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Abstract 

Melanogenesis is the chemical process responsible for synthesizing melanin, which 

occurs in melanocytes, in subcellular lysosome-like organelles called melanosomes. 

Melanin plays a vital role in protecting the skin from damage caused by ultraviolet rays. 

However, excess melanin production or abnormal distribution can cause various 

pigmentation disorders, such as over-tanning, age spots, and melasma. Skin disorders like 

these, have prompted the development of skin-whitening compounds to reduce melanin 

content. Furthermore, inhibition of melanin synthesis is considered a valid therapeutic 

strategy for treating advanced melanotic melanomas 

Human tyrosinase (hsTYR) is the most important enzyme involved in the 

melanogenesis process, as it catalyzes, at least, its first two steps. Tyrosinase from the 

white button mushroom Agaricus bisporus (abTYR) has been widely available at low 

cost from commercial sources for several decades, whereas hsTYR is still expensive and 

difficult to produce. The importance of discovering more and better hsTYR inhibitors has 

been widely discussed, as when tested against hsTYR, several abTYR inhibitors provide 

disappointing results, including some of the most extensively used depigmenting 

compounds now used in dermocosmetics.  

An in silico methodology that can be used to predict compound bioactivities is QSAR 

(quantitative structure-activity relationship) modelling. A QSAR model tries to find 

correlations between a biological activity of interest and molecular descriptors calculated 

from the compound structure. In this work, a QSAR model was developed to predict 

hsTYR inhibition activity using the PYTHON computer language and its PyQSAR 

package. To develop a QSAR model, a library of 196 known hsTYR inhibitors was 

gathered, and compounds were divided into 6 groups according to their scaffold structure. 

A total of 33 QSAR models were prepared using different combinations of the defined 

groups and different pools of molecular descriptors. 

QSAR model 32 was selected for further use as it presented good statistical 

robustness and had the highest number of compounds, 41 in total. Of the 28,933 molecular 

descriptors calculated by the OCHEM platform for the 41 compounds used, PyQSAR 

selected 4 to be used in the model: C-026; DISSM2C; MaxdssC; WHALES90_Rem. The 

statistical data obtained after the validation of the QSAR model by cross-validation was 

excellent, namely the determination coefficient (R2CV=0.9147), the value of the square 
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root of the mean error (RMSE CV=0.1878) and the mean value of the score of the multiple 

linear regression method (Q2CV=0.8922). This QSAR model originates a mathematical 

equation that allows the prediction of hsTYR inhibition activity by new compounds with 

similar structures. 

A library of natural compounds, with a structure similar to those used to develop 

QSAR model 32, was created using the COCONUT database of natural compounds. A 

total of 1,628 natural compounds were gathered, their molecular descriptors were 

calculated, and the QSAR model 32 equation was applied. The results are displayed on a 

website and can be viewed by accessing the URL http://esa.ipb.pt/qsar/. The ZINC15 

database was used to determine which of the compounds in the developed natural 

compound library would be available for purchase after predicting the hsTYR inhibitory 

activity of each compound in the library. A total of 18 different compounds were bought 

from different companies. To evaluate these compounds experimental ability to inhibit 

hsTYR and thus validate QSAR model 32, the compounds will be tested against this 

enzyme. If those compounds activity is confirmed, they may be used in cosmeceutical 

applications. 

 

Keywords: QSAR, PYTHON, PyQSAR, molecular descriptor, melanin, hsTYR, 

abTYR, OCHEM, COCONUT, ZINC15.  

http://esa.ipb.pt/qsar/
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Resumo 

A melanogénese é o processo químico responsável pela síntese da melanina, que 

ocorre nos melanócitos, em organelos subcelulares semelhantes aos lisossomas chamados 

melanossomas. A melanina desempenha um papel vital na proteção da pele dos danos 

causados pelos raios ultravioleta. No entanto, a produção excessiva de melanina ou 

distribuição anormal pode causar vários distúrbios de pigmentação, como bronzeamento 

excessivo, manchas senis e melasma. Distúrbios de pele como estes levaram ao 

desenvolvimento de compostos de clareamento da pele para reduzir o conteúdo de 

melanina. Além disso, a inibição da síntese de melanina é considerada uma estratégia 

terapêutica válida para o tratamento de melanomas melanóticos avançados 

A tirosinase humana (hsTYR) é a enzima mais importante envolvida no processo de 

melanogénese, pois catalisa, pelo menos, as suas duas primeiras etapas. A tirosinase do 

cogumelo branco Agaricus bisporus (abTYR) está amplamente disponível a baixo custo 

em fontes comerciais há várias décadas, enquanto a hsTYR ainda é cara e difícil de 

produzir. A importância de descobrir mais e melhores inibidores de hsTYR tem sido 

amplamente discutida, pois quando testados contra hsTYR, vários inibidores de abTYR 

fornecem resultados dececionantes, incluindo alguns dos compostos despigmentantes 

mais usados atualmente em dermocosméticos. 

Uma metodologia in silico que pode ser usada para prever bioatividades compostas 

é a modelação QSAR (quantitative structure-activity relationship). Um modelo QSAR 

tenta encontrar correlações entre uma atividade biológica de interesse e descritores 

moleculares calculados a partir da estrutura do composto. Neste trabalho, um modelo 

QSAR foi desenvolvido para prever a atividade de inibição de hsTYR usando a linguagem 

de computador PYTHON e seu pacote PyQSAR. Para desenvolver um modelo QSAR, 

uma biblioteca de 196 inibidores hsTYR conhecidos foi reunida e os compostos foram 

divididos em 6 grupos de acordo com sua estrutura de base. Um total de 33 modelos 

QSAR foram preparados usando diferentes combinações dos grupos definidos e 

diferentes pools de descritores moleculares. 

O modelo QSAR 32 foi selecionado para uso posterior por apresentar boa robustez 

estatística e possuir o maior número de compostos, 41 no total. Dos 28 933 descritores 

moleculares calculados pela plataforma OCHEM para os 41 compostos utilizados, o 

PyQSAR selecionou 4 para serem utilizados no modelo: C-026; DISSM2C; MaxdssC; 
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WHALES90_Rem. Os dados estatísticos obtidos após a validação do modelo QSAR por 

validação cruzada foram excelentes, nomeadamente o coeficiente de correlação 

(R2CV=0,9147), o valor da raiz quadrada do erro médio (RMSE CV=0,1878) e o valor 

médio da pontuação do método de regressão linear múltipla (Q2CV=0,8922). Este modelo 

QSAR origina uma equação matemática que permite prever a atividade de inibição de 

hsTYR por novos compostos com estruturas semelhantes. 

Uma biblioteca de compostos naturais, com uma estrutura similar àquelas usadas 

para desenvolver o modelo QSAR 32, foi criada usando o banco de dados de compostos 

naturais COCONUT. Um total de 1 628 compostos naturais foram recolhidos, os seus 

descritores moleculares calculados e a equação do modelo QSAR 32 foi aplicada. Os 

resultados são apresentados num website criado por nós e podem ser visualizados 

acedendo ao URL http://esa.ipb.pt/qsar/. O banco de dados ZINC15 foi usado para 

determinar quais compostos na biblioteca de compostos naturais desenvolvidos estariam 

disponíveis para compra após prever a atividade inibitória de hsTYR de cada composto 

na biblioteca. Um total de 18 compostos diferentes foram comprados de diferentes 

empresas. Para avaliar a capacidade experimental destes compostos em inibir a hsTYR e 

assim validar o modelo QSAR 32, os compostos serão testados contra esta enzima. Caso 

a atividade desses compostos seja confirmada, eles poderão ser utilizados em aplicações 

cosmecêuticas. 

Palavras-chave: QSAR, PYTHON, PyQSAR, descritor molecular, melanina, hsTYR, 

abTYR, OCHEM, COCONUT, ZINC15.  

http://esa.ipb.pt/qsar/
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1. Introduction 

1.1  Melanogenesis 

Melanogenesis is the chemical process responsible for the synthesis of melanin, 

which occurs in melanocytes, in subcellular lysosome-like organelles called 

melanosomes.[1] These intracellular corpuscles are specialized organelles of pigmented 

cells that are responsible for the synthesis, storage, and transport of melanin pigments, 

which are responsible for most visible pigmentation in mammals and other vertebrates.[2] 

Melanosomes require a number of specific enzymatic and structural proteins to mature 

and become competent in order to produce melanin. Tyrosinase (TYR), tyrosinase-related 

protein-1 (TYRP1), and DOPAchrome tautomerase (DCT) are among the critical 

enzymes that affect melanin quantity and quality, whilst Pmel17 (premelanosome protein 

17) and MART1 (melanoma antigen recognized by T cells-1) are critical structural 

proteins required for the structural maturation of melanosomes.[3] AP-3 (adaptor protein 

complex 3), BLOC-1 (Biogenesis of lysosome-related organelles complex 1) and OCA2 

(P protein)[4] have important roles in sorting and trafficking melanosomes. 

Melanocytes are dendritic cells of the neuroectoderm, and their primary function is 

the production of melanin pigment (Figure 1).[5] 

 

 

 

 

 

 

 

 

Figure 1 – Illustration of the epidermis, dermis, and subcutaneous tissue in the skin. The layer of basal 

cells at the deepest section of the epidermis contains melanocytes.[6] 

The precursor cells of melanocytes, called melanoblasts, are unpigmented cells that 

arise from embryonic neural crest cells. After neural tube closure, melanoblasts migrate 
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to various regions of the body and develop into melanocytes as well as peripheral nervous 

system cells, bone, and cartilage of the head and choroid of the eye.[5] Melanoblasts that 

develop into melanocytes are found predominantly in the skin epidermis basal layer and 

hair follicles and can be identified by the expression of specific melanocyte markers such 

as: TYR, TYRP1, TYRP2 (tyrosinase-related protein-2), DCT, Pmel17, MART-1 and 

MITF (microphthalmia-associated transcription factor).[7] 

Usually, there are two types of melanin being produced: pheomelanin (showing tones 

between yellow to red) and eumelanin (showing shades between brown to black). The 

difference between these two types of melanin is in their chemical structure and synthesis 

pathway. The type of melanin produced is determined by the availability of substrates 

and the function of the enzymes involved in melanogenesis.  

The simplified metabolic pathway for the synthesis of these two compounds is shown 

in Figure 2. TYR is the main enzyme in this pathway, first promoting Tyrosine 

hydroxylation into DOPA (dihydroxyphenylalanine) and then oxidation of DOPA to 

DOPAquinone. In the presence of cysteine, DOPAquinone is then oxidized and 

polymerized to form pheomelanin. When cysteine is found in lower concentrations, the 

eumelanin production pathway is activated.[8] In this case, DOPAquinone is transformed 

into DOPAchrome, which can spontaneously lose a carboxylic group to form 5,6-

dihydroxyindole (DHI). DOPAchrome can, with the help of DOPAchrome tautomerase, 

or TYRP2, be tautomerized and originate 5,6-dihydroxy-1H-indole-2-carboxylic acid 

(DHICA). Both DHI and DHICA can be further oxidized and polymerized to form a high 

molecular density complex known as DHI-melanin, which is then transformed into 

eumelanin. 

 

 

 

 

 

Figure 2 – Simplified scheme of the metabolic pathway of two types of melanin: pheomelanin and 

eumelanin. 
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1.2  Human tyrosinase 

Tyrosinases, also known as monophenol or o-diphenol:oxygen oxidoreductase 

(EC:1.14.18.1), are type 3 copper proteins with two copper ions in the active site. As it's 

shown in Figure 3, these enzymes catalyze the conversion of monophenols like tyrosine 

into o-diphenols, followed by the oxidation of the o-diphenols to the corresponding o-

quinone derivatives. The related catechol oxidases only catalyze the second reaction, 

using o-diphenols as substrates.[9] 

 

 

 

 

Figure 3 – Generic actions of monophenol monooxygenase enzyme.[9] 

Human tyrosinase (hsTYR) is the most important enzyme involved in the 

melanogenesis process, as it catalyzes, at least, the first two steps of this process. This 

glycoprotein has a molecular weight of 67 kDa and is composed of 529 amino acids, 

including an 18-residue N-terminal signal sequence and six or seven N-glycosylated 

positions. Its active site is made up of two close, magnetically coupled copper centers that 

are connected by an aquo(hydroxo) ligand in the met state (hsTYR's reactive state) and 

coordinated by six histidine residues (H180, H202, H211 for CuA, H363, H367, H390 

for CuB), which are highly conserved among tyrosinases, catechol oxidases, and 

hemocyanins (Figure 4).[10]  

 

 

 

 

 

 

Figure 4 – 3D structure of hsTYR. In this image it is possible to observe the active site of the enzyme 

composed of copper centers (gray spheres) where a molecule of kojic acid is attached (green structure).  

It is possible, through a close-up of the image, to observe the 6 histidine residues (pink structures) 

surrounding the copper centers. 
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Although the enzyme can oxidize a wide range of monophenolic and diphenolic 

substrates, the physiological function of hsTYR is to o-hydroxylate L-tyrosine to L-

DOPA (monophenolase activity) and then oxidize L-DOPA in DOPAquinone 

(diphenolase Activity) using molecular oxygen (Figure 5).[11] 

 

Figure 5 – Tyrosinase actions in the first two stages of melanogenesis.[9] 

This double oxidation process starts the synthesis of melanin pigments, which is 

mostly nonenzymatic afterwards. Only two other enzymes are known to be involved in 

melanogenesis, hsTYRP1 and hsTYRP2, which share a high level of homology with 

hsTYR. However, the role of hsTYRP1 is unknown and may be linked to hsTYR 

protection.[12] 

In Figure 6 it is possible to observe the complete metabolic pathway for the synthesis 

of the different melanin components and the importance of hsTYR. While the metabolic 

pathways of eumelanin and pheomelanin are well known, the existence of neuromelanin 

is still debated. Still, the current scientific consensus is that it exists in the brain as a dark 

pigment comprised of a polymer of 5,6-dihydroxyindoles.[13] Thus, in addition to its role 

in peripheral (cutaneous and ocular) melanogenesis, hsTYR may play a significant role 

in neuromelanin synthesis in the brain. However, because only trace levels of hsTYR 

mRNA and hsTYR itself were found in the human brain, the enzyme's role in 

neuromelanin synthesis has long been discussed.[10]  
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Figure 6 – L-Tyrosine-related pigmentation biochemical pathways involving hsTYR as a 

demonstrated (●●), suspected (●) or purely hypothetic (○) component.[10]  

TAT – Tyrosine aminotransferase (EC no. 2.6.1.5); HPD – 4-Hydroxyphenylpyruvate dioxygenase (EC no. 

1.13.11.27); HGD – Homogentisate 1,2-dioxygenase (EC no. 1.13.11.5); TH – Tyrosine hydroxylase (EC 

no. 1.14.16.2). 

1.3  Benefits of inhibiting melanogenesis 

Melanin plays a significant role in protecting the skin from damage caused by 

ultraviolet (UV) rays, and this property is due to melanin's ability to absorb free radicals 

generated within the cytoplasm of cells by the action of UV rays.[14] However, excess 
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melanin production or abnormal distribution can cause pigmentation disorders, such as 

over-tanning, age spots, and melasma.[15] These skin disorders have prompted the 

development of skin-whitening compounds to reduce melanin content. Furthermore, 

inhibition of melanin synthesis is considered a valid therapeutic strategy for treating 

advanced melanotic melanomas.[16] 

As previously stated, the enzyme hsTYR plays a critical role in the melanogenic 

process since it catalyzes the rate-limiting first two steps of the reaction sequence (Figure 

6). As a result, most efforts to suppress or reduce melanogenesis in vivo have been 

devoted to discovering hsTYR inhibitors. The strategy has proven effective, with clear 

correlations observed between the level of pigmentation produced and the inhibition of 

hsTYR. As an outcome, hsTYR appears to be a convenient and appealing target for 

reducing human melanogenesis in various contexts.  

1.3.1  Skin-whitening agents: dermatological and cosmetic applications 

The most obvious and requested application for melanogenesis inhibition is skin 

whitening. This practice, prevalent in some ethnic groups, particularly in Asia, Africa, 

and the Middle East, is the result of a complex interplay of cultural, social, political, and 

psychological factors, and it has been documented since the dawn of human 

civilizations.[17] In these cultures, lighter skin tones are often associated with beauty and 

health, whereas darker skin tones are associated with lower social status, and thus interest 

in skin whitening has grown exponentially since the 1980s.[18] A study by Sagoe et al. 

(2019)[19] revealed that about 28% of the global population practices skin-whitening at 

least once in a lifetime, suggesting that this market has enormous potential for growth, 

progression, and profitability. Despite its aesthetic value, depigmentation is also a 

medical necessity for patients suffering from common to extremely rare dermatological 

disorders such as melasma, solar lentigo, erythromelanosis follicularis faciei et colli, 

erythema dyschromicum perstans, congenital melanocytic naevi and postinflammatory 

hyperpigmentation. These dermatological disorders are always associated with 

hyperpigmentation and can cause health problems and disfigurements, sometimes severe 

and affecting facial aesthetics, with a significant negative impact on a patient's 

psychology and quality of life. Various skin-whitening agents like hydroquinone, kojic 

acid, arbutin, azelaic acid, ellagic acid, and resveratrol are used in cosmetic and 

dermatological products. However, all these agents lack efficacy and safety.[10] 
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Overall, there is a great need and a massive market for nontoxic skin-whitening 

agents to fulfil the social needs of safe cosmetic practices and medical hyperpigmentation 

treatments, and hsTYR inhibitors have to be the best choice. 

1.3.2 The use of antimelanogenic agents in melanoma treatments 

Recently, it was demonstrated that hsTYR inhibition could be beneficial in 

melanoma management.[17] According to the Melanoma Skin Cancer Report (2020),[20] 

melanoma skin cancer incidence rates rose by 44% between 2008 and 2018, with deaths 

increasing by 32%. In 2018, 287,723 cases of melanoma skin cancer were diagnosed, and 

60,712 people died. This study developed a tool that predicted that by 2025, the number 

of melanoma skin cancer cases diagnosed worldwide would increase 18% to 340,271, 

with deaths rising 20% to 72,886. A prevision for 2040 was also made, and an estimated 

half a million people would be diagnosed with melanoma skin cancer, an increase of 62% 

on 2018 records, while 105,904 will die from the disease, an increase of 74%.  

Melanoma has a high lethality rate due to multiple resistances to current anticancer 

therapy, particularly in stages III and IV of the disease. At stage IV, the median overall 

survival with standard dacarbazine chemotherapy is between 6 to 10 months, with a 5-

year survival rate of 10%, a value recently extended to 20% using innovative 

immunotherapy approaches involving specific immune-checkpoints targeting.[21] 

Unlike normal human melanocytes, Melanoma cells do not transfer melanin 

production to neighboring keratinocytes, instead accumulating the pigment. The resulting 

high concentration of intracellular melanin has several negative consequences. First, 

melanin has long been recognized for conferring radioprotective effects on melanoma 

cells, even though radiotherapy, once considered ineffective, is now seen as beneficial in 

some cases.[22] Recently, a clear relationship between radiotherapy efficacy and melanin 

accumulation was discovered, implying that inhibiting melanogenesis could sensitize 

melanoma cells and improve overall outcomes.[10] 

However, to the best of our knowledge, no clinical practice or clinical studies, 

including the use of melanogenesis inhibitors in melanoma therapy, have been 

documented to date, suggesting an untapped potential. Because the field is still in its early 

stages, only preliminary results involving melanoma cells in in vitro tests and frequently 

suboptimal hsTYR inhibitors like kojic acid are available. Nonetheless, the preliminary 

findings are quite encouraging and identifying reliable, efficient, and safe hsTYR 
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inhibitors will undoubtedly contribute to the advancement of clinical trials following 

these pioneer investigations. 

1.3.3 Neuromelanin synthesis and Parkinson's Disease 

In addition to its role in peripheral (cutaneous and ocular) melanogenesis, hsTYR is 

believed to play an essential role in neuromelanin synthesis in the brain.[10] 

Neuromelanin is most pronounced in catecholaminergic neurons of the substantia 

nigra pars compacta (SNpc) and locus coeruleus, giving these areas of aged brains a 

blackened appearance. Like the other melanins, neuromelanin presents radical 

scavenging, antioxidant, toxic metal binding, and toxins sequestering properties to 

particularly exposed catecholaminergic neurons. However, neuromelanin is also known 

to be a potential cause of dopaminergic neuron degeneration and, eventually, Parkinson's 

disease.[10] It is believed that Parkinson's disease is distinguished by the loss of 

neuromelanin and the subsequent depigmentation of these brain regions.[23] This is 

primarily due to pigmented cells dying due to immune-mediated death. There is evidence 

that dopaminergic neurons with high levels of neuromelanin are more prone to 

degeneration.[24]  

While most cancers are less common in Parkinson's disease patients, melanoma is 

more common than in the general population.[25-27] Bose et al. (2018)[25] reported a large-

scale study which found that a melanoma diagnosis is associated with a 50% increased 

risk of developing Parkinson's disease, and that patients with Parkinson's disease have a 

2-fold increased risk of developing melanoma later in life.[25] 

Overall, the previously reported aspects point to hsTYR playing a significant role in 

neuromelanin synthesis and in the development of Parkinson's disease. As a result, 

inhibiting neuronal hsTYR function may be a viable exploratory treatment approach for 

Parkinson's disease. However, it is critical to remember that rigorous regulation of 

neuromelanin levels between protective and pathogenic thresholds is required and 

probably challenging. 

1.3.4 Tyrosinase and alkaptonuria-related Ochronosisis  

Recently, it has been hypothesized that hsTYR may have a role in ochronosis that 

occurs in alkaptonuria. Alkaptonuria is a rare condition caused by an inactivating 

mutation in the gene that codes for homogentisate 1,2-dioxygenase (HGD), an enzyme 
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capable of converting homogentisic acid (HGA), a p-diphenol intermediate in L-tyrosine 

metabolism, into linear products via phenyl ring oxidation. While young individuals can 

remove the amounts of HGA generated daily through urine, the decline in renal function 

with aging causes HGA buildup in numerous tissues. Ochronosis occurs when non-

excreted HGA is oxidized into benzoquinone acetic acid, which is then polymerized into 

an ochronotic pigment in a very similar process to melanogenesis.[28] The issue associated 

with the accumulation of this ochronotic pigment is that it causes a dark blue deposition 

in various tissues like the skin, cartilages, tendons, ligaments, eyes, ears, heart, arterial 

system, or bones, and its progression is associated with rapid tissue destruction, 

debilitating clinical morbidities, and eventually death.[28] 

Given the enzyme's nonspecific activity, the oxidation of HGA might be mediated 

by hsTYR, opening the way for the emergence of ochronosis. Indeed, TYRs may oxidize 

p-diphenols like hydroquinone under specific circumstances, particularly in a media-rich 

in catechols like L-DOPA.[9] The participation of hsTYR in the disease is not completely 

established yet. However, if, in the future, hsTYR is found to contribute to the spread of 

the disease, inhibiting the enzyme activity may give a treatment option for avoiding 

ochronosis in the setting of alkaptonuria. 

1.4  Known hsTYR inhibitors 

In the literature dedicated to TYR inhibitors, an implicit assumption prevails, 

compounds found using mushroom tyrosinase assays are considered promising TYR 

inhibitors for human-directed applications. Indeed, tyrosinase from the white button 

mushroom Agaricus bisporus (abTYR) has been widely available from commercial 

sources for several decades, whereas hsTYR is still expensive and difficult to produce.[10] 

Therefore, the overwhelming majority of TYR-targeting compounds have been identified 

purely based on anti-abTYR activity. Several thousand abTYR inhibitors are known, 

including many different scaffolds and a considerable number of natural products. Even 

the popular kojic acid, commonly utilized in human dermocosmetics, was identified as 

an abTYR inhibitor in 1979 as part of a phytochemistry research.[26] However, abTYR 

and hsTYR are very different. The hsTYR is a highly glycosylated monomeric protein 

anchored in the melanosome membrane, while abTYR is a soluble oligomeric enzyme 

found in the cytoplasm.[10] 
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As shown in Figure 7, hsTYR has a unique cysteine-rich subdomain located in the 

cytosol of melanosomes (the EGF domain), a transmembrane hydrophobic domain, and 

seven asparagine glycosylation sites (N86, N111, N161, N230, N290, N337, N371), three 

features completely absent from abTYR. Even at the active location, significant changes 

can be seen. The second coordination sphere varies substantially in the dicopper center 

surrounded by six histidines. Some hot spot residues around the hsTYR active site, such 

as H304, K306, R308, T343, T352, I368, S375, and S380, that were predicted to have 

critical direct interactions with some of the most effective hsTYR inhibitors discovered 

to date, are completely missing from abTYR, more properly from the two most abundant 

abTYR isoforms, being that abPPO3 and abPPO4 (Figure 7).[27,29] 

Figure 7 – hsTYR, human TY-related protein 1 (hsTYRP1), and Agaricus bisporus PPO3 (abPPO3) 

and PPO4 (abPPO4) TY isoforms multiple sequence alignment: Histidine residues bound to CuA/ZnA are 

shown in yellow; histidine residues bound to CuB/ZnB are shown in orange; glycosylation positions are 

shown in black; cysteines responsible for the formation of a thioether bond at the active site are shown in 

green; residues predicted to interact with hsTYR inhibitors are shown in blue; hsTYR residues conserved 

in other enzymes are shown in light gray.[10] 

As a result, when tested against hsTYR, several abTYR inhibitors provide 

disappointing results, including some of the most extensively used depigmenting 

compounds now used in dermocosmetics.[10] Because of this general inefficiency, 

significant concentrations of skin-whitening agents such as kojic acid and hydroquinone 

are used in dermatological treatments. However, these products carry the risk of inducing 

side effects such as contact dermatitis, an allergic reaction that can cause skin discomfort. 

With time and long-term use, these whitening agents can make the skin more prone to 

sunburn.  
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Several recent studies have concentrated on determining the anti-TYR activity of 

different compounds employing enzymatic assays and hsTYR-overexpressing human cell 

lines. The assays in human cell lines include melanogenic human malignant melanoma 

cells (G-361, HBL, HMV-II, SKMEL), normal adult or newborn melanocytes (HEMa 

and HEMn, respectively), and human nonmelanogenic cells transfected with a hsTYR 

construct (HEK-293-TYR), which readily provide cell-free crude hsTYR preparations for 

inhibitor screening.  

In a review by Roulier et al. (2020)[10], a sizable number of natural products and 

synthetic compounds were tested, and reports describing IC50 values below 100 μM were 

considered. This literature review helps understand which hsTYR inhibitors may be more 

appealing. The authors state that a significant majority of the compounds reported are 

phenol derivatives. As expected, structural analogues of L-tyrosine and L-DOPA 

synthesized from p-coumaric acid and caffeic acid exhibited some affinity for hsTYR. 

Flavonoids and derivatives with moderate activity were also found in the flavone 

dihydrochalcone and aurone subclasses.  

Given the nonspecific nature of hsTYR catalytic activity, it is expected that at least 

some of them are substrates rather than inhibitors, resulting in subsequent oxidation of 

the anti-hsTYR agent. When confronted with isolated TYRs from diverse species, agents 

like resveratrol, all 4-phenols, caffeic acid, and all 3,4-catechols, have demonstrated an 

alternative substrate behavior, rather than genuinely inhibiting the enzyme function 

(Figure 8, catalysis component). Just like with hydroquinone, the oxidation of 

depigmenting agents by hsTYR might produce reactive quinones and cause the 

production of potentially toxic polymers or conjugates.  

Thus, the authors propose that future research of novel active-site binding hsTYR 

inhibitors should include the use of non-oxidizable equivalents to phenols or catechols, 

such as resorcinol groups and transition-state analogues. On the other hand, these 

transition-state analogues are termed by their structural similarity to the catechol substrate 

and quinone product of the TYR catalytic cycle, but their oxidation state prevents TYR-

mediated enzymatic reaction. As a result, when the dicopper core is bound, they exhibit 

genuine inhibitor behavior (Figure 8, catalysis component). 



12 
 

 

Figure 8 – The catalytic cycle of the oxidation of 4-phenols and 3,4-catechols by TYRs, and examples 

of potential binding modes for non-oxidizable transition-state analogues and resorcinols as active-site 

inhibitors.[10] 

The discovery of specific hsTYR inhibitors can be performed against the isolated 

enzyme through enzymatic assays. However, only lately, hsTYR is being used instead of 

abTYR, following significant advances in hsTYR expression and purification. As it is 

possible to verify through Table 1, from the compounds that are considered to be classical 

TYR inhibitors, only L-mimosine and phenylthiourea, significantly affected the catalytic 

activity of the hsTYR, while kojic acid, hydroquinone, arbutin and resorcinol displayed 

almost inactive profiles.[10] 

Table 1 – Activity of some inhibitors against Isolated hsTYR.[10] 

 

Presently only two hsTYR inhibitors, thiamidol and aurone, were further evaluated 

in clinical assays.[10] In general, several important conclusions about the development of 

novel hsTYR inhibitors were drawn from the review by Roulier et al. (2020)[10]: 

1. A single abTYR inhibition measurement should never be used to make a straight 

assumption about a potential hsTYR inhibition activity. 

2. A direct measurement of hsTYR inhibitory activity against an isolated enzyme 

structure it's an important step and must be done to obtain valuable kinetic data, 

Inhibition 

value 
TYR inhibitor 

hsTYR activity 

(µM) 

abTYR activity 

(µM) 

Ki 

L-mimosine 10.3 0.13 

Phenylthiourea 1.7 – 

Kojic acid 350 4.3 

Hydroquinone 4,400 1.1 

Arbutin 6,500 40 

Resorcinol >3,000 652 

Thiamidol 0.25 – 

Aurone 0.35 – 
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identifying the mechanism of action and providing information about the binding 

location.  

3. Compounds destined for human-directed applications should be evaluated not 

only against abTYR, but also against cell-free crude extract of a proper hsTYR-

expressing cell line, such as human melanoma cells, human melanocytes, or 

transfected nonmelanogenic human cells. 

4. In the context of TYR inhibition, the synthesis of phenyl analogues with 4-

hydroxy or 3,4-dihydroxy patterns should be avoided since they may operate as 

alternative substrates rather than inhibitors. 

5. In active-site targeting, using transition-state analogues and resorcinols that 

mirror the structure of naturally oxidized phenolic rings while resistant to 

hsTYR-mediated oxidation has already shown encouraging results. 

6. An investment in bioinformatic studies is critical for the development of 

appropriate methods and tools, particularly for active-site inhibitors, because the 

description of copper ligand interactions must be accurate enough, as multiple 

binding modes are frequently conceivable and it partially determines the 

orientation of the molecule and its ability to reach critical interactions. 

1.5  QSAR Modeling 

QSAR (quantitative structure-activity relationship) modeling is an in silico 

methodology that aims to predict physical or biological properties of small molecules. In 

these QSAR studies, a mathematical model is developed that relates the biological 

activity of the studied compounds to their molecular structure.[30] In general, a QSAR 

analysis tries to find correlations between a biological activity of interest and molecular 

descriptors, either calculated from the compound structure or experimentally obtained.[31] 

QSAR modeling was pioneered by Corwin Hansch 60 years ago and was initially 

conceptualized as the logical extension of organic chemistry.[32] QSAR modeling has 

grown, diversified, and evolved from its application to small series of similar compounds, 

using relatively simple regression methods, to the analysis of much larger datasets 

spanning thousands of molecules, using a wide variety of statistical and machine learning 

techniques. Continuous improvements allowed QSAR modeling to be used in chemical, 

medical and pharmaceutical industries and in government institutions worldwide. 
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In a first phase, QSAR models attempt to build a link between a collection of 

chemical structures, their molecular characteristics, and a biological activity. Following 

that, in a second phase, these models may be used to predict the biological activity of 

novel chemical compounds having structures comparable to those employed in the QSAR 

model's construction (Figure 9).[33, 34] 

 

 

 

 

Each substance has several molecular and physical properties known as molecular 

descriptors. A molecular descriptor results from a mathematical and logical method that 

converts the information encoded in a molecule in silico representation into a useful 

number. Different molecular descriptors indicate various levels of structural 

representation. According to Xue L., & Bajorath J. (2000),[35] these descriptors can be 

categorized based on their "dimensionality" in the following ways: 

1. One-dimensional (1D): based on physicochemical properties and the molecular 

formula (e.g., molecular mass, molar refractivity, logP). 

2. Two-dimensional (2D): describe properties that can be calculated from a 2D 

representation (e.g., number of atoms, number of bonds, connectivity indices). 

3. Three-dimensional (3D): depends on the 3D conformation of the molecules (e.g., 

Van der Waals volume, solvent accessible surface area).  

There are other levels of structural representation, such as 4D descriptors, proposed 

by Hopfinger et al. (1997)[36] that use conformations obtained through molecular 

dynamics simulation. The 5D descriptors proposed by Vedani A., & Dobler M. (2002)[37] 

were an extension of the 4D proposed by Hopfinger et al. (1997),[36] adding 

conformational freedom, thus allowing multiple representations of the ligand topology at 

Figure 9 – Representative scheme of the general objective of a QSAR prediction model. 
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the active site. The same group then proposed 6D descriptors, which consider several 

solvation models simultaneously.[38] 

According to Todeschini et al. (2000),[39] another classification of molecular 

descriptors concerns their nature, which can be: 

1. Constitutional: are derived from the atomic composition of the compound (e.g., 

molecular weight, number of atoms and bonds). 

2. Topological: (e.g., content index of link information). 

3. Geometric: are derived from 3D coordinates (e.g., molecular volume, polar 

surface area). 

4. Electrostatics: are derived from partial charges (e.g., polarity indices, partial 

charges). 

5. Quantum mechanics: they are derived from the wave functions of electrons (e.g., 

energy of molecular orbitals).  

Several computer programs are available for calculating molecular descriptors, such 

as DRAGON
®

, OCHEM, Mordred, ISIDA, PaDel, among others. When these descriptors 

can be stated numerically, it is possible to recognize a mathematical link between the 

descriptors and the biological activity and then obtain a quantitative structure-activity 

relationship (QSAR) model. In Figure 10, an overview scheme with the main QSAR 

modeling steps is presented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Scheme demonstrating the fundamental processes for the creation of a QSAR model. 
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1.6  Compound Library Databases and QSAR Libraries 

The creation of a good library of compounds is one of the critical steps to obtain a 

good QSAR model. For QSAR research, the number of compounds in the dataset should 

not be too little or, for practical reasons, too big. The top limit is frequently dictated by 

the computing and temporal resources available for developing QSAR models using the 

chosen methodologies. For a compound to be part of a library, it must have a numerical 

value already obtained through experimental tests, and it is possible to find them scattered 

throughout the literature. For example, in order to carry out this dissertation, a library 

with 100 compounds previously assembled by Oliveira et al. (2021)[40] will be amplified 

up to a library with as many compounds available as it is possible to find. 

To apply a QSAR model that has already been built and validated, compounds only 

need to fulfil two requirements, namely: 

1. The compounds that are intended to test need to have a structure similar to the 

compounds used to build the applied QSAR model. 

2. Calculate the molecular descriptors that the applied QSAR model indicated as 

the most relevant for predicting the studied biological activity. 

Knowing this, it is possible to easily apply a QSAR prediction model from any 

database with the structure of the molecule that is wished to employ.  

There are many compound databases that provide invaluable help for all types of 

bioinformatic work. Databases like Drugbank, Pubchem, Chemoinfo and Openmolecules 

are great examples of suitable free databases. However, among all, the ZINC15 Database 

stands out for the immense number of compounds it has. This is a free database of 

commercially available compounds specifically for many types of virtual screening 

works. ZINC contains over 750 million purchasable compounds and a lot of different 

mechanisms to facilitate the search for the intended compounds. Some databases only 

focus on specific characteristics of compounds. A good example of such databases is the 

COCONUT (COlleCtion of Open Natural prodUcTs). The COCONUT database is a 

database focused only on natural compounds, which is free and available to all users. 

Table 2 presents some general aspects of each Database referred to at this point. 
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Table 2 – General information about some of the most popular databases 

  

Database 
Number of 

compounds 
URL Description 

Drugbank 
More than 

500 K 
https://go.drugbank.com 

Database containing information on drugs and 

drug targets 

Pubchem 
More than 

122 M 
https://pubchem.ncbi.nlm.nih.gov 

Information on chemical structures, identifiers, 

biological activities, patents, and many others 

Chemoinfo 
More than 

760 K 
https://chemoinfo.ipmc.cnrs.fr/index.html 

Downloadable bioinformatics data and tools for 

small drugs  

(molecular weight ≤ 2000) 

Openmolecules No information https://openmolecules.org 
Platform to publish cheminformatics tools to 

contribute for synthetic and medicinal chemistry 

ZINC15 
More than 

750 M 
https://zinc15.docking.org 

Commercially available compounds for virtual 

screening 

COCONUT 
More than 

407 K 
https://coconut.naturalproducts.net Natural Products storage, search, and analysis 

https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://chemoinfo.ipmc.cnrs.fr/index.html
https://openmolecules.org/
https://zinc15.docking.org/
https://coconut.naturalproducts.net/
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2. Material and methods 

2.1  hsTYR Library construction 

In order to implement the in silico hsTYR library, an extensive literature search was 

performed. As a selection criterion, the compound had to have been subjected to an in 

vitro enzymatic assay against hsTYR, and an IC50 value had to be available. All 

compounds with experimental assays using TYR from non-human species (specifically 

abTYR) or with hsTYR inhibition values obtained by in silico studies were disregarded. 

A library of 100 compounds was already prepared by Oliveira et al. (2021)[40], and 

for this work, the objective was to expand the initial library to at least 200 compounds. In 

the end, 96 compounds were discovered as hsTYR inhibitors and added to the library. 

Therefore, the library prepared and used in this dissertation was composed of 196 

compounds.  

The hsTYR library compounds were divided into groups according to their structural 

constitution. This division was made according to their structural similarities. Compounds 

presenting similar scaffolds were grouped, and six groups were defined. Figure 11 

depicts the scaffold templates defined for each group. 

The defined groups were as follows: 

Group 1 – Compounds formed by a hetero-bicyclic ring system linked to a single 

aromatic ring (23 compounds). 

Group 2 – Compounds formed by one aromatic ring in each terminal linked by a 2-

8 carbon linker (32 compounds). 

Group 3 – Compounds formed by a hetero-penta ring (39 compounds). 

Group 4 – Compounds formed by a tricyclic ring system (41 compounds). 

Group 5 – Small compounds formed by a single aromatic ring (32 compounds). 

Group 6 – Compounds with at least one glicolisation (33 compounds). 
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Figure 11 – Example of a representative compound from each group obtained after analyzing the 

structural similarities of the compounds in the library. The scaffold used to divide the compounds into 

different groups is represented in red. Group 1 – Norartocarpetin[41], Group 2 – Resveratrol[10], Group 3 – 

Thiamidol[10], Group 4 – Xanthone[42], Group 5 – Kojic Acid[43], Group 6 – Askendoside B[44]. 2D strucures 

prepared using ChemSketch software. 

For each compound, the experimental IC50 values of each was standardized to the 

same unit of magnitude (Molar) and then converted into experimental pIC50 values using 

the formula (Table S1): 

𝒑𝑰𝑪𝟓𝟎 =  −𝒍𝒐𝒈 (𝑰𝑪𝟓𝟎) 

 

2.2  Molecular descriptors calculation 

Several benchmarking tests have shown that the choice of statistical techniques has 

far less of an impact on the prediction performance of QSAR models than the type of 

molecular descriptors.[45,46] That said, the choice of descriptors is extremely important, 

which means that the choice of the software or platform for calculating the descriptors is 

crucial for the success of QSAR modeling. As previously mentioned, several computer 

programs or platforms are available for calculating molecular descriptors, such as 
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DRAGON
®

, OCHEM, Mordred, ISIDA, and PaDel, among others. After analyzing the 

alternatives, the OCHEM platform was selected. This platform was selected because it is 

freely available and has proven helpful in other studies to be an effective molecular 

descriptor calculator.[47] 

OCHEM is an online platform that automates and simplifies the typical steps required 

to build QSAR models. The operation of OCHEM is based on the wiki system and mainly 

focuses on data quality and verification. The Database that supports OCHEM is fully 

integrated with the modeling framework, which supports all the steps necessary to create 

a predictive model, namely: 

1. Data search. 

2. Selection and calculation of a large variety of molecular descriptors. 

3. Application of machine learning methods. 

4. Validation of data and QSAR models. 

5. Model analysis and applicability domain assessment. 

Compared to other similar systems, OCHEM is not intended to re-implement existing 

tools or models but invites original authors to contribute with their results, making them 

publicly available and promoting community growth in this area. Iurii Sushko (one of the 

creators of the online platform) mentioned in the OCHEM user manual: "Our intention is 

to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and 

share it with other users on the Web. The ultimate goal of OCHEM is collecting all 

possible chemoinformatics tools within one simple, reliable and user-friendly 

resource."[47] 

Although OCHEM performs all the tasks described above, it is essential to note that 

for this work, OCHEM was used only as a tool for calculating the molecular descriptors 

of the different compounds, and another tool was used to perform the QSAR model. 

2.3  PyQSAR and Jupyter Notebook 

PyQSAR is a module based on the Python programming language used to develop 

the QSAR models in this work. PyQSAR seeks to unify, in a single workspace, all the 

different steps involved in creating a QSAR model, from data preparation to data 
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validation. Python is one of the most used scripting languages in chemoinformatics and 

QSAR modeling due to its libraries for numerical analysis, Machine Learning, and plot 

graphs. Jupyter Notebook it's a software that aims to create a more suitable work 

environment to produce interactive, appealing, and interesting analyses. This Notebook 

also has the advantage that the same action can be performed several times and in separate 

cells. Like most of the QSAR model-building tools, PyQSAR has a similar workflow to 

that shown in Figure 10. 

2.3.1  Data Input and Training/Test set preparation 

PyQSAR takes as input the experimental values associated with molecules and 

molecular descriptors generated by a descriptor calculation tool. There are thousands of 

ways to present the same information depending on the molecular descriptor calculation 

software chosen, as user preferences for molecular descriptor calculation software vary. 

This is because not all software will calculate the same number of descriptors or group 

them in the same way.  

In order to combat this diversity of different ways to present molecular descriptors, 

PyQSAR uses a clustering process, forming groups (Clusters) of descriptors with similar 

calculation values, always starting from the first descriptor of the input that is provided. 

The data preparation module in PyQSAR can divide the input data into two sets: the 

Training Set, used to build the model, and the Test Set, used to validate the model. After 

this division, only the molecular descriptors associated with the compounds present in the 

Training Set are clustered, forming groups of highly correlated descriptors to select and 

discard all information that may be repeated. This procedure prevents two descriptors that 

qualify the same information from being chosen as a key descriptor for predicting 

modulated biological activity (Figure 12). After forming all groups of molecular 

descriptors, they will be evaluated and reformed if necessary. 
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2.3.2  Molecular descriptors selection 

During the descriptor selection process, a genetic algorithm (GA) was used to 

maintain the best descriptors from the different Clusters. This method helps to prevent 

the selection of descriptors with similar properties (belonging to the same cluster). The 

GA is a method for solving both constrained and unconstrained optimization problems 

based on natural selection, the process that drives biological evolution. This algorithm 

repeatedly modifies a population of individual solutions. At each step, the genetic 

algorithm selects individuals from the current population to be "parents" and uses them 

to produce the "children" for the next generation. Over successive generations, the 

population "evolves" toward an optimal solution.  

The rationale behind the GA method is basically iterating selections of data until the 

ideal set of data to obtain the optimal solution to the problem is found. In this case, GA-

Figure 12 – Print screen taken from Jupyter Notebook with part of the run code to obtain the 

QSAR model through the PyQSAR module. In the image it is possible to see an example of the 

clusters formed by the molecular descriptors as well as a graph that demonstrates the frequency of 

the correlation between the different clusters formed. 
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based selections were repeated until the optimal set of descriptors was obtained. Each 

time a new cluster of descriptors was generated during the selection process, a multiple 

linear regression (MLR) was performed, with the set of descriptors generated to obtain 

the coefficients of a given set of descriptors. MLR is a statistical method for predicting 

the result of a response variable by using several explanatory factors. Modeling the linear 

connection between the explanatory (independent) factors and response (dependent) 

variables is the aim of multiple linear regression. The hsTYR inhibiting power of the 

compounds, the value predicted with the QSAR model, was used as an independent 

variable in the MLR process. The MLR score is expressed as a determination coefficient 

(R2) and has a value between 0 and 1. The closer this score is to 1, the better its predictive 

capacity of the QSAR model. 

After testing hundreds or even thousands of possible descriptor combinations, the 

descriptor sets were organized according to their score obtained from the MLR method, 

and only a predefined number of them advanced to the next step of the iterative selection 

process. This final step, for the construction of the model itself, serves to choose the group 

of descriptors with the best score, and although PyQSAR applies an MLR to all groups 

and tests all possible solutions, only the best solution found is presented. 

2.3.3  QSAR model validation and visualization 

After the GA has clustered the different descriptors, these groups are submitted to 

the MLR process, and the best set of descriptors given the characteristics of the provided 

molecules is obtained. PyQSAR uses these descriptors' values to predict the biological 

activity studied and has several features for validating models and viewing the results. 

One such validation method is cross-validation k-fold.  

Cross-validation is a statistical method used to gauge the expertise of machine 

learning models such as QSAR models based in GA. Because it is simple to comprehend, 

implement and produce skill estimates that often have a more negligible bias than other 

approaches, it is frequently used in applied machine learning to compare and select a 

model for a specific predictive modeling issue.[48] In short, this method divides the total 

data set into "K" subsets of the same size and from there, one of the subsets is used for 

testing while the remaining "K-1" is used to estimate the statistical parameters. This 

validation checks the model's accuracy in predicting the biological activity of novel 

substances and offers crucial statistical evidence supporting that claim (Figure 13). In 
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this figure it is possible to see an example of the statistical values and the graph that 

combines the experimental pIC50 values with the pIC50 values predicted by the model.  

2.4  Preparation of the test library and application of the model 

After the elaboration and validation of the QSAR model, a library of compounds to 

be tested must be developed. The following rules must regulate this library: 

1. The constituent compounds should have a structure similar to those used to 

build the QSAR model. 

2. It cannot contain repeating molecules. 

3. Compounds included in the library must be of natural nature. 

Intensive research must be done to gather compounds to integrate the library. To help 

with this research, several databases provide essential help. Compound databases are 

abundant and offer tremendous assistance for all bioinformatic tasks. Good free databases 

include those like Drugbank, Pubchem, ZINC15, EBI, chemoinfo, and openmolecules. 

The ZINC15 Database distinguishes out from the rest due to the enormous amount of 

chemicals it contains. 

Figure 13 – Print screen taken from Jupyter Notebook with part of the run code to obtain the QSAR 

model through the PyQSAR module. The red dots correspond to points that were adjusted after using the 

Cross-Validation method of validation. 
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Initiated to provide easy access to compounds for virtual screening, ZINC15 is a 

public access database and tool set that is now often used for virtual screening, ligand 

discovery, pharamcophore screens, benchmarking, and force field building.[49] This 

platform contains a brand-new research method for ligand discovery that links biological 

actions of medicines, natural chemicals, and gene products with marketability. ZINC15 

has over 750 million buyable compounds in its Database, making it quick and easy to find 

analogs. Additionally, just in ready-to-dock, 3D forms, this widely used Database 

comprises more than 230 million buyable substances.  

For this work, it was defined the focus in the natural component of the compounds 

gathered, finding the most compounds that might fit into a library to be evaluated and test 

the developed QSAR model. The ZINC15 Database's catalog of natural products contains 

over 200 000 items, some of which may be purchased, but no more details are given about 

them other than their structure and the fact that they are natural products. After 

researching several databases, the COCONUT database stood out. Its online interface 

enables a variety of basic searches, including those using molecule names, InChI keys, 

SMILES, and drawn structures, as well as sophisticated searches using molecular 

characteristics, substructure searches, and similarity searches.[50] Additionally, users may 

download the entire dataset or the search results in several formats. The web interface, 

the back-end, and the Database are all hosted as Docker containers, making it simple to 

move and deploy on local installations as well as host additional collections of natural 

products. COCONUT data is extracted from 53 various data sources and several manually 

collected from literature sets.[50] There are 406,747 distinct "flat" (without 

stereochemistry) natural products in the most recent COCONUT release, and there are a 

total of 731,112 natural products whose stereochemistry has been retained the last time 

this Database was accessed by the research team.[51] 

With the library of compounds to be tested complete, it is possible to proceed to the 

application of the obtained QSAR model. It only takes 3 steps to apply a QSAR model, 

namely: 

1. Calculate molecular descriptors for the compounds to be tested. 

2. Obtain the prediction formula of the studied biological activity. 

3. Apply the values of the molecular descriptors in the respective formula. 
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In order to carry out the first step, the same molecular descriptor tool that is used to 

calculate the molecular descriptors is utilized as variables in the construction of the QSAR 

model. After the calculation of these molecular descriptors, the calculation formula for 

the prediction of the studied biological activity follows. This step is relatively simple as 

PyQSAR provides all the data needed to obtain the formula. This formula can be written 

as: 

𝒑𝑰𝑪𝟓𝟎 𝑷𝑹𝑬𝑫𝑰𝑪𝑻𝑬𝑫 = 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 + (𝑫𝒏 × 𝑫𝑪𝒏) 

Where pIC50 PREDICTED value corresponds to the value of the hsTYR inhibition 

activity predicted by the model, Intercept represents the mean value of the response 

variable when all the predictor variables in the model are equal to zero, Dn corresponds 

to the fixed value obtained by PyQSAR for each descriptor that the algorithm defines as 

the final descriptor that integrates the equation, with n being replaced by the number of 

descriptors defined by PyQSAR. DCn corresponds to the descriptor value calculated by 

the molecular descriptor calculation software. Using the same calculation tool that was 

used to calculate the molecular descriptors employed in the model, the values of the 

descriptors defined by PyQSAR must be calculated for each new compound that is 

intended to predict the biological activity studied. The n is replaced by the number of 

descriptors defined by PyQSAR. 
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3. Results and Discussion 

3.1  QSAR model selection 

For this dissertation, 33 QSAR models were made using the library of compounds 

gathered and explained in section 2.1. These models were prepared considering the 

different chemical structure scaffolds in the library of hsTYR inhibitors. As stated in the 

material and methods section, the complete library was divided into 6 groups (G1-G6), 

and the division was made according to the structural similarities of the compounds 

(Figure 11). On this stage a decision was made to not consider G6 compounds due to the 

complexity of their structures. These compounds present a variable number of 

glycosylation, producing a diversity of chemical structures, both in size and chemical 

characteristics. This diversity is usually to conducive to good QSAR models. 

This separation was performed as it is widely acknowledged that QSAR modelling 

usually yields better results when the compounds used are similar in structure. For this 

dissertation, the various groups obtained by splitting the compound library were tested 

separately, and 6 models were prepared (Table 3). Other models were also obtained by 

joining groups with structural similarities in their scaffolds. For example, G5 pyrone 

scaffold compounds were tested with G1 and G3, which also present similar rings in their 

structure in total. From these combinations, 5 other models were prepared. 

Finally, all the 11 models described above were prepared using different sets of 

molecular descriptors present in OCHEM. For example, the models were prepared using 

only PADEL descriptors (total of 17,967 descriptors), PADEL descriptors with no 

fingerprint (total of 1,875 descriptors) and with all the OCHEM molecular descriptors 

(total of 28,933 descriptors). This procedure has tripled the number of QSAR models built 

to 33. 

The statistical data resulting from the models performed are shown in Table 3.  

Several models presented good statistical validation, with the top-ranked models being 

models 23, 29, 32 and 33. These models were all prepared using the complete set of 

OCHEM molecular descriptors. When analyzed in more detail, it was observed that all 

these models were obtained with no combinations. Model 23 was obtained from G1 (23 

compounds), model 29 was obtained from G2 (32 compounds), model 32 was obtained 

from G4 (41 compounds), and model 33 was obtained from G5 (28 compounds). All 
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models obtained from combinations of groups presented worse statistical results. This 

result is in accordance with the state-of-the-art QSAR modelling knowledge, as it is 

widely known that QSAR models tend to present a better statistical profile when the 

library of compounds is co-similar in structure. Libraries with compounds presenting very 

different structure profiles tend to present the worst predictive capability. 

Although all four highlighted QSAR models could be used for further analysis, as 

they present good statistical validation for all parameters, the decision was made to use 

model 32 for the remaining of this work. This decision was based on the fact that model 

32 was prepared using G4 data matrix, which presents the highest number of compounds 

(41). The number of compounds used for modelling is essential as it is good practice to 

use the highest number of compounds to increase the QSAR model's predictive power 

and statistical robustness. In addition to the greater number of compounds used, this 

model also presented the lowest values for the errors associated with the model, namely, 

RMSE=0.1708 and RMSE CV=0.1878. However, models 23, 29 and 33 will also be 

considered for further use in the subsequent studies. 
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Table 3 – Statistical results of the 33 QSAR models performed. Statistical data of QSAR model 32 is 

highlighted. R2 – determination coefficient. RMSE – square root of the mean error. R2CV – determination 

coefficient after use of the cross-validation method. RMSE CV – square root of the mean error after use of 

the cross-validation method. Q2CV – average value of the MLR method score five times the cross-

validation was performed. 

 

MODEL 

DESCRIPTION 

MODEL 

NUMBER 
R2 RMSE R2CV Q2CV RMSE CV 

NUMBER OF 

COMPOUNDS 

GROUPS 

USED 

PADEL 

DESCRIPTORS 

1 0.9134 0.3301 0.9167 0.8568 0.3989 23 G1 

2 0.6526 0.5833 0.5853 0.5637 0.6675 94 G1+G2+G3 

3 0.4325 0.7043 0.4370 0.3819 0.7313 163 G1+G2+G3+G4+G5 

4 0.5041 0.7000 0.5450 0.4848 0.7088 124 G1+G2+G4+G5 

5 0.7873 0.3850 0.7916 0.7462 0.4197 64 G1+G4 

6 0.6896 0.5132 0.6927 0.6624 0.5374 92 G1+G4+G5 

7 0.9119 0.3494 0.9146 0.8752 0.4026 32 G2 

8 0.6123 0.6103 0.6160 0.5808 0.6354 99 G2+G3+G5 

9 0.8704 0.2556 0.8723 0.6902 0.4303 39 G3 

10 0.8990 0.1841 0.8999 0.8813 0.1946 41 G4 

11 0.9337 0.2770 0.9236 0.8940 0.2936 28 G5 

PADEL 

DESCRIPTORS NO 

FINGERPRINTS 

12 0.8719 0.4016 0.8734 0.8123 0.4483 23 G1 

13 0.4215 0.7689 0.4247 0.3828 0.7904 94 G1+G2+G3 

14 0.3147 0.7739 0.3186 0.2843 0.7923 163 G1+G2+G3+G4+G5 

15 0.3840 0.7801 0.3873 0.3417 0.7997 124 G1+G2+G4+G5 

16 0.7143 0.4463 0.7217 0.6475 0.4989 64 G1+G4 

17 0.5874 0.5925 0.5971 0.5709 0.6145 92 G1+G4+G5 

18 0.7875 0.5426 0.7962 0.7098 0.6451 32 G2 

19 0.5016 0.6920 0.5052 0.4875 0.7092 99 G2+G3+G5 

20 0.8147 0.3057 0.8157 0.6160 0.4882 39 G3 

21 0.8589 0.2175 0.8610 0.8326 0.2339 41 G4 

22 0.9150 0.2924 0.9176 0.8665 0.3471 28 G5 

OCHEM 

DESCRIPTORS 

23 0.9729 0.1848 0.9732 0.9561 0.2100 23 G1 

24 0.5486 0.6792 0.5525 0.5031 0.7074 94 G1+G2+G3 

25 0.4186 0.7129 0.4221 0.3871 0.7321 163 G1+G2+G3+G4+G5 

26 0.4948 0.7007 0.4971 0.4359 0.7309 124 G1+G2+G4+G5 

27 0.8367 0.3374 0.8400 0.7524 0.4417 64 G1+G4 

28 0.6809 0.5203 0.6851 0.6197 0.5812 92 G1+G4+G5 

29 0.9299 0.3117 0.9318 0.9074 0.3466 32 G2 

30 0.5544 0.6544 0.5585 0.5194 0.6821 99 G2+G3+G5 

31 0.8932 0.2321 0.8951 0.8592 0.2574 39 G3 

32 0.9128 0.1708 0.9147 0.8922 0.1878 41 G4 

33 0.9359 0.2540 0.9379 0.9077 0.2981 28 G5 
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3.2  Structural analysis of G4 compound library 

As stated before, QSAR model 32 was selected for further studies. When analyzed 

in more detail, this group is formed by a total of 41 compounds with a scaffold presenting 

a tricyclic ring system (Figure 11). All compounds are represented in Figure 14, Figure 

15, Figure 16. 

O

O

R
8

R
7

R
6

R
5

R
4

R
3

R
2

R
1

 

 

Figure 14 – Scaffold structure for some compounds belonging to G4 compound library and 

representative table of the R groups present in these compounds. 

COMPOUND 

NUMBER 
R1 R2 R3 R4 R5 R6 R7 R8 

IC50 EXPERIMENTAL
 

(µM) 

1[42] - - - - CH3 - OCH3 OCH3 2.000 

2[42] - - - - CH2O - OCH3 OCH3 29.130 

3[42] - - - - - - OCH3 OCH3 5.120 

4[42] - - OH - OH - - - 4.520 

5[42] - OH - - CH2O - OCH3 OCH3 3.160 

6[42] - - - - CH3 - OH OH 8.930 

7[42] - - - - - - OH OCH3 3.810 

8[42] - - - - - OH - - 5.600 

9[42] - - - - OH OH - - 7.800 

10[42] - - - - OCH3 OCH3 - - 4.020 

11[42] - OCH3 - - CH3 - OCH3 OCH3 22.400 

12[42] - - - - CBr2 - OCH3 OCH3 33.700 

13[42] - - - - - OCH3 OCH3 - 8.290 

14[42] - - - - - - OH - 9.260 

15[42] - - - - OCH3 - - - 5.140 

16[42] - - - - - - OCH3 OH 5.200 

17[42] - OH - - - - OH - 4.420 

18[42] - - - - OH OCH3 OH - 3.010 

19[42] - OH - - CH3 - OH OH 3.280 

20[42] - - - - OH - - - 8.830 

21[42] - - - - - - OCH3 - 5.140 

22[42] - - - - - - - OH 8.460 

23[42] - OCH3 - - CH3 Br OCH3 OCH3 5.570 

24[42] - - - - - - OH OH 5.120 

25[42] - OCH3 - - CH3 Cl OCH3 OCH3 1.900 

26[42] - - - - - OH OH - 5.700 

27[42] - - - - - - - OCH3 5.330 

28[42] - - - - - - - - 8.840 

29[42] CH2O - OH OH - - - - 89.370 

30[42] - - - - - OCH3 - - 8.470 
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COMPOUND 

NUMBER 
R1 R2 R3 

IC50 EXPERIMENTAL
 

(µM) 

31[53] OCH3 OCH3 CHN-Thiourea 28.050 

32[53] OH OH OCH3 108.620 

33[53] OCH3 OCH3 CH2OH 200.000 

34[53] OH OH CHNOC2H5 200.000 

35[53] OC3H5 OC3H5 CHNOH 83.170 

36[53] OH OH CHN-Thiourea 24.520 

37[53] OC4H9 OC4H9 CH2OH 32.810 

38[53] OC2H3 OC2H3 CH2OH 90.990 

39[53] O2C2H5 O2C2H5 CH2OH 200.000 

40[53] O2C2H5 O2C2H5 CHN-Thiourea 58.060 

 

Figure 15 – Scaffold structure for some compounds belonging to G4 compound library and 

representative table of the R groups present in these compounds. 
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Figure 16 – Compound number 41[54] belonging to G4 compound library with an IC50 EXPERIMENTAL of 

2.800 µM. 

 

3.3  Detailed analysis of QSAR model 32 

Analyzing and comprehending the various statistical data obtained by performing a 

QSAR model is essential. This analysis will help determine the predictive power of the 

QSAR model concerning the biological activity, in this case, hsTyr inhibition activity. 

PyQSAR calculates many statistical data that may be used to determine whether the 

QSAR model is reliable. Also, the analysis of the molecular descriptors chosen by 

PyQSAR to construct the final QSAR model is important, as it may provide insights into 

the favourable characteristics of the compounds used. In this section, the process of 
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molecular descriptors selection, possible descriptor significance and the statistical 

parameters calculated will be discussed. 

As previously mentioned, this dissertation used the OCHEM platform for molecular 

descriptors calculation. OCHEM calculated a total of 28,933 molecular descriptors for 

each computer. However, due to computer processing difficulties, building QSAR models 

with this number of compounds was time-consuming and prone to errors. So, in order to 

build the QSAR models, a statistical treatment was performed on the total number of 

molecular descriptors obtained. An analysis of the variance between the different 

molecular descriptors was performed using RStudio software, thus reducing the number 

of descriptors. This analysis grouped descriptors that presented a determination 

coefficient greater than 0.99. Only one molecular descriptor of each group was 

considered, and the rest were not considered. By applying this treatment, the number of 

highly collinear descriptors was reduced and, in the end, from the initial 28,933 molecular 

descriptors submitted to the treatment, 3,126 remained. These molecular descriptors were 

submitted to treatments performed by PyQSAR and described in point 2.3.2 of this 

dissertation, and, in the end, four descriptors were selected as the final descriptors for this 

QSAR model. These descriptors were: 

1. C-026:(Dragon7) – identification of a structural segment, in which case it 

identifies the structural sequence R--CX--R where: R represents any group 

linked through carbon, X represents any electronegative atom (O, N, S, P, Se, 

halogens) and the two hyphens (--) represents an aromatic bond as in 

benzene.[55] 

2. DISSM2C:(Mera) – dissymmetry about the second principal rotational 

invariant.[56] 

3. MaxdssC:(alvaDesc) – Maximum atom-type E-State in the sequence =C< 

where equal sign (=) represents a double bond, C represents a carbon atom and 

less than sign (<) represents two bonds to the carbon atom.[57] 

4. WHALES90_Rem:(alvaDesc) – WHALES (Weighted Holistic Atom 

Localization and Entity Shape) Remoteness (percentile 90).[58] 

After choosing these molecular descriptors as the most influential for the relationship 

between G4 compounds structure and their ability to inhibit hsTYR, PyQSAR provides 
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statistical and graphical information that is useful to understand the reason for this choice. 

One of this information is the correlation matrix between the chosen molecular 

descriptors. This matrix is presented in Table 4, and it is possible to confirm that the 

molecular descriptors do not have a strong correlation with each other. This information 

is important as it shows that each molecular descriptor provides complementary 

information to the QSAR model 32. Each molecular descriptor describes different 

characteristics of the molecules, which means that a low correlation between them is 

ideal. 

Table 4 – Correlation values between the molecular descriptors. 

 C-026 DISSM2C MAXDSSC WHALES90_Rem 

C-026 1.0000 0.0355 0.0065 0.3656 

DISSM2C – 1.0000 0.2535 0.0571 

MAXDSSC – – 1.0000 0.0765 

WHALES90_Rem – – – 1.0000 

 

Another helpful information presented by the PYTHON language package is the 

relationship of hsTYR inhibition activity, pIC50 EXPERIMENTAL, and the values of the chosen 

molecular descriptors. This relationship can be seen in Graph 1 where it is possible to 

realize that all molecular descriptors contribute to predicting the values of the hsTyr 

inhibition. 

 

Graph 1 – Correlation values between the molecular descriptors and pIC50 EXPERIMENTAL. 
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Analyzing Graph 1, it is clear that some descriptors contribute more than others 

because their relationship with the pIC50 EXPERIMENTAL value is higher. However, it is 

visible that C-026 descriptor is the one that has a better correlation. Analyzing the 

significance of each molecular descriptor is sometimes difficult, as they usually are 

calculated by equations that are not always easy to understand. Also, sometimes there is 

no information on how the descriptors are calculated. 

Of the four calculated descriptors, C-026 is the easiest to understand. It states that 

compounds with features similar to Figure 17A scaffold are favored. An example of a 

compound with these features is compound 25 (Figure 17B), which presents the highest 

inhibition power of compounds from G4, with an IC50 value of 1.9 μM (Figure 14). This 

compound presents the favoured features by C-026 descriptor, with a carbonyl (C=O) 

group as the CX group, functioning as a linker between two benzene rings. The other 

descriptors are more challenging to understand, and no helpful information could be 

extracted concerning favoured features. 

CX

Eletronegative atom
(O, N, S, P, Se)

Electronegative atom (O)

Compound 25

C-026 features

O

O CH3

Cl

O

CH3O
CH3

O
CH3

A B

 

Figure 17 – In A it is possible to observe a basic structure of how the descriptor C-026 can be obtained. 

In B, compound 25 can be seen, an example of a structure with the characteristics of the descriptor C-026 

present in the library of compounds. 

The QSAR model 32 equation developed by PyQSAR, using the selected descriptors, 

is represented below (and in section 2.4 of this dissertation). Also, the most important 

statistical parameters are shown and will be discussed. This final equation will later be 

used to predict the hsTYR inhibition capacity of other compounds structurally similar to 

those used in constructing the QSAR model. 

pIC50 PREDICTED = 4.3956 + 1.8079 × “C-26” + (-0.8770) × "DISSM2C" + 

 0.8783 × "MaxdssC" + (-1.3406) × "WHALES90_Rem" 
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➢ N=41; R2=0.9128; RMSE=0.1708; 

➢ R2CV=0.9147; Q2CV=0.8922; RMSE CV=0.1878;  

Were N corresponds to the number of compounds used; R2 is the determination 

coefficient found when using the Linear Regression method between the various points 

obtained by PyQSAR when performing the prediction of the biological activity studied 

for each compound used to build the QSAR model; RMSE is the square root of the mean 

error; R2CV and RMSE CV are the values corresponding to R2 and RMSE after 

performing the Cross-Validation validation method. Finally, Q2CV is the average value 

of the MLR method score five times the Cross-Validation was performed. 

These statistical parameters generally validate the QSAR model's predictive power. 

The robustness of the model is essential for its use in accurately predicting the hsTYR 

inhibition activity of other compounds. For this type of QSAR model, there is no 

statistical reference or threshold beyond which a QSAR model is considered to have good 

predictive capacity. However, several QSAR models published in the literature consider 

that a QSAR model has good predictive power if the determination coefficient value R2 

is higher than 0.750 and the root mean error square RMSE value is less than 0.300. All 

these statistical parameters provide helpful information about the reliability of the model 

obtained; however, the most important parameter to understand the model's good 

predictive capacity is Q2CV. This value corresponds to the average value of the MLR 

method score after the Cross-Validation is performed five times. This means that this 

value defines the ability of the model to predict values close to the experimental values; 

that is, this value defines the model's accuracy. If the Q2CV value is greater than 0.750, 

it is usually assumed that the model has good accuracy.  

For QSAR model 32, all statistical parameters fall within the values indicated with 

R2 (0.9128); R2CV (0.9147) and Q2CV (0.8922) presenting values well above 0.750; and 

RMSE (0.1708) and RMSE CV (0.1878) values falling well below 0.3.[59] 

Table 5 presents the difference between the experimental and predicted pIC50 values 

of hsTYR inhibition for each of the 41 compounds from G4, used to implement QSAR 

model 32. The difference is presented as module values, and in general, the differences 

observed for most compounds are low, ranging from 0.006 (compound 15) to 0.500 

(compound 22). 
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Table 5 – Experimental and predicted pIC50 using QSAR model 32 for G4 compounds. 

COMPOUND 

NUMBER 

pIC50 

EXPERIMENTAL 

pIC50 

PREDICTED 
|Δ pIC50| 

COMPOUND 

NUMBER 

pIC50 

EXPERIMENTAL 

pIC50 

PREDICTED 
|Δ pIC50| 

1[42] 5.699 5.539 0.160 22[42] 5.073 5.105 0.032 

2[42] 4.536 4.625 0.089 23[42] 5.254 5.328 0.074 

3[42] 5.291 5.216 0.075 24[42] 5.291 5.359 0.068 

4[42] 5.345 5.224 0.121 25[42] 5.721 5.491 0.230 

5[42] 5.500 5.128 0.372 26[42] 5.244 5.227 0.017 

6[42] 5.049 5.313 0.264 27[42] 5.273 5.286 0.013 

7[42] 5.419 5.565 0.146 28[42] 5.054 5.018 0.036 

8[42] 5.252 5.101 0.151 29[42] 4.049 4.055 0.006 

9[42] 5.108 5.118 0.010 30[42] 5.072 5.333 0.261 

10[42] 5.396 5.161 0.235 31[53] 4.552 4.319 0.233 

11[42] 4.650 4.885 0.235 32[53] 3.964 4.009 0.045 

12[42] 4.472 4.972 0.500 33[53] 3.699 3.721 0.022 

13[42] 5.081 5.287 0.206 34[53] 3.699 3.946 0.247 

14[42] 5.033 4.981 0.052 35[53] 4.080 4.228 0.148 

15[42] 5.289 5.228 0.061 36[53] 4.610 4.704 0.094 

16[42] 5.284 5.191 0.093 37[53] 4.484 4.291 0.193 

17[42] 5.355 5.319 0.036 38[53] 4.041 4.144 0.103 

18[42] 5.521 5.575 0.054 39[53] 3.699 3.783 0.084 

19[42] 5.484 5.548 0.064 40[53] 4.236 3.917 0.319 

20[42] 5.054 4.924 0.130 41[54] 5.553 5.631 0.078 

21[42] 5.289 5.206 0.083 – – – – 

 

Graph 2 presents the graphical relationship between pIC50 experimental values and 

pIC50 predicted values obtained. The linear regression line that defines the Determination 

coefficient (R2) of QSAR model 32 is also presented. 

 

Graph 2 – Graphical representation of the relationship between pIC50 EXPERIMENTAL and pIC50 PREDICTED 
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In general, by observing the dispersion of points shown in Graph 2, and the statistical 

values presented, it is possible to infer that QSAR model 32 will potentially provide good 

predictions of hsTYR inhibitory activity when applied to other compounds or interest. 

3.4  QSAR model 32 application using natural compounds 

Upon validation, QSAR model 32 was used to predict the hsTYR inhibition activity 

of a library of selected natural compounds. This library of compounds was selected using 

the COCONUT platform with the help of scaffold search tools present in this Database.  

The COCONUT database presents several tools to search for structures similar to a 

given scaffold. For example, it is possible to search for structure similarity as a percentage 

(from 1% to 100%) or by indicating a structure as a scaffold and then search for similar 

structures at different levels. Furthermore, this platform allows searching for structures 

with the same scaffold using different search algorithms. After several searches and 

attempts, the method with which it was possible to find more compounds with similar 

structures to compounds used to develop QSAR model 32 was by using the Ullmann 

algorithm. 

By using this algorithm, natural compounds with four different scaffolds similar to 

the structural scaffold of the compounds present in G4 were searched. These scaffolds 

can be seen in Figure 18. After completing the search, a total of 1,628 compounds were 

collected into the library of test compounds.  

S1 S2

S3 S4
 

Figure 18 – Structures used as scaffolds for searching the COCONUT database. 
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All collected compounds can be viewed via the http://esa.ipb.pt/qsar/ website. On 

this website developed by the research team, a list of all compounds can be observed as 

well as the activity predicted by the QSAR model for each compound. Every compound 

is directly linked to the COCONUT platform providing all information available in this 

database relative to each compound.  

It is possible to verify that the scaffold whose search resulted in more compounds for 

our test library was S1 containing 1,031 compounds, followed by S2, with 281 

compounds, S3 with 206 compounds, and finally, S4 with 110 compounds.  

Considering the structures of G4 compounds (Figure 14-16), used to build the QSAR 

model 32, this distribution seems logical, with S1 being the scaffold most similar to the 

compounds with the highest number present in G4. Since, as can be seen from Table 3, 

the models using G4 obtained, in general, good statistical data, it is possible to infer that 

compounds with an S1 scaffold are likely to have a strong relationship with the ability to 

inhibit hsTYR. 

Through the analysis of the tested compounds, it is possible to verify that QSAR 

model 32 predicted that the 1 628 compounds have values for pIC50 between 2.77 and 

6.27. For example, compound 608 was the one with the best predicted hsTYR inhibition 

ability, with a pIC50 value of 6.2683; corresponding to an IC50 concentration of 0.5391μM. 

After predicting the hsTYR inhibiting activity of all compounds collected from the 

COCONUT database, the ZINC15 database was used to find and eventually purchase the 

most potent compounds. All compounds with a pIC50 PREDICTED greater than 5.000 were 

considered for commercial acquisition, totaling 353 of the 1,628 compounds tested.  Of 

all these compounds, only 18 different compounds were set for purchase and are in the 

process of being acquired. The purchased compounds can be seen in Table 6. As soon as 

the purchased compounds are delivered, they will be tested as potential hsTYR inhibitors 

and thus experimentally validate QSAR model 32.  

 

 

 

 

http://esa.ipb.pt/qsar/
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Table 6 – Natural compounds purchased and to be tested apon arrival. 

COMPOUND 

Nº 

PIC50 

PREDICTED 
COCONUT ID CAS Nº ENTERPRISE ID SUPLIER 

648 5.7827 CNP0439104 3443-90-1 MolPort-003-909-021 AK Scientific, Inc. 

293 5.1029 CNP0475182 3443-92-3 MolPort-006-116-200 AK Scientific, Inc. 

344 5.2592 CNP0474656 67893-47-4 MolPort-006-117-940 AK Scientific, Inc. 

367 5.1370 CNP0046760 No CAS 
MolPort-002-139-351 

ChemBridge Corporation 
MCULE-8967606569 

665 5.3727 CNP0052828 No CAS 
MolPort-001-913-470 

ChemDiv, Inc. 
MCULE-8834371025 

454 5.1085 CNP0035287 No CAS 
MolPort-007-550-577 

ChemDiv, Inc. 
MCULE-2534118453 

450 5.1626 CNP0054520 No CAS 
MolPort-007-550-578 

ChemDiv, Inc. 
MCULE-3394290773 

331 5.3251 CNP0336430 No CAS 
MolPort-000-628-430 

Vitas M Chemical Limited 
MCULE-2659259858 

338 5.5672 CNP0160897 No CAS 
MolPort-000-628-431 

Vitas M Chemical Limited 
MCULE-4610965051 

264 5.4767 CNP0160170 81-39-0 
MolPort-000-628-457 

Vitas M Chemical Limited 
MCULE-8543235543 

329 5.4312 CNP0370520 No CAS MolPort-000-644-441 Vitas M Chemical Limited 

257 5.4607 CNP0369027 No CAS MolPort-000-645-394 Vitas M Chemical Limited 

340 5.2265 CNP0328895 No CAS 
MolPort-000-846-637 

Vitas M Chemical Limited 
MCULE-7116644768 

377 5.0707 CNP0204913 No CAS 
MolPort-001-014-913 

Vitas M Chemical Limited 
MCULE-4737231165 

609 5.2573 CNP0362893 No CAS MolPort-002-136-204 Vitas M Chemical Limited 

332 5.3571 CNP0365332 No CAS MolPort-002-363-875 Vitas M Chemical Limited 

464 5.4682 CNP0468374 128-80-3 
MolPort-002-685-168 

Vitas M Chemical Limited 
MCULE-3441174162 

636 5.9438 CNP0412420 No CAS MolPort-044-180-836 Vitas M Chemical Limited 

 

  

https://coconut.naturalproducts.net/compound/coconut_id/CNP0439104
https://commonchemistry.cas.org/detail?cas_rn=3443-90-1
https://coconut.naturalproducts.net/compound/coconut_id/CNP0475182
https://commonchemistry.cas.org/detail?cas_rn=3443-92-3
https://coconut.naturalproducts.net/compound/coconut_id/CNP0474656
https://commonchemistry.cas.org/detail?cas_rn=67893-47-4
https://coconut.naturalproducts.net/compound/coconut_id/CNP0046760
https://coconut.naturalproducts.net/compound/coconut_id/CNP0052828
https://coconut.naturalproducts.net/compound/coconut_id/CNP0035287
https://coconut.naturalproducts.net/compound/coconut_id/CNP0054520
https://coconut.naturalproducts.net/compound/coconut_id/CNP0336430
https://coconut.naturalproducts.net/compound/coconut_id/CNP0160897
https://coconut.naturalproducts.net/compound/coconut_id/CNP0160170
https://commonchemistry.cas.org/detail?cas_rn=81-39-0
https://coconut.naturalproducts.net/compound/coconut_id/CNP0370520
https://coconut.naturalproducts.net/compound/coconut_id/CNP0369027
https://coconut.naturalproducts.net/compound/coconut_id/CNP0328895
https://coconut.naturalproducts.net/compound/coconut_id/CNP0204913
https://coconut.naturalproducts.net/compound/coconut_id/CNP0362893
https://coconut.naturalproducts.net/compound/coconut_id/CNP0365332
https://coconut.naturalproducts.net/compound/coconut_id/CNP0468374
https://commonchemistry.cas.org/detail?cas_rn=128-80-3
https://coconut.naturalproducts.net/compound/coconut_id/CNP0412420
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4. Conclusion 

An in silico library of 196 hsTYR inhibitors was prepared based on a literature search 

of experimental studies. From these compounds, it was possible to implement QSAR 

models of hsTYR activity. Compounds from the library were divided into 6 groups 

according to structural similarities. Molecular descriptors were calculated using several 

tools, testing the capabilities and usefulness of these descriptor calculation platforms. A 

total of 33 QSAR models were built using various combinations between the defined 

groups and the molecular descriptors calculated by different tools.  

After analyzing all QSAR model's statistical data, QSAR model 32 was selected for 

further studies. This model used the G4 group composed of 41 compounds and the 

OCHEM descriptor calculation platform with a total of 28,933 molecular descriptors. 

These descriptors were subjected to statistical treatment to reduce the information, and 

the initial molecular descriptors were reduced to 3,126 and introduced into the PyQSAR 

tool. After analyzing the molecular descriptors provided, PyQSAR selected 4, using 

mathematical, statistical, and clustering methods, and a QSAR equation was obtained. 

The molecular descriptors selected were: C-026:(Dragon7), DISSM2C :(Mera), 

MaxdssC:(alvaDesc) and WHALES90_Rem:(alvaDesc). These molecular descriptors 

have a weak correlation with each other, demonstrating that each descriptor determines a 

different characteristic, thus reducing the probability of correlated values. In general, 

QSAR model 32 presented excellent statistical values for the determination coefficients 

(R2=0.9128 and R2CV=0.9147), for the mean error values (RMSE=0.1708 and RMSE 

CV=0.1878) and the mean score of the multiple linear regression method 

(Q2CV=0.8922), confirming the good predictive power of the model. 

A library of natural compounds with a structure similar to G4 compounds was 

prepared with the help of the search tools present in the COCONUT database of natural 

compounds, namely the method of searching for similar structures using the Ullmann 

algorithm. A total of 1,628 natural compounds were selected using 4 different structures 

as scaffolds for the compound research. The molecular descriptors of these compounds 

were calculated using OCHEM, and the equation obtained by the QSAR model was 

applied in order to predict the hsTYR inhibition capacity of each compound. The results 

are displayed on a website built by the research team and can be viewed by accessing the 

URL http://esa.ipb.pt/qsar/. 

http://esa.ipb.pt/qsar/
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After predicting the inhibitory activity of the 1,628 in the natural compounds library, 

the ZINC15 database was used to verify which of these natural compounds were available 

for acquisition. Most of the 353 compounds searched were not available for purchase. A 

decision was made, and only 18 different compounds were set to buy. Upon arrival, these 

compounds will be tested against hsTYR to obtain their experimental capacity to inhibit 

this enzyme and thus validate QSAR model 32 as a predictive tool. 

If one or more of the 18 compounds purchased present strong hsTYR inhibition 

activity, they would be considered for potential use in cosmeceutical applications related 

to an excess of melanin production, including skin-whitening and anti-pigmentation 

disorders applications. 

  



42 
 

5. References 

[1] Simon, J. D., Peles, D., Wakamatsu, K., & Ito, S. (2009). Current challenges in 

understanding melanogenesis: bridging chemistry, biological control, morphology, and 

function. Pigment cell & melanoma research, 22(5), 563-579. 

[2] Schiaffino, M. V. (2010). Signaling pathways in melanosome biogenesis and 

pathology. The international journal of biochemistry & cell biology, 42(7), 1094-1104. 

[3] Yamaguchi, Y., Brenner, M., & Hearing, V. J. (2007). The regulation of skin 

pigmentation. Journal of biological chemistry, 282(38), 27557-27561. 

[4] Sitaram, A., & Marks, M. S. (2012). Mechanisms of protein delivery to melanosomes 

in pigment cells. Physiology, 27(2), 85-99. 

[5] Bonaventure, J., Domingues, M. J., & Larue, L. (2013). Cellular and molecular 

mechanisms controlling the migration of melanocytes and melanoma cells. Pigment cell 

& melanoma research, 26(3), 316-325. 

[6] Winslow, T. (2008). Skin Anatomy. Terese Winslow LLC Medical Illustration. 

[7] Passeron, T., Coelho, S. G., Miyamura, Y., Takahashi, K., & Hearing, V. J. (2007). 

Immunohistochemistry and in situ hybridization in the study of human skin melanocytes. 

Experimental dermatology, 16(3), 162-170. 

[8] Hearing, V. J. (2011). Determination of melanin synthetic pathways. The Journal of 

investigative dermatology, 131(E1), E8. 

[9] Lai, X., Wichers, H. J., Soler‐Lopez, M., & Dijkstra, B. W. (2018). Structure and 

function of human tyrosinase and tyrosinase‐related proteins. Chemistry–A European 

Journal, 24(1), 47-55. 

[10] Roulier, B., Pérès, B., & Haudecoeur, R. (2020). Advances in the design of genuine 

human tyrosinase inhibitors for targeting melanogenesis and related pigmentations. 

Journal of Medicinal Chemistry, 63(22), 13428-13443. 

[11] Fogal, S., Carotti, M., Giaretta, L., Lanciai, F., Nogara, L., Bubacco, L., & 

Bergantino, E. (2015). Human tyrosinase produced in insect cells: a landmark for the 

screening of new drugs addressing its activity. Molecular biotechnology, 57(1), 45-57. 



43 
 

[12] Dolinska, M. B., Wingfield, P. T., Young, K. L., & Sergeev, Y. V. (2019). The 

TYRP1‐mediated protection of human tyrosinase activity does not involve stable 

interactions of tyrosinase domains. Pigment cell & melanoma research, 32(6), 753-765. 

[13] National Center for Biotechnology Information (2022). PubChem Pathway 

Summary for Pathway SMP0000006, Tyrosine Metabolism, Source: PathBank. Retrieved 

January 22, 2022 from 

https://pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000006. 

[14] Chang, T. S. (2012). Natural melanogenesis inhibitors acting through the down-

regulation of tyrosinase activity. Materials, 5(9), 1661-1685. 

[15] Costin, G. E., & Hearing, V. J. (2007). Human skin pigmentation: melanocytes 

modulate skin color in response to stress. The FASEB journal, 21(4), 976-994. 

[16] Buitrago, E., Hardre, R., Haudecoeur, R., Jamet, H., Belle, C., Boumendjel, A., 

Bubacco, L., & Reglier, M. (2016). Are human tyrosinase and related proteins suitable 

targets for melanoma therapy?. Current topics in medicinal chemistry, 16(27), 3033-3047. 

[17] Naidoo, L., Khoza, N., & Dlova, N. C. (2016). A fairer face, a fairer tomorrow? A 

review of skin lighteners. Cosmetics, 3(3), 33. 

[18] Burger, P., Landreau, A., Azoulay, S., Michel, T., & Fernandez, X. (2016). Skin 

whitening cosmetics: Feedback and challenges in the development of natural skin 

lighteners. Cosmetics, 3(4), 36. 

[19] Sagoe, D., Pallesen, S., Dlova, N. C., Lartey, M., Ezzedine, K., & Dadzie, O. (2019). 

The global prevalence and correlates of skin bleaching: a meta‐analysis and meta‐

regression analysis. International journal of dermatology, 58(1), 24-44. 

[20] The Global Coalition for Melanoma Patient Advocacy (2020). Melanoma Skin 

Cancer Report. https://melanomapatients.org.au (accessed Jan 11, 2022). 

[21] McDermott, D., Lebbé, C., Hodi, F. S., Maio, M., Weber, J. S., Wolchok, J. D., 

Thompson, J., & Balch, C. M. (2014). Durable benefit and the potential for long-term 

survival with immunotherapy in advanced melanoma. Cancer treatment reviews, 40(9), 

1056-1064. 

https://pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000006
https://melanomapatients.org.au/wp-content/uploads/2020/04/2020-campaign-report-GC-version-MPA_1.pdf


44 
 

[22] Espenel, S., Vallard, A., Rancoule, C., Garcia, M. A., Guy, J. B., Chargari, C., 

Deutsch, E., & Magné, N. (2017). Melanoma: last call for radiotherapy. Critical reviews 

in oncology/hematology, 110, 13-19. 

[23] Haining, R. L., & Achat-Mendes, C. (2017). Neuromelanin, one of the most 

overlooked molecules in modern medicine, is not a spectator. Neural regeneration 

research, 12(3), 372. 

[24] Zucca, F. A., Segura-Aguilar, J., Ferrari, E., Muñoz, P., Paris, I., Sulzer, D., Sarna, 

T., Casella, L., & Zecca, L. (2017). Interactions of iron, dopamine and neuromelanin 

pathways in brain aging and Parkinson's disease. Progress in neurobiology, 155, 96-119. 

[25] Bose, A., Petsko, G. A., & Eliezer, D. (2018). Parkinson's disease and melanoma: 

co-occurrence and mechanisms. Journal of Parkinson's disease, 8(3), 385-398. 

[26] Saruno, R., Kato, F., & Ikeno, T. (1979). Kojic acid, a tyrosinase inhibitor from 

Aspergillus albus. Agricultural and Biological Chemistry, 43(6), 1337-1338. 

[27] Mann, T., Gerwat, W., Batzer, J., Eggers, K., Scherner, C., Wenck, H., Stäb, F., 

Hearing, V. J., Röhm, K. H., & Kolbe, L. (2018). Inhibition of human tyrosinase requires 

molecular motifs distinctively different from mushroom tyrosinase. Journal of 

Investigative Dermatology, 138(7), 1601-1608. 

[28] Ranganath, L. R., Norman, B. P., & Gallagher, J. A. (2019). Ochronotic pigmentation 

is caused by homogentisic acid and is the key event in alkaptonuria leading to the 

destructive consequences of the disease—a review. Journal of inherited metabolic 

disease, 42(5), 776-792. 

[29] Mann, T., Scherner, C., Röhm, K. H., & Kolbe, L. (2018). Structure-activity 

relationships of thiazolyl resorcinols, potent and selective inhibitors of human tyrosinase. 

International journal of molecular sciences, 19(3), 690. 

[30] Gini, G. (2018). QSAR: What Else?. In Computational Toxicology (pp. 79-105). 

Humana Press, New York, NY. 

[31] Goya Jorge E., Rayar A. M., Barigye S. J., Jorge Rodríguez M. E., & Sylla-Iyarreta 

Veitía M. (2016). Development of an in silico Model of DPPH• Free Radical Scavenging 

Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds. In-

ternational Journal of Molecular Sciences, 17(6), 881. 



45 
 

[32] Hansch C., Maloney P. P., Fujita T., & Muir R. M. (1962). Correlation of biological 

Activity of phenoxyacetic acids with Hammett substituent constants and partition 

coefficients. Nature, 194(4824), 178-180. 

[33] Roy K., Kar S., & Das R. N. (2015). "Chapter 1.2: What is QSAR? Definitions and 

Formulism". A primer on QSAR/QSPR modeling: Fundamental Concepts. New York: 

Springer-Verlag Inc., 2–6. 

[34] Ghasemi F., Mehridehnavi A., Perez-Garrido A., & Perez-Sanchez H. (2018). Neural 

network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug 

Discov. Today, 23(10), 1784-1790. 

[35] Xue L., & Bajorath J. (2000). Molecular descriptors in chemoinformatics, 

computational combinatorial chemistry, and virtual screening. Combinatorial chemistry 

& high throughput screening, 3(5), 363-372. 

[36] Hopfinger A. J., Wang S., Tokarski J. S., Jin B., Albuquerque M., Madhav P. J., & 

Duraiswami C. (1997). Construction of 3D-QSAR models using the 4D-QSAR analysis 

formalism. Journal of the American Chemical Society, 119(43), 10509-10524. 

[37] Vedani A., & Dobler M. (2002). 5D-QSAR: the key for simulating induced fit?. 

Journal of medicinal chemistry, 45(11), 2139-2149. 

[38] Vedani A., Dobler M., & Lill M. A. (2005). Combining protein modeling and 6D-

QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. 

Journal of medicinal chemistry, 48(11), 3700-3703. 

[39] Todeschini R., Consonni V., & Mannhold R. (2000). Methods and principles in 

medicinal chemistry. Kubinyi H, Timmerman H (Series eds) Handbook of molecular 

descriptors. Wiley-VCH, Weinheim. 

[40] Oliveira, N., Abreu, R., & Adega, F. (2021). Tirosinase humana como proteína-alvo 

para doenças de pele: estudos de modelação molecular. Relatório Final de Estágio de 

Licenciatura em Biologia na Universidade de Trás-os-Montes e Alto Douro (UTAD). 

[41] Nguyen, M. T., Le, T. H., Nguyen, H. X., Dang, P. H., Do, T. N., Abe, M., Takagi, 

R., & Nguyen, N. T. (2017). Artocarmins G–M, prenylated 4-chromenones from the 

stems of Artocarpus rigida and their tyrosinase inhibitory activities. Journal of natural 

products, 80(12), 3172-3178. 



46 
 

[42] Rosa, G. P., Palmeira, A., Almeida, I. F., Kane-Pagès, A., Barreto, M. C., Sousa, E., 

& Pinto, M. M. M. (2021). Xanthones for melanogenesis inhibition: Molecular docking 

and QSAR studies to understand their anti-tyrosinase activity. Bioorganic & Medicinal 

Chemistry, 29, 115873. 

[43] Wu, Y., Wu, Z. R., Chen, P., Deng, W. R., Wang, Y. Q., & Li, H. Y. (2015). Effect 

of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase 

gene expression and melanine accumulation in melanoma cells. Bioorganic & Medicinal 

Chemistry Letters, 25(7), 1476-1478. 

[44] Casañola-Martín, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., 

Sultankhodzhaev, M. N., & Torrens, F. (2006). New tyrosinase inhibitors selected by 

atomic linear indices-based classification models. Bioorganic & medicinal chemistry 

letters, 16(2), 324-330. 

[45] Young, S. S., Yuan, F., & Zhu, M. (2012). Chemical descriptors are more important 

than learning algorithms for modelling. Molecular informatics, 31(10), 707-710. 

[46] Hongmao, S. (2016). Chapter 5-Quantitative Structure–Activity Relationships: 

Promise, Validations, and Pitfalls. A Practical Guide to Rational Drug Design. Woodhead 

Publishing, 163-192. 

[47] Sushko, I., Novotarskyi, S., Körner, R., Pandey, A. K., Rupp, M., Teetz, W., 

Brandmaier, S., Abdelaziz, A., Prokopenko, V. V., Tanchuk, V. Y., Todeschini, R., 

Varnek, A., Marcou, G., Ertl, P., Potemkin, V., Grishina, M., Gasteiger, J., Schwab, C., 

Baskin, I. I., Palyulin, V. A., Radchenko, E. V., Welsh, W. J., Kholodovych, V., 

Chekmarev, D., Cherkasov, A., Aires-de-Sousa, J., Zhang, Q. Y., Bender, A., Nigsch, F., 

Patiny, L., Williams, A., Tkachenko, V., Tetko, I. V. (2011). Online chemical modeling 

environment (OCHEM): web platform for data storage, model development and 

publishing of chemical information. Journal of computer-aided molecular design, 25(6), 

533-554. 

[48] A Gentle Introduction to k-fold Cross-Validation (2018). Machine Learning 

Mastery. https://machinelearningmastery.com/k-fold-cross-validation/ (accessed Sep 10, 

2022). 

[49] Sterling, T., & Irwin, J. J. (2015). ZINC 15–ligand discovery for everyone. Journal 

of chemical information and modeling, 55(11), 2324-2337. 

https://machinelearningmastery.com/k-fold-cross-validation/


47 
 

[50] Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A., & Steinbeck, C. (2021). 

COCONUT online: collection of open natural products database. Journal of 

Cheminformatics, 13(1), 1-13. 

[51] COCONUT (COlleCtion of Open Natural prodUcTs). 

https://coconut.naturalproducts.net/documentation (accessed Sep 20, 2022). 

[52] Moonrungsee, N., Shimamura, T., Kashiwagi, T., Jakmunee, J., Higuchi, K., & 

Ukeda, H. (2012). Sequential injection spectrophotometric system for evaluation of 

mushroom tyrosinase-inhibitory activity. Talanta, 101, 233-239. 

[53] Gao, H. (2018). Predicting tyrosinase inhibition by 3D QSAR pharmacophore 

models and designing potential tyrosinase inhibitors from Traditional Chinese medicine 

database. Phytomedicine, 38, 145-157. 

[54] Li, K., Ji, S., Song, W., Kuang, Y., Lin, Y., Tang, S., Cui, Z., Qiao, X., Yu, S,. & 

Ye, M. (2017). Glycybridins A–K, bioactive phenolic compounds from Glycyrrhiza 

glabra. Journal of Natural Products, 80(2), 334-346. 

[55] Todeschini, R., & Consonni, V. (2009). Molecular Descriptors for 

Chemoinformatics, 2 Volume Set: Volume I: Alphabetical Listing/Volume II: 

Appendices, References (Vol. 41). Wiley-VCH. 

[56] OCHEM (Online chemical database). 

https://docs.ochem.eu/display/MAN/MERA+descriptors.html (accessed Oct 13, 2022). 

[57] DEDuCT (Database of endocrine disrupting chemicals and their toxicity profiles). 

https://cb.imsc.res.in/deduct/descriptors/eJaFhpBpbGtp (accessed Oct 13, 2022). 

[58] Grisoni, F., Merk, D., Consonni, V., Hiss, J. A., Tagliabue, S. G., Todeschini, R., & 

Schneider, G. (2018). Scaffold hopping from natural products to synthetic mimetics by 

holistic molecular similarity. Communications Chemistry, 1(1), 1-9. 

[59] Consonni, V., Ballabio, D., & Todeschini, R. (2009). Comments on the definition of 

the Q 2 parameter for QSAR validation. Journal of chemical information and modeling, 

49(7), 1669-1678. 

[60] Panzella, L., & Napolitano, A. (2019). Natural and bioinspired phenolic compounds 

as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. 

Cosmetics, 6(4), 57. 

https://coconut.naturalproducts.net/documentation
https://docs.ochem.eu/display/MAN/MERA+descriptors.html
https://cb.imsc.res.in/deduct/descriptors/eJaFhpBpbGtp


48 
 

[61] Haudecoeur, R., Carotti, M., Gouron, A., Maresca, M., Buitrago, E., Hardré, R., 

Bergantino, E., Jamet, H., Belle, C., Réglier, M., Bubacco, L., & Boumendjel, A. (2017). 

2-Hydroxypyridine-n-oxide-embedded aurones as potent human tyrosinase inhibitors. 

ACS medicinal chemistry letters, 8(1), 55-60. 

[62] Okombi, S., Rival, D., Bonnet, S., Mariotte, A. M., Perrier, E., & Boumendjel, A. 

(2006). Discovery of benzylidenebenzofuran-3 (2 H)-one (aurones) as inhibitors of 

tyrosinase derived from human melanocytes. Journal of medicinal chemistry, 49(1), 329-

333. 

[63] Ji, S., Li, Z., Song, W., Wang, Y., Liang, W., Li, K., Tang, S., Wang, Q., Qiao, X., 

Zhou, D., Yu, S., & Ye, M. (2016). Bioactive constituents of Glycyrrhiza uralensis 

(licorice): discovery of the effective components of a traditional herbal medicine. Journal 

of Natural Products, 79(2), 281-292. 

[64] Pillaiyar, T., Namasivayam, V., Manickam, M., & Jung, S. H. (2018). Inhibitors of 

melanogenesis: an updated review. Journal of medicinal chemistry, 61(17), 7395-7418. 

[65] Takara, K., Iwasaki, H., Ujihara, K., & Wada, K. (2008). Human tyrosinase inhibitor 

in rum distillate wastewater. Journal of Oleo Science, 57(3), 191-196. 

[66] Likhitwitayawuid, K., Sornsute, A., Sritularak, B., & Ploypradith, P. (2006). 

Chemical transformations of oxyresveratrol (trans-2, 4, 3′, 5′-tetrahydroxystilbene) into a 

potent tyrosinase inhibitor and a strong cytotoxic agent. Bioorganic & medicinal 

chemistry letters, 16(21), 5650-5653. 

[67] Iwadate, T., & Nihei, K. I. (2015). Rhododendrol glycosides as stereospecific 

tyrosinase inhibitors. Bioorganic & Medicinal Chemistry, 23(20), 6650-6658. 

[68] Lee, C. W., Son, E. M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B. J., & Koo, K. A. 

(2007). Synthetic tyrosyl gallate derivatives as potent melanin formation inhibitors. 

Bioorganic & medicinal chemistry letters, 17(19), 5462-5464. 

[69] Catalano, M., Bassi, G., Rotondi, G., Khettabi, L., Dichiara, M., Murer, P., 

Scheuermann, J., Soler-Lopez, M.,  & Neri, D. (2021). Discovery, affinity maturation and 

multimerization of small molecule ligands against human tyrosinase and tyrosinase-

related protein 1. RSC medicinal chemistry, 12(3), 363-369. 



49 
 

[70] Husain, A., Khan, S. A., Iram, F., Iqbal, M. A., & Asif, M. (2019). Insights into the 

chemistry and therapeutic potential of furanones: A versatile pharmacophore. European 

Journal of Medicinal Chemistry, 171, 66-92. 

[71] Yoshimori, A., Oyama, T., Takahashi, S., Abe, H., Kamiya, T., Abe, T., & Tanuma, 

S. I. (2014). Structure–activity relationships of the thujaplicins for inhibition of human 

tyrosinase. Bioorganic & medicinal chemistry, 22(21), 6193-6200. 

[72] Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., & Kuriki, T. (2003). 

Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those 

of α-arbutin and arbutin on human tyrosinase. Chemical and pharmaceutical bulletin, 

51(7), 798-801. 

[73] Sugimoto, K., Nomura, K., Nishimura, T., Kiso, T., Sugimoto, K., & Kuriki, T. 

(2005). Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human 

tyrosinase. Journal of bioscience and bioengineering, 99(3), 272-276. 

[74] Sugimoto, S., Yamano, Y., Desoukey, S. Y., Katakawa, K., Wanas, A. S., Otsuka, 

H., & Matsunami, K. (2019). Isolation of Sesquiterpene–Amino Acid Conjugates, 

Onopornoids A–D, and a Flavonoid Glucoside from Onopordum alexandrinum. Journal 

of natural products, 82(6), 1471-1477. 

[75] Ishioka, W., Oonuki, S., Iwadate, T., & Nihei, K. I. (2019). Resorcinol alkyl 

glucosides as potent tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 

29(2), 313-316. 

[76] Su, C. R., Kuo, P. C., Wang, M. L., Liou, M. J., Damu, A. G., & Wu, T. S. (2003). 

Acetophenone Derivatives from Acronychia p edunculata. Journal of natural products, 

66(7), 990-993. 

[77] Cho, S., Kim, S. H., & Shin, D. (2019). Recent applications of hydantoin and 

thiohydantoin in medicinal chemistry. European journal of medicinal chemistry, 164, 

517-545. 

 

 

  



50 
 

6. Supporting Information 

Table S1 – Transformation of IC50 values into pIC50 of compounds present in the compound library. 

COMPOUND 

NUMBER 

IC50 

(μM) 
pIC50 

COMPOUND 

NUMBER 

IC50 

(μM) 
pIC50 

GROUP 1 

1[53] 2,720 5,565 
GROUP 2 

54[64] 19,200 4,717 

2[53] 0,110 6,959 55[64] 0,070 7,155 

3[53] 1,960 5,708 

GROUP 3 

56[53] 6,130 5,213 

4[60] 20,000 4,699 57[53] 20,500 4,688 

5[41] 0,023 7,638 58[53] 58,060 4,236 

6[61] 30,000 4,523 59[53] 59,700 4,224 

7[54] 7,500 5,125 60[53] 20,100 4,697 

8[61] 85,300 4,069 61[53] 27,100 4,567 

9[54] 0,090 7,046 62[53] 54,400 4,264 

10[41] 45,300 4,344 63[29] 3,200 5,495 

11[62] 31,700 4,499 64[29] 19,000 4,721 

12[62] 38,400 4,416 65[29] 750,000 3,125 

13[10] 16,000 4,796 66[29] 56,000 4,252 

14[63] 0,177 6,752 67[29] 3,500 5,456 

15[63] 0,154 6,812 68[29] 15,000 4,824 

16[63] 1,000 6,000 69[29] 33,000 4,481 

17[64] 0,980 6,009 70[29] 5,600 5,252 

18[61] 119,000 3,924 71[29] 6,200 5,208 

19[10] 60,000 4,222 72[29] 25,000 4,602 

20[64] 290,000 3,538 73[29] 60,000 4,222 

21[64] 8,000 5,097 74[29] 16,000 4,796 

22[62] 38,000 4,420 75[29] 10,000 5,000 

23[54] 5,100 5,292 76[29] 5,700 5,244 

GROUP 2 

24[53] 0,029 7,538 77[29] 81,000 4,092 

25[53] 250,000 3,602 78[29] 9,800 5,009 

26[53] 250,000 3,602 79[29] 6,900 5,161 

27[53] 79,050 4,102 80[29] 140,000 3,854 

28[53] 250,000 3,602 81[29] 160,000 3,796 

29[53] 250,000 3,602 82[29] 3,500 5,456 

30[65] 18500,00 1,733 83[29] 1400,000 2,854 

31[10] 1,700 5,770 84[29] 40,000 4,398 

32[64] 4,770 5,321 85[10] 3,200 5,495 

33[64] 12,600 4,900 86[10] 1,600 5,796 

34[10] 40,000 4,398 87[10] 4,600 5,337 

35[64] 1,950 5,710 88[10] 1,400 5,854 

36[10] 5,000 5,301 89[10] 2,500 5,602 

37[66] 12,700 4,896 90[10] 1,100 5,959 

38[10] 2,000 5,699 91[70] 5,600 5,252 

39[64] 7,890 5,103 92[10] 2,600 5,585 

40[66] 1,600 5,796 93[10] 3,200 5,495 

41[67] 4,560 5,341 94[10] 51,000 4,292 

42[68] 15,210 4,818 

GROUP 4 

95[53] 28,050 4,552 

43[64] 0,080 7,097 96[53] 58,060 4,236 

44[10] 9,100 5,041 97[53] 90,990 4,041 

45[68] 14,500 4,839 98[53] 108,620 3,964 

46[10] 85,000 4,071 99[53] 200,000 3,699 

47[10] 141,000 3,851 100[53] 200,000 3,699 

48[10] 2,500 5,602 101[53] 24,520 4,610 

49[68] 4,930 5,307 102[53] 32,810 4,484 

50[64] 0,170 6,770 103[53] 83,170 4,080 

51[10] 32,000 4,495 104[53] 200,000 3,699 

52[10] 10,000 5,000 105[54] 2,800 5,553 

53[10] 50,000 4,301 106[42] 8,930 5,049 
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Table S1 (continuation) – Transformation of IC50 values into pIC50 of compounds present in the 

compound library. 

COMPOUND 

NUMBER 

IC50 

(μM) 
pIC50 

COMPOUND 

NUMBER 

IC50 

(μM) 
pIC50 

GROUP 4 

107[42] 3,160 5,500 

GROUP 5 

152[10] 1,000 6,000 

108[42] 4,520 5,345 153[67] 1,680 5,775 

109[42] 89,370 4,049 154[64] 21,000 4,678 

110[42] 8,290 5,081 155[67] 2,170 5,664 

111[42] 5,200 5,284 156[71] 1,150 5,939 

112[42] 7,800 5,108 157[10] 94,000 4,027 

113[42] 8,470 5,072 158[10] 22,000 4,658 

114[42] 4,020 5,396 159[41] 9,350 5,029 

115[42] 4,420 5,355 160[10] 10,000 5,000 

116[42] 33,700 4,472 161[10] 1,000 6,000 

117[42] 22,400 4,650 162[64] 8,980 5,047 

118[42] 29,130 4,536 163[10] 76,000 4,119 

119[42] 5,120 5,291 

GROUP 6 

164[53] 1,670 5,777 

120[42] 5,600 5,252 165[53] 8,610 5,065 

121[42] 3,010 5,521 166[53] 25,810 4,588 

122[42] 5,120 5,291 167[53] 63,500 4,197 

123[42] 5,570 5,254 168[53] 16,170 4,791 

124[42] 3,810 5,419 169[53] 16,900 4,772 

125[42] 1,900 5,721 170[72] 5700,000 2,244 

126[42] 2,000 5,699 171[72] 6100,000 2,215 

127[42] 5,700 5,244 172[73] 2,100 5,678 

128[42] 5,330 5,273 173[73] 4900,000 2,310 

129[42] 9,260 5,033 174[73] 13900,00 1,857 

130[42] 8,840 5,054 175[67] 1,980 5,703 

131[42] 5,140 5,289 176[67] 1,510 5,821 

132[42] 8,830 5,054 177[44] 102,390 3,990 

133[42] 3,280 5,484 178[44] 54,640 4,262 

134[42] 5,140 5,289 179[74] 50,000 4,301 

135[42] 8,460 5,073 180[74] 50,000 4,301 

GROUP 5 

136[53] 200,000 3,699 181[44] 48,920 4,311 

137[53] 300,000 3,523 182[68] 30,260 4,519 

138[53] 300,000 3,523 183[67] 1,720 5,764 

139[29] 650,000 3,187 184[64] 4,620 5,335 

140[29] 220,000 3,658 185[75] 417,000 3,380 

141[10] 1,700 5,770 186[67] 4,130 5,384 

142[10] 3000,000 2,523 187[44] 85,010 4,071 

143[10] 2,000 5,699 188[67] 3,830 5,417 

144[43] 54,200 4,266 189[67] 2,300 5,638 

145[43] 9,100 5,041 190[76] 333,000 3,478 

146[10] 30,000 4,523 191[64] 8,970 5,047 

147[43] 32,500 4,488 192[77] 7,360 5,133 

148[64] 30,000 4,523 193[77] 1,070 5,971 

149[64] 4400,000 2,357 194[44] 13,950 4,855 

150[70] 50,000 4,301 195[44] 92,250 4,035 

151[61] 150,000 3,824 196[67] 4,720 5,326 

 

 

 


