUALITY OF CAUCHY MEANS

TO QUASIARITHMETIC MEANS

REZSŐ L. LOVAS, ZSOLT PÁLES, AND AMR ZAKARIA

ABSTRACT. The main result of this paper provides six necessary and sufficient conditions under various regularity
assumptions for a so-called Cauchy mean to be identical to a two-variable quasiarithmetic mean. One of these con-
ditions says that a Cauchy mean is quasiarithmetic if and only if the range of its generating functions is covered by a
nondegenerate conic section.

1. INTRODUCTION

Throughout this paper, the symbols R, R+, and N will denote the sets of real, positive real, and natural
numbers, respectively, and I will always denote a nonempty open interval. Given a continuous strictly
monotone function ϕ : I → R, the two-variable quasiarithmetic mean Aϕ : I2 → I is defined by

Aϕ(x, y) := ϕ−1

(

ϕ(x) + ϕ(y)

2

)

.

A systematic study of these means can be found in the book [6]. A characterization theorem of these
means was obtained by Aczél in [1] (cf. also [2], [3]).

There are two essential generalizations of two-variable quasiarithmetic means. The first one is due
to Bajraktarević [4]: Given two functions f, g : I → R such that g is nowhere zero and f/g is strictly
monotone and continuous, the two-variable Bajraktarević mean Bf,g : I

2 → I is defined by

Bf,g(x, y) :=

(

f

g

)−1(
f(x) + f(y)

g(x) + g(y)

)

.

It is immediate to see that Bϕ,1 ≡ Aϕ, showing that two-variable quasiarithmetic means form a proper
subclass of two-variable Bajraktarević means.

The second generalization is due to Leach and Sholander [9] (cf. also Losonczi [10]): Given two
differentiable functions f, g : I → R such that g′ is nowhere zero, f ′/g′ is strictly monotone, the Cauchy

mean Cf,g : I
2 → I is defined by

Cf,g(x, y) :=







(

f ′

g′

)−1(
f(x)− f(y)

g(x)− g(y)

)

if x 6= y,

x if x = y.

Observe that if ϕ is differentiable with a nonvanishing derivative, then Cϕ2,ϕ ≡ Aϕ, i.e., Cauchy means
contain the class of two-variable quasiarithmetic means with a differentiable generating function whose
derivative is nonvanishing.
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In the sequel, we say that two pairs of functions (f, g) : I → R2 and (h, k) : I → R2 are equivalent
(and we write (f, g) ∼ (h, k)) if there exist real constants a, b, c, d with ad 6= bc such that

h = af + bg and k = cf + dg. (1)

One can easily check that ∼ is an equivalence relation, indeed.
For a real parameter p ∈ R, we introduce the sine and cosine type functions Sp, Cp : R → R by

Sp(x) :=











sin(
√−px) if p < 0,

x if p = 0,

sinh(
√
px) if p > 0,

and Cp(x) :=











cos(
√−px) if p < 0,

1 if p = 0,

cosh(
√
px) if p > 0.

It is easily seen that the functions Sp and Cp form a fundamental system of solutions for the second-order
homogeneous linear differential equation Y ′′ = pY .

We introduce the following regularity classes for the generating functions of Cauchy means as follows:
Let the class C1(I) contain all pairs (f, g) such that

(i) f, g : I → R are continuously differentiable functions such that g′ is nowhere zero on I .
(ii) f ′/g′ is strictly monotone on I .

For n ≥ 2, let Cn(I) denote the class of all pairs (f, g) such that
(+i) f, g : I → R are n times continuously differentiable functions and g′ is nowhere zero on I .

(+ii) (f ′/g′)′ is nowhere zero on I .
Finally, for (f, g) ∈ Cn(I) and for i, j ∈ {0, . . . , n}, we define the generalized Wronski-type determi-

nant W i,j
f,g : I → R by

W i,j
f,g :=

∣

∣

∣

∣

f (i) f (j)

g(i) g(j)

∣

∣

∣

∣

. (2)

The equality of Cauchy means to two-variable quasiarithmetic means has been characterized by Kiss
and Páles [8].

Theorem 1. Let (f, g) ∈ C1(I) and h : I → R be continuous and strictly monotone. Then

Cf,g(x, y) = Ah(x, y) (x, y ∈ I)

holds if and only if h is differentiable with a nonvanishing first derivative and there exists a constant

p ∈ R such that
(f ′, g′) ∼ (h′ · Sp ◦ h, h′ · Cp ◦ h). (3)

The following theorem provides characterization of the equality of two-variable Bajraktarević means
to two-variable quasiarithmetic means (cf. [5], [7], [11]).

Theorem 2. Let f, g : I → R be two functions such that g is everywhere positive on I and f/g is strictly

monotone and continuous on I . Then the following statements are equivalent.

(i) There exists a continuous strictly monotone function h : I → R such that

Bf,g(x, y) = Ah(x, y) (x, y ∈ I). (4)

(ii) There exist a continuous strictly monotone function h : I → R and a constant p ∈ R such that

(f, g) ∼ (Sp ◦ h, Cp ◦ h). (5)

(iii) There exist real constants α, β, γ such that

αf 2 + βfg + γg2 = 1. (6)

(iv) Provided that f and g are continuously differentiable and W 1,0
f,g is nowhere zero on I , equation (4)

holds with h =
∫

W 1,0
f,g .
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(v) Provided that f and g are twice continuously differentiable and W 1,0
f,g is nowhere zero on I , there

exists a real constant δ such that

W 2,1
f,g = δ(W 1,0

f,g )
3. (7)

An analogous proof of the following lemma has been introduced in [12].

Lemma 3. Let (f, g) ∈ C3(I). Then f ′, g′ form a fundamental system of solutions of the second-order

homogeneous linear differential equation

W 2,1
f,g Y

′′ = W 3,1
f,g Y

′ −W 3,2
f,g Y.

Given an at most second-degree polynomial P (u) := α + βu + γu2, where α, β, γ ∈ R, we call the
value DP := β2 − 4αγ the discriminant of P .

Lemma 4. If P is an at most second-degree polynomial, then DP = (P ′)2 − 2P ′′P .

2. MAIN RESULTS

For the proof of our main result we will need the following lemma, which describes an important
property of pairs of functions belonging to the regularity class C1(I).

Lemma 5. If (f, g) ∈ C1(I), then the mapping (f, g) : I → R2 is injective.

Proof. To the contrary, assume that there exist x < y in I such that

(f, g)(x) = (f, g)(y) = (p, q).

If, for all z ∈ ]x, y[ , the equality (f, g)(z) = (p, q) holds, then g′ = 0 on ]x, y[ , contradicting that g′ is
nonvanishing on I . Thus, there exists an element z ∈ ]x, y[ such that (f, g)(z) 6= (p, q). Applying the
Cauchy Mean Value Theorem on the intervals [x, z] and [z, y], we can find two elements u and v with
x < u < z < v < y such that

f ′(u)(g(z)− g(x)) = g′(u)(f(z)− f(x)) and f ′(v)(g(z)− g(y)) = g′(v)(f(z)− f(y)).

Therefore, the vector (α, β) := (f(z) − p, g(z) − q) is a nontrivial solution of the following system of
linear equations

f ′(u)β − g′(u)α = 0 and f ′(v)β − g′(v)α = 0.

Consequently, the determinant of this system must be zero, i.e., f ′(u)g′(v) = f ′(v)g′(u). Dividing this
equation by g′(u)g′(v) side by side, it follows that (f ′/g′)(u) = (f ′/g′)(v). On the other hand, our
assumption implies that f ′/g′ is strictly monotone, hence u = v, which contradicts u < z < v. �

Lemma 6. Let (f, g) ∈ C1(I). Then Cf,g is a symmetric, continuous and strictly monotone mean on I .

Proof. The symmetry and continuity are easy consequences of the definition of the Cauchy means. To
prove the strict monotonicity in the first variable, let x, y, z ∈ I with x < y. In the proof of the inequality

Cf,g(x, z) < Cf,g(y, z), (8)

we assume that f ′/g′ is strictly increasing, the other possibility is completely similar. If z ∈ [x, y], then
(8) is a consequence of the strict mean property of Cf,g because then

Cf,g(x, z) ≤ z ≤ Cf,g(y, z)

and one of the inequalities must be strict. Thus, we also may assume that z /∈ [x, y], that is, either z < x
or y < z. In these subcases (8) is equivalent to

f(x)− f(z)

g(x)− g(z)
<
f(y)− f(z)

g(y)− g(z)
.
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Using that g′ is not vanishing, we have that g is strictly monotone, therefore, the product of the denomi-
nators is positive in both subcases. Hence, the above inequality can be rewritten as

(f(x)− f(z))(g(y)− g(z)) < (f(y)− f(z))(g(x)− g(z)).

This inequality is equivalent to

(f(x)− f(z))(g(y)− g(x)) < (f(y)− f(x))(g(x)− g(z)).

Observe that in the first subcase z < x the strict monotonicity of g implies

f(x)− f(z)

g(x)− g(z)
<
f(y)− f(x)

g(y)− g(x)
.

Now, applying that f ′/g′ is strictly increasing, the above inequality transforms to

Cf,g(x, z) < Cf,g(y, x).

This last inequality is seen to be true because, by the strict mean property of Cauchy means, x separates
the two sides. Hence (8) holds as well. In the second subcase y < z, the proof is analogous. �

Theorem 7. Let (f, g) ∈ C1(I). Then the following statements are equivalent.

(i) There exists a continuous strictly monotone function h : I → R such that

Cf,g(x, y) = Ah(x, y) (x, y ∈ I). (9)

(ii) The mean Cf,g is bisymmetric, i.e., it satisfies the following functional equation

Cf,g(Cf,g(x, y),Cf,g(u, v)) = Cf,g(Cf,g(x, u),Cf,g(y, v)) (x, y, u, v ∈ I).

(iii) There exist real constants α, β, γ, δ, ε, η with (α, β, γ) 6= (0, 0, 0) such that

αf 2 + βfg + γg2 + δf + εg + η = 0. (10)

(iv) Provided that (f, g) ∈ C2(I), there exist real constants a, b, c such that

af ′2 + bf ′g′ + cg′2 = (W 2,1
f,g )

2

3 . (11)

(v) Provided that (f, g) ∈ C2(I),

BF,G(x, y) = Ah(x, y) (x, y ∈ I), (12)

where F := f ′/h′, G := g′/h′ and h :=
∫

(W 2,1
f,g )

1

3 .

(vi) Provided that (f, g) ∈ C2(I), equation (9) holds with h :=
∫

(W 2,1
f,g )

1

3 .

(vii) Provided that (f, g) ∈ C4(I), the expression

3W 4,1
f,g + 12W 3,2

f,g

(

W 2,1
f,g

)
5

3

− 5

(

W 3,1
f,g

)2

(

W 2,1
f,g

)
8

3

is constant. (13)

Proof. If Cf,g is a quasiarithmetic mean, i.e., (9) holds with some strictly monotone and continuous
function h : I → R, then, for all x, y, u, v ∈ I ,

Cf,g(Cf,g(x, y),Cf,g(u, v)) = Ah(Ah(x, y),Ah(u, v)) = h−1

(

h(Ah(x, y)) + h(Ah(u, v))

2

)

= h−1

(

h(x) + h(y) + h(u) + h(v)

4

)

= h−1

(

h(x) + h(u) + h(y) + h(v)

4

)

= h−1

(

h(Ah(x, u)) + h(Ah(y, v))

2

)

= Ah(Ah(x, u),Ah(y, v)) = Cf,g(Cf,g(x, u),Cf,g(y, v)).
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The implication (ii)⇒(i) follows from Aczél’s celebrated theorem [1] (cf. [2], [3]) which says that
every two-variable symmetric, continuous and strictly monotone mean which fulfils the bisymmetry
property has to be a two-variable (symmetric) quasiarithmetic mean. In our case, by Lemma 6, Cf,g is a
symmetric, continuous and strictly monotone mean. Therefore, the result of Aczél directly applies.

In the next step prove that the assertions (i) and (iii) are equivalent. Assume that assertion (i) holds,
i.e., there exists a continuous strictly monotone function h : I → R such that (9) is valid. Applying
Theorem 1, it follows that h is differentiable with nonvanishing first derivative such that the equivalence
(3) holds. Consequently, there exist real constants a, b, c, d with ad 6= bc such that

h′ · Sp ◦ h = af ′ + bg′ and h′ · Cp ◦ h = cf ′ + dg′. (14)

We consider two cases when we integrate these identities side by side. If p 6= 0, then we have the
formulas

∫

Sp =
sign(p)
√

|p|
Cp,

∫

Cp =
1
√

|p|
Sp.

Therefore from (14), it follows that there exist real constants λ, µ such that

Cp ◦ h = a1f + b1g + λ and Sp ◦ h = c1f + d1g + µ (15)

where a1 :=

√
|p|

sign(p)
a, b1 :=

√
|p|

sign(p)
b, c1 :=

√

|p|c, and d1 :=
√

|p|d. Using the well-known identities of
trigonometric and hyperbolic functions, we have

C2
p − sign(p)S2

p = 1

holds on R and C2
p ◦ h− sign(p)S2

p ◦ h = 1 is valid on I . Consequently, we obtain

(a1f + b1g + λ)2 − sign(p)(c1f + d1g + µ)2 = 1,

and hence equation (10) holds with the following constants

α := a21 − sign(p)c21, β := 2a1b1 − 2 sign(p)c1d1, γ := b21 − sign(p)d21,

δ := 2λa1 − 2 sign(p)µc1, ε := 2λb1 − 2 sign(p)µd1, η := λ2 − sign(p)µ2 − 1.

To the contrary assume that (α, β, γ) = (0, 0, 0). If p < 0, then these equalities imply that a1 =
b1 = c1 = d1 = 0, which yields a = b = c = d = 0 contradicting ad 6= bc. In the case p > 0,
(α, β, γ) = (0, 0, 0) implies that a21 = c21, a1b1 = c1d1, and b21 = d21. If c1 = 0, then a1 = 0 and hence
ad = 0 = bc, a contradiction. If c1 6= 0, then

a1d1 = a1
a1b1
c1

=
a21b1
c1

=
c21b1
c1

= b1c1,

which again contradicts ad 6= bc.
In the case p = 0, the integration of the equalities (14) yields the existence of constants λ, µ such that

1

2
h2 = af + bg + λ and h = cf + dg + µ.

Therefore,
1

2
(cf + dg + µ)2 = af + bg + λ.

Thus assertion (iii) is valid with the following constants

α := c2, β := 2cd, γ := d2,

δ := 2µc− 2a, ε := 2µd− 2b, η := µ2 − 2λ.

On the contrary suppose that (α, β, γ) = (0, 0, 0) which leads to c = d = 0 contradicting ad 6= bc. Thus,
we have shown that (α, β, γ) 6= (0, 0, 0) holds in all cases.
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Now we prove that assertion (iii) implies (i). Consider the quadratic curve

q :=
{

(x, y) ∈ R
2 | αx2 + βxy + γy2 + δx+ εy + η = 0

}

.

By assumption (iii), this curve covers the range of the map (f, g) : I → R2. Therefore, q cannot be
empty or a single point. We are going to show that, in fact, this curve can only be either an ellipse, or a
hyperbola, or a parabola.

There are three remaining degenerate cases concerning the curve q:

(A) q is a straight line;
(B) q is the union of two parallel lines;
(C) q is the union of two intersecting lines.

We prove by contradiction that none of these cases can happen. Assuming (A), (B), or (C), first we show
that the range of (f, g) is covered by one straight line. This is obvious in the case (A). In the case (B),
the continuity of (f, g) implies that its range is connected, hence it has to be contained in one of the
parallel lines. Finally assume case (C), which implies that the curve (f, g) is covered by two intersecting
lines whose tangent unit vectors are denoted by u and v. Since g′ is nowhere vanishing, thus the tangent
vector field (f ′, g′) is also nowhere vanishing. On the other hand, this vector field is everywhere parallel
either to u or to v. Hence, the continuity of (f ′, g′) implies that it is everywhere parallel to one of them.
This implies that the curve (f, g) is covered by one of the lines.

Thus, we have proved that there exist three constants δ, ε, η ∈ R with (δ, ε) 6= (0, 0) such that

δf + εg + η = 0

holds on I . Differentiating this equality and dividing by g′, it follows that

δ
f ′

g′
= −ε,

which contradicts the strict monotonicity of f ′/g′. This final contradiction yields that none of the cases
(A), (B), or (C) can happen, and hence, q can only be a nondegenerate conic section.

By elementary linear algebra, it follows that there exist six constants a, b, c, d, λ, µ ∈ R with ad 6= bc
and two functions ψ, χ : I → R such that

(

f
g

)

=
(

a b
c d

)(

ψ
χ

)

+
(

µ
λ

)

, (16)

where ψ, χ satisfy one of the following equations:

ψ2 + χ2 = 1, ψ2 − χ2 = 1, and ψ = χ2. (17)

Differentiating (16), we obtain
(

f ′

g′

)

=
(

a b
c d

)(

ψ′

χ′

)

. (18)

According to Theorem 1, in all three cases we have to show that there is a number p ∈ R and a differen-
tiable function h : I → R with nonvanishing first derivative such that (3) holds.

First suppose that (ψ, χ) satisfies the first equation in (17). As we have seen in Lemma 5, the map
(f, g) is injective. Therefore, the equality (16) implies that (ψ, χ) is also an injective map whose range
is a subset of the unit circle by the first equation in (17). By the continuity of this map, we get that the
range R of (ψ, χ) is an open connected proper subset of the unit circle S. Then there exist −2π < u <
v < 2π such that the range of the map (cos, sin) restricted to the interval ]u, v[ equals R. Define the
transformation T : R+× ]u, v[→ R2 by

T (r, t) := (r cos t, r sin t).
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Then T is an injective differentiable map whose derivative matrix is nonsingular at every point in
R+× ]u, v[ , therefore, the inverse of T is differentiable by the inverse function theorem. Finally, de-
fine h : I → ]u, v[ as the second coordinate function of T−1 ◦ (ψ, χ). Then h is differentiable and the
equalities ψ = cos ◦h and χ = sin ◦h hold. We can calculate the derivative of f and g:

f ′ = (−a sin ◦h+ b cos ◦h)h′ = (−aS−1 ◦ h+ bC−1 ◦ h)h′,
g′ = (−c sin ◦h + d cos ◦h)h′ = (−cS−1 ◦ h+ dC−1 ◦ h)h′.

Since we assumed that g′ never vanishes, from this it also follows that h′ never vanishes. Thus the
condition (3) of Theorem 1 is satisfied with p = −1, and hence (i) holds.

Secondly, assume that (ψ, χ) fulfils the second equation in (17). Then define h : I → R by h :=
sinh−1 ◦χ. Therefore h is differentiable, χ = sinh ◦h, and, by the second equation in (17), we have that
ψ = ± cosh ◦h. Thus, using (18), for the derivatives of f and g, we obtain

f ′ = (±a sinh ◦h+ b cosh ◦h)h′ = (±aS1 ◦ h+ bC1 ◦ h)h′,
g′ = (±c sinh ◦h+ d cosh ◦h)h′ = (±cS1 ◦ h+ dC1 ◦ h)h′.

Again we can see that h′ is nonvanishing. Thus the condition (3) of Theorem 1 is now satisfied with
p = 1, and consequently (i) is valid.

Finally, if the third equality of (17) holds, then let h := χ, which is now automatically differentiable.
Then ψ = χ2 = h2, and now using (18) we can calculate the derivatives of f and g:

f ′ = (2ah+ b)h′ = (2aS0 ◦ h+ bC0 ◦ h)h′,
g′ = (2ch+ d)h′ = (2cS0 ◦ h+ dC0 ◦ h)h′.

The second equation implies that h′ is nonvanishing. Therefore the relation (3) of Theorem 1 is again
satisfied by p = 0, which yields condition (i).

To prove the implication (iii)⇒(iv), assume that (f, g) ∈ C2(I). Assume that (iii) holds for some
α, β, γ, δ, ε, η ∈ R with (α, β, γ) 6= (0, 0, 0). Differentiating (10), we get

2αf ′f + β(f ′g + fg′) + 2γg′g + δf ′ + εg′ = 0.

Denote ϕ := f ′/g′. Then, from the assumption (f, g) ∈ C2(I) it follows that ϕ is continuously differen-
tiable and ϕ′ is nowhere zero on I . Now replacing f ′ by ϕg′, we obtain

ϕ(2αf + βg + δ) + βf + 2γg + ε = 0. (19)

Differentiating this equation and then replacing f ′ by ϕg′, we arrive at

ϕ′(2αf + βg + δ) + 2g′(αϕ2 + βϕ+ γ) = 0. (20)

This implies that

2αf + βg + δ = −2g′

ϕ′
(αϕ2 + βϕ+ γ). (21)

Observe that the last factor of the right hand side is a nontrivial at most second degree polynomial of ϕ.
The function ϕ is strictly monotone, therefore, the right hand side and consequently the left hand side of
(21) can have at most two distinct zeros whose set will be denoted by Z.

Then, by (19), on the set I \ Z, we can write

ϕ = −βf + 2γg + ε

2αf + βg + δ
.

This equality, combined with (f, g) ∈ C2(I), implies that ϕ is twice differentiable on I \ Z.
Differentiating (20) and replacing f ′ by ϕg′, on the set I \ Z, we get

ϕ′′(2αf + βg + δ) + 2g′′(αϕ2 + βϕ+ γ) + 3g′(2αϕ′ϕ+ βϕ′) = 0. (22)
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Using (21), the above equality reduces to

−2
ϕ′′

ϕ′
g′(αϕ2 + βϕ+ γ) + 2g′′(αϕ2 + βϕ+ γ) + 3g′(2αϕ′ϕ+ βϕ′) = 0. (23)

Then, dividing this equation side by side by 3g′(αϕ2 + βϕ+ γ) on the set I \ Z, we obtain

2

3

g′′

g′
− 2

3

ϕ′′

ϕ′
+

2αϕ′ϕ+ βϕ′

αϕ2 + βϕ+ γ
= 0.

Integrating both sides, it follows that
2

3
ln |g′| − 2

3
ln |ϕ′|+ ln |αϕ2 + βϕ+ γ|

equals a constant on each component of I \ Z. Therefore,

Φ :=
( g′

ϕ′

)
2

3

(αϕ2 + βϕ+ γ)

equals a nonzero constant on each component of I \ Z. On the other hand, Φ is continuous on I , the
set Z contains at most two points, consequently Φ is identically equal to a nonzero constant ζ on I .
Combining this result with equalities ϕ = f ′/g′ and

ϕ′ =

(

f ′

g′

)′

=
f ′′g′ − g′′f ′

g′2
=
W 2,1

f,g

g′2
, (24)

we get assertion (iv) with constants a := α/ζ , b := β/ζ and c := γ/ζ .
To prove the implication (iv)⇒(v), assume that (f, g) ∈ C2(I). If (iv) holds, then there exist real

constants a, b, c such that (11) is valid. Denote F := f ′/h′, G := g′/h′ and h :=
∫

(W 2,1
f,g )

1

3 , then
equation (11) reduces to

aF 2 + bFG+ cG2 = 1, (25)

where G is nowhere zero on I and F/G = f ′/g′ is strictly monotone and continuous on I . Applying
implication (iii)⇒(i) of Theorem 2, we conclude that assertion (v) holds.

Assume now that assertion (v) is valid, i.e., (f, g) ∈ C2(I) and the functional equation (12) satisfied
with F := f ′/h′, G := g′/h′ and h :=

∫

(W 2,1
f,g )

1

3 . Applying implication (i)⇒(ii) of Theorem 2, we get

(F,G) ∼ (Sp ◦ h, Cp ◦ h),
or equivalently,

(f ′, g′) ∼ (h′ · Sp ◦ h, h′ · Cp ◦ h).
Therefore, using Theorem 1, we get assertion (vi). The implication (vi)⇒(i) is obvious. Hence all the
assertions from (i) to (vi) are equivalent provided that (f, g) ∈ C2(I).

To prove the implication (iv)⇒(vii), assume that (f, g) ∈ C4(I). If (iv) holds, then there exist real
constants a, b, c such that equation (11) is valid. Denoting ϕ := f ′/g′ and replacing f ′ by ϕg′ in (11), we
obtain

P ◦ ϕ =
(W 2,1

f,g )
2

3

g′2
, (26)

where P is an at most second-degree polynomial. Differentiating equation (26), we arrive at

(P ′ ◦ ϕ)ϕ′ =
2

3g′2
(W 2,1

f,g )
−1

3 W 3,1
f,g − 2

g′′

g′3
(W 2,1

f,g )
2

3 .

Using identity (24), this equation reduces to

P ′ ◦ ϕ =
2

3
(W 2,1

f,g )
−4

3 W 3,1
f,g − 2

g′′

g′
(W 2,1

f,g )
−1

3 . (27)
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Differentiating equation (27), we get

(P ′′ ◦ ϕ)ϕ′ =− 8

9
(W 2,1

f,g )
−7

3 (W 3,1
f,g )

2 +
2

3
(W 2,1

f,g )
−4

3 (W 3,2
f,g +W 4,1

f,g )

− 2
g′′′g′ − g′′2

g′2
(W 2,1

f,g )
−1

3 +
2

3

g′′

g′
(W 2,1

f,g )
−4

3 W 3,1
f,g .

Again using identity (24), this equation simplifies to

P ′′ ◦ ϕ =− 8

9ϕ′
(W 2,1

f,g )
−7

3 (W 3,1
f,g )

2 +
2

3ϕ′
(W 2,1

f,g )
−4

3 (W 3,2
f,g +W 4,1

f,g )

− 2(g′′′g′ − g′′2)(W 2,1
f,g )

−4

3 +
2

3

g′′

g′ϕ′
(W 2,1

f,g )
−4

3 W 3,1
f,g .

(28)

Therefore, using Lemma 4 and identity (24), we obtain

DP =(P ′ ◦ ϕ)2 − 2(P ′′ ◦ ϕ)(P ◦ ϕ)

=
4

9
(W 2,1

f,g )
−8

3 (W 3,1
f,g )

2 − 8

3

g′′

g′
(W 2,1

f,g )
−5

3 W 3,1
f,g + 4

g′′2

g′2
(W 2,1

f,g )
−2

3

+
16

9
(W 2,1

f,g )
−8

3 (W 3,1
f,g )

2 − 4

3
(W 2,1

f,g )
−5

3 (W 3,2
f,g +W 4,1

f,g )

+ 4
g′′′g′ − g′′2

g′2
(W 2,1

f,g )
−2

3 − 4

3

g′′

g′
(W 2,1

f,g )
−5

3 W 3,1
f,g ,

or equivalently,

DP =
20

9
(W 2,1

f,g )
−8

3 (W 3,1
f,g )

2 − 4

3
(W 2,1

f,g )
−5

3 (W 3,2
f,g +W 4,1

f,g )− 4(W 2,1
f,g )

−5

3

g′′W 3,1
f,g − g′′′W 2,1

f,g

g′
.

It is easy to check that
g′′W 3,1

f,g − g′′′W 2,1
f,g

g′
= W 3,2

f,g . Therefore, we get the expression (13) is equal to

−9
4
Dp. Hence assertion (vii) holds.

To complete the proof of the theorem it suffices to prove the implication (vii)⇒(i) in the class C4(I).
Assume that (vii) holds, i.e., the expression in (13) is equal to constant. Let Y ∈ {f ′, g′}, using Lemma 3,
it follows that Y is a solution of the following second-order homogeneous linear differential equation

W 2,1
f,g Y

′′ = W 3,1
f,g Y

′ −W 3,2
f,g Y. (29)

Now, denote h :=
∫

(W 2,1
f,g )

1

3 . It follows that h is three times differentiable strictly monotone with a
nonvanishing first derivative. Therefore, its inverse is also three times differentiable. Define the function
Z : h(I) → R by Z := 1

h′◦h−1 (Y ◦ h−1). Consequently, Z is a twice differentiable function and we have
Y = h′(Z ◦ h). Differentiating Y once and twice, we get

Y ′ = h′′(Z ◦ h) + h′2(Z ′ ◦ h) and Y ′′ = h′′′(Z ◦ h) + 3h′′h′(Z ′ ◦ h) + h′3(Z ′′ ◦ h).
However we have,

h′ = (W 2,1
f,g )

1

3 , h′′ =
1

3
(W 2,1

f,g )
−2

3 W 3,1
f,g , h′′′ = −2

9
(W 2,1

f,g )
−5

3 (W 3,1
f,g )

2 +
1

3
(W 2,1

f,g )
−2

3 (W 4,1
f,g +W 3,2

f,g ).

Applying these identities and (29), we arrive at
(

− 2

9
(W 2,1

f,g )
−2

3 (W 3,1
f,g )

2 +
1

3
(W 2,1

f,g )
1

3 (W 4,1
f,g +W 3,2

f,g )
)

(Z ◦ h) + (W 2,1
f,g )

2

3W 3,1
f,g (Z

′ ◦ h) + (W 2,1
f,g )

2(Z ′′ ◦ h)

=
1

3
(W 2,1

f,g )
−2

3 (W 3,1
f,g )

2(Z ◦ h) + (W 2,1
f,g )

2

3W 3,1
f,g (Z

′ ◦ h)− (W 2,1
f,g )

1

3W 3,2
f,g (Z ◦ h).
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This simplifies to the identity

Z ′′ ◦ h = −1

9

(

3W 4,1
f,g + 12W 3,2

f,g

(

W 2,1
f,g

)
5

3

− 5

(

W 3,1
f,g

)2

(

W 2,1
f,g

)
8

3

)

(Z ◦ h).

Therefore, using assertion (vii), there exists real constant p such that Z ′′ ◦h = pZ ◦h is valid on I . Thus,
it follows that

Z ′′ = pZ (30)

holds on h(I). Thus, Z := 1
h′◦h−1 (f

′ ◦ h−1) and Z := 1
h′◦h−1 (g

′ ◦ h−1) are solutions to this second-order
homogeneous linear differential equation. On the other hand (Sp, Cp) forms a fundamental solution
system for (30). Consequently,

(

1

h′ ◦ h−1
(f ′ ◦ h−1),

1

h′ ◦ h−1
(g′ ◦ h−1)

)

∼ (Sp, Cp).

Thus, the relation (3) is satisfied so we conclude that the assertion (i) holds. �
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