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Abstract

The Social Force Model has been widely used to simulate pedestrian dy-
namics. Its simplicity and ability to reproduce some collective patterns of
behavior make it an adequate tool in the field of pedestrian dynamics. How-
ever, its ability to reproduce common macroscopic empirical results, such as
pedestrian flows through a bottleneck and the speed-density fundamental di-
agram, has scarcely been studied. In addition, the effect of each parameter of
the model on the dynamics of the system has rarely been shown. In this con-
tribution, a comprehensive parameter-sensitivity analysis in the social force
model is provided, and an optimal set is introduced, capable of reproducing
both macroscopic experimental flow data and collision avoidance between
pedestrians in simple trajectories on the microscopic scale. We show that
the incorporation of asymmetric visual range models in the inter-pedestrian
interactions is required for quantitative agreement. The model is also capa-
ble of showing collision avoidance in simple pedestrian trajectories and lane
formation in non-crowded bidirectional pedestrian flows.
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1. Introduction

The interest in pedestrian dynamics has increased in the last decades
due to the importance of predicting the motion of pedestrian crowds. It
becomes especially relevant for pedestrian safety and the design of facilities
in scenarios where a high number of people are involved.

One of the most widely employed mathematical models is the so-called
Social Force Model (SFM), introduced originally by Helbing and Molnár in
1995 [1]. The first version of the model consisted of two kinds of forces: a
driving force to induce the pedestrians to move towards their desired desti-
nation and inter-pedestrian distance-dependent repulsion or attraction forces
to avoid unphysical clusters or simulate social groups. Although simple, the
model showed satisfactory results, as it reproduced lane formation (LF) in
bidirectional pedestrian flows (BPF) and arch formation before bottlenecks.
In a series of later publications, Helbing and collaborators included contact
forces and simulated evacuation of pedestrians through narrow gates [2], as
well as more complex versions of the repulsive forces, e.g., including the
anisotropy of pedestrian interactions to mimic limited visual range [3, 4].
In the last two mentioned contributions, parameter calibration was done by
comparing experimental and simulated trajectories of pedestrians. A similar
analysis was also performed by other authors [5]. One of the most popular
studies performed with either the SFM or its modified versions is the simu-
lation of crowd evacuations. Researchers have studied the characteristics of
pedestrian evacuations in virtual geometries with a single exit [6, 7] or mul-
tiple exits [8, 9, 10] and in real subway geometries [11, 12, 13]. Despite the
large number of computational studies in the SFM, researchers have scarcely
utilized two of the most critical macroscopic empirical results, i.e., bottleneck
flows (BF) and the speed-density fundamental diagram (FD), in validating
the models. Hence, the knowledge about the reproducibility of these macro-
scopic empirical results by the existing models is limited; even though BF
provides valuable information for evacuations by measuring the number of
pedestrians exiting the bottleneck during the process, and FD shows how the
speed of pedestrians is reduced with increasing density, and therefore they
should represent an important part of the validation stage [14].

In BF experiments, often carried out at universities with volunteers, par-
ticipants are located in a corridor and asked to exit through a gate at one of
the extremes. In all experiments, trials are performed with different widths of
the gate to obtain a relation between the flow and the gate width. Some au-
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thors have used this outcome as a benchmark to assess their models [15, 16].
Here, we compare our numerical BF results with the data from Rupprecht
et al. [17], Liao et al. [18], Müller [19], Liu et al. [20], Kretz et al. [21],
Seyfried et al. [22], Nagai et al. [23], and Muir et al. [24].

The speed-density FD relates the average velocity of pedestrians with
the density. We compare our numerical results with the experimental data
from the following five references, in which results are obtained in experi-
ments performed at universities [25, 26], measuring walking speeds of people
[27, 28] or introducing an equation based on empirical results to explain
the fundamental diagram [29]. The diagram shows a heterogeneous behav-
ior of pedestrians, as factors such as gender, age, culture, motivation, or
type of facility affect people’s velocity [30]. Regarding the SFM, Parisi et
al. [31] showed that a modification of it, consisting of the introduction of a
respect area for each pedestrian i such that, in case of being occupied by an-
other particle, the desired velocity of pedestrian i is set to zero, could repro-
duce empirical fundamental diagrams. Furthermore, Bassoli and Vincenzi
[32] showed that the SFM could also reproduce results from fundamental
diagrams if the anisotropic nature of pedestrian interactions is considered;
however, neither a BF nor a microscopic analysis was performed. In other
models, authors have used the FD to evaluate the realism of numerical results
[33, 34, 35, 36, 37, 38, 15, 16].

In this contribution, we explore the ability of three typical specifications
of the SFM to reproduce the aforementioned experimental results. We show
a detailed analysis of the effect of some of the parameters of the model
in the dynamics and introduce a set of parameters capable of reproducing
both BF and FD. We also study collision avoidance in simple pedestrian
trajectories and macroscopic scenarios, and lane formation in bidirectional
pedestrian flows. The paper is organized as follows. First, we introduce the
mathematical aspects of the SFM. Secondly, we explain the details of our
simulations. Thirdly, we analyze the effect of the parameters on the dynam-
ics and compare the numerical results of each specification with macroscopic
experimental data. Then, we show some collision trajectories using the pa-
rameters fitted in the macroscopic analysis and assess the collision avoidance
in macroscopic scenarios where many people are involved. Finally, we study
the lane formation in bidirectional pedestrian flows for several values of the
global pedestrian density.
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2. The Social Force Model

The Social Force Model (SFM) is a mathematical model to simulate
pedestrian dynamics based on Newton’s second law. Depending on the po-
sition of the pedestrian i at time t, ri(t), each pedestrian i has a desired
velocity v0

i (ri(t)) = v0i ei(ri(t)), where v0i is the desired speed magnitude, and
ei(ri(t)) is the unit vector pointing towards the desired direction of motion
for each pedestrian. The force associated with the pedestrians’ desire to move
in the direction of ei(ri(t)) is the driving force, defined as

fdi (ri(t)) = m
v0
i (ri(t))− vi(t)

τ
, (1)

where m is the mass of each pedestrian i, vi(t) their actual velocity at time
t, and τ is the relaxation time to adapt the actual velocity to the desired
one.

Together with the driving force, the model includes a repulsive social force
to avoid close collisions between agents and obstacles. Here, obstacles are
considered to be wall particles or other pedestrians. The force is described
through the function f rij(rij(t)), where rij(t) = ri(t) − rj(t) is the vector
pointing from the center of obstacle j to the center of pedestrian i. The two
most used versions of the repulsive social force are the circular specification,

f rij = Ae−
rij
B uij, (2)

and the elliptical specification,

f rij = Ae−
bij
B · ‖rij‖+ ‖rij − yij‖

2bij
· 1

2

(
uij +

rij − yij

‖rij − yij‖

)
, (3)

where A and B are the intensity and range of the social force, respectively,
uij =

rij
‖rij‖ is the unit vector pointing from obstacle j to pedestrian i, and

yij = (vj−vi)∆T , where ∆T is a temporal parameter to model the anticipa-
tion of pedestrians to the obstacle. Unlike the circular specification described
by eq. (2), the elliptical specification, as its name indicates, possesses an el-
liptical shape with

2bij =

√
(‖rij‖+ ‖rij − yij‖)2 − ‖yij‖2 (4)

as the semi-minor axis of the ellipse. These two specifications of the social
force have the symmetry f rij = −f rji under pedestrian index swap, therefore
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conserving the total linear momentum. Strictly speaking, the previous re-
lation is an anti-symmetry; however, for the sake of clarity, we refer to it
as symmetric to distinguish it from the asymmetric interaction discussed
later. Nevertheless, real social interactions among pedestrians are intrinsi-
cally asymmetric due to their limited visual range. This fact can be included
in simulations by multiplying the repulsive force f rij by a weight factor that
considers how people react to obstacles depending on their position with re-
spect to pedestrians’ visual range, e.g., pedestrians tend to socially interact
more strongly with others at a forward position rather than behind. Assum-
ing that the heading direction is aligned with the current velocity vector vi,
the mathematical expression for the weight factor is [4]:

w(ϕij) = λ+ (1− λ)
1 + cos(ϕij)

2
(5)

where λ ∈ [0, 1] and ϕij is the angle between vi and rji = −rij:

cos(ϕij) =
vi

||vi||
· rji
||rji||

(6)

This prefactor is a cardioid function, and Figure 1 displays it for different
values of the parameter λ. We apply this weight only for inter-pedestrian
interactions. If applied to pedestrian-wall interactions, the resulting wall
social force would have a component in the direction parallel to the wall, and
pedestrians would artificially walk slower.

In addition, when pedestrians, simulated as disks of radius Ri, come closer
than the sum of their radii Rij = Ri + Rj, contact forces f cij(rij(t)) are
activated. These are divided into two different contributions: a body force
counteracting compression,

fBij (rij(t)) = H (Rij − rij) uij, (7)

and a shear force that simulates friction,

fSij (rij(t)) = γ (Rij − rij) (vji · tij) tij, (8)

where H and γ are the compression and shear parameters, respectively, vji =

vj−vi and tij = (−u(y)ij , u
(x)
ij ) is the unitary vector in the tangential direction

(here, the upper index indicates the x and y components of the unitary vector
uij). The total contact force is, therefore,

f cij(rij(t)) = fBij (rij(t)) + fSij (rij(t)) . (9)
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Figure 1: Polar plot of w(ϕij) (eq. (5)) as a function of ϕij for several λ values.

Thus, the final acceleration equation for pedestrian i reads:

m
dvi(t)

dt
= fdi +

∑
j

f rij +
∑
j

f cij , (10)

which, together with dri(t)/dt = vi(t), define the dynamics of the system.

3. Simulation Framework and Geometrical Specifications

We perform simulations to study the macroscopic and microscopic be-
havior of pedestrians, simulated as disks of diameter Dped = 0.5 m. Wall
particles are also simulated using disks of diameter Dw = 0.5 m, and the
distance between their center is 0.25 m. Hence, the successive disks forming
the wall overlap. The reason to have overlapping wall particles is mainly
to avoid the diffusion of pedestrians through walls in high-density scenarios,
where the pressure on walls can reach large values. In the macroscopic study,
we have focused on the mentioned bottleneck flows (BF) and speed-density
fundamental diagram (FD). In the former, 300 pedestrians are located in a 25
m long and 5 m wide corridor, randomly distributed in the region x ∈ (0, 13)
m before the exit, which is located at x = 16 m (Fig. 2). The desired direc-
tion of pedestrians points towards the gate, and for each set of parameters
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of the model, we have performed five different runs, in which the width of
the gate b varies from b = 0.8 m to b = 2.4 m in steps of 0.4 m. To measure
the flow, we initialize a counter that measures how many people N(t) have
crossed the exit at time t. The flow-width relation is obtained by linear re-
gression of the data, excluding the first and last 15 pedestrians in order to
avoid transient effects. Figure 2 shows a snapshot of the BF simulation.

Figure 2: Snapshot of the BF simulation: pedestrians in blue, wall particles in red.
b represents the width of the exit.

Secondly, to evaluate the FD, for each set of the parameters of the model,
we perform eight runs, varying in each of them the density of the system. The
density is the ratio between the total number of people and the area of the
corridor (125 m2), and we simulate flows for pedestrian densities increasing
from moderate ρ = 0.5 m−2 to highly packed ρ = 4.0 m−2 in steps of 0.5 m−2.
The average velocity of all pedestrians is calculated in each time step t,
and once the system is in a steady state, we take the time average. In FD
simulations, the desired direction of pedestrians is parallel to the walls of
the corridor, and agents are initially located in random positions throughout
the corridor (25m × 5m). We also establish periodic boundary conditions:
pedestrians exiting the corridor from the right will re-enter from the left.
Figure 3 illustrates a snapshot of the FD simulation.

Afterwards, we conduct a microscopic study to assess the ability of pedes-
trians to avoid obstacles or other pedestrians. We examine the trajectories
of pedestrians in three cases. In the first experiment, a pedestrian walks
towards a fixed obstacle; in the second, two pedestrians walk in opposite
directions, one towards the other. In the third case, a faster pedestrian over-
takes a slower one. We evaluate the ability of each set of parameters to avoid
collision, and we analyze the shape of the trajectory. The microscopic study
is complemented with a macroscopic analysis of collision avoidance, in which
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Figure 3: Snapshot of the FD simulation: pedestrians in blue, wall particles in
red.

we focus on the time average of the number of contacts per pedestrian for
several values of the global pedestrian density.

Finally, we study the onset of lane formation in bidirectional pedestrian
flows. To focus only on pedestrian interactions, we slightly modify the geom-
etry of the system: walls are removed, and periodic boundary conditions are
established in both the longitudinal and transversal directions of the corri-
dor. Pedestrians walking in opposite directions are located initially in random
positions in two waiting areas at the extremes of the corridor, as shown in
Figure 4. To ensure that agents have enough space to accelerate to their de-
sired velocity before interacting with pedestrians in counterflow, we increase
the size of the periodic corridor to (40m×15m). We consider different global
pedestrian densities ρ, and for each value of ρ, we run ten simulations with
different initial positions of the pedestrians to obtain a probability of lane
formation as a function of the global density.

3.1. SFM Parameter Choice

Four parameters of the model are kept constant in all simulations: the
desired speed v0i of pedestrians, sampled from a Gaussian distribution with
mean 1.45 m/s and standard deviation of 0.23 m/s, following [39]; the pa-
rameter λ = 0.1 for the weight factor w(ϕij), following [3]; the mass m = 80
kg for every pedestrian, and the range of the social force B = 0.6 m. Fur-
thermore, for calculation efficiency, we establish a cut-off radius to the social
force of Rcut = 4.5 m.

In macroscopic simulations, our analysis focuses on the three parameters
that characterize each force term: the social force intensity, A, and the com-
pression and shear parameters, H and γ, respectively. We show the results
of several simulations in which we vary one parameter among A, H, and γ,
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Figure 4: Snapshot of the LF simulation: red-colored pedestrians walk to the left,
whereas blue-colored pedestrians, to the right.

and keep the rest constant with the aim of determining the effect of each
one. The selected values are shown in Table 1. When the effect of other
parameters is studied, we keep the other two force parameters constant as
follows: A0 = 45 N, H0 = 1.2× 104 kg s−2, and γ0 = 1.5× 104 kg m−1 s−1.

Value A H γ

Low: ↓ 3.0× 101 9.0× 103 1.0× 104

Medium: → 4.5× 101 1.2× 104 1.5× 104

High: ↑ 6.0× 101 1.5× 104 2.0× 104

Table 1: Values of the parameters in macroscopic simulations. The units are: A
(N), H (kg s−2), and γ (kg m−1 s−1).

In microscopic simulations, τ and ∆T are also varied among τ = 1, 2, and 3 s
and ∆T = 0, 1.0 and 1.5 s, keeping them constant and equal to τ0 = 1 s
and ∆T0 = 1 s when the effect of the other parameter is studied. In both
macroscopic collision avoidance and bidirectional flow simulations, we use
the parameters that show the best results in the aforementioned simulations.

4. Results and Discussion

In this section, we show the effect of each of the studied parameters in
macroscopic and microscopic dynamics by differentiating between the circu-
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lar, elliptical, and asymmetric elliptical specifications of the social force, and
we introduce a set of parameters that fits both BF and FD results. Then, we
use that combination of force parameters in the microscopic and macroscopic
collision avoidance analysis.

4.1. Macroscopic Flow Dynamics

4.1.1. Flow Through a Bottleneck (BF)

Figure 5 shows bottleneck flow results for the three social force specifi-
cations and different values of each parameter. The effect of the intensity
of the social force depends on the specification: for the circular and ellip-
tical specifications, increasing values of A accelerate the flow, whereas for
the asymmetric model, the flow rate is reduced as A increases, as pictured
in Figure 5 (a). It is clear that the asymmetric model does the best job of
capturing BF data.
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Figure 5: BF in the circular (C), elliptical (E) and asymmetric elliptical (A) spec-
ifications, focusing of the effect of: (a) Social force intensity A, (b) Compression
parameter H, and (c) Shear parameter γ. The values of each parameter are spec-
ified in Table 1.

To understand the difference between models, we calculate the average
social and contact force in the x-direction (longitudinal coordinate of the
corridor) per pedestrian, f

r
and f

c
, respectively:

f
r

= 〈f r (x)ij 〉 =
1

Nped

Nped∑
i=1

Nobs∑
j=1

f rij
(x)
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and

f
c

= 〈f c (x)ij 〉 =
1

Nped

Nped∑
i=1

Nobs∑
j=1

fBij
(x)

+ fSij
(x)
,

where Nped is the total number of pedestrians and Nobs = Nwall + Nped the
total number of obstacles, i.e., the number of wall particles (Nwall) or other
individuals (Nped) that pedestrian i is interacting with. Figures 6 and 7
show, respectively, the average social and contact forces as a function of
time. The main difference between symmetric and asymmetric models is
that in the former, contact forces are dominant, whereas in the latter, it is
the social force which dominates the dynamics. By definition, in symmetric
models, f rij = −f rji; therefore, pedestrian-pedestrian interactions (both social
and contact) do not contribute to the average. The resulting averages in
Figures 6 and 7 come from pedestrian-wall interactions, which do not cancel
since we are not considering the force over walls in the sum. In this case,
the magnitude of contact forces in the x-direction determines the dynamics,
as they are dominant, and as A is increased, the repulsive screening is more
effective and the magnitude of f

c
decreases. Higher social force intensity,

therefore, contributes to avoiding contacts; hence, the flow rate is increased.
Contrary to this case, in the asymmetric model f rij 6= −f rji due to the effect of
the visual weight function w(ϕij). Here, the repulsion from pedestrians above
is greater than the repulsion from individuals below, and the contribution
of pedestrian-pedestrian social interaction does not cancel on average. As a
result, linear momentum is not conserved and f

r
is greater than in symmetric

cases, and consequently, it dominates the flow. As A increases, so does f
r

(in
magnitude), and although the magnitude of contact forces is reduced (Fig.
7), the social repulsion overwhelms it, leading to a decrease in the flow rate.

In the case of contact forces, the behavior is the same for the three spec-
ifications: increasing values of the compression H and decreasing values of
the shear γ accelerate the flow, and vice-versa, as shown, respectively, in
Figures 5 (b) and (c). We have energy dissipation and hence a reduction in
pedestrians’ velocity if contacts happen. This energy dissipation increases
with the shear parameter γ, hence the reduction in the flow rate as it in-
creases. On the other hand, the larger the compression parameter H, the
better contacts are counteracted, i.e., they occur over a shorter time, and
the motion will be consequently faster. Apart from that, focusing on Figure
5 (c), it is possible to see that, although the effect of contact is the same
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Figure 7: f
c
, as a function of time, for the elliptical (E) and asymmetric (A) spec-

ifications, with b = 0.8 m. As A increases, f
c

decreases in magnitude; therefore,
the resulting contact force against the direction of motion is reduced.

in the three specifications, an increasing friction γ has a more considerable
effect on symmetric force specifications than in the asymmetric case. This
is because of the already mentioned effect of the social force intensity, which
slows down the system more effectively than in the symmetric case.

Finally, for the studied set of parameters, symmetric specifications can
correctly reproduce the data for the smallest exit widths b = 0.8 and 1.2
m, but numerical results deviate for the widest gates, significantly overes-
timating the slope of the flow-gate relation. Conversely, the results for the
asymmetric elliptical model are much closer to the real for b = 1.6, 2.0 and
2.4 m, and for the two smallest widths, simulations are very close to experi-
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mental data, making the slope of the regression curve in good agreement with
the empirical data. These results suggest favoring the use of the asymmetric
model rather than symmetric ones in the reproduction of flow data, thanks
to the unbalanced social repulsion forces due to the finite visual range.

4.1.2. Fundamental Diagram

Figure 8 shows the fundamental diagram for the three social force specifi-
cations and different values of each parameter. The effect of the social force is
negligible or slight in the symmetric models (circular and elliptical), whereas,
in the asymmetric model, the slowdown of the system with increasing values
of A is evident, as shown in Figure 8 (a).
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Figure 8: FD in the circular (C), elliptical (E) and asymmetric elliptical (A) spec-
ifications, focusing of the effect of: (a) Social force intensity A, (b) Compression
parameter H, and (c) Shear parameter γ. The values of each parameter are spec-
ified in Table 1.

As in the previous section, we calculate the average social force in the
x-direction over each pedestrian, but now we take the time average at the
steady state, and show it as a function of the pedestrian density in Figure 9.
For symmetric models, the mean is close to zero due to the cancellation of pair
pedestrian-pedestrian and pedestrian-wall forces, whereas in the asymmetric
case, it increases in magnitude with pedestrian density ρ. In symmetric mod-
els, social repulsion is independent of the position of the pedestrian, whereas
in the asymmetric version, repulsion from people in front of an individual
repels him/her more, as sketched in Figure 10. Moreover, as density or A

13



increases, so will the average social repulsion, and as a consequence, the flow
rate is reduced.
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Figure 9: f
r
, averaged in time, as a function of pedestrian density. In symmetric

specifications, the average is close to zero, whereas in the asymmetric interaction,
it becomes more negative with increasing density.

On the other hand, in the symmetric specifications, the effect of contact
forces is negligible for dilute and intermediate density scenarios (ρ < 3.0 m2),
as most of the contacts with walls can still be avoided via social repulsion.
However, above those values of ρ, more contacts with walls occur and smaller
H and greater γ lead to smaller average velocity 〈vx〉 in the system. On the
contrary, for the chosen set of parameters, contact forces do not affect the
flow in the asymmetric model, again due to the dominance of social forces in
slowing down the flow.

In view of these results, the combined macroscopic analysis (BF and FD)
shows that the asymmetric model must be used to correctly reproduce empir-
ical data. The fit in both BF and FD is good for the chosen set of parameters,
whereas, in symmetric models, the flow is too fast in both simulations as the
social force is unable to decelerate pedestrians.

4.1.3. Effect of the size of pedestrians

In the previous analysis, with the purpose of keeping the model simple
and focusing on the effect of individual parameters on the dynamics, the
diameter of pedestrians was kept constant and equal to Dped = 0.5 m (same
as wall particles forming the environment). In reality, there is a certain
variability of Dped. Thus, we extend our analysis by looking at the effect of
the size of pedestrians in BF and FD. We run simulations in the asymmetric
elliptical specification, varying pedestrians’ size between Dped = 0.40, 0.45
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Figure 10: Sum of social repulsive forces on pedestrian i (blue) from people below
(green) and above (red). In symmetric specifications, ‖~Fai‖ ≈ ‖~Fbi‖, and the
resulting total repulsive force oscillates around zero. Contrary to this, in the
asymmetric specification, ‖~Fai‖ >> ‖~Fbi‖, and the resulting total social force
opposes the driving force.

and 0.50 m. Since we are trying to obtain the best fit of empirical data,
we choose the force parameters accordingly. Looking at the FD in Figure
8 (a), A = 60 N offers the best fit to empirical data. On the other hand,
contact force parameters slightly modify the dynamics; hence, we choose the
intermediate values of H = 1.2 × 104 kg s−2 and γ = 1.5 × 104 kg m−1 s−2.
Moreover, as in the last simulations, τ and ∆T will be constant and equal to
1 s.
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Figure 11: (a) Bottleneck flows for pedestrians of diameter Dped = 0.40, 0.45 and
0.50 m. (b) Fundamental diagram for pedestrians of diameter Dped = 0.40, 0.45
and 0.50 m.

Figure 11 (a) shows the results for BF. If pedestrians are smaller, contacts
among them are reduced and it is easier for them to walk through the gate;
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hence, the flow rate through the exit is accelerated. We have a perfect fit of
the data when Dped = 0.40 and 0.45 m. For Dped = 0.50 m, the flow is not
fast enough for b = 0.8 and 1.2 m gate widths.

On the other hand, the fundamental diagram is plotted in Figure 11 (b).
As explained in the fundamental diagram analysis (see section 4.1.2), contact
forces barely change the flow through the channel. When the density is low,
contacts as less likely to occur, whereas when the density is higher, their effect
is negligible as it is proportional to the (slow) relative velocity. Since the main
effect of the size of pedestrians will be related to the contacts between them,
it is reasonable to have an unaltered FD. Finally, the FD data is also well
reproduced for Dped = 0.40 and 0.45 m. These sizes of pedestrians, combined
with the aforementioned set of force parameters, allow reproducing of the two
most important sets of macroscopic data satisfactorily.

4.2. Collision Avoidance

In this section, we explore the ability of the aforementioned models to
reproduce microscopic (pairwise) and macroscopic collision avoidance. In
particular, microscopic collision avoidance is focused on three different sce-
narios: a pedestrian walking towards an obstacle, two pedestrians walking
towards each other in opposite directions, and a fast pedestrian overtaking
a slower one. None of the three models include any algorithm to prevent
collisions with obstacles, as in Ref. [31]; therefore, if we chose an initial
impact parameter p, which is defined as the perpendicular distance between
the path of the pedestrian and the center of the obstacle, equal to p = 0 m,
pedestrians would either collide with or stop before the obstacle. Hence, we
set the impact parameter equal to p = 5 cm in the starting position.

We use the force parameters of the model that best reproduced macro-
scopic empirical results. This is the asymmetric elliptical specification with
A = 60 N and contact force parameters H = 1.2×104 kg s−2 and γ = 1.5×104

kg m−1 s−2. The last two should be irrelevant if the model works well on
the microscopic scale, and consequently, contact is avoided. As mentioned
before, we study the effect of two other parameters: the relaxation time τ in
the driving force and of ∆T from the elliptical specification.

In the macroscopic analysis, we calculate the time-average number of con-
tacts per pedestrian for different values of the global density in the channel.
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4.2.1. Pairwise Collision Avoidance

The desired velocity of pedestrians in macroscopic simulations is a Gaus-
sian distribution with mean v0 = 1.45 m/s. However, interactions among
pedestrians occur with a relative velocity smaller than the desired one. Fig-
ure 12 shows the relative velocity of pedestrians (normalized by the mean
desired speed v0) as a function of the distance to other pedestrians (normal-
ized by their diameter Dped = 0.5 m) for ρ = 1.0, 2.0, 3.0 and 4.0 m−2.
The majority of interactions occur in the regime vij/〈v0〉 ∈ [0, 0.25], which
solving for vij gives relative velocities approximately between 0 and 0.3625
m/s. Therefore, we set the pedestrian-obstacle relative velocity to the highest
value, vij = 0.3625 m/s.
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Figure 12: Relative velocity of interacting pedestrians, for different densities, as a
function of the distance to the other pedestrian.

Figure 13 (a) shows the trajectory of a pedestrian avoiding an obstacle in
the circular and elliptical specifications. In the regime of relative velocities
that we are working on, both specifications successfully avoid contact. The
difference between both models is slight, but the term yij = (vj − vi)∆T in
the elliptical model introduces anticipation effect on the interaction; hence,
pedestrians modify their trajectory earlier, and they deviate less from their
original horizontal trajectory compared with the circular model.

In regards to the relaxation time τ , the deviation of pedestrians from their
initial trajectory is inversely proportional to this parameter. Increasing the
relaxation time reduces the driving force; hence, pedestrians will need more
time to recover their desired velocity, and the deviation due to the interaction
with the obstacle increases. In view of these results, the choice of τ = 1 s
done in the previous section (and common in the literature) seems correct as
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it provides a not-exaggerated deviation of the pedestrian trajectory.
To see the effect of ∆T and the main difference between the circular

and elliptical models, Figure 13 (b) shows the trajectories of two pedestrians
walking in opposite directions and towards each other, with relative velocity
vij = 1.0 m/s. We increased the relative velocity because; with the previous
value of vij, the difference between models was inappreciable. With this new
relative velocity, pedestrians collide in the circular specification and in the
elliptical with ∆T = 1.0 s, whereas if ∆T = 1.5 s, collision is avoided, as each
pedestrian feels the repulsion from the other before. Therefore, we conclude
that the choice of the elliptical model over the circular is correct.
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Figure 13: Trajectories of pedestrians (red) in the circular (C) and elliptical (E)
specifications, (a) avoiding an obstacle (blue), for different values of τ , with vij =
0.3625 m/s and with ∆T = 1 s, and (b) avoiding another pedestrian (blue), for
different values of ∆T , with vij = 1.0 m/s and τ = 1 s.

As a final remark, we show the main difference between the symmetric
and asymmetric elliptical specifications. For that purpose, we simulate two
pedestrians walking in the same direction, with an initial impact parameter
of p = 5 cm, and being the one in red faster than the one in blue. The former
will overtake the latter, and the relative velocity is set to vij = 0.2 m/s to
make the interaction last longer and visualize the differences between models
better. Figure 14 (a) shows the trajectories for the elliptical case. Due to the
symmetry in the interaction, the slower pedestrian steps aside as he/she feels
the repulsion from the pedestrian behind and deviates from his/her original
trajectory represented by the black dashed line. Since f rij = −f rji, they both
feel the same repulsion and deviate approximately the same from the original
y = 0 m.

Compared to the previous model, the asymmetric version in Figure 14
(b) shows a more realistic scenario. Now, it is the faster pedestrian who
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Figure 14: Trajectories of pedestrians when the faster, in red, overtakes the slower,
in blue, in (a) the symmetric elliptical model, and (b) asymmetric elliptical model.
The black dashed line represents the original straight path.

initially deviates and walks around the slower one in front. However, when
they are side by side, the slower pedestrian starts to feel more strongly the
repulsion, as it is less suppressed by the weight factor w(ϕij), and as a result,
he/she deviates half a meter from his/her original path. Still, there is an
improvement with respect to the symmetric version.

In view of these results, the set of parameters that reproduced macro-
scopic results is capable of showing realistic collision avoidance in simple
pedestrian-obstacle and pedestrian-pedestrian trajectories. In addition, we
confirm that the value τ = 1 s is adequate, that the elliptical specification
offers a suitable anticipation for avoiding collisions, and that the asymmetric
model produces more realistic trajectories than the symmetric one.

4.2.2. Macroscopic Collision Avoidance

In the previous subsection, we have shown that contact between pedes-
trians is successfully avoided in three specific scenarios. In those tests, only
two pedestrians are considered, and they have enough space to avoid contact.
However, in actual environments, pedestrian interactions are more complex
since more than two people can be involved in interactions, which limits the
amount of space that individuals have to avoid collisions, and the relative
velocities can be higher than the vij that we have chosen. For this rea-
son, we extend our analysis to the periodic corridor where the FD has been
calculated. We consider the same force parameters as in the previous sub-
sections, plus the ∆T = 1.5 s and Dped = 0.45 m, following the results from
section 4.1.3. Using those parameters, we conduct simulations of pedestrian
flows in the periodic corridor, with global pedestrian densities increasing from
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ρ = 0.5 m−2 to maximum physical packing ρ = 4.0 m−2 in steps of 0.5 m−2,
using both the elliptical and the asymmetric elliptical models. In each time
step, we calculate the number of contacts Nc per pedestrian (total number of
contacts divided by the total number of pedestrians Nped), and we calculate
the time average for each value of the density.
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Figure 15: Average number of contact per pedestrian as a function of the global
density.

Figure 15 shows the results for the two models. In both cases, the average
number of contacts increases with the global density due to the decreasing
free space in the corridor. Moreover, the average is not zero in any of the
considered densities: in dilute scenarios, although there is more free space,
the relative velocities of some pedestrians are high, as shown in Figure 12,
whereas in congested cases, the lack of free space provokes an increase of
the number of collisions. Furthermore, for densities above ρ = 1.0 m−2, the
model without limited visual range offers better collision avoidance. The
weight function from eq. (5) limits the strength of the social force, which
leads to more contacts happening in the asymmetric specification compared
to the symmetric case.

5. Lane Formation in Bidirectional Pedestrian Flows

The last benchmark to assess the limited visual range in the social force
model is a collective pattern of motion: lane formation (LF) in bidirectional
pedestrian flows (BPF). To study the ability of simulated agents to form
the lines, we isolate the system by removing walls and imposing periodic
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boundary conditions in both the longitudinal and the transversal directions of
the corridor. Moreover, we increase the size of the environment to 40m×15m
so that pedestrians have enough space to accelerate to their desired velocity
before the interaction with the counterflow happens. Agents are initially
located in two waiting areas, those walking to the right are placed in random
positions between x ∈ [2.25, 9.75] m, while people walking to the left, in
x ∈ [30.25, 37.75] m, being in both cases the initial y-coordinate random
between y ∈ [0.25, 14.75] m.

(a) (b)

Figure 16: (a) Lane formation in BPF for ρ = 0.75 m−2. (b) Clogging in BPF for
ρ = 0.75 m−2.

The initial condition (snapshot in Figure 16) can affect the outcome of the
simulation, i.e., having a stratification of pedestrian flows (Figure 16 (a)) or
a clog (Figure 16 (b)). Therefore, following Ref. [37], we consider 10 random
initial distributions of agents, and we calculate the probability of having line
formation PLF.

We repeat this procedure for several values of the global density to study
to which extent the model works. Force parameters and pedestrian sizes are
chosen as in section 4.2.2, and the desired velocities of the pedestrians are
the normal distribution mentioned in section 3.1.

Figure 17 shows PLF for densities between 0 and 1.08 m−2. We reproduce
lane formation in all cases up to ρ = 0.75 m−2. At global densities ρ =
0.75, 0.833 and 0.916 m−2, the probability drops, respectively, to 90 %, 30 %
and 20 %, whereas for densities greater than ρ = 1.0 m−2, the system clogs.

As the density increases, pedestrians collide more frequently with the on-
coming group of agents. In the highest density scenarios, these collisions stop
pedestrians, and a clog is formed. The clog lasts permanently, as the driving
force of pedestrians can not overcome the social repulsion from the group of
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Figure 17: Lane formation in BPF as a function of the global density.

pedestrians in front, which has a local density much higher than 1.0 m−2. In
Ref. [37], they focus on jamming probability in BPF using three different
models, being the best of them capable of reproducing lane formation up
to ρ = 1.5 m−2. Still, the critical density ρcrit above which clogging occurs
in bidirectional pedestrian flows is unknown; hence, experimental work is
needed to validate numerical results.

6. Conclusion

We have studied the ability of the social force model to reproduce two
of the most important sets of macroscopic empirical data: pedestrian flows
through a bottleneck (BF) and the speed-density fundamental diagram (FD).
We have shown the effect of each force parameter on the macroscopic dynam-
ics: social force intensity accelerates the flow in symmetric specifications, as
it reduces contact between pedestrians, whereas in the asymmetric model,
social force intensity A slows the flow down as pedestrians feel a greater
repulsion from all the obstacles above them. In both symmetric and asym-
metric versions of the model, the greater compression H and smaller friction
γ, the faster the flow, and vice-versa. Having said that, the effect of contact
forces in channel flow is more noticeable in symmetric models, since friction
is proportional to the relative velocity vij of pedestrians, which is consider-
ably smaller in the asymmetric case due to the social force. We showed that
results from the asymmetric elliptical specification reproduced experiments
better than symmetric models, and we sought for a set of parameters to have
a quantitative agreement. Then, we studied the effect of pedestrians’ size in
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macroscopic simulations using the calibrated asymmetric model. Reducing
pedestrians’ size decreases contacts among them, plus, it is easier for them to
exit through the bottleneck, as they are smaller compared to the gate width;
therefore, the BF is accelerated. On the other hand, since contact forces have
a negligible effect on the channel flow, modifying pedestrians’ size barely af-
fects FD results. For pedestrian diameters Dped = 0.40 and 0.45 m, our set
of parameters can reproduce very well both BF and FD.

After the macroscopic study, we assessed the model for both pairwise
and group collision avoidance. We focused on trajectories of pedestrians
avoiding an obstacle either at rest or in motion. The impact parameter at the
beginning of the simulation was p = 0.05 m, as the model does not include
any algorithm to avoid the obstacle in case the p was zero. In the range
of relative velocities that interactions occur in macroscopic simulations, the
model showed collision avoidance in all tests. We have analyzed the effect of
the relaxation time τ , which gives a bigger deviation from the initial path as
it is increased since it is inversely proportional to the driving force. Then, we
showed that the elliptical specification offers better collision avoidance than
the circular, as it includes anticipation. In fact, for relative velocity vij = 1.0
m/s, we demonstrated that two pedestrians walking in opposite directions
collide in the circular specification, but they may not touch in the elliptical
if the anticipation time parameter ∆T is chosen great enough. Afterwards,
we showed the advantages of asymmetric models over the symmetric one by
simulating the trajectories of a pedestrian overtaking another one. In the
symmetric case, both pedestrians deviated symmetrically from the original
horizontal trajectory, whereas in the more realistic asymmetric model, it is
the faster one that modifies strongly his/her trajectory to overtake the slower
pedestrian. Subsequently, we calculated the average number of contacts per
pedestrian in the channel flow. The average increases with the global density,
as there is less free space to avoid each other, and the asymmetric model is
slightly less effective than the symmetric in preventing collisions due to the
suppression of the social force via the weight function w(ϕij).

Nevertheless, the asymmetric model is more comprehensive than the el-
liptical, as it is able to reproduce the aforementioned BF and FD experi-
mental results accurately. Finally, we studied the stratification of bidirec-
tional pedestrian flows in a corridor with periodic boundary conditions in
the two dimensions. Lane formation is reproduced up to moderately dense
flow (ρ ∼ 0.75 m−2), whereas it is suppressed at higher densities where clogs
are formed.
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The asymmetric elliptical model with our set of parameters also has its
limitations. As mentioned in the microscopic analysis, the model does not
include any algorithm for collision avoidance, and if a pedestrian walked
towards an obstacle with zero impact parameter, he/she would collide or stop
in front of the obstacle, not avoid it. Nonetheless, this pathological condition
in real simulations can be easily avoided by including a random noise force
to slightly deviate pedestrians from the impact parameter p = 0 m path.
On the other, the desired direction is predefined in our simulations. The
geometry of the system was simple and a single predefined vector (pointing
towards the bottleneck exit in BF simulations or parallel to the walls in
FD and bidirectional pedestrian flow simulations) was sufficient to simulate
the dynamics. In complex geometries, the model would require a different
definition of the desired direction at every point of space. This will be the
subject of further contributions.
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