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Abstract

In this somewhat didactic note we give a detailed alternative proof of the known result

due to Wei and Winnicki (1989) which states that under second order moment assump-

tions on the offspring and immigration distributions the sequence of appropriately scaled

random step functions formed from a critical Galton-Watson process with immigration

(starting from not necessarily zero) converges weakly towards a squared Bessel process.

The proof of Wei and Winnicki (1989) is based on infinitesimal generators, while we

use limit theorems for random step processes towards a diffusion process due to Ispány

and Pap (2010). This technique was already used in Ispány (2008), where he proved

functional limit theorems for a sequence of some appropriately normalized nearly critical

Galton-Watson processes with immigration starting from zero, where the offspring means

tend to its critical value 1. As a special case of Theorem 2.1 in Ispány (2008) one can

get back the result of Wei and Winnicki (1989) in the case of zero initial value. In the

present note we handle non-zero initial values with the technique used in Ispány (2008),

and further, we simplify some of the arguments in the proof of Theorem 2.1 in Ispány

(2008) as well.

1 Introduction and results

The study of the limit behaviour of Galton-Watson processes has a long tradition and his-

tory, see, e.g., the famous book of Athreya and Ney [2]. A Galton-Watson process with or
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without immigration is called subcritical, critical and supercritical if the mean of its offspring

distribution is less than 1, equal to 1 and greater than 1, respectively (for more details, see

later on). For a sequence of critical Galton-Watson processes without immigration, with the

same offspring distribution having finite second moment and with initial value independent of

the offspring variables such that the initial value of the nth branching process in question

divided by n converges in distribution as n → ∞, Feller [5] proved that the sequence of

appropriately scaled random step functions converges in distribution to a non-negative diffusion

process without drift (for a detailed proof based on infinitesimal generators, see also Ethier and

Kurtz [4, Theorem 9.1.3]). Grimvall [6, Theorem 4.4] proved a fluctuation-type limit theorem

for a sequence of nearly critical Galton-Watson processes without immigration: shifting each

branching process in question by its own (deterministic) initial value, under some Lindeberg-

type condition on the offspring distribution it was shown that the sequence of appropriately

scaled random step functions formed from the sequence of shifted branching processes converges

weakly to a Wiener process with some drift and variance depending on the limiting behaviour

of the offspring mean and variance, respectively. In fact, Grimvall [6, Theorem 4.4] generalized

the corresponding result of Lindvall [18, Theorem 1] for a sequence of critical Galton-Watson

processes without immigration.

In this somewhat didactic note we will focus on asymptotic behaviour of critical Galton-

Watson processes with immigration. We give a detailed alternative proof of the known result

due to Wei and Winnicki [21, Theorem 2.1] which states that under second order moment

assumptions on the offspring and immigration distributions the sequence of appropriately scaled

random step functions formed from a critical Galton-Watson process with immigration (starting

from not necessarily zero) converges weakly towards a squared Bessel process, see Theorem

1.1. For historical fidelity, we mention that the convergence of finite-dimensional distributions

of a sequence of Galton-Watson processes with immigration towards a continuous state and

continuous time branching process was already studied by Kawazu andWatanabe [14] and Aliev

[1]. Wei and Winnicki [21] used infinitesimal generators in their proof by referring to several

results of Ethier and Kurtz [4], while we will use limit theorems for random step processes

towards a diffusion process due to Ispány and Pap [9]. This technique was already used in

Ispány [8], where he proved functional limit theorems for a sequence of some appropriately

normalized nearly critical Galton-Watson processes with immigration starting from zero, where

the offspring means tend to its critical value 1 under some conditions on the variances of the

offspring and immigration distributions. In the present note we will handle non-zero initial

values with the technique used in Ispány (2008), and further, we can also simplify some of the

arguments in the proof of Theorem 2.1 in Ispány [8] mainly due to the fact that we consider

only a single critical Galton-Watson process with immigration instead of a sequence of nearly

critical ones. In Remark 2.1 one can find a detailed comparison of our proof of Theorem 1.1

and the proof of Theorem 2.1 in Ispány [8]. Remark 1.2 is devoted to a discussion on the role

of the initial value.

We also remark that, using the technique of infinitesimal generators, Sriram [20, Theorem

3.1], Ispány et al. [11, Theorem 2.1] and Khusanbaev [15] proved functional limit theorems
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for a sequence of some appropriately normalized nearly critical Galton-Watson processes with

immigration starting from zero. Lebedev [16] proved the result of Sriram [20, Theorem 3.1]

independently as well. Li [17] provided a set of sufficient conditions for the weak convergence

of a sequence of Galton-Watson processes with immigration to a given continuous state and

continuous time branching process with immigration. Using martingale limit theorems based

on Jacod and Shiryaev [12], Rahimov [19] proved functional limit theorems for a sequence of

critical Galton-Watson processes with generation dependent immigrations starting from zero

such that the means of immigration distributions tend to infinity as the number of generation

goes to infinity.

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers,

real numbers, non-negative real numbers and positive real numbers, respectively. For sequences

(ak)k∈N and (bk)k∈N, where bk ∈ R++, k ∈ N, the notation ak = O(bk), k ∈ N, means

that there exists a constant C ∈ R++ such that |ak| 6 Cbk, k ∈ N. In the proofs we

frequently use that for any γ ∈ R++, we have
∑n

k=0 k
γ = O(nγ+1) for n ∈ N, following from∑n

k=0 k
γ 6

∫ n+1

0
xγ dx = (n+1)γ+1

γ+1
6

2γ+1

γ+1
nγ+1, n ∈ N. For a function f : R → R, its positive

part will be denoted by f+. Every random variable will be defined on a fixed probability space

(Ω,A,P). Convergence in probability is denoted by
P−→. For other notations, such as equality

in distribution
D
= and convergence in distribution

D−→, see the beginning of Appendix B.

First we recall (single-type) Galton-Watson processes with immigration. For each k ∈ Z+,

the number of individuals in the kth generation is denoted by Xk. By ξk,j we denote the

number of the offsprings produced by the jth individual belonging to the (k−1)th generation.

The number of immigrants in the kth generation will be denoted by εk. Then we have

(1.1) Xk =

Xk−1∑

j=1

ξk,j + εk, k ∈ N,

where we define
∑0

j=1 := 0. Here
{
X0, ξk,j, εk : k, j ∈ N

}
are supposed to be independent

Z+-valued random variables. Moreover,
{
ξk,j : k, j ∈ N

}
and {εk : k ∈ N} are supposed

to consist of identically distributed random variables, respectively. For notational convenience,

let ξ and ε be random variables such that ξ
D
= ξ1,1 and ε

D
= ε1.

We suppose that E(X2
0 ) < ∞, E(ξ2) < ∞ and E(ε2) < ∞. Introduce the notations

mξ := E(ξ), mε := E(ε), σ2
ξ := Var(ξ), σ2

ε := Var(ε).

For k ∈ Z+, let FX
k := σ(X0, X1, . . . , Xk). By (1.1), E(Xk | FX

k−1) = mξXk−1 +mε, k ∈ N.

Consequently, E(Xk) = mξ E(Xk−1) +mε, k ∈ N, which implies

(1.2) E(Xk) = E(X0)m
k
ξ +mε

k−1∑

j=0

mj
ξ =




E(X0)m

k
ξ +mε

mk
ξ
−1

mξ−1
if mξ 6= 1,

E(X0) +mεk if mξ = 1,
, k ∈ N.

Hence the offspring mean mξ plays a crucial role in the asymptotic behavior of the sequence

(E(Xk))k∈Z+. A Galton-Watson process (Xk)k∈Z+ with immigration is referred to respectively
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as subcritical, critical or supercritical if mξ < 1, mξ = 1 or mξ > 1 (see, e.g., Athreya and

Ney [2, V.3]).

We give a detailed alternative proof of the following known result due to Wei and Winnicki

[21, Theorem 2.1] (under an additional second order moment condition on the initial value X0,

which is not supposed in [21]).

1.1 Theorem. (Wei and Winnicki [21]) Let (Xk)k∈Z+ be a critical Galton-Watson process

with immigration such that E(X2
0 ) < ∞, E(ξ2) < ∞ and E(ε2) < ∞. Then

(1.3) (n−1X⌊nt⌋)t∈R+

D−→ (Xt)t∈R+ as n → ∞,

where the limit process (Xt)t∈R+ is the pathwise unique strong solution of the stochastic dif-

ferential equation (SDE)

(1.4) dXt = mε dt +
√
σ2
ξ X+

t dWt, t ∈ R+,

with initial value X0 = 0, where (Wt)t∈R+ is a standard Wiener process.

The SDE (1.4) has a pathwise unique strong solution (X (x)
t )t∈R+ for all initial values

X (x)
0 = x ∈ R, and if x ∈ R+, then X (x)

t ∈ R+ almost surely for all t ∈ R+, since

mε, σ
2
ξ ∈ R+, see, e.g., Ikeda and Watanabe [7, Chapter IV, Example 8.2]. The process

(X (x)
t )t∈R+ is called a squared Bessel process.

1.1 Remark. (i) Under the conditions of Theorem 1.1, we have

(
n−1(X⌊nt⌋ − E(X⌊nt⌋))

)
t∈R+

D−→ (Mt)t∈R+ as n → ∞,

where the limit process (Mt)t∈R+ is the pathwise unique strong solution of the SDE

dMt =
√

σ2
ξ (Mt +mεt)+ dWt, M0 = 0,

where (Wt)t∈R+ is a standard Wiener process. Indeed, by the proof of Theorem 1.1 (see (2.2)),

we have (
n−1(X⌊nt⌋ − ⌊nt⌋mε)

)

t∈R+

D−→ (Mt)t∈R+ as n → ∞,

and, by (A.2),

n−1(X⌊nt⌋ − E(X⌊nt⌋)) = n−1(X⌊nt⌋ − ⌊nt⌋mε)− n−1
E(X0), n ∈ N, t ∈ R+.

(ii) Under the conditions of Theorem 1.1, in the special case of σξ = 0, we have P(ξ = 1) = 1,

and (n−1X⌊nt⌋)t∈R+

D−→ (mεt)t∈R+ as n → ∞, since in this case the process (Xt)t∈R+ given

by (1.4) takes the form Xt = mεt, t ∈ R+. ✷

The next remark is devoted to a discussion on the role of the initial value X0.
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1.2 Remark. Wei and Winnicki [21, Theorem 2.1] do not suppose the finiteness of the second

moment of the initial value X0, in their proof (which is based on infinitesimal generators)

they only use that n−1X0 converges to 0 as n → ∞ almost surely, which holds without

any further assumption on X0. In their proof, Wei and Winnicki [21] refer to several results

of Ethier and Kurtz [4], such as Theorem 1.3 in Chapter 9 and (implicitly) Theorem 6.5 in

Chapter 1, Theorem 8.2 and Corollary 8.9 in Chapter 4, and one can see that the initial value

comes into play in Theorem 8.2 in Chapter 4 in Ethier and Kurtz [4]. Since we are not experts

in the theory of infinitesimal generators, we can not give further insights into the role of the

initial value in the proof of Theorem 2.1 in Wei and Winnicki [21]. Next, we explain the role of

the initial value X0 in our proof of Theorem 1.1 and the second order moment assumption on

it. Note that X0 appears in the definition of M(n)
t (see (2.1)), and one can also realize that

one has to handle X0 in proving n−2 supt∈[0,T ]X⌊nt⌋
P−→ 0 as n → ∞ for each T ∈ R++

(see (2.8)). Further, in the course of the proof of Theorem 1.1 we need some estimation for

E(X2
k), k ∈ Z+, for which we need to assume that E(X2

0 ) < ∞. Such an estimation is

presented in Lemma A.2 which is based on Lemma A.1, where explicit formulae are derived for

the (conditional) first two moments of Xk, k ∈ N, and Mk, k ∈ N. In fact, the proof of

Lemma A.1 is presented mainly for instructional purposes in order to highlight the role of the

initial value X0. ✷

The paper is organized as follows. Section 2 is devoted to a detailed proof of Theorem

1.1 and to a comparison with the proof of Theorem 2.1 in Ispány [8]. We close the paper

with three appendices: we recall formulae and estimates for first and second order moments

of a critical Galton-Watson process with immigration (Appendix A), we recall a version of the

continuous mapping theorem (Appendix B) and a result about convergence of random step

processes towards a diffusion process due to Ispány and Pap [9] (Appendix C).

We decided to write this somewhat didactic note, since we wanted to understand clearly

the role of the initial value X0 in the proof of Theorem 1.1 and we wanted to present the

usefulness of the limit theorem for random step processes (especially created from martingale

differences) towards a diffusion process due to Ispány and Pap [9] directly in case of a critical

Galton-Watson process with immigration instead of a specialization of a corresponding result

or proof for more general branching processes.

2 Proof of Theorem 1.1 and comparison with the proof

of Theorem 2.1 in Ispány [8]

Proof of Theorem 1.1. We divide the proof into several steps. First, we prove weak con-

vergence of a sequence of random step processes constructed from the martingale differences

created from (Xk)k∈Z+. Namely, let us introduce the sequence

Mk := Xk − E(Xk | FX
k−1) = Xk −Xk−1 −mε, k ∈ N,
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of martingale differences with respect to the filtration (FX
k )k∈Z+, where we used that

E(Xk | FX
k−1) = Xk−1 + mε, k ∈ N, and recall that mε = E(ε). Consider the random

step processes

M(n)
t :=

1

n

(
X0 +

⌊nt⌋∑

k=1

Mk

)
=

1

n
X⌊nt⌋ −

⌊nt⌋
n

mε, t ∈ R+, n ∈ N.(2.1)

We will show that

(2.2) (M(n)
t )t∈R+

D−→ (Mt)t∈R+ as n → ∞,

where the limit process (Mt)t∈R+ is the pathwise unique strong solution of the SDE

(2.3) dMt =
√

σ2
ξ (Mt +mεt)+ dWt, t ∈ R+,

with initial value M0 = 0. The proof of (2.2) is based on a result due to Ispány and Pap

[9] (see also Theorem C.1), which is about convergence of random step processes towards a

diffusion process. Using weak convergence of (M(n)
t )t∈R+ , an application of a version of the

continuous mapping theorem (see Lemma B.1) will yield weak convergence of (n−1X⌊nt⌋)t∈R+

as n → ∞.

Step 1 (starting steps for the proof of (2.2)). In order to prove (2.2), we want to apply

Theorem C.1 with U := M, U
(n)
k := n−1Mk, k ∈ N, U

(n)
0 := n−1X0, F (n)

k := FX
k , k ∈ Z+,

where n ∈ N (yielding U (n) = M(n), n ∈ N, as well), and with coefficient functions

β : R+ × R → R and γ : R+ × R → R of the SDE (2.3) given by

β(t, x) := 0, γ(t, x) :=
√
σ2
ξ (x+mεt)+, t ∈ R+, x ∈ R.

First we check that the SDE (2.3) has a pathwise unique strong solution (M(x)
t )t∈R+ for all

initial values M(x)
0 = x ∈ R. Observe that if (M(x)

t )t∈R+ is a strong solution of the SDE

(2.3) with initial value M(x)
0 = x ∈ R, then, by Itô’s formula, the process Pt := M(x)

t +mεt,

t ∈ R+, is a strong solution of the SDE

(2.4) dPt = mε dt+
√

σ2
ξ P+

t dWt, t ∈ R+,

with initial value P0 = x. Conversely, if (P(p)
t )t∈R+ is a strong solution of the SDE (2.4) with

initial value P(p)
0 = p ∈ R, then, by Itô’s formula, the process Mt := P(p)

t −mεt, t ∈ R+,

is a strong solution of the SDE (2.3) with initial value M0 = p. The SDE (2.4) is the same

as (1.4). Consequently, as it was explained after Theorem 1.1, the SDE (2.4) and hence the

SDE (2.3) as well admit a pathwise unique strong solution with arbitrary initial value, and

(Mt +mεt)t∈R+

D
= (Xt)t∈R+ .

Note that E((U
(n)
k )2) < ∞ for all n ∈ N and k ∈ Z+, since, by Lemma A.1, E((U

(n)
k )2) =

n−2
E(M2

k ) < ∞, n, k ∈ N, and, by the assumption, E((U
(n)
0 )2) = n−2

E(X2
0 ) < ∞, n ∈ N.

Further, U
(n)
0 = n−1X0

a.s.−→ 0 as n → ∞, especially U
(n)
0

D−→ 0 as n → ∞.
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For conditions (i), (ii) and (iii) of Theorem C.1, we have to check that for each T ∈ R++,

sup
t∈[0,T ]

∣∣∣∣
1

n

⌊nt⌋∑

k=1

E(Mk | FX
k−1)− 0

∣∣∣∣
P−→ 0 as n → ∞,(2.5)

sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

E(M2
k | FX

k−1)−
∫ t

0

σ2
ξ (M(n)

s +mεs)
+ ds

∣∣∣∣
P−→ 0 as n → ∞,(2.6)

1

n2

⌊nT ⌋∑

k=1

E(M2
k1{|Mk|>nθ} | FX

k−1)
P−→ 0 as n → ∞ for all θ ∈ R++.(2.7)

Condition (2.5) trivially holds, since E(Mk | FX
k−1) = 0, n ∈ N, k ∈ N.

Step 2 (checking (2.6)). For each s ∈ R+ and n ∈ N, we have

M(n)
s +mεs =

1

n
X⌊ns⌋ +

ns− ⌊ns⌋
n

mε,

thus (M(n)
s +mεs)

+ = M(n)
s +mεs, and

∫ t

0

(M(n)
s +mεs)

+ ds =

∫ t

0

(
1

n
X⌊ns⌋ +

ns− ⌊ns⌋
n

mε

)
ds

=

⌊nt⌋−1∑

k=0

∫ (k+1)/n

k/n

(
1

n
Xk +

ns− k

n
mε

)
ds +

∫ t

⌊nt⌋/n

(
1

n
X⌊nt⌋ +

ns− ⌊nt⌋
n

mε

)
ds

=
1

n2

⌊nt⌋−1∑

k=0

Xk +
mε

n

⌊nt⌋−1∑

k=0

[1
2
ns2 − ks

]s=(k+1)/n

s=k/n

+
1

n

(
t− ⌊nt⌋

n

)
X⌊nt⌋ +

mε

n

[1
2
ns2 − ⌊nt⌋s

]s=t

s=⌊nt⌋/n

=
1

n2

⌊nt⌋−1∑

k=0

Xk +
nt− ⌊nt⌋

n2
X⌊nt⌋ +

mε

n

(
n

2
· ⌊nt⌋

2

n2
− ⌊nt⌋(⌊nt⌋ − 1)

2n

)

+
mε

n

(
n

2

(
t2 − ⌊nt⌋2

n2

)
− ⌊nt⌋

(
t− ⌊nt⌋

n

))

=
1

n2

⌊nt⌋−1∑

k=0

Xk +
nt− ⌊nt⌋

n2
X⌊nt⌋ +

⌊nt⌋ + (nt− ⌊nt⌋)2
2n2

mε

for all t ∈ R+ and n ∈ N. By (A.3),

1

n2

⌊nt⌋∑

k=1

E(M2
k | FX

k−1) =
⌊nt⌋
n2

σ2
ε +

σ2
ξ

n2

⌊nt⌋∑

k=1

Xk−1, t ∈ R+, n ∈ N,

7



which yields that

1

n2

⌊nt⌋∑

k=1

E(M2
k | FX

k−1)−
∫ t

0

σ2
ξ (M(n)

s +mεs)
+ ds

=
⌊nt⌋
n2

σ2
ε − σ2

ξ

nt− ⌊nt⌋
n2

X⌊nt⌋ − σ2
ξmε

⌊nt⌋ + (nt− ⌊nt⌋)2
2n2

, t ∈ R+, n ∈ N.

Since for each T ∈ R++,

sup
t∈[0,T ]

⌊nt⌋
n2

6
T

n
→ 0 as n → ∞,

sup
t∈[0,T ]

⌊nt⌋ + (nt− ⌊nt⌋)2
2n2

6
T

2n
+

1

2n2
→ 0 as n → ∞,

in order to show (2.6), it suffices to prove that for each T ∈ R++,

(2.8)
1

n2
sup

t∈[0,T ]

(
(nt− ⌊nt⌋)X⌊nt⌋

)
6

1

n2
sup

t∈[0,T ]

X⌊nt⌋
P−→ 0 as n → ∞.

For each k ∈ N, we have Xk = Xk−1 +Mk +mε, thus

Xk = X0 +
k∑

j=1

Mj + kmε,

hence, for each t ∈ R+ and n ∈ N, we get

X⌊nt⌋ = |X⌊nt⌋| 6 X0 +

⌊nt⌋∑

j=1

|Mj |+ ⌊nt⌋mε.

Consequently, in order to prove (2.8), it suffices to show

1

n2
sup

t∈[0,T ]

⌊nt⌋∑

j=1

|Mj| 6
1

n2

⌊nT ⌋∑

j=1

|Mj | P−→ 0 as n → ∞.

By Lemma A.2,

E

(
1

n2

⌊nT ⌋∑

j=1

|Mj|
)

=
1

n2

⌊nT ⌋∑

j=1

O(j1/2) = O(n−1/2) → 0 as n → ∞,

thus we obtain n−2
∑⌊nT ⌋

j=1 |Mj| P−→ 0 as n → ∞ yielding (2.8), and hence (2.6), as desired.

Step 3 (checking (2.7)). In order to prove (2.7), for each k ∈ N, consider the decomposition

of Mk into a random sum of independent centered random variables and another centered

random variable, which are independent, namely,

Mk =

Xk−1∑

j=1

ξk,j + εk −Xk−1 −mε = Nk + (εk −mε)

8



with

Nk :=

Xk−1∑

j=1

(ξk,j − 1).

For each n, k ∈ N and θ ∈ R++, we have

M2
k 6 2(N2

k + (εk −mε)
2), 1{|Mk|>nθ} 6 1{|Nk|>nθ/2} + 1{|εk−mε|>nθ/2},

yielding

M2
k1{|Mk|>nθ} 6 2N2

k1{|Nk|>nθ/2} + 2N2
k1{|εk−mε|>nθ/2} + 2(εk −mε)

2,

and hence (2.7) will be proved once we show

1

n2

⌊nT ⌋∑

k=1

E(N2
k1{|Nk|>nθ} | FX

k−1)
P−→ 0 as n → ∞ for all θ ∈ R++,(2.9)

1

n2

⌊nT ⌋∑

k=1

E(N2
k1{|εk−mε|>nθ} | FX

k−1)
P−→ 0 as n → ∞ for all θ ∈ R++,(2.10)

1

n2

⌊nT ⌋∑

k=1

E((εk −mε)
2 | FX

k−1)
P−→ 0 as n → ∞.(2.11)

In what follows let θ ∈ R++ be fixed.

Step 3/a (checking (2.9)). Using that the random variables {ξk,j : j ∈ N} are independent

of the σ-algebra FX
k−1 for all k ∈ N, by the properties of conditional expectation with respect

to a σ-algebra, we get for all n, k ∈ N,

E(N2
k1{|Nk|>nθ} | FX

k−1) = Fn,k(Xk−1),

where Fn,k : Z+ → R is given by

Fn,k(z) := E(Sk(z)
2
1{|Sk(z)|>nθ}), z ∈ Z+,

with

Sk(z) :=

z∑

j=1

(ξk,j − 1), z ∈ Z+.(2.12)

Consider the decomposition Fn,k(z) = An,k(z) +Bn,k(z) with

An,k(z) :=

z∑

j=1

E
(
(ξk,j − 1)2)1{|Sk(z)|>nθ}

)
,

Bn,k(z) :=
∑′

j,j′
E
(
(ξk,j − 1)(ξk,j′ − 1))1{|Sk(z)|>nθ}

)
,

9



where the sum
∑′

j,j′ is taken for j, j′ ∈ {1, . . . , z} with j 6= j′. Consider the inequalities

|Sk(z)| = |ξk,j − 1 + S̃j
k(z)| 6 |ξk,j − 1|+ |S̃j

k(z)|, z ∈ Z+,

for j ∈ {1, . . . , z}, where

S̃j
k(z) :=

∑′′

j′
(ξk,j′ − 1), z ∈ Z+,

where the sum
∑′′

j′ is taken for j′ ∈ {1, . . . , z} with j′ 6= j. Using that

1{|Sk(z)|>nθ} 6 1{|ξk,j−1|>nθ/2} + 1{|S̃j

k
(z)|>nθ/2}, j ∈ {1, . . . , z},

we have An,k(z) 6 A
(1)
n,k(z) + A

(2)
n,k(z), where

A
(1)
n,k(z) :=

z∑

j=1

E((ξk,j − 1)21{|ξk,j−1|>nθ/2}),

A
(2)
n,k(z) :=

z∑

j=1

E((ξk,j − 1)21{|S̃j
k
(z)|>nθ/2}).

In order to prove (2.9), it is enough to show that

1

n2

⌊nT ⌋∑

k=1

A
(1)
n,k(Xk−1)

P−→ 0,
1

n2

⌊nT ⌋∑

k=1

A
(2)
n,k(Xk−1)

P−→ 0,

1

n2

⌊nT ⌋∑

k=1

Bn,k(Xk−1)
P−→ 0(2.13)

as n → ∞. Using that ξk,j, k, j ∈ N, are identically distributed we have

A
(1)
n,k(z) = z E((ξ1,1 − 1)21{|ξ1,1−1|>nθ/2}), n, k ∈ N, z ∈ Z+,

thus, by Lemma A.2, we get

E

(
1

n2

⌊nT ⌋∑

k=1

A
(1)
n,k(Xk−1)

)
=

1

n2




⌊nT ⌋∑

k=1

E(Xk−1)


E((ξ1,1 − 1)21{|ξ1,1−1|>nθ/2})

=
1

n2




⌊nT ⌋∑

k=1

O(k)


E((ξ1,1 − 1)21{|ξ1,1−1|>nθ/2}) = E((ξ1,1 − 1)21{|ξ1,1−1|>nθ/2}) O(1)

for n ∈ N. Consequently, since E(ξ21,1) < ∞, the dominated convergence theorem implies

E
(
n−2

∑⌊nT ⌋
k=1 A

(1)
n,k(Xk−1)

)
→ 0 as n → ∞, which yields n−2

∑⌊nT ⌋
k=1 A

(1)
n,k(Xk−1)

P−→ 0 as

n → ∞, as desired.
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Further, the independence of ξk,j − 1 and S̃j
k(z) implies

A
(2)
n,k(z) =

z∑

j=1

E((ξk,j − 1)2)P
(
|S̃j

k(z)| > nθ/2
)
, n, k ∈ N, z ∈ Z+.

Here E((ξk,j − 1)2) = σ2
ξ , and, by E(S̃j

k(z)) = 0 and Markov inequality, we have

P
(
|S̃j

k(z)| > nθ/2
)
= P

(
|S̃j

k(z)− E(S̃j
k(z))| > nθ/2

)
6

4

n2θ2
Var(S̃j

k(z)) =
4

n2θ2
E(S̃j

k(z)
2),

where, using that ξ1,1 and ξ1,2 are independent,

E(S̃j
k(z)

2) = E

((∑′′

j′
(ξk,j′ − 1)

)2)
= E

(∑′′

j′
(ξk,j′ − 1)

∑′′

ℓ′
(ξk,ℓ′ − 1)

)

=
∑′′

j′
E((ξk,j′ − 1)2) +

∑′′

j′,ℓ′,j′ 6=ℓ′
E((ξk,j′ − 1)(ξk,ℓ′ − 1))

= (z − 1)Var(ξ1,1) + (z − 1)(z − 2)E((ξ1,1 − 1)(ξ1,2 − 1))

= (z − 1)σ2
ξ + (z − 1)(z − 2)E(ξ1,1 − 1)E(ξ1,2 − 1) = (z − 1)σ2

ξ 6 zσ2
ξ ,

where
∑′′

j′ and
∑′′

ℓ′ is taken for j′ ∈ {1, . . . , z} with j′ 6= j, and ℓ′ ∈ {1, . . . , z} with

ℓ′ 6= j, respectively, and
∑′′

j′,ℓ′,j′ 6=ℓ′ is taken for j′, ℓ′ ∈ {1, . . . , z} with j′ 6= j, ℓ′ 6= ℓ,

j′ 6= ℓ′. Hence

P
(
|S̃j

k(z)| > nθ/2
)
6

4

n2θ2
zσ2

ξ , z ∈ Z+, j ∈ {1, . . . , z},

and consequently

A
(2)
n,k(z) 6

4

n2θ2
z2σ4

ξ , n, k ∈ N, z ∈ Z+.

Consequently, by Lemma A.2,

E

(
1

n2

⌊nT ⌋∑

k=1

A
(2)
n,k(Xk−1)

)
6

4σ4
ξ

n4θ2

⌊nT ⌋∑

k=1

E(X2
k−1) =

4σ4
ξ

n4θ2

⌊nT ⌋∑

k=1

O(k2) = O(n−1)

for n ∈ N, which implies E
(
n−2

∑⌊nT ⌋
k=1 A

(2)
n,k(Xk−1)

)
→ 0 as n → ∞, and hence

n−2
∑⌊nT ⌋

k=1 A
(2)
n,k(Xk−1)

P−→ 0 as n → ∞, as desired.

Now we turn to check (2.13). By Cauchy-Schwarz inequality,

|Bn,k(z)| 6 E

(∣∣∣
∑′

j,j′
(ξk,j − 1)(ξk,j′ − 1)

∣∣∣1{|Sk(z)|>nθ}

)
6

√
B

(1)
n,k(z) E(1{|Sk(z)|>nθ}), z ∈ Z+,

where

B
(1)
n,k(z) := E

((∑′

j,j′
(ξk,j − 1)(ξk,j′ − 1)

)2)
.
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Using the independence of ξk,j −1 and ξk,j′ −1 for j 6= j′, and that E(ξ1,1−1) = 0, we get

B
(1)
n,k(z) = 2z(z − 1)σ4

ξ 6 2σ4
ξz

2, z ∈ Z+, n, k ∈ N.

Indeed, for z ∈ Z+,

B
(1)
n,k(z) = E

(∑′

j,j′
(ξk,j − 1)(ξk,j′ − 1)

∑′

ℓ,ℓ′
(ξk,ℓ − 1)(ξk,ℓ′ − 1)

)

=

( ∑

j=ℓ,j′=ℓ′,j 6=j′

+
∑

j=ℓ′,j′=ℓ,j 6=j′

)
E((ξk,j − 1)2)E((ξk,j′ − 1)2) = 2z(z − 1)σ4

ξ ,

and both sums
∑

j=ℓ,j′=ℓ′,j 6=j′ and
∑

j=ℓ′,j′=ℓ,j 6=j′ have z2 − z = z(z − 1) terms. Further, by

E(Sk(z)) = 0, z ∈ Z+, Markov inequality, and the independence of ξk,j, j ∈ Z+, we have

E(1{|Sk(z)|>nθ}) = P(|Sk(z)− E(Sk(z))| > nθ) 6
Var(Sk(z))

n2θ2
=

1

n2θ2
zσ2

ξ .

Hence

|Bn,k(z)| 6
√

2σ4
ξz

2n−2θ−2zσ2
ξ =

√
2σ3

ξ

θn
z3/2, z ∈ Z+, n, k ∈ N.

Thus, in order to show (2.13), it suffices to prove

n−3

⌊nT ⌋∑

k=1

X
3/2
k−1

P−→ 0 as n → ∞.

By Lyapunov inequality, (E(X
3/2
k−1))

2/3 6 (E(X2
k−1))

1/2, and, using Lemma A.2, we get

E(X
3/2
k−1) 6

(
E(X2

k−1)
)3/4

=
(
O(k2)

)3/4
= O(k3/2) for k ∈ N,

hence

E

(
n−3

⌊nT ⌋∑

k=1

X
3/2
k−1

)
= n−3

⌊nT ⌋∑

k=1

O(k3/2) = O(n−1/2) for n ∈ N.

Consequently, we obtain E
(
n−3

∑⌊nT ⌋
k=1 X

3/2
k−1

)
) → 0 as n → ∞, yielding n−3

∑⌊nT ⌋
k=1 X

3/2
k−1

P−→ 0

as n → ∞, yielding (2.13), as desired. Thus we finished the proof of (2.9).

Step 3/b (checking (2.10)). Using that for all k ∈ N, the random variables
{
ξk,j, εk : j ∈ N

}

are independent of the σ-algebra FX
k−1, by the properties of conditional expectation with

respect to a σ-algebra, we get

E(N2
k1{|εk−mε|>nθ} | FX

k−1) = Gk(Xk−1),

where Gk : Z+ → R is given by

Gk(z) := E(Sk(z)
2
1{|εk−mε|>nθ}), z ∈ Z+,
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and Sk(z) is given in (2.12). Using again the independence of
{
ξk,j, εk : j ∈ N

}
and that

E(ξ1,1 − 1) = 0, we have

Gk(z) = P(|εk −mε| > nθ)
z∑

j=1

E((ξk,j − 1)2), z ∈ Z+,

where, by Markov inequality, P(|εk − mε| > nθ) 6 n−2θ−2
E((εk − mε)

2) = n−2θ−2σ2
ε and

E((ξk,j − 1)2) = σ2
ξ . Hence

Gk(z) 6 n−2θ−2σ2
εσ

2
ξz, z ∈ Z+,

and, in order to show (2.10), it suffices to prove

n−4

⌊nT ⌋∑

k=1

Xk−1
P−→ 0 as n → ∞.

In fact, by Lemma A.2, E
(
n−4

∑⌊nT ⌋
k=1 Xk−1

)
= n−4

∑⌊nT ⌋
k=1 O(k) = O(n−2) for n ∈ N, implying

E
(
n−4

∑⌊nT ⌋
k=1 Xk−1

)
→ 0 as n → ∞, and hence n−4

∑⌊nT ⌋
k=1 Xk−1

P−→ 0 as n → ∞, as

desired.

Step 3/c (checking (2.11)). By the independence of εk and FX
k−1,

1

n2

⌊nT ⌋∑

k=1

E((εk −mε)
2 | FX

k−1) =
1

n2

⌊nT ⌋∑

k=1

E((εk −mε)
2) =

⌊nT ⌋
n2

σ2
ε → 0 as n → ∞,

thus we obtain (2.11).

By Steps 3/a, 3/b and 3/c, we get (2.7), and, by Theorem C.1, we conclude convergence

(2.2).

Step 4 (proof of (1.3)). In order to prove convergence (1.3), we want to apply Lemma B.1

using (2.2). For each n ∈ N, by (2.1), (n−1X⌊nt⌋)t∈R+ = Ψ(n)(M(n)), where the mapping

Ψ(n) : D(R+,R) → D(R+,R) is given by

(Ψ(n)(f))(t) := f

(⌊nt⌋
n

)
+

⌊nt⌋
n

mε

for f ∈ D(R+,R) and t ∈ R+. Indeed, by (2.1), for all n ∈ N and t ∈ R+,

(Ψ(n)(M(n)))(t) = M(n)
⌊nt⌋/n +

⌊nt⌋
n

mε =
1

n
X

⌊n· ⌊nt⌋
n

⌋
− ⌊n · ⌊nt⌋

n
⌋

n
mε +

⌊nt⌋
n

mε =
1

n
X⌊nt⌋.

Further, by (2.4), X D
= Ψ(M), where the mapping Ψ : D(R+,R) → D(R+,R) is given by

(Ψ(f))(t) := f(t) +mεt, f ∈ D(R+,R), t ∈ R+.

Step 4/a (checking measurability of Ψ(n), n ∈ N, and Ψ). We can check the measurability

of the mappings Ψ(n), n ∈ N, and Ψ similarly as in Barczy et al. [3, page 603]. Continuity of
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Ψ follows from the characterization of convergence in D(R+,R), see, e.g., Ethier and Kurtz

[4, Proposition 3.5.3], thus we obtain the measurability of Ψ as well. For each n ∈ N, in

order to prove measurability of Ψ(n), first we localize it. For each n,N ∈ N, consider the

stopped mapping Ψ(n,N) : D(R+,R) → D(R+,R) given by (Ψ(n,N)(f))(t) := (Ψ(n)(f))(t ∧N)

for f ∈ D(R+,R), t ∈ R+. For each f ∈ D(R+,R), T ∈ R++ and N ∈ [T,∞), we have

(Ψ(n,N)(f))(t) = (Ψ(n)(f))(t), t ∈ [0, T ], hence supt∈[0,T ] |(Ψ(n,N)(f))(t) − (Ψ(n)(f))(t)| → 0

as N → ∞, and then Ψ(n,N)(f) → Ψ(n)(f) in D(R+,R) as N → ∞, see, e.g., Jacod and

Shiryaev [12, VI.1.17]. Consequently, it suffices to show measurability of Ψ(n,N) for all n,N ∈
N. We can write Ψ(n,N) = Ψ(n,N,2)◦Ψ(n,N,1), where the mappings Ψ(n,N,1) : D(R+,R) → R

nN+1

and Ψ(n,N,2) : RnN+1 → D(R+,R) are defined by

Ψ(n,N,1)(f) :=

(
f(0), f

(
1

n

)
, f

(
2

n

)
, . . . , f(N)

)
,

(Ψ(n,N,2)(x0, x1, . . . , xnN))(t) := x⌊n(t∧N)⌋ +
⌊n(t ∧N)⌋

n
mε

for f ∈ D(R+,R), t ∈ R+, x0, x1, . . . , xnN ∈ R, n,N ∈ N. Measurability of Ψ(n,N,1)

follows from Ethier and Kurtz [4, Proposition 3.7.1]. Next we show continuity of Ψ(n,N,2).

By Jacod and Shiryaev [12, VI.1.17], it is enough to check that supt∈[0,T ] |(Ψ(n,N,2)(x(k)))(t)−
(Ψ(n,N,2)(x))(t)| → 0 as k → ∞ for all T ∈ R++ whenever x

(k) = (x
(k)
0 , x

(k)
1 , . . . , x

(k)
nN) →

x = (x0, x1, . . . , xnN) as k → ∞ in R
nN+1. This convergence follows from the estimate

sup
t∈[0,T ]

|(Ψ(n,N,2)(x(k)))(t)− (Ψ(n,N,2)(x))(t)| = sup
t∈[0,T ]

|x(k)
⌊n(t∧N)⌋ − x⌊n(t∧N)⌋|

= max
j∈{0,1,...,nN}

|x(k)
j − xj | 6 ‖x(k) − x‖,

where ‖ · ‖ denotes Euclidean norm. We obtain measurability of both Ψ(n,N,1) and Ψ(n,N,2),

hence we conclude measurability of Ψ(n,N).

Step 4/b (checking condition of Lemma B.1). The aim of the following discussion is to

show that the set C := C(R+,R) satisfies C ∈ B(D(R+,R)), P(M ∈ C) = 1, and

Ψ(n)(f (n)) → Ψ(f) in D(R+,R) as n → ∞ if f (n) → f in D(R+,R) as n → ∞ with

f ∈ C, f (n) ∈ D(R+,R), n ∈ N.

First note that C(R+,R) ∈ B(D(R+,R)), see, e.g., Ethier and Kurtz [4, Problem 3.11.25].

In fact, the subset C(R+,R) ⊂ D(R+,R) is closed, since its complement D(R+,R) \C(R+,R)

is open. Indeed, each function f ∈ D(R+,R) \ C(R+,R) is discontinuous at some point

tf ∈ R+, and, by the definition of the metric of D(R+,R), there exists rf ∈ R++ such that

all g ∈ D(R+,R) is discontinuous at the point tf ∈ R+ whenever the distance of g and f

is less than rf . Consequently, the set D(R+,R) \ C(R+,R) is the union of open balls with

center f ∈ D(R+,R) \ C(R+,R) and radius rf .

By the definition of a strong solution (see, e.g., Jacod and Shiryaev [12, Definition 2.24,

Chapter III]), M has continuous sample paths almost surely, so we have P(M ∈ C) = 1.
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Next, we fix a function f ∈ C and a sequence (f (n))n∈N in D(R+,R) with f (n) → f in

D(R+,R) as n → ∞. Then the continuity of f implies f (n) lu−→ f as n → ∞, see, e.g.,

Jacod and Shiryaev [12, VI.1.17] (for the notation
lu−→, see the beginning of Appendix B). By

the definition of Ψ, we have Ψ(f) ∈ C(R+,R). Further, for each n ∈ N, we can write

(Ψ(n)(f (n)))(t) = f (n)

(⌊nt⌋
n

)
+

⌊nt⌋
n

mε, t ∈ R+,

hence we have for all T ∈ R++ and t ∈ [0, T ],

|(Ψ(n)(f (n)))(t)− (Ψ(f))(t)| 6
∣∣∣∣f

(n)

(⌊nt⌋
n

)
− f(t)

∣∣∣∣+
1

n
mε

6

∣∣∣∣f
(n)

(⌊nt⌋
n

)
− f

(⌊nt⌋
n

)∣∣∣∣ +
∣∣∣∣f
(⌊nt⌋

n

)
− f(t)

∣∣∣∣+
1

n
mε

6 sup
t∈[0,T ]

|f (n)(t)− f(t)|+ ωT (f, n
−1) +

1

n
mε,

where ωT (f, ·) is the modulus of continuity of f on [0, T ]. We have ωT (f, n
−1) →

0 as n → ∞ since f is continuous (see, e.g., Jacod and Shiryaev [12, VI.1.6]), and

supt∈[0,T ] |f (n)(t) − f(t)| → 0 as n → ∞, since f (n) lu−→ f as n → ∞. Thus we

conclude Ψ(n)(f (n))
lu−→ Ψ(f) as n → ∞, and hence, since Ψ(f) ∈ C(R+,R), we have

Ψ(n)(f (n)) → Ψ(f) in D(R+,R) as n → ∞, see, e.g., Jacod and Shiryaev [12, VI.1.17].

Step 4/c (application of Lemma B.1). Using Steps 4/a and 4/b, we can apply Lemma B.1

and we obtain (n−1X⌊nt⌋)t∈R+ = Ψ(n)(M(n))
D−→ Ψ(M) as n → ∞, where ((Ψ(M))(t))t∈R+ =

(Mt +mεt)t∈R+

D
= (Xt)t∈R+ (by Itô’s formula, see (2.4)). ✷

In the next remark we compare our proof of Theorem 1.1 with the proof of Theorem 2.1 in

Ispány [8] by pointing out the parts where we made some simplifications in the arguments.

2.1 Remark. Theorem 1.1 is a special case of Theorem 2.1 in Ispány [8] by considering a

single critical Galton–Watson process with immigration and by choosing α = 0 in Definition

1.1 in Ispány [8]. In our proof of Theorem 1.1 we follow the same procedure as in the one of

Theorem 2.1 in Ispány [8], namely, we also use Theorem C.1, and note that equations (15) and

(16) in Ispány [8] correspond to our equations (2.6) and (2.7), respectively. In the course of the

proof of (2.6) we give an explicit expression for
∫ t

0
(M(n)

s + mεs)
+ ds (with the notations of

[8], for
∫ t

0
Ñ (n)

+ (s) ds) and also for n−2
∑⌊nt⌋

k=1 E(M
2
k | FX

k−1) −
∫ t

0
σ2
ξ (M(n)

s +mεs)
+ ds, which

explicit forms are not available in [8], and in this way we think that the proof of (2.6) becomes

more understandable. Further, concerning the proof of (2.6), at some point one needs to check

that n−2 supt∈[0,T ]X⌊nt⌋
P−→ 0 as n → ∞ for each T ∈ R++, and to do so we do not need

to use Lyapunov and Cauchy–Schwarz inequalities compared to the proof of the corresponding

formula on page 29 in Ispány [8] (due to the facts that in our special case, with the notations

of [8], σ2
n = σ2

ε , n ∈ N, and mn = 1, n ∈ N). Finally, we mention that in Ispány [8] it is only

stated that (using the notations and numberings in [8]) the weak convergence in (14) yields
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(nσ2
n)

−1X (n) D−→ X as n → ∞, but not detailed at all (see [8, the top of page 32]). However,

in Step 4 of our proof of Theorem 1.1 we give a detailed exposition of the above mentioned step

in our special case using a version of the continuous mapping theorem due to Kallenberg (see

Appendix B). ✷

Appendices

A Moment estimates for critical Galton-Watson pro-

cesses with immigration

In the proofs we use some facts about the first and second order moments of the sequences

(Xk)k∈Z+ and (Mk)k∈Z+ in the critical case (i.e., when mξ = 1).

A.1 Lemma. Let (Xk)k∈Z+ be a critical Galton-Watson process with immigration such that

E(X2
0 ) < ∞, E(ξ2) < ∞ and E(ε2) < ∞. Then for all k ∈ N we have

E(Xk | FX
k−1) = Xk−1 +mε,(A.1)

E(Xk) = E(Xk−1) +mε = E(X0) +mεk,(A.2)

Var(Xk | FX
k−1) = E(M2

k | FX
k−1) = Var(Mk | FX

k−1) = σ2
ξXk−1 + σ2

ε ,(A.3)

Var(Xk) = Var(Xk−1) + σ2
ξ E(Xk−1) + σ2

ε(A.4)

= mεσ
2
ξ

(k − 1)k

2
+ (σ2

ξ E(X0) + σ2
ε)k +Var(X0),

E(Mk) = 0,(A.5)

E(M2
k ) = σ2

ξ E(Xk−1) + σ2
ε = σ2

ξmε(k − 1) + σ2
ξ E(X0) + σ2

ε ,(A.6)

where we recall mε = E(ε), σ2
ξ = Var(ξ) and σ2

ε = Var(ε).

We note that a version of Lemma A.1 for critical multi-type Galton-Watson processes with

immigration starting from zero can be found in Ispány and Pap [10, Lemma A.2], and for single

type Galton-Watson processes with immigration starting from zero, see also Ispány [8, Lemma

4.1]. In case of X0 = 0, Lemma A.1 is a special case of the above mentioned results due to

Ispány and Pap [10] and Ispány [8], respectively. For completeness, we present a proof.

Proof of Lemma A.1. We already checked (A.1) and (A.2), see (1.2). For all k ∈ N, we

have

Mk = Xk −Xk−1 −mε =

Xk−1∑

j=1

ξk,j + εk −
Xk−1∑

j=1

1−mε =

Xk−1∑

j=1

(ξk,j − 1) + (εk −mε),
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and using the independence of ξk,j, j ∈ N, and εk, and that they are independent of FX
k−1,

it yields that

E(M2
k | FX

k−1)=E

(
Xk−1∑

j=1

Xk−1∑

ℓ=1

(ξk,j − 1)(ξk,ℓ − 1) + 2

Xk−1∑

j=1

(ξk,j − 1)(εk −mε) + (εk −mε)
2
∣∣∣FX

k−1

)

=

Xk−1∑

j=1

E((ξ − 1)2) + E((εk −mε)
2) = σ2

ξXk−1 + σ2
ε ,

implying (A.3).

Now we turn to prove (A.4). By the law of total variance, (A.1) and (A.3), we have

Var(Xk) = E(Var(Xk | FX
k−1)) + Var(E(Xk | FX

k−1)) = E(σ2
ξXk−1 + σ2

ε) + Var(Xk−1 +mε)

= σ2
ξ E(Xk−1) + σ2

ε +Var(Xk−1), k ∈ N.

Hence, using also (A.2), for all k ∈ N, we have

[
E(Xk)

Var(Xk)

]
=

[
1 0

σ2
ξ 1

][
E(Xk−1)

Var(Xk−1)

]
+

[
mε

σ2
ε

]

=

[
1 0

σ2
ξ 1

]k [
E(X0)

Var(X0)

]
+

k−1∑

j=0

[
1 0

σ2
ξ 1

]j [
mε

σ2
ε

]

=

[
1 0

kσ2
ξ 1

][
E(X0)

Var(X0)

]
+

k−1∑

j=0

[
1 0

jσ2
ξ 1

][
mε

σ2
ε

]
.

Consequently,

Var(Xk) = σ2
ξ E(X0)k +Var(X0) +

k−1∑

j=0

(mεσ
2
ξj + σ2

ε ), k ∈ N,

yielding (A.4). Finally, (A.5) and (A.6) follow by (A.1), (A.2) and (A.3). ✷

A.2 Lemma. Under the conditions of Lemma A.1, we have

E(Xk) = O(k), E(X2
k) = O(k2), E(|Mk|) = O(k1/2), E(M2

k ) = O(k), k ∈ N.

Proof. It follows by (A.2), (A.4) and (A.6) together with E(|Mk|) 6
√

E(M2
k ), k ∈ N. ✷

B A version of the continuous mapping theorem

A function f : R+ → R is called càdlàg if it is right continuous with left limits. Let

D(R+,R) and C(R+,R) denote the space of all real-valued càdlàg and continuous functions
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on R+, respectively. Let B(D(R+,R)) denote the Borel σ-algebra on D(R+,R) for the

metric defined in Jacod and Shiryaev [12, Chapter VI, (1.26)] (with this metric D(R+,R)

is a complete and separable metric space and the topology induced by this metric is the so-

called Skorokhod topology). For a function f ∈ D(R+,R) and for a sequence (fn)n∈N

in D(R+,R), we write fn
lu−→ f if (fn)n∈N converges to f locally uniformly, i.e., if

supt∈[0,T ] |fn(t) − f(t)| → 0 as n → ∞ for all T > 0. For real-valued stochastic processes

(Yt)t∈R+ and (Y (n)
t )t∈R+ , n ∈ N, with càdlàg paths we write Y (n) D−→ Y if the distribution

of Y (n) on the space (D(R+,R),B(D(R+,R))) converges weakly to the distribution of Y on

the space (D(R+,R),B(D(R+,R))) as n → ∞. Equality in distribution is denoted by
D
=.

If ξ and ξn, n ∈ N, are random elements with values in a metric space (E, d), then we

denote by ξn
D−→ ξ the weak convergence of the distribution of ξn on the space (E,B(E))

towards the distribution of ξ on the space (E,B(E)) as n → ∞, where B(E) denotes the

Borel σ-algebra on E induced by the given metric d.

The following version of the continuous mapping theorem can be found for example in

Theorem 3.27 of Kallenberg [13].

B.1 Lemma. Let (S, dS) and (T, dT ) be metric spaces and (ξn)n∈N, ξ be random elements

with values in S such that ξn
D−→ ξ as n → ∞. Let f : S → T and fn : S → T , n ∈ N, be

measurable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and limn→∞ dT (fn(sn), f(s)) = 0

if limn→∞ dS(sn, s) = 0 and s ∈ C, sn ∈ S, n ∈ N. Then fn(ξn)
D−→ f(ξ) as n → ∞.

C Convergence of random step processes

We recall a result about convergence of one-dimensional random step processes towards a

diffusion process, see Ispány and Pap [9].

C.1 Theorem. Let β : R+×R → R and γ : R+×R → R be continuous functions. Assume

that uniqueness in the sense of probability law holds for the SDE

(C.1) dUt = β(t,Ut) dt+ γ(t,Ut) dWt, t ∈ R+,

with initial value U0 = u0 for all u0 ∈ R, where (Wt)t∈R+ is an one-dimensional standard

Wiener process. Let (Ut)t∈R+ be a solution of (C.1) with initial value U0 = 0.

For each n ∈ N, let (U
(n)
k )k∈Z+ be a sequence of real-valued random variables adapted to

a filtration (F (n)
k )k∈Z+ (i.e., U

(n)
k is F (n)

k -measurable) such that E((U
(n)
k )2) < ∞ for each

n, k ∈ N. Let

U (n)
t :=

⌊nt⌋∑

k=0

U
(n)
k , t ∈ R+, n ∈ N.

Suppose that U (n)
0 = U

(n)
0

D−→ 0 as n → ∞ and that for each T ∈ R++,
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(i) sup
t∈[0,T ]

∣∣∣∣
⌊nt⌋∑
k=1

E
(
U

(n)
k | F (n)

k−1

)
−
∫ t

0
β(s,U (n)

s )ds

∣∣∣∣
P−→ 0 as n → ∞,

(ii) sup
t∈[0,T ]

∣∣∣∣
⌊nt⌋∑
k=1

Var
(
U

(n)
k | F (n)

k−1

)
−
∫ t

0
(γ(s,U (n)

s ))2ds

∣∣∣∣
P−→ 0 as n → ∞,

(iii)
⌊nT ⌋∑
k=1

E
(
(U

(n)
k )21

{|U
(n)
k

|>θ}

∣∣F (n)
k−1

)
P−→ 0 as n → ∞ for all θ ∈ R++.

Then U (n) D−→ U as n → ∞.
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