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 In the human healthcare area, leukocytes are very important blood cells for 

the diagnosis of different pathologies, like leukemia. Recent technology and 

image-processing methods have contributed to the image classification of 

leukocytes. Especially, machine learning paradigms have been used for the 

classification of leukocyte images. However, reported models do not leverage 

the knowledge produced by the classification of leukocytes to solve similar 

tasks. For example, the knowledge can be reused to classify images collected 

with different types of microscopes and image-processing techniques. 

Therefore, we propose a meta-learning methodology for the classification of 

leukocyte images using different color constancy methods involving previous 

knowledge. Our methodology is trained with a specific task at the meta-level, 

and the knowledge produced is used to solve a different task at the base-level. 

For the meta-level, we implemented meta-models based on Xception, and for 

the base-level, we used support vector machine classifiers. Besides, we 

analyzed the Shades of Gray color constancy method commonly used in skin 

lesion diagnosis and now implemented for leukocyte images. Our 

methodology, at the meta-level, achieved 89.28% for precision, 95.65% for 

sensitivity, 91.78% for F1-score, and 94.40% for accuracy. These scores are 

competitive regarding the reported state-of-the-art models, especially the 

sensitivity which is very important for imbalanced datasets, and our meta-

model outperforms previous works by +2.25%. Additionally, for the basophil 

images that were acquired from a chronic myeloid leukemia-positive sample, 

our meta-model obtained 100% for sensitivity. Moreover, we present an 

algorithm that generates a new conditioned output at the base-level obtaining 

highly competitive scores of 91.56% for sensitivity and F1 scores, 95.61% 

for precision, and 96.47% for accuracy. The findings indicate that our 

proposed meta-learning methodology can be applied to other medical image 

classification tasks and achieve high performances by reusing knowledge and 

reducing the training time for new similar tasks. 
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1. INTRODUCTION  

The leukocytes or white blood cells like basophils, eosinophils, lymphocytes, monocytes, and neutrophils, 

are very important cells for human health. In the healthcare area, leukocytes have been used for the diagnosis 

of leukemia [1][2], in the evaluation for COVID-19 severity [3], among other pathologies [4]. Different 

methods [5][6] implemented to acquire medical images through a microscope, cameras, and zooms allow the 
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use of the machine and deep learning paradigms for the detection, segmentation, and classification of 

leukocytes.   

Next, we present past research efforts for the detection and classification of leukocytes, or white blood 

cells, using traditional machine and deep learning paradigms. In the traditional machine learning area, most of 

the models are implemented using the Support Vector Machine (SVM) classifier in combination with other 

methods like; k-means [7]; k-means with morphological operations to the leukocyte’s images [8]; Particle 

Swarm Optimization (PSO) [9]; Optimized Binary Bat algorithm (OBBA) and logistic regression [10]. In the 

deep learning area, most of the models are based on Convolutional Neural Networks [11], [12], [13], and a 

combination of CNN with other methods like; traditional feature extraction methods [14]; and SVM [15]. 

Besides, pretrained models have been implemented using the transfer learning paradigm, e.g., AlexNet with 

GoogleNet, and SVM [16]; or data augmentation techniques with Generative Adversarial Networks (GAN) 

with ResNet [17].  

Other interesting and current methods to detect and classify leukocytes or white blood cell image based 

on machine and deep learning models are presented next. In [18] different machine and deep learning models 

like ResNet18 and DeepFlow are trained and evaluated on stain-free white blood cell images. The use of stain-

free images allows a better generalization of the models because the models do not require a specific staining 

method for the cell images. However, in [18], it was concluded that the evaluated models do not exceed the 

performances of the methods based on handcraft engineering features. Another work, [19], proposes the 

leukocyte image classification using spatial and spectral features with an SVM. The spectral features can be 

used to reuse knowledge to solve similar new tasks, nonetheless, the proposed model requires a microscopic 

hyperspectral imaging technology. The last example is the work presented in [20]. In [20], it is proposed a 

model for the white blood cell leukemia image classification using a VGGNet pre-trained model as a feature 

extractor and a Statistically Enhanced Salp Swarm Algorithm (SESSA). The SESSA algorithm is used to 

remove correlated and noisy features.  

However, one common situation of the previously mentioned works is that the knowledge generated by 

the classification of the leukocytes is not analyzed and/or used to solve similar tasks. For example, suppose 

that a model is trained in a particular leukocyte dataset collected with a specific type of microscope and image-

processing techniques. Then, the training of the model with that dataset produces new knowledge that may be 

used to solve other leukocyte datasets that were acquired with different microscopes or were from different 

distributions. Therefore, in this work, we propose a novel methodology based on the Meta-Learning (MeL) 

paradigm. The MeL paradigm is part of the recent area of Automated Machine Learning (AutoML) [21] and it 

is inspired by cognitive and learning human processes [22], [23] of how humans can learn with little data by 

reusing knowledge previously learned. In the MeL paradigm, two learning processes are considered, one at the 

meta-level and the other at the base-level. The meta-level is considered as a level where the meta-knowledge 

will be produced, and this meta-knowledge can be used at the base-level to solve new similar tasks. In such a 

way that each level of learning has its own model, meta-model and base-model, but the base-model is leveraged 

by the knowledge produced by the meta-model.  

The contributions of our paper are enlisted next. 

• A novel methodology based on the meta-learning paradigm with Xception prior-model at the meta-level 

and with SVM at the base level. The base-model is leveraged by the meta-knowledge produced by 

classifying leukocytes from a meta-task, to solve a new base-task.  

• To approximate the leukocyte images of the different tasks to a same distribution we employed the Shades 

of Gray (SoG) color constancy method [24][25]. SoG has been used in the medical area of skin lesion 

diagnosis [26][27]. However, as far as we know, this method has been not used in methodologies for 

leukocyte’s classification. Therefore, we extended the analysis of SoG for the classification of leukocytes.  

• Besides, we propose a new SoG2 method based on the application of the SoG method twice with different 

parameters to a current image. The proposed SoG2 can be used as an additional tool in the image 

segmentation process. 

• Finally, we present an algorithm that generates a new conditioned output for the SVM used in the base-

level that improves the classification of lymphocytes, monocytes, and neutrophils of the base-task. 

The remainder of this paper is organized as follows. In Section 2 we formalized the MeL paradigm using 

2 strategies, probabilistic and mechanistic. Then, Section 3 details the proposed MeL methodology, the 

datasets, and the color constancy methods employed to evaluate our work. Section 4 shows the results achieved 

by the proposed meta- and base-models and comparison with state-of-the-art works. Finally, in Section 5 we 

present the conclusions. 
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2. FORMALIZATION OF META-LEARNING 

The formalization of the MeL paradigm is restricted to two strategies of MeL: probabilistic or mechanistic 

[28]. The probabilistic strategy helps to formalize the MeL paradigm by considering probability distributions. 

The probability distributions include previously known information. The mechanistic strategy formalizes the 

MeL paradigm considering the implementation of algorithms at the meta-and base-level that allow 

systematically to apply MeL. 

 

2.1. Probabilistic Strategy of Meta-Learning 

To explain the probabilistic strategy of meta-learning, let’s consider first the supervised learning in 

traditional machine learning models. According to [28], in supervised learning a posteriori probability 

𝑝(𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒) is used to optimize the parameters (𝜙𝑏𝑎𝑠𝑒 ∈ 𝛷𝑏𝑎𝑠𝑒) ⊂ 𝛩𝑏𝑎𝑠𝑒  of a given base-model. The 

𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 = {(𝜄1, 𝜆1), … , (𝜄𝐾 , 𝜆𝐾)} is the training base-set with K tuples of K  inputs and K  labels. Thus, the 

optimized parameters of the base-model can be computed by 

 𝜙𝑏𝑎𝑠𝑒
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 ) (1) 

By using the Bayes’ theorem, (1) can be expressed as follows  

 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 ) = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝐿 (𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 |𝜙𝑏𝑎𝑠𝑒) + 𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒) (2) 

where 𝐿(𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 |𝜙𝑏𝑎𝑠𝑒) is the likelihood of 𝐷𝑏𝑎𝑠𝑒

𝑡𝑟  given the model parameters 𝜙𝑏𝑎𝑠𝑒. The optimal parameters 

𝜙𝑏𝑎𝑠𝑒
∗  are found by maximizing 𝐿(𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 |𝜙𝑏𝑎𝑠𝑒). The 𝑙𝑜𝑔 𝐿 (𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 |𝜙𝑏𝑎𝑠𝑒) function is applied to simplify the 

computation of the derivate to obtain the optimized parameters because the log-likelihood is easier to optimize. 

The prior probability distribution 𝑝(𝜙𝑏𝑎𝑠𝑒) can be seen as a regularizer, that is, a regularizer of the weight 

parameter. Hence, (2) can be expressed using the tuples of the input data 𝐷𝑏𝑎𝑠𝑒
𝑡𝑟  

 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 ) = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑏𝑎𝑠𝑒

∑ 𝑙𝑜𝑔 𝐿 (𝑦𝑘|𝑥𝑘 , 𝜙𝑏𝑎𝑠𝑒)

𝑘

+ 𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒) (3) 

Most of the traditional supervised models employ a large amount of labeled tr

baseD . Nevertheless, this is 

not the case in the natural process of learning in humans, who use previous knowledge and little data to learn 

something new. In consequence, as it can be noticed in (3) the performance of the traditional supervised models 

depends on the amount of data of a particular task. In order to improve learning in the base-models, additional 

data can be incorporated in (1), by using meta-learning  

 𝜙𝑏𝑎𝑠𝑒
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 , 𝐷𝑚𝑒𝑡𝑎

𝑡𝑟 ) (4) 

Each meta-set 𝐷𝑚𝑒𝑡𝑎
(𝑗)

∈ 𝐷𝑚𝑒𝑡𝑎
𝑡𝑟  includes the tuples of input-label pairs, 𝐷𝑚𝑒𝑡𝑎

(𝑗)
=

{(𝜄1
(𝑗)

, 𝜆1
(𝑗)

) , … , (𝜄𝐾
(𝑗)

, 𝜆𝐾
(𝑗)

)}, that are used to solve a specific task. Assuming statistic independence base

⫫𝜙𝑚𝑒𝑡𝑎|𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 , where(𝜙𝑚𝑒𝑡𝑎 ∈ 𝛷𝑚𝑒𝑡𝑎) ⊂ 𝛩𝑚𝑒𝑡𝑎 are the parameters of the meta-model, then  

 
𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 , 𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 ) = 𝑙𝑜𝑔 ∫ 𝑝(𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 , 𝜙𝑚𝑒𝑡𝑎)𝑝(𝜙𝑚𝑒𝑡𝑎|𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 )

𝛷𝑚𝑒𝑡𝑎

𝑑𝜙𝑚𝑒𝑡𝑎 

 ≈ 𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 , 𝜙𝑚𝑒𝑡𝑎

∗ ) + 𝑙𝑜𝑔 𝑝 (𝜙𝑚𝑒𝑡𝑎
∗ |𝐷𝑚𝑒𝑡𝑎

𝑡𝑟 ) 

(5) 

Thereby,  

 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 , 𝐷𝑚𝑒𝑡𝑎

𝑡𝑟 ) ≈ 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 , 𝜙𝑚𝑒𝑡𝑎

∗ ) (6) 

Therefore, the meta-learning problem under the probabilistic strategy is reduced to compute 

 𝜙𝑚𝑒𝑡𝑎
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑚𝑒𝑡𝑎

𝑙𝑜𝑔 𝑝 (𝜙𝑚𝑒𝑡𝑎|𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 ) (7) 

 Then, (7) is used in the adaptation stage of the base-model 

 𝜙𝑏𝑎𝑠𝑒
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜙𝑏𝑎𝑠𝑒

𝑙𝑜𝑔 𝑝 (𝜙𝑏𝑎𝑠𝑒|𝐷𝑏𝑎𝑠𝑒
𝑡𝑟 , 𝜙𝑚𝑒𝑡𝑎

∗ ) (8) 

As it can be noticed, the adaptation does not depend anymore on 𝐷𝑚𝑒𝑡𝑎
𝑡𝑟  as in (4). It only depends on 𝐷𝑏𝑎𝑠𝑒

𝑡𝑟  

and the optimized meta-parameters 𝜙𝑚𝑒𝑡𝑎
∗ . 
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2.2. Mechanistic Strategy of Meta-Learning 

To view the meta-learning problem from the mechanistic strategy, (8) is interpreted as 𝜙𝑏𝑎𝑠𝑒
∗ =

𝐴𝑏𝑎𝑠𝑒∼𝜙𝑚𝑒𝑡𝑎
∗ (𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 ). Here, 𝐴𝑏𝑎𝑠𝑒∼𝜙𝑚𝑒𝑡𝑎
∗ (𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 ) is the function in the meta-parameter space 𝜙𝑚𝑒𝑡𝑎 that takes 

𝐷𝑏𝑎𝑠𝑒
𝑡𝑟  as input to obtain the optimized parameters 𝜙𝑏𝑎𝑠𝑒

∗  in the base-domain. 𝐴𝑏𝑎𝑠𝑒∼𝜙𝑚𝑒𝑡𝑎
∗ (𝐷𝑏𝑎𝑠𝑒

𝑡𝑟 ) can be used 

to represent the implementation of the base-algorithm 𝐴𝑏𝑎𝑠𝑒of the base-model. The optimized meta-parameters 

can be obtained by 𝜙𝑚𝑒𝑡𝑎
∗ = 𝐴𝑚𝑒𝑡𝑎∼𝜙𝑚𝑒𝑡𝑎

(𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 ), where 𝐴𝑚𝑒𝑡𝑎∼𝜙𝑚𝑒𝑡𝑎

(𝐷𝑚𝑒𝑡𝑎
𝑡𝑟 ) is the function in the meta-

parameters space 𝜙𝑚𝑒𝑡𝑎 that takes 𝐷𝑚𝑒𝑡𝑎
𝑡𝑟  as input to yield the optimized parameters 𝜙𝑚𝑒𝑡𝑎

∗  in the meta-domain. 

𝐴𝑚𝑒𝑡𝑎∼𝜙𝑚𝑒𝑡𝑎
(𝐷𝑚𝑒𝑡𝑎

𝑡𝑟 ) can be used to represent the implementation of the meta-algorithm 𝐴𝑚𝑒𝑡𝑎 of the meta-

model.  

To conclude this section, we propose a general model based on MeL, Fig. 1. In Fig. 1, the diagram 

includes a meta-model with the meta-data that contains prior optimized and implemented models. The meta-

model is in a meta-domain that can be different from the base-domain of the base-model. To establish this 

difference between the domains, the color of the background of the meta-model is distinct from where the base-

model is trained. This means that when the MeL uses meta-data based on prior-models, a meta-model can be 

generated to be directly applied in a base-model and in other learning problems that can involve Out-Of-

Distribution (OOD) tasks. Furthermore, it can be noticed that the diagram includes two types of lines in the 

contours of the boxes. The continuous lines represent well-defined elements of the model and contain known 

information. Instead, the dashed lines indicate the dataset, either at the base-level or at the meta-level. This is 

because the learning can be supervised, semi-supervised, or reinforcement, and the dataset will be labeled or 

unlabeled. Also, it depends on the amount of data used in MeL, e.g., for few-shot learning [29][30].   

 

 
Fig. 1. Diagram of the general model based on the meta-learning paradigm 

 

3. META-LEARNING METHOD 

In this section, the datasets and the color constancy methods employed are detailed. Also, the learning 

processes at the meta- and base-levels of the proposed meta-learning methodology are explained.  

 

3.1. Datasets and Color Constancy Methods 

In this work, two datasets were used for the leukocytes’ classification: Raabin dataset [31] and UACH  

(Autonomous University of Chihuahua) dataset [32]. The Raabin dataset [31] was acquired by different 

medical laboratories at Iran. It includes images of 5 types of leukocytes. For the neutrophils, eosinophils, 

monocytes, and lymphocytes the images were collected from 72 subjects from 12 to 70 years. The basophil 

images were acquired from a Chronic Myeloid Leukemia (CML) positive sample. The images of the Raabin 

dataset are used to form the meta-task 𝜏𝑚𝑒𝑡𝑎 ∼ 𝐷𝑚𝑒𝑡𝑎. On the other hand, the UACH dataset [32] was collected 

by the Autonomous University of Chihuahua, and it includes images of lymphocytes, monocytes, and 

neutrophils. The images of the UACH dataset are employed to form the base-task 𝜏𝑏𝑎𝑠𝑒 ∼ 𝐷𝑏𝑎𝑠𝑒 . Table 1 

presents the number of samples for each class per task used for the training and validation sets. 

 

Table 1. Samples distributions for the meta- and base-task used in the MeL methodology 

Classes, C 

Raabin, 𝝉𝒎𝒆𝒕𝒂 UACH, 𝝉𝒃𝒂𝒔𝒆 

Training 

samples 

Validation samples 
All samples 

Training  
Validation  

Basophil 212 89 - - - 

Eosinophil 744 322 - - - 

Lymphocyte 2427 1034 148 118-120 28-30 

Monocyte 561 234 14 11-12 2-3 

Neutrophil 6231 2660 91 72-73 18-19 

Total 10175 4339 253 202-204 49-51 
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The collection process of the leukocyte datasets generates that some images and tasks can be considered as 

OOD, due to the staining method employed, the type of microscope, zoom, and camera, among other image 

processing operators used. Therefore, to approximate the images to a same color constancy, we implemented 

the Shades of Gray (SoG) method [24], [33] to all images of 𝜏𝑚𝑒𝑡𝑎 and 𝜏𝑏𝑎𝑠𝑒 .  

Let’s consider 𝐼(𝑥) ∈ ℝ𝑚×𝑛×3 as an RGB image of 𝑚 × 𝑛 pixels, where 𝑥 = (𝑥, 𝑦) indicates the position 

of each pixel. Before applying the SoG color constancy method, we resized all the images to 

224 × 224 × 3 and changed the pixels values 𝐼(𝑥) ≤ 25 for values of 255, making them white. This step was 

performed because some images have black regions, e.g., black pixels corresponding to the microscope 

contour. Then, a gamma correction is applied for each channel 𝑐ℎ = {𝑅, 𝐺, 𝐵} of 𝐼(𝑥) by, 

 𝐼𝑐ℎ(𝑥) = 255 × (
𝐼𝑐ℎ(𝑥)

255
)

1
𝛾

 (9) 

where 𝛾 represents the correction factor for 𝐼𝑐ℎ(𝑥). The standard value of gamma is 𝛾 = 2.2, [25]. Next, the 

SoG color constancy for each channel is obtained by, 

 𝐼𝑐ℎ
𝑆𝑜𝐺(𝑥) =

1

𝜅𝑒𝑐ℎ

𝐼𝑐ℎ (𝑥) (10) 

In (10), 𝑒𝑐ℎ ∈ 𝑒 is an illuminant component that multiplied by the constant 𝜅 simulates that the pixels 

values of 𝐼(𝑥) were obtained under a certain light source. For each channel of 𝐼𝑐ℎ(𝑥), 𝜅𝑒𝑐ℎ is computed using 

the Minkowski norm,  

 (
∫ (𝐼𝑐ℎ(𝑥))

𝜌

𝑑𝑥

∫ 𝑑𝑥
)

1
𝜌

= 𝜅𝑒𝑐ℎ (11) 

We used 𝜌 = 6 for the Minkowski norm in (11). Then, the constant 𝜅 for the normalization of 𝑒 is 

computed using the Euclidean distance, 

 𝜅 = [∑(𝑛𝑜𝑟𝑚𝑐ℎ)2

𝑐ℎ

]

1
2

= √(𝑛𝑜𝑟𝑚𝑅)2 + (𝑛𝑜𝑟𝑚𝐺)2 + (𝑛𝑜𝑟𝑚𝐵)2 (12) 

According to [25], a perfect white light would be when 𝑛𝑜𝑟𝑚𝑐ℎ = 1 with 𝜅 = √3. However, in this paper 

we experimented with different values of 𝜅 and 𝛾 to implement the proposed MeL methodology for the 

classification of the leukocyte’s images. For 𝜏𝑚𝑒𝑡𝑎, the proposed values are; 𝛾 = 2.2, 𝜅 = 3.0, that are the 

standard values used in the literature; 𝛾 = 2.2, 𝜅 = 2.0; and 𝛾 = 1.0, 𝜅 = 1.0. Besides, we propose a semi- 

segmentation method based on applying 2 times the SoG color constancy method, i.e., we performed SoG 

using the original image 𝐼(𝑥) with 𝛾1 = 2.2, 𝜅1 = 2.0, and then, we used the resulted image to perform SoG 

for the second time with 𝛾2 = 0.2, 𝜅2 = 0.1. We name this method as SoG2. Similarly, for 𝜏𝑏𝑎𝑠𝑒 , we employed 

𝛾 = 2.2, 𝜅 = 3.0, 𝛾 = 2.2, 𝜅 = 2.0, 𝛾 = 1.0, 𝜅 = 1.0, and for SoG2 𝛾1 = 2.2, 𝜅1 = 2.0 and 𝛾2 = 0.2, 𝜅2 = 2.3. 

Fig. 2 shows some images obtained with the proposed values of   and   using one sample image per class 

of the leukocyte datasets for 𝜏𝑚𝑒𝑡𝑎 and 𝜏𝑏𝑎𝑠𝑒 . As can be noticed in Fig. 2, the images obtained with SoG with 

𝛾 = 2.2, 𝜅 = 3.0 present a background color with shades of gray (as the name of the method). Instead, using 

the other proposed 𝛾 and 𝜅 values, the background is whiter, and even the color tone of some elements, like 

platelets and red blood cells, is diminished. Furthermore, with SoG2 the nucleus of the leukocyte cells is 

practically segmented, especially for the images of 𝜏𝑚𝑒𝑡𝑎. 

In the next sections, each set of images of the Raabin and UACH dataset are used for the meta-training 

of meta-models in 𝜏𝑚𝑒𝑡𝑎, and for the base-learning in 𝜏𝑏𝑎𝑠𝑒 . 

 

3.2. Meta-Models for Meta-Learning  

The first process of learning in the proposed MeL methodology consists of the meta-training of meta-

models. In this work, we define a meta-model as a model trained at meta-level to produce knowledge that will 

be used to solve a new task. That is, to solve the base-task τbase that includes little data, the base-learning 

leverage of the meta-knowledge produced by meta-training meta-models with 𝜏𝑚𝑒𝑡𝑎. 
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a) Images for meta-task using the Raabin  

dataset. 

b) Images for base-task using the UACH 

dataset.  

Fig. 2. Images obtained using different values of 𝛾 and 𝜅 for the Shades of Gray color constancy method 

 

We propose 5 meta-models, all with the same architecture, but each one meta-trained with different color 

constancy distributions of 𝜏𝑚𝑒𝑡𝑎 (Section 3.1). The architecture of each meta-model includes a data 

augmentation layer at the input, that randomly flip the input image horizontally or vertically, randomly translate 

it by ±10% and/or randomly rotate it in range of [-72,72] degrees. The output of the data augmentation layer is 

connected to a prior-model architecture. In this case, we employed Xception [34], [35] as prior-model, 𝜓𝑋𝑐𝑒 . 

Xception was trained and optimized for the ImageNet dataset, and we employed the pre-trained architecture 

without including the last pretrained classification layer. Besides, for the meta-training, most of the parameters 

of 𝜓𝑋𝑐𝑒  are frozen 𝜃𝑓𝑧𝑛, i.e., they are not adapted in the meta-training. Only the parameters 𝜃𝑛𝑓𝑧𝑛 of 𝜓𝑋𝑐𝑒  that 

correspond from the last convolutional layer to the last layer of 𝜓𝑋𝑐𝑒  are adapted. The last layer of 𝜓𝑋𝑐𝑒  is 

connected to an average pooling layer that extracts feature vectors. Then, the feature vectors are connected to 

a dropout layer and next to a classification layer that includes 5 neurons, one per leukocyte class, with a softmax 

activation function. The softmax functions of the meta-models generates probability distributions 𝑝𝑗
𝑚𝑒𝑡ℎ𝑜𝑑 , for 

each color constancy method employed, method = {original, γ2.2_κ3.0, γ2.2_κ2.0, γ1.0_κ1.0, SoG2}. Then, 

the output class is 𝐶𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑝𝑗
𝑚𝑒𝑡ℎ𝑜𝑑 ,  j =1, …, 5. Fig. 3 shows the complete architecture of each 

meta-model used in the meta-training of 𝜏𝑚𝑒𝑡𝑎.  

In addition to the meta-models presented in Fig. 3, we implemented a meta-model based on Ensemble 

Learning (EL). The meta-model based on ensemble learning, involving the SoG method, uses the generated 

probabilities distributions 𝑝𝑗
𝑚𝑒𝑡ℎ𝑜𝑑 of all the meta-trained meta-models to produce a new distribution, 𝑑𝑗

𝐸𝐿−𝑆𝑜𝐺 , 

for improving the leukocyte classification accuracy of 𝜏𝑚𝑒𝑡𝑎 of the meta-models, by, 

 𝑑𝑗
𝐸𝐿−𝑆𝑜𝐺 = ∑ 𝑤𝑚𝑒𝑡ℎ𝑜𝑑𝑝𝑗

𝑚𝑒𝑡ℎ𝑜𝑑

𝛹

  ;   𝐶𝐸𝐿−𝑆𝑜𝐺 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑑𝑗 (13) 

To obtain the weights 𝑤𝑚𝑒𝑡ℎ𝑜𝑑 , we implemented a search space with the combinations of weights from 

0.0 to 1.0 increasing 0.1 by 0.1 the value of each weight. Then, we selected the meta-model with the weights 

that maximized the validation accuracy.  

In the next section, all the meta-trained meta-models based on 𝜓𝑋𝑐𝑒  are used to solve 𝜏𝑏𝑎𝑠𝑒 . 

 

3.3. Base-Models for Base-Learning 

The second learning process in the proposed MeL methodology consists of the base-training or adaptation 

of the meta-knowledge generated by the meta-models into the base-models to solve a new base-task 𝜏𝑏𝑎𝑠𝑒 . 
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Fig. 3. Meta-models used in the meta-training for the meta-task 

 

The base-models implemented in this paper for the classification of the images of the new base-task 𝜏𝑏𝑎𝑠𝑒   

are shown in Fig. 4. These base-models use the meta-models as feature extractors and all the optimized meta-

parameters of the meta-models are frozen parameters 𝜃𝑓𝑧𝑛
∗ , i.e., these parameters are not adapted. Each base-

model has a corresponding meta-model for each type of image. For instance, for the images of 𝜏𝑏𝑎𝑠𝑒  with the 

original format, the base-model uses the meta-model that was meta-trained using also images with the original 

format. Similarly, for the images obtained with the SoG methods, each base-model has its corresponding meta-

model. The next step in the base-models for the classification of the images of 𝜏𝑏𝑎𝑠𝑒  is the normalization of the 

extracted features using L2. Then, we employed UMAP [36] as a dimensionality reduction method of the 

normalized features. Finally, Support Vector Machines (SVM) are trained with 80% of the UMAP features and 

validated with the remain 20%, using cross-validation with 5 folders.  

Similar to the ensemble learning meta-model implemented at the meta-level, we developed a base-model 

based on an algorithm to improve the performance of the leukocyte classification for 𝜏𝑏𝑎𝑠𝑒  at the base-level 

using the base-models of Fig. 4. Given the 𝑖-th image, the proposed Algorithm 1 compute a new conditioned 

output 𝑂𝑖
𝑛𝑒𝑤  using all outputs 𝑂𝑖

𝑚𝑒𝑡ℎ𝑜𝑑 of the 𝑆𝑉𝑀𝑚𝑒𝑡ℎ𝑜𝑑 , where 𝑂𝑖
𝑚𝑒𝑡ℎ𝑜𝑑 = {0,1,2}, 0 for lymphocytes, 1 for 

monocytes, and 2 for neutrophils. 

 

Algorithm 1 Conditioned Output (CO) for the leukocyte classification for the UACH base  

Require: 
methodO  for all methods, method = {original, γ2.2_κ3.0, γ2.2_κ2.0, γ1.0_κ1.0, SoG2} 

1: for _i num samples  do 

2:    compute 
1 iff 0

0 otherwise

method

method i

i

O


 =
= 


  

      
 

3:    compute 
1 iff 1

0 otherwise

method

method i

i

O


 =
= 


  

      
 

4:    compute 
1 iff 2

0 otherwise

method

method i

i

O


 =
= 


  

      
 

5:    if 
method method method method

i i i imethod method method method
   = =     OR    do 

6:       1new

iO   

7:       continue with the next sample i 

8:    if 
method method

i imethod method
 =   do 

9:       2new

iO   

10:       continue with the next sample i 

  

11: 
   

22.2 _ 3.0 2.2 _ 2.0 1.0 _ 1.0, , , ,ne oriw

i i i

ginal

i

G

i i

SoO O O O O O      
 

mode  
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Fig. 4. Base-models used in the base-training for the base-task 

 

As can be noticed in Algorithm 1, we applied a hierarchy criterion if it were the case of a tie between the 

classification outputs of the SVMs. That is, we assign class 1 to the new output 𝑂𝑖
𝑛𝑒𝑤  if 2 SVMs label the input 

i as 1 or monocytes, and the other 2 SVMs label the same input either as 0 or 2. It was done to give more 

attention to this class because only 5.53% of the total samples are monocytes in the UACH dataset. On the 

other hand, if it were the case that 2 SVMs classify the input image as 0, and the other 2 SVMs classify the 

input image as 2, then we assign 2 to the 𝑂𝑖
𝑛𝑒𝑤  because 35.97% of the samples are neutrophils.  

 

4. RESULTS AND DISCUSSION  

The results of our MeL methodology are addressed in 3 sections: results of the meta-training of the Raabin 

leukocytes meta-task at the meta-level; results of the base-learning adaptation for the solution of the UACH 

leukocytes base-task at the base-level; and results of the propose MeL methodology in comparison with state-

of-the-art models.  

 

4.1. Results of the Meta-Learning of the Raabin Leukocytes Meta-Task 

The meta-models MMmethod based on Xception prior-model for each color constancy method (Section 3.2) 

were meta-trained for 40 epochs with Adam optimizer. The first 20 epochs with an initial learning rate of 0.001 

that was decreasing by 0.1 every 5 epochs. After the first 20 epochs, the best meta-model is meta-trained for 

20 epochs more with a learning rate of 1 × 10−7.  

On the other hand, the meta-models based on ensemble learning MMEL-SoG were obtained by weighting 

the probability distributions of MMmethod. The main meta-model based on EL was obtained by weighting all the 

probability distributions 𝑑𝐸𝐿−𝑆𝑜𝐺 = 0.2𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 0.0𝑝𝛾2.2_𝜅3.0 + 0.7𝑝𝛾2.2_𝜅2.0 + 0.4𝑝𝛾1.0_𝜅1.0 + 0.9𝑝𝑆𝑜𝐺2
. 

To observe if the SoG2 method helped to improve the leukocyte classification, we also generated other 3 

versions of meta-models based on EL. In the version 1, v1, we removed the MMSoG
2 from the ensemble 

obtaining 𝑑𝑣1
𝐸𝐿−𝑆𝑜𝐺 = 0.8𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 0.7𝑝𝛾2.2_𝜅3.0 + 0.3𝑝𝛾2.2_𝜅2.0 + 1.0𝑝𝛾1.0_𝜅1.0. In the v2 we removed the 

MMoriginal with the original images, and we obtained 𝑑𝑣2
𝐸𝐿−𝑆𝑜𝐺 = 0.0𝑝𝛾2.2_𝜅3.0 + 0.7𝑝𝛾2.2_𝜅2.0 + 0.2𝑝𝛾1.0_𝜅1.0 +

0.7𝑝𝑆𝑜𝐺2
. We noticed in the v2 that the MMγ2.2_κ3.0 that uses the traditional values of γ and κ was weighted with 

0.0, so, we removed it to produce v3 of EL, obtaining 𝑑𝑣3
𝐸𝐿−𝑆𝑜𝐺 = 0.9𝑝𝛾2.2_𝜅2.0 + 0.7𝑝𝑆𝑜𝐺2

. The performances 

achieved with the validation set by all the meta-models are presented in Table 2. Besides, the confusion 

matrices of the meta-models MMmethod and of the MMEL-SoG are presented in Fig. 5.  

The best performances in Table 2 were obtained by MMEL-SoG with a precision of 0.8928, sensitivity of 

0.9565, F1-score of 0.9178, and accuracy of 0.9440. However, it is important to notice that the EL with two 

models: MMSoG
2 in combination with MMγ2.2_κ2.0, achieved better sensitivity, F1-score, and accuracy than the 

MMEL-SoG-v1 that is composed by 4 meta-models without including the MMSoG
2. In consequence, our SoG2 

improves the leukocyte classification for the 𝜏𝑚𝑒𝑡𝑎. 
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Table 2. Performances achieved by the meta-models used in the MeL methodology 
Meta-models based on the 

color constancy method 
Precision Sensitivity F1-score Accuracy 

MMoriginal 0.8619 0.9340 0.8881 0.9186 

MMγ2.2_κ3.0 0.8594 0.9425 0.8901 0.9186 

MMγ2.2_κ2.0 0.8581 0.9411 0.8896 0.9237 

MMγ1.0_κ1.0 0.8589 0.9407 0.8904 0.9228 

MMSoG
2 0.8159 0.9034 0.8459 0.8958 

MMEL-SoG-v1 0.8814 0.9477 0.9068 0.9343 

MMEL-SoG-v3 0.8797 0.9530 0.9085 0.9380 

MMEL-SoG-v2 0.8869 0.9550 0.9138 0.9417 

MMEL-SoG 0.8928 0.9565 0.9178 0.9440 

 
   

a) Confusion matrix of MMoriginal
  b) Confusion matrix of MMγ2.2_κ3.0 c) Confusion matrix of MMγ2.2_κ2.0 

   

d) Confusion matrix of MMγ1.0_κ1.0 e) Confusion matrix of MMSoG
2 f) Confusion matrix of MMEL-SoG 

Fig. 5. Confusion matrices obtained with the meta-models 

 

To conclude the results for the meta-learning of 𝜏𝑚𝑒𝑡𝑎, Table 3 presents the precision, sensitivity, and F1-

score for each class, obtained with the MMEL-SoG. It can be seen in Table 3 that our MMEL-SoG classify perfectly 

the basophils, and the most difficult class for our meta-model are the eosinophils.  

 

Table 3. Performances achieved by the meta-models MMEL-SoG for class of leukocyte 
Class of leukocyte Precision Sensitivity F1-score 

Basophil 0.9780 1.0000 0.9889 

Eosinophil 0.6467 0.9720 0.7767 

Lymphocyte 0.9747 0.9681 0.9714 

Monocyte 0.8694 0.9103 0.8894 

Neutrophil 0.9952 0.9323 0.9627 

 

4.2. Results of the Base-Learning of the UACH Leukocytes Base-Task 

The average results of the cross-validation with 5 folders for the leukocyte classification base-task base  

with the UACH dataset using the base-models BMmethod and the base-model based on the proposed algorithm 

BMCO are shown in Table 4. Besides, the confusion matrices for all base-models are presented in Fig. 6. 

From the base-models BMmethod, the BMSoG
2 achieved the best performances, 0.8753 ± 0.0544, 0.8704 ± 

0.0532, 0.8704 ± 0.0380, 0.9330 ± 0.0263, on precision, sensitivity, F1-score, and accuracy, respectively. 

However, the proposed base-model BMCO outperforms all the methods shown in Table 4 achieving 

performances above 90%, especially in accuracy with 96.47%.  
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Table 4. Performances achieved by the base-models used in the MeL methodology 
Meta-models based on the 

color constancy method 
Precision Sensitivity F1-score Accuracy 

BMoriginal 0.8016 ± 0.1079 0.8036 ± 0.0811 0.8036 ± 0.0921 0.9052 ± 0.0545 

BMγ2.2_κ3.0 0.7847 ± 0.0560 0.8330 ± 0.0541 0.8330 ± 0.0510 0.8933 ± 0.0317 

BMγ2.2_κ2.0 0.7800 ± 0.0407 0.8260 ± 0.0591 0.8260 ± 0.0436 0.8971 ± 0.0267 

BMγ1.0_κ1.0 0.7846 ± 0.0964 0.8514 ± 0.0893 0.8514 ± 0.0755 0.8816 ± 0.0408 

BMSoG
2 0.8753 ± 0.0544 0.8704 ± 0.0532 0.8704 ± 0.0380 0.9330 ± 0.0263 

BMCO 0.9561 ± 0.0550 0.9156 ± 0.0657 0.9156 ± 0.0565 0.9647 ± 0.0260 

 
   

a) Confusion matrix of BMoriginal
  b) Confusion matrix of BMγ2.2_κ3.0 c) Confusion matrix of BMγ2.2_κ2.0 

   

d) Confusion matrix of BMγ1.0_κ1.0 e) Confusion matrix of BMSoG
2 f) Confusion matrix of BMCO 

Fig. 6. Confusion matrices obtained with the base-models  

 

4.3. Comparison of Our MeL Methodology with State-Of-The-Art Models 

In this section, we compared our MeL methodology with state-of-the-art models, Table 5, using the 

average of precision, sensitivity, F1-score, and accuracy metrics regarding the 𝜏𝑚𝑒𝑡𝑎 and 𝜏𝑏𝑎𝑠𝑒 . For the 

comparison, we employed our meta-model MMEL-SoG based on ensemble learning and SoG color constancy 

method for the Raabin dataset, and our base-model BMCO with the conditioned output for the UACH dataset. 

In Table 5, the model DRFA-Net [37] achieved the best mean scores for precision, F1-score, and accuracy. 

However, our MMEL-SoG outperforms all models regarding the mean sensitivity metric, and its mean scores in 

precision, F1, and accuracy are also competitive. The sensitivity metric is crucial for imbalanced datasets 

because it is used to assess the true positive rates and our MeL methodology takes into consideration the classes 

with fewer samples. That is, our MMEL-SoG achieved high sensitivity scores for all classes with an average 

sensitivity of 95.65%, meanwhile, other models are biased to the classes with a higher number of samples for 

a maximum average sensitivity score of 93.40%. To deepen this analysis of the Raabin dataset, we compared 

the performances by each class of leukocyte of the top-3 models of Table 5 concerning the accuracy scores, 

Shape and Color features + SVM [38], DRFA-Net [37], and our proposed MMEL-SoG, in Table 6. 

In Table 6, our MMEL-SoG outperforms all presented state-of-the-art models in terms of sensitivity for 4 of 

the 5 classes (except in neutrophils). For basophils and monocytes, our model achieved better performances in 

all metrics. The basophils and monocytes are the classes with fewer samples in the validation set of Raabin, 89 

for Basophils and 234 for monocytes of 4339 samples in total. It means that the samples of basophils are 2.05% 

of the validation data, and monocytes are 5.39%. For imbalanced datasets, like this case, the sensitivity score 

is very important and our MMEL-SoG takes into consideration the classes with fewer samples, excelling in the 

sensitivity metric of other state-of-the-art presented models. Furthermore, as it was said in Section 3.1, the 

basophil images were acquired from a Chronic Myeloid Leukemia positive sample, giving greater importance 

to this particular class, and our model obtained 100% of the sensitivity.  
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Table 5. Comparison of our meta-model MMEL-SoG for the Raabin dataset and our BMCO for the UACH 

dataset with other state-of-the-art models using the average of Precision (P), Sensitivity (S), F1-score, and 

Accuracy (ACC) for all leukocyte classes 

Model Dataset P (%) S (%) F1 (%) ACC (%) 

CNN-RNN [39]* 

Raabin 

Test A 

86.56 85.97 86.26 87.34 

FusedCNN [40]* 87.98 85.37 86.66 90.68 

NucSegNet [41]* 89.65 90.71 90.18 93.08 

WBCaps [42]* 88.73 89.76 89.24 92.74 

CNNDC [43]* 89.56 90.25 89.90 93.41 

Shape and Color features + SVM 

[38] 
89.79 92.76 91.04 94.65 

DRFA-Net [37] 90.43 93.40 91.89 95.17 

Our MMEL-SoG 89.28 95.65 91.78 94.40 

Handcraft features + inferences [32] 

UACH 

61.06 68.52 59.00 68.63 

Our BMCO 
0.9561±0.055

0 

0.9156±0.065

7 

0.9156±0.056

5 

0.9647±0.026

0 
                                                                                                                                             * Results reported in [37] 

 

Table 6. Comparison of our meta-model MMEL-SoG with other state-of-the-art models using Precision (P), 

Sensitivity (S), F1-score, and Accuracy (ACC) for each leukocyte class 

Model / class 

Basophil Eosinophil Lymphocyte Monocyte Neutrophil 

P 

(%) 
S 

(%) 
F1 

(%) 
P 

(%) 
S 

(%) 
F1 

(%) 
P 

(%) 
S 

(%) 
F1 

(%) 
P 

(%) 
S 

(%) 
F1 

(%) 
P 

(%) 
S 

(%) 
F1 

(%) 

Shape-Color features + 

SVM [38] 
96.59 95.51 96.05 72.24 91.30 80.66 97.23 95.07 96.14 84.87 86.32 85.59 98.00 95.60 96.78 

DRFA-Net [37] 96.85 95.83 96.34 73.66 92.03 81.83 97.69 96.21 96.94 85.62 87.09 86.35 98.32 95.86 97.07 

MMEL-SoG 97.80 100 98.89 64.67 97.20 77.67 97.47 96.81 97.14 86.94 91.03 88.94 99.52 93.23 96.27 

 

On the other hand, regarding the results in the UACH dataset in Table 5, it can be seen that leveraging 

the meta-knowledge acquired when solving the meta-task helped our BMCO to improve significantly in 

comparison with the work presented in [32], which extracts features of the leukocytes manually. Besides, the 

precision, sensitivity, F1, and accuracy scores are in the range of the scores reported in other datasets of 

leukocytes, like Raabin. 

As future work, our MeL methodology can be implemented in other medical areas where the data is 

limited and the new task can be benefited from the knowledge generated at the meta-learning, for example, for 

image classification of brain tumors [44], skin lesions [45], COVID-19 chest X-ray [46], among other medical 

images [47]. 

 

5. CONCLUSION   

In this work, we proposed a meta-learning methodology for the classification of leukocytes by 

implementing two learning processes. The first learning process is at the meta-level and consisted in the meta-

training of meta-models to solve a meta-task formed with the leukocyte’s images of the Raabin dataset. The 

proposed meta-models are based on the Xception prior-model and are meta-trained using images with different 

color constancy methods. For the color constancies, we implemented the Shades of Gray method that has been 

used with images for skin diagnosis. However, we proposed different parameters for the SoG method for 

leukocyte image classification. Furthermore, we propose SoG2, that is a method based on the implementation 

of SoG twice and with different parameters, that can be used as a tool in the image segmentation processes. 

The performances obtained for the meta-learning are competitive regarding the state-of-the-art models, 

especially for the sensitivity metric, which is very important for imbalanced datasets, achieving 95.65%, 

+2.25% better than the best sensitivity score of the previous reported works. In addition, for the basophil images 

that were acquired from a chronic myeloid leukemia positive sample, our MMEL-SoG obtained 100% for 

sensitivity. 

On the other hand, the second learning process of our meta-learning methodology is at the base-level. In 

this case the base-models leveraged the knowledge produced by solving the meta-task to solve a new base-

task, formed with leukocyte images of the UACH dataset. The base-models are adapted using feature vectors 

produced by the meta-models. Then, the feature vectors are normalized with L2 and their dimension are reduced 

with UMAP. The outputs of the UMAP are classified with SVM. It is important to notice that we reused the 

knowledge produced at the meta-level to automatically extract features of a new dataset of leucocytes. The 

performances achieved at the base-level are competitive with other datasets evaluated in the state-of-the-art 
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with values around 91% for sensitivity and F1 scores, 95% for precision, and 96% for accuracy for the base-

task.  

The findings of this work show that our methodology based on the meta-learning paradigm can be used 

for other medical areas where it is difficult to collect medical image data and the knowledge can be reused to 

solve similar tasks. 
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