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Abstract

In this somewhat didactic note we give a detailed alternative proof of the known result
due to Wei and Winnicki (1989) which states that under second order moment assump-
tions on the offspring and immigration distributions the sequence of appropriately scaled
random step functions formed from a critical Galton-Watson process with immigration
(starting from not necessarily zero) converges weakly towards a squared Bessel process.
The proof of Wei and Winnicki (1989) is based on infinitesimal generators, while we
use limit theorems for random step processes towards a diffusion process due to Ispany
and Pap (2010). This technique was already used in Ispany (2008), where he proved
functional limit theorems for a sequence of some appropriately normalized nearly critical
Galton-Watson processes with immigration starting from zero, where the offspring means
tend to its critical value 1. As a special case of Theorem 2.1 in Ispany (2008) one can
get back the result of Wei and Winnicki (1989) in the case of zero initial value. In the
present note we handle non-zero initial values with the technique used in Ispany (2008),
and further, we simplify some of the arguments in the proof of Theorem 2.1 in Ispany
(2008) as well.

1 Introduction and results

The study of the limit behaviour of Galton-Watson processes has a long tradition and his-
tory, see, e.g., the famous book of Athreya and Ney [2]. A Galton-Watson process with or
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without immigration is called subcritical, critical and supercritical if the mean of its offspring
distribution is less than 1, equal to 1 and greater than 1, respectively (for more details, see
later on). For a sequence of critical Galton-Watson processes without immigration, with the
same offspring distribution having finite second moment and with initial value independent of
the offspring variables such that the initial value of the n'" branching process in question
divided by n converges in distribution as n — oo, Feller [5] proved that the sequence of
appropriately scaled random step functions converges in distribution to a non-negative diffusion
process without drift (for a detailed proof based on infinitesimal generators, see also Ethier and
Kurtz [4, Theorem 9.1.3]). Grimvall [6, Theorem 4.4] proved a fluctuation-type limit theorem
for a sequence of nearly critical Galton-Watson processes without immigration: shifting each
branching process in question by its own (deterministic) initial value, under some Lindeberg-
type condition on the offspring distribution it was shown that the sequence of appropriately
scaled random step functions formed from the sequence of shifted branching processes converges
weakly to a Wiener process with some drift and variance depending on the limiting behaviour
of the offspring mean and variance, respectively. In fact, Grimvall [6, Theorem 4.4] generalized
the corresponding result of Lindvall [I8, Theorem 1] for a sequence of critical Galton-Watson
processes without immigration.

In this somewhat didactic note we will focus on asymptotic behaviour of critical Galton-
Watson processes with immigration. We give a detailed alternative proof of the known result
due to Wei and Winnicki [2I, Theorem 2.1] which states that under second order moment
assumptions on the offspring and immigration distributions the sequence of appropriately scaled
random step functions formed from a critical Galton-Watson process with immigration (starting
from not necessarily zero) converges weakly towards a squared Bessel process, see Theorem
[LIl For historical fidelity, we mention that the convergence of finite-dimensional distributions
of a sequence of Galton-Watson processes with immigration towards a continuous state and
continuous time branching process was already studied by Kawazu and Watanabe [I4] and Aliev
[1]. Wei and Winnicki [2I] used infinitesimal generators in their proof by referring to several
results of Ethier and Kurtz [4], while we will use limit theorems for random step processes
towards a diffusion process due to Ispany and Pap [9]. This technique was already used in
Ispany [8], where he proved functional limit theorems for a sequence of some appropriately
normalized nearly critical Galton-Watson processes with immigration starting from zero, where
the offspring means tend to its critical value 1 under some conditions on the variances of the
offspring and immigration distributions. In the present note we will handle non-zero initial
values with the technique used in Ispany (2008), and further, we can also simplify some of the
arguments in the proof of Theorem 2.1 in Ispany [8] mainly due to the fact that we consider
only a single critical Galton-Watson process with immigration instead of a sequence of nearly
critical ones. In Remark 2.1] one can find a detailed comparison of our proof of Theorem [L1]
and the proof of Theorem 2.1 in Ispany [§]. Remark is devoted to a discussion on the role
of the initial value.

We also remark that, using the technique of infinitesimal generators, Sriram [20, Theorem
3.1], Ispany et al. [IIl Theorem 2.1] and Khusanbaev [I5] proved functional limit theorems



for a sequence of some appropriately normalized nearly critical Galton-Watson processes with
immigration starting from zero. Lebedev [16] proved the result of Sriram [20, Theorem 3.1]
independently as well. Li [I7] provided a set of sufficient conditions for the weak convergence
of a sequence of Galton-Watson processes with immigration to a given continuous state and
continuous time branching process with immigration. Using martingale limit theorems based
on Jacod and Shiryaev [12], Rahimov [19] proved functional limit theorems for a sequence of
critical Galton-Watson processes with generation dependent immigrations starting from zero
such that the means of immigration distributions tend to infinity as the number of generation
goes to infinity.

Let Z,, N, R, R, and R,, denote the set of non-negative integers, positive integers,
real numbers, non-negative real numbers and positive real numbers, respectively. For sequences
(ar)ren and (bp)gen, where by € Ry, k € N, the notation ap = O(b), k € N, means
that there exists a constant C' € R,, such that |ax| < Cby, k& € N. In the proofs we
frequently use that for any v € Ry, we have Y ,_ k7 = O(n"™) for n € N, following from

n n 1 . . L.
Sorco kT <y Harde = t?f < 2;:11 n™ neN. For a function f:R — R, its positive
part will be denoted by f*. Every random variable will be defined on a fixed probability space

(Q, A, P). Convergence in probability is denoted by . For other notations, such as equality

in distribution 2 and convergence in distribution i>, see the beginning of Appendix

First we recall (single-type) Galton-Watson processes with immigration. For each k € Z.,
the number of individuals in the k™ generation is denoted by Xj;. By &.; we denote the
number of the offsprings produced by the j** individual belonging to the (k—1)" generation.
The number of immigrants in the & generation will be denoted by &j. Then we have

Xp—1
(1.1) Xy = Z Ek,j + €k keN,
j=1
where we define 2?21 := 0. Here {XO,&W», e k,j € N} are supposed to be independent

7, -valued random variables. Moreover, {&w kg eN } and {ep : k € N} are supposed
to consist of identically distributed random variables, respectively. For notational convenience,
let & and ¢ be random variables such that & 2 &1 and € L 1.

We suppose that E(X?) < oo, E(£?) < co and E(g?) < co. Introduce the notations
me = E(§), me = E(e), o7 := Var(¢), o2 := Var(e).

For k€ Zy, let F¥ :=o0(Xo,X1,...,Xs). By @), E(Xx|FE,) =meXg_1 +me, k€N,
Consequently, E(Xj) = me¢E(X,_1) +m., k€N, which implies

mk—1

k—1 k .
. E(Xo)mg + m.—= if me # 1,

(12)  E(Xi) = E(Xo)mf +m. > mi = (Xo)me me—l €7 ,  keN
j=0 E(XO) + mEk‘ if me = 1,

Hence the offspring mean m,¢ plays a crucial role in the asymptotic behavior of the sequence
(E(X%))kez, . A Galton-Watson process (Xj)rez, with immigration is referred to respectively
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as subcritical, critical or supercritical if mg <1, me =1 or mg > 1 (see, e.g., Athreya and
Ney [2 V.3]).

We give a detailed alternative proof of the following known result due to Wei and Winnicki
[21, Theorem 2.1] (under an additional second order moment condition on the initial value X,
which is not supposed in [21]).

1.1 Theorem. (Wei and Winnicki [21]) Let (Xj)rez, be a critical Galton- Watson process
with immigration such that E(X?Z) < oo, E(£?) < oo and E(e?) < oo. Then

_ D
(13) (n 1X\_nt])t€R+ — (Xt)te]R+ as n — o9,

where the limit process (X,)icr, s the pathwise unique strong solution of the stochastic dif-
ferential equation (SDE)

(14) dXt = Mg dt"‘ 0’? Xt+ th, te R+,
with initial value Xy =0, where (W,)ier, is a standard Wiener process.

The SDE (I4) has a pathwise unique strong solution (Xt(x))teR . for all initial values
XO(I) —z €R, andif z € R, then X € R, almost surely for all t € R,, since
me,ag € Ry, see, eg., Ikeda and Watanabe [7, Chapter IV, Example 8.2]. The process

(Xt(x))telR . is called a squared Bessel process.

1.1 Remark. (i) Under the conditions of Theorem [[T], we have

D

(77 (X ~E(Xp))) > (Midier,  as n— o0,

teR4

where the limit process (M,)cr, is the pathwise unique strong solution of the SDE

dM, = \/ag(Mt Fmat)tdW, My =0,

where (W})er, is a standard Wiener process. Indeed, by the proof of Theorem [T (see (2.2)),
we have
(n‘l(XWJ — | nt] m€)> 2, (My)ier, as n — oo,

teRy
and, by (A.2),
n_l(XLntJ — E(thtj)) = n_l(XLntJ — Lntjme) —n ! E(Xo), nelN, telR,.
ii) Under the conditions of Theorem [Tl in the special case of o =0, we have P({ =1) =1,
3

and (n_lX\_ntJ>t€R+ 2, (met)ier, as n — oo, since in this case the process (&X})icr, given
by (L4)) takes the form X, =m.t, t € R,. O

The next remark is devoted to a discussion on the role of the initial value Xj.
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1.2 Remark. Wei and Winnicki [21 Theorem 2.1] do not suppose the finiteness of the second
moment of the initial value Xy, in their proof (which is based on infinitesimal generators)
they only use that n !X, converges to 0 as n — oo almost surely, which holds without
any further assumption on Xjy. In their proof, Wei and Winnicki [21] refer to several results
of Ethier and Kurtz [4], such as Theorem 1.3 in Chapter 9 and (implicitly) Theorem 6.5 in
Chapter 1, Theorem 8.2 and Corollary 8.9 in Chapter 4, and one can see that the initial value
comes into play in Theorem 8.2 in Chapter 4 in Ethier and Kurtz [4]. Since we are not experts
in the theory of infinitesimal generators, we can not give further insights into the role of the
initial value in the proof of Theorem 2.1 in Wei and Winnicki [2I]. Next, we explain the role of
the initial value X in our proof of Theorem [[LT] and the second order moment assumption on
it. Note that X, appears in the definition of M.™ (see (2))), and one can also realize that
one has to handle X, in proving n~—? SuPefo,7) X |nt) 50 as n— oo foreach T € Ryt
(see (2.8))). Further, in the course of the proof of Theorem [[I] we need some estimation for
E(X?), k € Z,, for which we need to assume that E(X?) < oo. Such an estimation is
presented in Lemma [A.2] which is based on Lemma [A.T], where explicit formulae are derived for
the (conditional) first two moments of Xy, k& € N, and M, k € N. In fact, the proof of
Lemma [AT] is presented mainly for instructional purposes in order to highlight the role of the
initial value Xj. O

The paper is organized as follows. Section [2] is devoted to a detailed proof of Theorem
L1l and to a comparison with the proof of Theorem 2.1 in Ispany [§]. We close the paper
with three appendices: we recall formulae and estimates for first and second order moments
of a critical Galton-Watson process with immigration (Appendix [Al), we recall a version of the
continuous mapping theorem (Appendix [B]) and a result about convergence of random step
processes towards a diffusion process due to Ispdny and Pap [9] (Appendix [C).

We decided to write this somewhat didactic note, since we wanted to understand clearly
the role of the initial value X, in the proof of Theorem [[.I] and we wanted to present the
usefulness of the limit theorem for random step processes (especially created from martingale
differences) towards a diffusion process due to Ispdny and Pap [9] directly in case of a critical
Galton-Watson process with immigration instead of a specialization of a corresponding result
or proof for more general branching processes.

2 Proof of Theorem [I.1]l and comparison with the proof
of Theorem 2.1 in Ispany [§]
Proof of Theorem [I.1l1 We divide the proof into several steps. First, we prove weak con-

vergence of a sequence of random step processes constructed from the martingale differences
created from (Xj)gez,. Namely, let us introduce the sequence

M, Z:Xk—E(Xk|F]§<_1):Xk_Xk—l_mEa k€N,



of martingale differences with respect to the filtration (F; )gez,, where we used that
E(X, | FX,) = Xp_1 + m., k €N, and recall that m. = E(¢). Consider the random
step processes

|t
n . 1 1 t
(21 M= (Xo - ZMk) =~ Xy — %ma teR,, neN.

n
k=1

We will show that

(2.2) (M)er, — (My)ier,  as n — oo,

where the limit process (M,)icr, is the pathwise unique strong solution of the SDE

(2.3) dM, = \/ag(Mt Fmt)tdW,  teR,,

with initial value Mgy = 0. The proof of (2.2) is based on a result due to Ispdny and Pap
[9] (see also Theorem [C.Il), which is about convergence of random step processes towards a
diffusion process. Using weak convergence of (ME"))teR ., an application of a version of the
continuous mapping theorem (see Lemma [B.)) will yield weak convergence of (n™'X |, )ier,
as n — 0o.

Step 1 (starting steps for the proof of ([22))). In order to prove (22), we want to apply
Theorem [C.Il with U = M, U,in) =n"'M;, k €N, Uén) =n"'X,, ]-",g") =Fr, kel
where n € N (yielding U™ = M®™, n € N, as well), and with coefficient functions
f:Ry xR—=R and v:R; x R — R of the SDE (23) given by

B(t,z) =0, V(t, x) = \Joi(x +met)t, teRy, r eR.

First we check that the SDE (2.3) has a pathwise unique strong solution (ng))teR . for all
initial values M{” = z € R. Observe that if (M{”),cq, is a strong solution of the SDE
[23) with initial value /\/léx) =z € R, then, by Itd’s formula, the process P, := M,Ex) + met,
t € R,, is a strong solution of the SDE

(24) d77t = me dt + 0-2 Pt—l— th, t e R+,

with initial value Py = x. Conversely, if (Pt(p ))teR . is a strong solution of the SDE (Z4) with
initial value Pép) = p € R, then, by Ito’s formula, the process M, = Pt(p) —mgt, t € Ry,
is a strong solution of the SDE (2.3]) with initial value My = p. The SDE ([2.4)) is the same
as (L4). Consequently, as it was explained after Theorem [T, the SDE (2:4]) and hence the
SDE (23)) as well admit a pathwise unique strong solution with arbitrary initial value, and
(M 4+ met)er, =z (X )ter, -

Note that E((U™)?) < co forall n € N and k € Z, since, by Lemma A1, E((U™)?) =
n2E(M?) < 0o, n,k € N, and, by the assumption, E((U{™)?) = n2E(X2) < 00, n € N.
Further, Ué") =n"1X) 250 as n— oo, especially Ué") 2.0 as n— oo
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For conditions (i), (ii) and (iii) of Theorem [C.I], we have to check that for each T € R, ,,

[nt)

1
(2.5) sup —ZE(MH]—",f(_l)—O) 0 as n — 0o,
telo, 7)1 1 i
[nt] n

(2.6) sup |— ZE(ME | FX ) — / ag(./\/lg") +mes)tds| =50  as n — oo,

S| K — 0

1 [nT| .
(2.7) — > E(MPLyagsnoy | Fioy) — 0 as n— oo forall 0 €R ..
k=1

Condition ([ZH) trivially holds, since E(Mj, | FX,) =0, n€N, k€ N.
Step 2 (checking (2.6])). For each s € R, and n € N, we have

1 ns — |ns
M 4 m.s = EX\_nsJ + %me,

thus (M +mos)t = M + m.s, and

t t 1 _
[0 masyas= [ (_XM T wmg)ds
0 0 n n

nt] =1 (k+1)/n 1 _k ¢ 1 ~int
— Z / (—Xk 405 me) ds +/ <_XLntJ + wme) ds
k=0 7k n L

/n n nt|/mn \T n
[nt]—1 [nt]—1
1 1 s=(k+1)/n
= _ X;ﬁ—% Z [—ns2—ks]
n? n 2 s=k/n
k=0 k=0
1 t s=t
+ - <t - m)XWJ + e [—ns2 - Lntjs}
n =[nt]/n

1 Z‘ Xk+nt—LntJXLntJ+% (Q_ [nt)>  [nt)(|nt] —1)>

2 n? n

+% (g <t2 . V:;) — |nt] <t— %))

W i at) et nt))?
> X+ Xne) +

n2

— L
J—

for all t € R, and n € N. By (A3),

1 2| X [nt] , Ugt
ZE(Mk|fk—l): i Ua+n_ZXk—17 te Ry, neN,

n2
k=1 k=1



which yields that
It

1 t
n2 ZE(ME |-7:1§(—1) - / 0§(M§”) + m.s)" ds
k=1 0
nt nt — |nt nt| + (nt — |ntl])?
B L e g LR L) e S

Since for each T € R, .,

nt] _T
sup : <——=0 as n — o9,
tefo,7] N n
t|+(nt—|nt])> T 1
up LnJ+(n2 [nt]) <oty 0 as n — oo,
t€[0,T] 2n 2n 2n

in order to show (2.0)), it suffices to prove that for each 7' € R,

1 1
(2.8) — sup ((nt — [nt]) X |ny) < = sup Xy 50 as n — 00.
n= teo,1) N~ tefo, 1)

For each k£ €N, we have X, = X;_1 + My +m., thus

k
Xk:XO‘I'ZMj_I'kma,

j=1
hence, for each t € R, and n € N, we get

[nt]
Xint) = [ Xy | < X0+Z|M |+ [nt]m

j=1
Consequently, in order to prove (2.8]), it suffices to show

[nt] [nT |
—supZ|M| 2Z:|M\—>0 as n — oo.

t€[0,T

By Lemma [A.2]

[nT | [nT|
( Z|M|> ZO 2y =0(m ) -0  as n— oo,

thus we obtain n 2 ZJLZ? | M;| 50 as n— oo yielding (Z8), and hence (2.0), as desired.

Step 3 (checking (2.1)). In order to prove (2.1), for each k € N, consider the decomposition
of M, into a random sum of independent centered random variables and another centered
random variable, which are independent, namely;,

X1

= . - -1 — e = — Mg
Mk ka + €k Xkl m_Nk—i-(Ek m)

J=1



with

For each n,k € N and # € R,,, we have
Mg <2(Ng+ (e =me)®),  Lgagtsney < Lnglsno/2y + L{jey—mel>n0/2}
yielding
ML 50y < 2NEL{ N 5n0/2) + 2N L, —me|>no/2y + 2(ek — me)?,

and hence ([2.7) will be proved once we show

[nT)

1
(2.9) — Z E(NZ 1wy sn0t | Fiy) =50 as n— oo forall R, .,
[nT| .
(2.10) — Z E(N?L{jep—m.|snoy | Fiey) — 0 as n— oo forall § €R,,,
n
k=1
| o) )
(2.11) — Z E((e —me)? | FE ) — 0 as m — 00.
n
k=1

In what follows let 6 € R, be fixed.

Step 3/a (checking ([29)). Using that the random variables {{;:j € N} are independent
of the o-algebra F;*, forall k € N, by the properties of conditional expectation with respect
to a o-algebra, we get for all n,k € N,

E(N{Lgngisnoy | Fier) = Far(Xi-1),

where [, :Z, — R is given by

Fn,k(z> = E(Sk(z)2:ﬂ-{|5’k(z)\>n€}>v S Z+,

with
(2.12) Z &;—1), z€Z,.

Consider the decomposition F, x(z) = A, k(2) + Bnx(z) with

ZE (€rg = D*)Lgsi(>n0})

=3 (60— D&k = D) Lgsiosnm).



where the sum Z;J, is taken for j, 7' € {1,...,2} with j # j'. Consider the inequalities
k()] = 16ks — 1+ 8L < ey — U +ISUG), 2z €2y,
for je{l,...,z}, where
S =Y (6 =1, €Ly,
where the sum Z;’, is taken for j' € {1,...,2} with j' # j. Using that
Lisiai>noy < Lgjge,—1sn0/2y + Lgi ooy J € {1052}

we have A, (z) < ASZC(Z) + Afzzc(z), where

1
Aizk ZE gkﬁ 1{|§k,j—1\>"9/2})7
(2
A, ZE ((&rd = D' Ly5)opsnty2y)-

In order to prove (2.9), it is enough to show that

[nT) [nT]
HQZA (Xjo1) — 0, HQZA (Xi—1) — 0,
| LT .
(2.13) — > Bop(Xi—1) — 0
k=1

as n — oo. Using that & ;, k,j € N, are identically distributed we have
AS,L(Z) = 2E((&11 — 1)*1gje,,—1/5n/2}) nkeN, ze€Z,,

thus, by Lemma [A22] we get

[nT | [nT|

1
<n2 Z A o (Xk—1 ) = ZE (Xi—1) | E((&1,10 — 1)L, 1 —1y=n0/2})
[nT|
= n2 Z O 51 1= 1) ]1{|§1 1— 1\>n9/2}) ((51,1 - 1)2]1{\51,1—1|>n9/2}) O(l)
k=1

for n € N. Consequently, since E(g%l) < 0o, the dominated convergence theorem implies

E(n2 ZL”TJ A(l »(Xe-1)) = 0 as n — oo, which yields n QZLnTJ A(l p(Xe—1) —5 0 as
n — 00, as desired.
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Further, the independence of §;; —1 and §,’€(z) implies

A () ZE (& — D)P(ISI(2)] > n0/2),  nkeN, zeZ,.

Here E((&; —1)%) = 0Z, and, by E(g,]g(z)) =0 and Markov inequality, we have

P(5L()] > n6/2) = P(5](z) ~ E(S}(2))| > n8/2) < o Var(3](2)) = o E(5]()),

where, using that & ; and &2 are independent,

EGE) =B (X6 - 1) ) =B (X 6 - D Y (6w — 1)
- Z] (& — 1)) + Z PR (YR GYESY)
= (z =1 Var(&a) + (2 = (2 = 2) E((&,1 — V(&2 — 1))
= (z=1Dog+ (z—=1)(z = 2)E(&11 — 1) E(612 — 1) = (2 — 1)0¢ < 207,

where Z;’, and Y, is taken for j' € {1,...,z} with j' #j, and ¢ € {1,...,2} with
¢ #+ j, respectively, and 237,74,7].,#@, is taken for j' ¢ € {1,...,z} with j" # j, ¢' # ¢,
j'# 0. Hence

4
IP’(\S]( )| >nb/2) < g zag, 2€Zy, je{l,...,z},
and consequently
4
(2) 2 4
Ani(2) < —gp? e nkeN, z€eZ,.
Consequently, by Lemma [A.2]
[nT] 4 [nT] 4 [nT]
4o 4o
3 2 _ g 2\ _ -1
5 2o AN ) < s DL BKEY = 1 3 0() = 0(n ™)
k=1 k=1

for n € N, which implies E(n? ST Aij(Xk_l)) — 0 as n — oo, and hence
n=2 A(2 ) (Xj_1) —> 0 as n — oo, as desired.

Now we turn to check ([2I3]). By Cauchy-Schwarz inequality,

| B, (2) (‘Z (kg = D&k — 1)‘ L{isi(2) |>ne}) \/Bnk E(Lysyz)>ne}), 2 € Ly,

where

Bfll,/)ﬁ(z) = E((Z;J,(&j — 1)k — 1))2)-
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Using the independence of &, ;—1 and &, 5 —1 for j # j', and that E(&,;—1) =0, we get
Bnl,)c( ) =2z(z — 1)(72l 20?22, 2 €Ly, mn,keN.
Indeed, for z € Z,,
/
Bgi)f(z) = E(Zjvj,(fk,j = D&y — 1) Ze Z,(sz — 1)(&ker — 1))
(T 4+ T )R- 1 - 1) =25 - o,

J=63'=jF#5"  j=t.j'=Lj#]’

and both sums >,y and Yo, have 22—z = 2(z —1) terms. Further, by
E(Sk(z)) =0, z € Z;, Markov inequality, and the independence of & ;, j € Z;, we have

Var(Sk(z 1
E(L s, o0my) = B(Sk(2) ~ E(Sk(2))| > nf) < VLM _ o

Hence

z€Zy, n,keNlN.

3
| Bp.k(2) \/20' 22n—20- 2,20 = —\/iag 23/2
€ On ’

Thus, in order to show (2I3)), it suffices to prove

[nT|
n_?’ZXZ’ﬁLO as n — oo.
k=1

By Lyapunov inequality, (E(X./))%® < (E(XZ2_,))"/2, and, using Lemma [X2] we get
E(X22) < (B(X2 )" = (0(:*)"* =0(k*?)  for keN,

hence
[nT | [nT|

( _3ZX3/2) _320 (k3/%) = O(n~1/?) for n € N.

Consequently, we obtain E(n™? Sl X}jﬁ)) — 0 as n — oo, yielding n=3 2" x32 _Fy g
as n — oo, yielding (ZI3)), as desired. Thus we finished the proof of (Z.9).

Step 3/b (checking ([2I0)). Using that for all k € N, the random variables {& ;&) : j € N}
are independent of the o-algebra JF7*,, by the properties of conditional expectation with
respect to a o-algebra, we get

E(N3L{je—m. >n0y | Fic1) = Gr(Xe-),
where Gy :7Z, — R is given by

Gk(z) = E(Sk(z>2]]-{\ak—mg\>n6}>v YRS Z+,
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and Si(z) is given in (Z.12). Using again the independence of {g,w-,sk i j € N} and that
E(&1 — 1) =0, we have

Gi(z) =P(ley — me| > n0) > E((&;— 1)), 2 €Ly,

j=1
where, by Markov inequality, P(|lex — m.| > nf) < n 20 2E((ex — m.)?) = n 207202 and
E((&,; —1)%) = 0¢. Hence

Gr(z) < n_29_2a§a§z, 2 €Ly,

and, in order to show (2.I0)), it suffices to prove

[T
n_4ZXk_1i>0 as n — oo.
k=1
In fact, by Lemmal[A2] E(n™* AP O ) =n"* S O(k) = O(n ‘2) for n € N, implying
E(n —sTl X 1) = 0 as n — oo, and hence n ST X, =50 as no— oo, as

desired.

Step 3/c (checking (ZI1])). By the independence of e, and Fj* |,

E((er —m.)? | Fir ) E((er, —m.)?) = 250 — 00,
; (ex — me)® | Fily) Z (ex —m g as n — 00

thus we obtain (2.1T]).

By Steps 3/a, 3/b and 3/c, we get (Z7), and, by Theorem [CI], we conclude convergence
(2.

Step 4 (proof of ([L3))). In order to prove convergence (L3)), we want to apply Lemma [B.]
using ([ZZ). For each n € N, by 1)), (n7'X|u)eer, = V(M™), where the mapping
¥™ : D(R,,R) — D(R,,R) is given by

o =720+ P,

for feD(R.,R) and ¢t € R,. Indeed, by (2T, for all n € N and t € Ry,

[nt]
" " n |nt| 1 [n - == |nt| 1
(W MON)(E) = MG+ 2 me = X — me + e = =Xy

n n

Further, by 24), X 2 W(M), where the mapping V¥ : D(R,,R) — D(R,,R) is given by

(W) = f@)+met,  feDRLR), teR,.

Step 4/a (checking measurability of W™ n € N, and ¥). We can check the measurability
of the mappings ¥, n € N, and ¥ similarly as in Barczy et al. [3, page 603]. Continuity of
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U follows from the characterization of convergence in D(R,,R), see, e.g., Ethier and Kurtz
[4, Proposition 3.5.3], thus we obtain the measurability of W as well. For each n € N, in
order to prove measurability of W™ first we localize it. For each n, N € N, consider the
stopped mapping UV : D(R,,R) — D(R,,R) given by (UM (f))(t) := (™ (f))(t A N)
for feD(Ry,R), t € R,. Foreach feD(R,R), T€R,, and N € [T,00), we have
(TM(H)(E) = (TW())(F), t€[0,T], hence supepq (T (F))(E) — (T ()] — 0
as N — oo, and then WM (f) = UM (f) in D(R4,R) as N — oo, see, e.g., Jacod and
Shiryaev [12, VI.1.17]. Consequently, it suffices to show measurability of W) for all n, N €
N. We can write W) = gN:2) oM = where the mappings W™V:1) : D(R,, R) — R™V+!
and WN2)  RNFL s D(R,,R) are defined by

v ()i (70 (5 )1(2).s)

n(t NN
(WM (2,20, .o 20n)) () = T agean) +'L_£_ﬁ__link

for f € D(R.,R), t € Ry, zo,71,...,7,5y € R, n,N € N. Measurability of w1

follows from Ethier and Kurtz [4, Proposition 3.7.1]. Next we show continuity of W2,

By Jacod and Shiryaev [12] VI.1.17], it is enough to check that sup,c 1y |(W N2 (g R))) (1) —

(UN2D () ()] = 0 as k — oo forall T € Ry, whenever z® = (2P 2™ 28y -
x = (19, 21,...,2oy) as k— oo in R"™T! This convergence follows from the estimate

n n k
sup |(FND (@) () = (N (@) ()] = sup |28, ) — Tieaw)]
t€[0,T] te[0,T

=  max |x(.k) — x| < ||w(k) — x|,

je{o,1,...nN} ' 7
where || -|| denotes Euclidean norm. We obtain measurability of both WMD) and wN.2),

hence we conclude measurability of W(N),

Step 4/b (checking condition of Lemma [B.1]). The aim of the following discussion is to
show that the set C := C(R;,R) satisfies C € B(D(R;,R)), P(M € C) = 1, and
T (fm)y - U(f) in D(Ry,R) as n — oo if f® — f in D(R.,R) as n — oo with
fecC, f™ecbDR,,R), neEN.

First note that C(R,,R) € B(D(R,R)), see, e.g., Ethier and Kurtz [4, Problem 3.11.25].
In fact, the subset C(R,,R) C D(Ry,R) is closed, since its complement D(R,,R)\ C(R,,R)
is open. Indeed, each function f € D(R,,R)\ C(Ry,R) is discontinuous at some point
tr € Ry, and, by the definition of the metric of D(R,,R), there exists r; € Ry, such that
all g € D(R;,R) is discontinuous at the point t; € Ry whenever the distance of ¢ and f
is less than 7;. Consequently, the set D(R;,R)\ C(Ry,R) is the union of open balls with
center f € D(R;,R)\ C(Ry,R) and radius 7.

By the definition of a strong solution (see, e.g., Jacod and Shiryaev [12, Definition 2.24,
Chapter III]), M has continuous sample paths almost surely, so we have P(M € C) = 1.
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Next, we fix a function f € C' and a sequence (f™),cy in D(Ry,R) with f™ — f in
D(R;,R) as n — oo. Then the continuity of f implies f™ LN f as n — oo, see, e.g.,
Jacod and Shiryaev [12], VI.1.17] (for the notation %y see the beginning of Appendix B). By
the definition of ¥, we have U(f) € C(Ry,R). Further, for each n € N, we can write

t t
o = o (L) e,
n

n

hence we have for all T'€ Ry, and ¢ € (0,77,

0 - el < |10 (B - s+ me

()] (2) -]

1
< sup [f() = fO)] +wr(fin™h) + —me,
t€[0,7) n
where wr(f,+) is the modulus of continuity of f on [0,7]. We have wr(f,n™') —
0 as m — oo since f is continuous (see, e.g., Jacod and Shiryaev [12] VI.1.6]), and

SUDye(0,7] lf™ @) — f(t)] — 0 as n — oo, since f LN f as mn — oo. Thus we
conclude WM (M) LN U(f) as n — oo, and hence, since ¥(f) € C(R;,R), we have
(™) 5 W(f) in D(Ry,R) as n — oo, see, e.g., Jacod and Shiryaev [12, VI.1.17].

Step 4/c (application of Lemma [B)). Using Steps 4/a and 4/b, we can apply Lemma [B.]
and we obtain (n7'X |, )ier, = ¥ (M™) N V(M) as n — oo, where ((V(M))(t))ier, =
(M +met)ier, 2 (X)ier, (by Ito’s formula, see ([2:4))). 0

In the next remark we compare our proof of Theorem [T with the proof of Theorem 2.1 in
Ispany [8] by pointing out the parts where we made some simplifications in the arguments.

2.1 Remark. Theorem [[] is a special case of Theorem 2.1 in Ispany [§] by considering a
single critical Galton—Watson process with immigration and by choosing «a = 0 in Definition
1.1 in Ispany [§]. In our proof of Theorem [I.1] we follow the same procedure as in the one of
Theorem 2.1 in Ispany [§], namely, we also use Theorem [C.T] and note that equations (15) and
(16) in Ispany [8] correspond to our equations (2.6]) and (Z7), respectively. In the course of the
proof of ([26]) we give an explicit expression for fot(Mg") +m.s)Tds (with the notations of
B, for [ N (s)ds) and also for n2 V"I E(M2 | FX,) — IN ag(/\/é"’ + m.s)*ds, which
explicit forms are not available in [§], and in this way we think that the proof of ([2.6]) becomes
more understandable. Further, concerning the proof of (2.6]), at some point one needs to check
that n—2 SuPefo,7) X |nt) %50 as n— oo foreach T € R4y, and to do so we do not need
to use Lyapunov and Cauchy—Schwarz inequalities compared to the proof of the corresponding
formula on page 29 in Ispany [8] (due to the facts that in our special case, with the notations
of §], 02 =02, neN, and m, =1, n € N). Finally, we mention that in Ispany [§] it is only
stated that (using the notations and numberings in [8]) the weak convergence in (14) yields
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(no?)~tx ™ Py X as n— oo, but not detailed at all (see [8 the top of page 32]). However,
in Step 4 of our proof of Theorem [L.Ilwe give a detailed exposition of the above mentioned step
in our special case using a version of the continuous mapping theorem due to Kallenberg (see
Appendix [B]). O

Appendices

A Moment estimates for critical (Galton-Watson pro-
cesses with immigration

In the proofs we use some facts about the first and second order moments of the sequences

(Xk)kez, and (My)rez, in the critical case (i.e., when mg =1).

A.1 Lemma. Let (Xi)rez, be a critical Galton-Watson process with immigration such that
E(X3) < oo, E(£?) <oo and E(e?) < co. Then for all k € N we have

(A1) E(Xy | Fity) = Xp_1 + me,
(A.3) Var(X;, | Fiy) = B(M; | Fity) = Var(M, | Fiy) = 07 X1 + 02,
(A.4) Var(Xy) = Var(Xi_1) + 07 E(X3_1) + 07
= mgagw + (02 E(Xo) + 02)k + Var(Xy),
(A.5) E(M},) = 0,
(A.6) E(M) = 0 E(Xk-1) + 07 = ogme(k — 1) + 0 E(Xo) + 02,

where we recall m. = E(e), of = Var(§) and o? = Var(e).

We note that a version of Lemma [A ] for critical multi-type Galton-Watson processes with
immigration starting from zero can be found in Ispany and Pap [10, Lemma A.2], and for single
type Galton-Watson processes with immigration starting from zero, see also Ispany [8, Lemma
4.1]. In case of Xy =0, Lemma [A]is a special case of the above mentioned results due to
Ispany and Pap [10] and Ispany [8], respectively. For completeness, we present a proof.

Proof of Lemma [A 1]l We already checked (AJ)) and ([(A2), see (I2). For all k € N, we

have
Xi—1 Xg-1 Xk-1
My = X — X1 —me = Z fk,j—i‘é‘k— Z 1—m.= Z(gk,j—l)ﬂL(é?k—me)’
j=1 j=1 j=1
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and using the independence of & ;, j € N, and &, and that they are independent of Fi* ,,
it yields that

Xp—1 X1 Xp—1
E(M; | Fiy)= (ZZ&W )(Ee — 1) +QZ§M €k—m€)+(€k—m€)2‘f,§_1>
=1 (=1
= ZE )?) + E((e, — me)?) = 0§ Xj—1 + 07,
j=1

implying (A.3).
Now we turn to prove (A4]). By the law of total variance, (A1) and ([A.3]), we have

Var(Xy) = E(Var(X | Fily)) + Var(E(X, | Fily)) = E(0f X1 + 02) + Var(Xj—y +m.)
—USE(Xk 1)"—0' —|—Var(Xk 1) k € N.

Hence, using also (A.2), for all k € N, we have

EX) | [1 0] [ E(Xe) L |m
Var(X},) o 1] |Var(X;,) o’
C[1oo] [ E(xo) +’f‘1 1 o] [m.
o 1] [Var(Xo)| = |02 1] |o?
1 0] [ Ex — |1 o] [m
- 2 o +Z ) ] [ 2]'
|kog 1] | Var(Xo) =0 ljog 1] |o:
Consequently,
k-1

Var(X;) = 0 B(Xo)k + Var(Xo) + Y _(meo?j+02), k€N,

J=0

yielding (A.4)). Finally, (A.5) and (A.6]) follow by (A1), (A2) and (A.3). O

A.2 Lemma. Under the conditions of Lemmal[A 1, we have

E(Xy) =O(k),  EX7)=0("),  E(M])=0(k"?), EM;)=0(k), keN

Proof. It follows by (A2), (A4) and (AG) together with E(|My|) < \/E(M?), ke N. O

B A version of the continuous mapping theorem

A function f : Ry, — R is called cadlag if it is right continuous with left limits. Let
D(R;,R) and C(R,,R) denote the space of all real-valued cadlag and continuous functions
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on R,, respectively. Let B(D(R;,R)) denote the Borel og-algebra on D(R;,R) for the
metric defined in Jacod and Shiryaev [12, Chapter VI, (1.26)] (with this metric D(R,,R)
is a complete and separable metric space and the topology induced by this metric is the so-
called Skorokhod topology). For a function f € D(Ry,R) and for a sequence (f,)nen
in D(R_,R), we write f, LN fif (fa)nen converges to f locally uniformly, i.e., if
supieior) [fn(t) — f(t)] = 0 as n — oo for all T" > 0. For real-valued stochastic processes
V)ier, and (V™)ier,, n €N, with cadlag paths we write Y™ 25 Y if the distribution
of Y™ on the space (D(R,,R),B(D(R,,R))) converges weakly to the distribution of ) on
the space (D(R.,R),B(D(R.,R))) as n — oco. Equality in distribution is denoted by Z
If &€ and &,, n € N, are random elements with values in a metric space (E,d), then we
denote by &, N ¢ the weak convergence of the distribution of &, on the space (F,B(FE))
towards the distribution of ¢ on the space (E,B(FE)) as n — oo, where B(F) denotes the
Borel o-algebra on FE induced by the given metric d.

The following version of the continuous mapping theorem can be found for example in
Theorem 3.27 of Kallenberg [13].

B.1 Lemma. Let (S,ds) and (T,dr) be metric spaces and (&,)nen, & be random elements

with values in S such that fni)§ as n—oo. Let f:S—T and f,: S =T, neN, be
measurable mappings and C € B(S) such that P(§ € C) =1 and lim, o dr(fn(sn), f(s)) =0

if limy, o0 ds(Spn,s) =0 and s€C, s, €S, neN. Then fn(gn)ﬂf(g) as n — 0o.

C Convergence of random step processes

We recall a result about convergence of one-dimensional random step processes towards a
diffusion process, see Ispany and Pap [9].

C.1 Theorem. Let f: Ry xR —-R and v:Ry xR — R be continuous functions. Assume
that uniqueness in the sense of probability law holds for the SDE

(Cl) dUt :ﬁ(t,ut> dt—i-”y(t,ut) th, t ER+,
with initial value Uy = uy for all uy € R, where (Wi)wer, is an one-dimensional standard

Wiener process. Let (Up)ier, be a solution of (CI) with initial value Uy = 0.

For each n € N, let (U/LE"));‘CGZ+ be a sequence of real-valued random variables adapted to
a filtration (F\ ez, (i.e., U is F-measurable) such that E((U)?) < oo for each
n,k € N. Let
[nt]
Ut(n) ::ZU,E"), teR,, neN.
k=0

Suppose that U™ = U™ P50 as n— oo and that for each T € R,
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(1)

(i)

(iii)

[nt]
sup |3 E(UM | FM)) — I B( B(s,UM)ds| =50 as n — oo,
tel0,T] | k=1

L”” () | 7
sup |3 Var(U [ 7)) — fo(y )2ds| =50 as n— oo,
t€[0,7] | k=1
[nT|

1;1 E((U,g")) (U |50y ‘ 1) 50 as n— oo forall 0€R,,.

Then U™ iﬂzl as n — 00.
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