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Abstract

As a result of the COVID-19 pandemic that collapsed hospitals in some
countries, numerous studies have been carried out to understand the development
of the disease and how it affects patients with different characteristics, in order to
make optimal use of the available resources. This project is part of a multicentre
study that aims to predict the severity of patients with SARS-CoV-2 pneumonia,
for which different variables related to health, demographic and socio-economic
factors and exposure to pollutants of patients have been collected. Given the
number of variables contained in the data-set, it is necessary to reduce the number
of variables in order to create a practical model for interpretation, as well as to
reduce the amount of information that doctors have to collect on each patient.
In this project, an exhaustive analysis of variable or feature selection techniques
has been carried out in order to determine their performance and relevance in
terms of stability, similarity and computation time. Based on the techniques that
have shown the best characteristics, the most meaningful factors in preventing
the severity of pneumonia have been identified, in accordance with what has been
proposed by other studies.
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Resumen

Con motivo de la pandemia de COVID-19 que colapsó los hospitales de algunos
páıses, se han realizado numerosos estudios para conocer el desarrollo de la
enfermedad y cómo afecta a pacientes de distintas caracteŕısticas, y aśı poder
hacer un uso óptimo de los recursos disponibles. Este proyecto se engloba dentro
de un estudio multicéntrico que tiene como objetivo predecir la gravedad de
los pacientes con neumońıa SARS-CoV-2, para el que se han recogido distintas
variables relacionadas tanto con la salud como con factores demográficos, socio-
económicos y exposición a contaminantes de los pacientes. Dada la cantidad de
variables que contiene el data-set, es necesario reducir dicha cantidad con tal de
crear un modelo práctico para la interpretación, aśı como reducir la cantidad de
información que tienen que recoger los médicos en cada paciente. En este proyecto
se ha realizado un análisis exhaustivo de técnicas de selección de variables con
el objetivo de conocer su rendimiento y relevancia en términos de estabilidad,
similitud y tiempo de cómputo. Partiendo de las técnicas que han mostrado
mejores caracteŕısticas, se han identificado los factores más significativos a la hora
de prevenir la gravedad de la neumońıa, en concordancia con lo propuesto por
otros estudios.
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Preface

The year 2020 was marked by the pandemic that devastated the world due
to the SARS-CoV-2 virus, which caused the disease known as COVID-19. The
effect was such that, to this day, pre-pandemic normality has not yet returned.
Although more and more details are becoming known, it is still a relatively un-
known disease, and was totally unknown in the early months. The sudden rise in
cases caused many hospitals to collapse, and good management of both material
and human resources was necessary. In this context, a study involving 4 hospitals
in Barcelona, Bizkaia and Valencia, and the Basque Centre for Applied Mathemat-
ics (BCAM), has emerged with the aim of predicting the severity of pneumonia
caused by SARS-CoV-2 in patients.

The present work arises from a internship proposal from BCAM for a duration
of 6 months to participate in this project, to which I am very grateful for the
opportunity to train in the field of data science and machine learning, as well as
to learn how the research world is.

I would also like to thank my tutors Fernando Garćıa Garćıa and Irantzu Barrio
Beraza, the first for his infinite patience and help and the latter for being one of
the best teachers I have met in my 6 years of university training. I would also like
to thank my friends for their patience for all the days I stayed at home, Aitor, and
all those who have accompanied me through the stressful, hard but fun times of
the university degrees, especially Jon, Malen and Martin.
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Chapter 1

Introduction

Since COVID-19 pandemic started, the virus has affected people differently. In
the worst cases, the virus has evolved clinically into a respiratory disease, specifi-
cally pneumonia, which have caused the majority of deaths. Several studies have
been carried out with the aim of predicting the development of the disease in pa-
tients infected with SARS-CoV-2 and analysing risk factors. Along with the rise
of data science, some of them have made use of Machine Learning techniques, as
it is an useful tool [1]. One of these studies is being carried out between four hos-
pitals in Barcelona, Bizkaia and Valencia, which aims to create a model capable
of predicting or estimating the severity of the SARS-CoV-2 pneumonia affecting
the patients in order to make optimal use of hospital and human resources. The
project to which this report belongs is part of it.

Data has grown in size in recent years, both in terms of the number of instances
and the number of variables, in many applications as, for example, genome projects
[2] or text categorisation [3]. The number of variables makes it necessary to con-
sider discarding variables before creating the estimation model for several reasons.
On the one hand, the curse of dimensionality can lead to problems when creating
the model. On the other hand, a model with many variables is impractical to
interpret and can be computationally slow when constructing.

The data-set of the main project concerned contains a considerable number of
variables, among which are these both factors related to the patient’s health and
those related to the patient’s postcode of residence: socio-demographic factors,
economic factors and pollution values. Although the number of variables is not
greater than the number of instances, it may be sufficient for there to be a cer-
tain degree of sparsity and, therefore, for the curse of dimensionality to affect the
creation of future estimation models. Thus, some variables need to be discarded.
In addition, this allows creating a practical and useful model and as collecting
patient health-related factors is time-consuming and labour-intensive, the fewer
variables doctors have to collect, the better. The main objective of this project
consists on selecting the most important or relevant features among those which
are available. In addition, the selections obtained in the results will be used to
provide doctors with data evidence of which variables have the strongest effect on
the severity of the pneumonia and to analyse the extent to which socio-economic
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CHAPTER 1. INTRODUCTION

and demographic factors affect.

Within Machine Learning there are several techniques for reducing the num-
ber of variables, and the one known as feature or variable selection1 has been
selected, which since 1970’s has been a rich ground for research and development
[4]. Specifically, different techniques of feature selections will be analysed and
compared. The validity of the techniques will be analysed in terms of stability,
whose definition will be explained below, and similarity between them will also be
studied. Among the results obtained from all the algorithms, the most compelling
will be used to identify the most frequently chosen variables and see if they are
consistent with previous studies. In this way, evidence on risk factors and on the
validity of variable selection methods can be added.

Several papers related to the main objectives of this project can be found in the
literature. In [5] authors analyse the stability of different feature selection algo-
rithms and emphasise the importance of feature selection algorithm being stable.
In terms of studies encompassing these techniques and COVID, Too and Mirjalili
propose a new feature selection method based on the Dragonfly Algorithm (DA)
and test it in a COVID-19 data-set [6], while Shaban et al. introduce a COVID-
19 diagnose strategy which involves a new hybrid feature selection algorithm [7].
On the other hand, many studies propose to use Artificial Intelligence (AI) and
Machine Learning algorithms to predict COVID-19 outcome, mortality and detect
risk factors. In [8] authors propose a severity scoring system, that combined with
other clinical variables, predicts clinical outcome in COVID-19 patients. Authors
in [9] apply clustering techniques to identify clinical phenotypes and risk factors
associated with mortality risk, while the goal of the studies developed in [10, 11] is
to detect health risk factors and predict COVID-19 outcome with parameters col-
lected at admission to the hospital. In contrast, authors in [12] propose risk factors
based on different previous studies. Finally, in [13, 14, 15, 16] the effect of exposure
to contaminants on susceptibility to infection and death has been analysed, and
in [17] demographic risk factors on COVID-19 severity, death and Intensive Care
Unit (ICU) admissions have been investigated.

Otherwise, the report detailing the work carried out has been divided as follows.
Chapter 2 describes the data-set in question, with a brief summary of the variables
collected in it and the limitations and challenges it presents. The 3rd and 4th

chapters give a theoretical explanation of the different feature selection algorithms
and the techniques used to analyse them. Both methods for adapting the data-
set to the feature selection algorithms and the algorithms themselves have various
parameters and specifications that need to be adjusted, so chapter 5 explains the
decisions made around them. In chapter 6 reader can find the results obtained
and the interpretation and discussion around them, and finally in chapter 7 the
conclusions obtained during the project are summarised.

1Throughout the report, both Feature and Variable will be used as synonyms.
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Chapter 2

Motivation data set

In order to carry out this project, a data set corresponding to a retrospective
longitudinal observational study is available. This multicentre study was carried
out in four hospitals (two in Bizkaia, one in Barcelona and one in Valencia)
it included admissions for SARS-CoV-2 pneumonia in the first epidemic peak
of COVID-19, between February and May of 2020. The data-set is completely
confidential, so only a summary of the data is shown in this report.

2.1 Description of the data set

The pneumonia cases were divided into three severity groups, depending on
the patient’s evolution. The clinical criteria have been defined and systematised
by collaborators in the Respiratory Medicine Service of the Galdakao-Usansolo
University Hospital. The lowest severity level corresponds to patients discharged
in less than 14 days, whose stay did not involve complications requiring major res-
piratory therapeutic aids. The maximum corresponds to patients admitted to ICU
or dead, among other situations. Given the circumstances of the pandemic and of
each hospital, as shown in table 2.1, the ratio of cases varies from one hospital to
another. For instance, as the Clinic hospital from Barcelona had more ICU beds
than surrounding hospitals, it admitted many critically ill patients.

In order to analyse factors affecting the severity of pneumonia, up to 93 clinical,
analytical and radiology variables were collected for each patient, such as previ-
ous comorbidities, symptoms, physiological variables in the emergency department
or arterial blood gases. According to preliminary analyses, there are some vari-
ables that have a greater influence on the patient’s evolution, so a summary of
their values for the different severities is given below. Most of those admitted for
pneumonia had some other disorder or illness (see table 2.2) and a bilateral lung
infiltration according to an X-ray test (see table 2.3). In addition, the pneumonia
severity index (PSI) [18] and the respiratory rate seems higher for more critically
ill patients, according to table 2.4 and figures 2.1 and 2.2, even if the latter need
not indicate abnormalities, if the average age of the patients is considered [19].
The percentage of haemoglobin saturated with oxygen (SaO2) also appears to be
rather limited [20], especially in those patients with severity 2 (see table 2.4 and
figure 2.3).

3



CHAPTER 2. MOTIVATION DATA SET

Severity order
Hospital 0 1 2 Total

Cĺınic Count 119 59 260 438
% within row 27.169% 13.470% 59.361% 100.000%

Cruces Count 229 50 101 380
% within row 60.263% 13.158% 26.579% 100.000%

Galdakao Count 205 36 117 358
% within row 57.263% 10.056% 32.682% 100.000%

La Fe Count 159 93 120 372
% within row 42.742% 25.000% 32.258% 100.000%

Total Count 712 238 598 1548
% within row 45.995% 15.375% 38.630% 100.000%

Table 2.1: Number of cases by severity for each hospital

Severity order
Comorbidity 0 1 2 Total

No Count 228 41 112 381
% within column 32.022% 17.227% 18.729% 24.612%

Yes Count 484 197 486 1167
% within column 67.978% 82.773% 81.271% 75.388%

Total Count 712 238 598 1548
% within column 100.000% 100.000% 100.000% 100.000%

Table 2.2: Number of cases by severity for presence of
comorbidity

Severity order
Lung infiltration 0 1 2 Total

NO Count 73 22 21 116
% within column 10.253% 9.244% 3.512% 7.494%

Unilobar Count 142 36 49 227
% within column 19.944% 15.126% 8.194% 14.664%

Multilob unilat Count 44 12 9 65
% within column 6.180% 5.042% 1.505% 4.199%

Bilateral Count 334 109 258 701
% within column 46.910% 45.798% 43.144% 45.284%

Missing Count 119 59 261 439
% within column 16.713% 24.790% 43.645% 28.359%

Total Count 712 238 598 1548
% within column 100.000% 100.000% 100.000% 100.000%

Table 2.3: Number of cases by severity for type of lung
infiltration detected by X-ray.

4
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PSI score Respiratory frequency (Breaths/min) SaO2 (%)
Severity order 0 1 2 0 1 2 0 1 2
Valid 640 200 447 468 175 378 386 81 276
Missing 72 38 151 244 63 220 326 157 322
Mean 63.056 82.800 87.908 18.286 18.817 24.116 94.827 93.869 91.025
Std. Deviation 26.232 29.052 31.744 3.764 3.822 7.381 5.569 7.028 9.282
25th percentile 46 62 65 16 16 18 94 93 90
50th percentile 59 78 83 17 18 24 96 95 94
75th percentile 77 100 108.500 20 20 30 97 97 96

Table 2.4: Statistics of PSI score, respiratory frequency and
SaO2

Figure 2.1: Distribution of the PSI-score by severity order.

Furthermore, variables related to aspects other than health have also been
taken into account. On the one hand, demographic characteristics of the patient
are collected, such as age, sex, Body Mass Index (BMI) or whether the patient
resides in a nursing home. On the other hand, there are those derived from the
postcode of residence: the socio-economic ones have been obtained from the Na-
tional Statistical Institute from Spain (INE-Instituto Nacional de Estad́ıstica) cen-
sus and data on the average income level and percentage of the population over
65 can be observed, for example. For pollutants, exposure has been obtained from
measurement information published by the respective regional air quality agen-
cies. These were used to generate geostatistical models that allowed interpolation,
at postcode level, of the pollutant concentrations on each day of the time period
studied. In the context of this study, chronic exposure was defined according to
the values throughout the entire year 2019, and acute exposure was defined as the
7 days prior to the admission of each patient.

As can be seen in tables 2.5 and 2.6, it seems that more men than women

5
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Figure 2.2: Distribution of the respiratory frequency in
admission by severity order

Figure 2.3: Distribution of the Oxigen saturation in admis-
sion by severity order
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Severity order
Sex 0 1 2 Total

0(M) Count 385 143 424 952
% within column 54.073% 60.084% 70.903% 61.499%

1(F) Count 327 95 174 596
% within column 45.927% 39.916% 29.097% 38.501%

Total Count 712 238 598 1548
% within column 100.000% 100.000% 100.000% 100.000%

Table 2.5: Number of cases by severity for each sex

Age BMI (kg/m2)
Severity order 0 1 2 0 1 2

Valid 712 238 598 403 126 337
Missing 0 0 0 309 112 261
Mean 60.020 69.160 67.271 28.782 28.126 28.997
Std. Deviation 16.050 15.052 14.815 5.318 4.858 5.461
25th percentile 49 60 57 25.048 25.067 25.712
50th percentile 60 71 69 27.757 27.141 28.089
75th percentile 72 80.750 79 31.739 30.581 31.612

Table 2.6: Statistics of age and BMI by severity order

PM2.5 chronic (µg/m3) PM10 chronic (µg/m3) O3 chronic (µg/m3) NO2 chronic (µg/m3)
Severity order 0 1 2 0 1 2 0 1 2 0 1 2

Valid 579 177 328 693 235 580 693 235 580 693 235 580
Missing 133 61 270 19 3 18 19 3 18 19 3 18
Mean 16.418 18.407 17.012 27.604 30.143 29.705 72.317 73.253 72.053 33.012 36.052 37.035
Std. Deviation 4.349 4.611 4.358 5.976 5.790 5.375 5.176 5.194 5.629 9.467 8.974 9.606
25th percentile 13.379 14.569 13.686 22.826 23.988 24.095 68.763 69.415 68.511 26.006 29.566 30.392
50th percentile 14.761 19.791 14.854 24.102 32.908 32.407 70.708 72.341 70.179 32.628 38.794 39.649
75th percentile 21.800 22.317 21.918 33.505 34.013 33.767 76.053 76.292 76.257 40.534 44.096 46.247

Table 2.7: Statistics of the 90th percentile of different pollu-
tants during 2019.

were admitted for severe pneumonia and that those admitted were on average old
and overweight [21]. Finally, the level of both chronic (50th and 90th percentile in
2019) and acute (50th and 90th percentile in 7 days prior to admission) exposure
of patients to 8 pollutants has also been considered: PM10, PM2.5, O3, NO2, NO,
NOX, CO and SO2. A summary of some of them can be seen in table 2.7, and the
distribution by severity order in figures 2.4, 2.5, 2.6 and 2.7.
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Figure 2.4: Distribution of the 90th percentile of PM2.5

during 2019 by severity order.

Figure 2.5: Distribution of the 90th percentile of PM10

during 2019 by severity order.
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Figure 2.6: Distribution of the 90th percentile of O3 during
2019 by severity order.

Figure 2.7: Distribution of the 90th percentile of NO2 during
2019 by severity order.

2.2 Challenges

Due to the characteristics of the data-set, there are some challenges to be faced
in order to enable the application of the different algorithms to be analysed. This
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is done by pre-processing the data, which, depending on the nature of the data,
requires certain steps.

As seen in the previous section, variables of different peculiarities can be found
in the data-set. Specifically, there are numeric variables, binary categorical vari-
ables, ordinal categorical variables and nominal categorical variables. The latter
need to be encoded so the algorithms interpret them correctly. It is also advisable
to apply a scaling to the so that they have a similar range of values and decrease
the effect of outliers.

Furthermore, as in all real data-sets, there are missing values (NaN) in some
variables. These missing values are not well tolerated by the majority of feature
selection and prediction algorithms, so variable imputation techniques must be
applied to the data-set before.

Finally, it is necessary to pay attention to the imbalance of the data-set. The
class distribution is not uniform neither in the whole data-set nor in each hospital,
so balancing the under-represented classes may be considered, especially if there
is any training involved in the feature selection algorithm.

10



Chapter 3

Feature selection techniques

In this chapter feature selection techniques are introduced. Why they are
necessary, what different types of selectors and what techniques are used during
this study is explained below.

3.1 Introduction to feature selection techniques

In a data-set of n samples and p variables, it may occur that p is so large that
some variables have to be removed in order to simplify models to make them easier
to interpret [22], shorten training times and avoid the curse of dimensionality [23].
In machine learning and statistics this process of selecting a subset of features is
known as feature selection or variable selection.

When any feature selection technique is applied, it is assumed that the data
contains some features that are either redundant, irrelevant or carry limited infor-
mation with respect to the outcome of interest, and hence it is possible to remove
these without much loss of information [24]. Contrary to other dimensionality
reduction techniques like those based on projection, feature selection techniques
do not change the original representation of the variables; they just select a subset
of them. Thus, the original semantics of the variables are kept, which allows a
clearer interpretation by the domain experts [25].

Feature selection algorithms incorporate search techniques which attempt to
find the best subset, based on different choice criteria. Evaluating each subgroup
to find the one that minimises the error involves an exhaustive search of the space
and in most cases an unbearable computational cost. Depending on the search
techniques and choice criteria, three main categories of feature selection algorithms
can be distinguished: filter methods, wrapper methods and embedded methods
[26]. The different methods implemented and analysed during this project can be
found in table 3.1.

11
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FEATURE SELECTION METHODS

Filter methods
Univariate MI
Multivariate mRMR, FCBF, ReliefF, MultiSURF

Wrapper methods
Deterministic SFS, RFECV, RFE
Randomised BPSO, GA

Embedded methods L1 regularisation

Table 3.1: Scheme of feature selection methods analysed
during the project

3.2 Filter methods

Filter methods [25] considers only the intrinsic properties of the data to eval-
uate the relevance of features, and remove the ones which have less relevance.
These methods are computationally simple, fast and independent of the training
algorithm used to create a predictive model. Usually an univariate approach is
used, in which each feature of the entire set of features X is considered separately,
so dependence between features is ignored. When compared to other forms of
feature selection strategies, this may result in poor estimation performance. Many
multivariate filters have been created to incorporate feature dependencies to some
degree.

Both univariate and multivariate filter techniques are analysed throughout this
project. A brief explanation of each technique is given below.

3.2.1 Mutual information based univariate filter

Mutual information (MI) based filter techniques select variables from a data-
set ranking them according to the MI value between them and the target variable
or outcome of interest Y . Then, the selection can be performed in different ways:
choosing features that exceed a particular MI value previously set, selecting a
quantity of features nfeat previously set or selecting a certain percentage of best
features, for example.

The concept of mutual information was first introduced by Claude Shannon
in [27]. It measures how much a random variable (in this case a feature) Xi is
informative about another random variable (another feature) Xj [28].

MI is related to the concept of Entropy. The Entropy of a random variable Xi

[27],

H(Xi) = −
∑
xi

PXi
(xi)logPXi

(xi), ∀xi ∈ Image(Xi) (3.1)

where PXi
(xi) is the probability distribution of Xi evaluated in xi, quantifies the

uncertainty in a variable Xi. The Conditional Entropy [4]

H(Xi|Xj) = −
∑
xj

PXj
(xj)

∑
xi

PXi|Xj=xj(xi)log(PXi|Xj=xj(xi) (3.2)
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measures the average of the uncertainty in Xi given the observed variable Xj.

MI(Xi, Xj) is calculated as follows [27]:

MI(Xi, Xj) = H(Xi)−H(Xi|Xj) (3.3)

If Xi and Xj are both discrete variables, counting the number of times each pair
appears in the data can be used to estimate the true frequencies of all combinations
of (xi, xj) pairs, which is denoted as p(xi, xj) [29]. Then, MI is calculated as shown
in equation 3.4 [30].

MI(Xi, Xj) =
∑
xj∈Xj

∑
xi∈Xi

p(Xi,Xj)(xi, xj)log

(
p(Xi,Xj)(xi, xj)

pXi
(xi)pXj

(xj)

)
(3.4)

In the case Xi and Xj correspond to continuous variables, statistics of the spacing
between data points and their nearest neighbours are used, as explained in [31].
In the case just one variable is continuous and the other discrete, the concept of
nearest neighbor changes so a different method described in [29] is applied.

Univariate filter type methods such as MI based filters simply select the
top-ranked features, so they do not detect correlation between features [32].
Information shared by more than one variable is known as redundancy and can
result in an incomplete representation of the characteristics of the target value. In
order to avoid its effects, different multivariate methods have been developed, of
which some are discussed here. These methods use a classification approach,i. e.,
they are applied to problems where the outcome of interest Y is a discrete variable
divided in certain C classes or categories.

3.2.2 mRMR

In [33, 34], a method called Minimum Redundancy - Maximum Relevance
(mRMR) is introduced.

The idea of minimum redundancy is to select the features which are mutually
maximally dissimilar, and MI is used as a measure of similarity. The optimal
subset S must satisfy the minimum redundancy condition 3.5,

minWI , WI =
1

|S|2
∑

Xi,Xj∈S

MI(Xi, Xj), (3.5)

where |S| is the number of features in S.

On the other hand, maximum relevance tries to select features which are most
relevant with regard to the target variable Y . MI is also used as a measure of
relevance, and equation 3.6 is the maximum relevance condition which must be
satisfied by S

maxVI , VI =
1

|S|
∑
Xi∈S

MI(Y,Xi) (3.6)
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Both conditions 3.5 and 3.6 must be optimised at the same time, so two
combination criteria are proposed:

MID: Mutual Information Difference criterion: max(VI −WI) (3.7)

MIQ: Mutual Information Quotient criterion: max

(
VI
WI

)
(3.8)

Finding the subset S becomes a computationally expensive task if all possibilities
want to be compared. That is why an incremental search methods are used: having
the subset Sm−1, the mth feature is selected such it maximizes the selected criteria.
The algorithm stops when the previously set number of features nfeat which want
to be selected is reached. Algorithm 1 shows a pseudo-code for mRMR.

Algorithm 1: mRMR

Result: S
S = ∅, i=0 ;
while i< nfeat do

s+=arg max MID or MIQ(Xi), where Xi ∈ X − S ;
S = S + s+ ;
i=i+1 ;

end

3.2.3 FCBF

Another multivariate filter which considers redundancy is the Fast Correlation-
Based Filter (FCBF) proposed in [4]. There, symmetrical uncertainty (SU) [35] is
proposed as a measure of correlation between variables:

SU(Xi, Xj) = 2

[
MI(Xi, Xj)

H(Xi) +H(Xj)

]
(3.9)

The subset of relevant features to the class is decided considering a threshold δ.
Suppose a data set with a target variable Y . Being SUXi,Y the SU value that mea-
sures the correlation between a feature Xi and the target variable Y , the subset
of relevant features is S ′ = {Xi|Xi ∈ X,SUXi,Y ≥ δ}

The decision of considering a feature redundant or not with other relevant
features is more complicated, because analysing all pairwise correlations between
all features may result in a big time complexity. To solve this, a concept called
predominant correlation is introduced: The correlation between a feature Xi and
Y is predominant iff SUXi,Y ≥ δ, and ∀Xj 6=i ∈ S ′, there exist no Xj such that
SUXj ,Xi

≥ SUXi,Y .

If there exists such Xj to a feature Xi it is called a redundant peer to Xi, and
SPi

is used to denote the set of all redundant peers for Xi. Given Xi ∈ S ′,
SPi

is divided into two parts: S+
Pi

= {Xj|Xj ∈ SPi
, SUXj ,Y > SUXi,Y } and

S−Pi
= {Xj|Xj ∈ SPi

, SUXj ,Y ≤ SUXi,Y }.
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If a feature is predominant in predicting the class, it is considered good, and a
feature is predominant iff its correlation to the class is predominant or can become
predominant after the redundant peers are removed. Thus, this filter tries to iden-
tify all predominant features and remove the rest, following algorithm 2.

Algorithm 2: FCBF

Result: S
Calculate S ′ ;
Sort S ′ in descending order ;
Xp= First Element of S ′;
while Xp 6= NULL do

Xq= Next Element of Xp in S ′ ;
while Xq 6= NULL do

X ′q = Xq ;

if SUXp,Xq ≥ SUXq ,Y then
remove Xq from S ′ ;
Xq= Next Element of X ′q in S ′ ;

else
Xq= Next Element of Xq in S ′ ;

end

end
Xp= Next Element of Xp in S ′ ;

end
S = S ′

Other filters that detect interactions between variables are the Relief Based
Algorithms (RBA) [36, 37]. They score each feature to get a rank and select certain
nfeat number of top features. In this case, differences between nearest neighbor
instance pairs are considered for scoring. The feature score decreases as the
feature value difference with a same class neighbor (’hit’) increases, and increases
when the feature value difference with a different class neighbor(’miss’) decreases.
Specifically, ReliefF and MultiSURF are analysed, which support missing values.

3.2.4 ReliefF

ReliefF filter [38] is an improved version of Relief. First of all, feature weights
W (Xi) are set to 0. Then, for each sample nl ∈ n in the data set, based on
Manhattan norm [39] K nearest hits Hi1= {nl′ | class(nl′) = class(nl)} and misses
Mc = {nl′ | class(nl′) = c 6= class(nl)} from each other class c ∈ C are identified,
and feature weights are updated as follows:

W (Xi) = W (Xi)−
∑
q∈K

diff(Xi, nl, nq ∈ Hi)
n ·K

+
∑
c∈C

∑
r∈K

P (c)
diff(Xi, nl, nr ∈Mc)

n ·K
(3.10)

where P (c) is the prior probability of class c and diff(Xi, nl, nl′) function calculates
the value difference of a feature Xi between two instances nl and nl′ . For discrete

1Originally hits are referred to as H, but here Hi is used to distinguish it from Entropy.
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features, diff is defined as 0 if values are the same, and as 1 otherwise. In the case
of continuous features is defined as shown below:

diff(Xi, nl, nl′) =
|value(Xi, nl)− value(Xi, nl′)|

max(Xi)−min(Xi)
, (3.11)

where value(Xi, nl) and value(Xi, nl′) are the values of feature Xi in the samples
nl and nl′ , respectively. When a missing value is found, diff is set as the class-
conditional probability that two instances have different values for the given
feature.

3.2.5 MultiSURF

MultiSURF algorithm [40] has some changes compared to the previous one.
In this case K parameter is not used. Instead, for each instance it makes use
of a distance threshold Tl − σl

2
to decide which instances are neighbors. Tl is

defined as the mean pairwise distance between instance l and all others, and σl is
the corresponding standard deviation. Besides, equation 3.10 is slightly modified.
Rather than dividing by K, diff corresponding to hits is divided by the number
of hits h within the limit set by the threshold, and diff corresponding to misses is
divided by the number of misses mc within the limit.

3.3 Wrapper methods

Wrapper methods [25] establish a search technique in the space of possible
feature subsets, which evaluates these subsets and chooses the best through a esti-
mation model. Specifically, usually the model is trained and tested for each subset,
and each subset gets a score according to its success or error at testing.

Wrapper methods consider feature dependencies and include the interaction
between the feature subset search and the model selection. Nevertheless, the last
property leads to a higher probability of over fitting compared to filter techniques,
and it usually makes the algorithm computationally intensive, especially if con-
structing the classifier is time-consuming.

The space of feature subsets grows exponentially with the number of features
and it is usually computationally very expensive to evaluate each subset.
Therefore, different heuristics are used to go through the search space, and
depending on this heuristics, two main wrapper classes can be distinguished:
deterministic and randomised. During this project, methods of both classes are
analysed, and a brief explanation of them is given below. First, deterministic
methods such as SFS and RFE are explained.

16



CHAPTER 3. FEATURE SELECTION TECHNIQUES

3.3.1 Sequential Feature Selection

Sequential Feature Selection (SFS2) [41] is a greedy method, which can be
approached in two ways: as a forward selection and as a backward elimination.
Forward selection starts with an empty set, and at each iteration, among the re-
maining available features which have not been added yet, it selects and adds the
locally best feature. Backward selection starts with the entire set, and at each
iteration it removes the locally worst feature among those which have not been
subtracted yet. Usually the number of features nfeat which have to be selected is
set previously, so the process stops when a subset of nfeat features is reached.

To decide which feature is the best (or worst) a criterion function J is needed,
and here it is where the estimation model comes in. The criterion function is based
on the user-defined model performance. Algorithm 3 shows the pseudo-code for
Sequential Forward Feature Selection.

Algorithm 3: Sequential Forward Feature Selection

Result: S
S = ∅, i=0 ;
while i< nfeat do

s+=arg max J(S +Xi), where Xi ∈ X − S ;
S = S + s+ ;
i=i+1 ;

end

3.3.2 Recursive Feature Elimination

Recursive Feature Elimination [42] (RFE), as the name implies, attempts to
obtain the best subset by eliminating features recursively, based on the importance
of the variables. Unlike SFS, where the criterion J based on the model performance
is analysed, the appropriateness of each variable is measured in terms of its impor-
tance in the model. Depending on the model used, importance can be measured
in different ways.

In this project, two variants of RFE are analysed, which differ in the termina-
tion criteria. The first one is the simplest one, in which the numbers of features
to select nfeat is set previously. This way features are eliminated until a subset of
the required size is reached. The pseudo-code is shown in 4.

2SFS is actually used to refer to Sequential Forward Selection, but during this project it will
be used as an abbreviation of Sequential Feature Selection
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Algorithm 4: RFE

Result: S
S = X, n=p ;
while n> nfeat do

M=Train model on S, Y ;
I=Importance of features in S in M ;
s−=arg min I(Xi), where Xi ∈ S ;
S = S − s− ;
n=n-1 ;

end

The second one is more complicated and time- consuming, and it’s called
RFECV, because it implies Cross-Validation for choosing the size of the best sub-
set. First, the data set is partitioned in the desired splits, and for each split RFE
is performed until an empty set is reached. Then, for each subset of different size
created in each split thanks to RFE, a score is computed in the test set. For
each number of features, the mean result from the different splits is considered to
choose the best scoring number of features (nfeat), and finally it performs RFE
again to reach a subset of size nfeat. Algorithm 5 shows the pseudo-code for a
k-fold RFECV.

Algorithm 5: RFE

Result: S
SPLITS = Split data set (X, Y ) in k splits ;
Initialise SCORE p-array ;
for (Xtrain, Ytrain) in SPLITS do

Strain = Xtrain ;
n = p ;
while n>0 do

M=Train model on Strain, Ytrain ;
sc = score of testing M in X −Xtrain, Y − Ytrain ;
SCORE[n]= SCORE[n]+sc/k ;
I=Importance of features in Strain in M ;
s−=arg min I(Xi), where Xi ∈ Strain ;
Strain = Strain − s− ;
n=n-1 ;

end

end
nfeat=index of max(SCORE) ;
S=perform RFE in (X, Y ) data set for neat ;

As part of the randomised algorithms, Genetic Algorithms and Binary
Particle Swarm Optimisation are analysed. These metaheuristic are found
within Evolutionary Algorithms [43], where candidate solutions are represented
as individuals in a population, and a scoring function called Fitness function is
used to evaluate their quality. The difference between these two algorithms lies
mainly in the techniques used to ”evolve” from one population to another. These
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algorithms are not specific Feature Selection techniques, but are easily applicable
for this purpose.

3.3.3 Genetic Algorithms

Genetic Algorithms (GA) envelope search methods based on principles of ge-
netics and natural selection [44, 45, 46]. In a simple GA, an initial population
consisting of candidate solutions or individuals (chromosomes) represented by bi-
nary strings is initialised randomly. These individuals evolve to next generations
thanks to different Genetic Operators and survive according to their goodness,
measured by the Fitness Function.

The most common genetic operators are the following ones, and there are many
algorithms for each operator:

• Evaluation: Each individual is evaluated by their value of the Fitness
Function.

• Selection: Individuals are chosen to be passed on to the next generation.
Best individuals have a higher chance of being selected.

• Recombination or crossover: At this step two or more individuals are
combined to create new ones. Usually, not all individuals are recombined;
a crossover probability Pc is set to control how many individuals perform
crossover.

• Mutation: It randomly modifies individuals separately. As in crossover, a
mutation probability Pm is set, not to modify every bit of the individuals.

• Replacement: The offspring population created by the previous operators
replaces the previous generation.

This iterative process is repeated until a desired end condition is reached: certain
number of generations, convergence of Fitness values or established computation
time, for example.

There are some parameters to be tuned which influence the behaviour of the
algorithm. The completeness of the heuristic search and, thus, probability of
reaching the optimal solution increases with the population size, but at the same
time, more generations are needed for convergence [47]. Mutation adds newer ar-
eas to the GA’s search space, by injecting new characteristics to the population.
Therefore, high mutation probabilities make the algorithm more exploratory and
its behaviour almost random and more difficult to converge [48]. On the other
hand, the effect crossover probability is not so notorious, so it usually takes high
values to allow the algorithm to converge at the correct time According to [49], in
this project Pm is kept between 0.001 and 0.02, and Pc between 0.6 and 0.95.

In the case of the Genetic Algorithms applied to Feature Selection, each binary
string has the length of the number of features in the data-set, where a 1 means
the feature is selected, and a 0 means it is not. As in SFS and RFECV algorithms,
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here the Fitness function reflects the predictive performance of a certain model,
so for each individual, ad previously set estimation model is trained and tested.

3.3.4 Binary Particle Swarm Optimisation

Binary Particle Swarm Optimisation (BPSO) [50] is a discrete binary version of
the Particle Swarm Optimisation (PSO) algorithm [51]. It differs from GA mainly
in the evolving technique. Instead of applying Genetic Operators to individuals,
called particles in this case, they ”move” through the search-space according to
a kind of motion equation, as if in a swarm. The movement of each particle is
controlled by its local best known position and the global best known positions in
the search space, which are updated when better positions are discovered by other
particles.

In BPSO each particle moves to corners of an hypercube by flipping certain
bits, so the number of bits changed per iteration can give an idea about the velocity
of the particle. Specifically, velocity represents the probability of a bit taking the
value 1. The BPSO formula of velocity vid for each bit d of each particle i is the
same as the one for BPSO,

vid = ωvid + φprp(pid − xid) + φgrg(pgd − xid), (3.12)

where rp, rg are random numbers picked from U(0, 1), and pid and pgd the local
and global best values for bit d, respectively.

As mentioned before, in BPSO vid is a probability so the transformation in
3.13 is applied to ensure vid ∈ [0.0, 1.0].

S(vid) =
1

1 + e−vid
(3.13)

Once the probability is computed, the value of each bit Xid is defined as follows:
a random number is picked from U(0, 1), and if it smaller than S(vid) the value is
set to 1; else, it is set to 0.

Usually a vmax is set to limit the velocity of a particle. For BPSO, it limits the
ultimate probability of taking on a zero or one value. As a result, smaller vmax
values make the algorithm more exploratory. Parameters w, φp and φg in 3.12
must be set as well. w is the inertia weight, and it controls the influence of the
previous history of velocities on the current one. Larger w allows a bigger global
exploration, while smaller w allows a local exploration [52]. In the case of φp and
φg, as explained in [53], it is not entirely clear what the best values are.

3.4 Embedded methods

Embedded methods ”embed” the search of the optimal feature subset in the
model construction: they do feature selection in the process of training [25, 26]. As
wrappers do, embeddeds are specific to a given learning algorithm, but instead of
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using models to evaluate each subset, they train the model once and select certain
features based on their importance, and are less computationally intensive.

During this project just one embed technique is analysed. Specifically, a L1

regularisation based one.

3.4.1 L1-norm penalty based regularisation

In order to prevent overfitting, regularisation is applied in mathematical and
statistical problems [54]. This can be performed by adding a penalty to the
optimisation function. Specifically, for predictive linear models, when the L1-norm
penalty is introduced in the loss function, many of the estimated coefficients are
zero. Feature selection can be performed choosing these features whose coefficients
are not zero.
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Chapter 4

Theoretical background of the
analysis techniques

As explained in the previous chapter, there are many techniques to be analysed
in this project. This analysis will be carried out in terms of the stability and
computational complexity of each algorithm, and the similarity between them.
This chapter develops the theoretical foundations on which the stability and
similarity measures used have been built, as well as the theoretical computational
complexities of each algorithm.

4.1 Stability

The stability of a feature selection algorithm relates to the reproducibility
of its results. If a small change in the data set results in a large change in
variable selection, the algorithm is considered unstable. For this project, it has
been considered important for an algorithm to show stability in order to make
the results produced meaningful. Many methods for measuring feature selection
algorithms’ stability have been proposed, but here the one in [55] is used. There,
authors propose the next properties that a stability measure should satisfy:

1. The stability estimator Φ̂ should allow the total number of features selected
to vary.

2. The stability estimator Φ̂ should be a strictly decreasing function of the
sample variances s2

i of the variables Xi.

3. The stability Φ̂ should be bounded by constants independent to the
number of features or number of features selected, to allow a meaningful
interpretation.

4. The stability Φ̂ should be maximum iff all features sets in Z are identical.

5. Under the Null Model of Feature Selection H0 (for all feature subsets in
Z, all subsets of a certain size have an equal chance of being chosen), the
expected value of Φ̂ should be constant.
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With all this in mind, the stability estimator is defined as

Φ̂(Z) = 1−
1
p

∑p
i=1 s

2
i

E
[

1
p

∑p
i=1 s

2
i |H0

] = 1−
1
p

∑p
i=1 s

2
i

n̄feat

p

(
1− n̄feat

p

) (4.1)

where s2
i = M

M−1
p̂i(1 − p̂i) is the unbiased sample variance of the selection of the

feature Xi.

According to [56] stability values above 0.75 indicate a high level of agreement
between feature sets, while values below 0.4 represent a poor level.

Usually, to measure stability of a certain feature selection algorithm, this
algorithm is applied to M bootstrap samples of the data set and variability in
the M results is analysed. As the number of samples M increases the value of the
estimator Φ̂i(Z) gets closer to the true stability.

4.2 Similarity

It is interesting to analyse the similarity between different stable algorithms. If
the selection made by them is similar, the relevance of the chosen variables become
more evident and one or the other can be chosen depending on its computational
complexity.

In this case, the Jaccard index or Jaccard similarity coefficient [57] have been
chosen to measure similarity between two selections. It is defined as the size of
the intersection divided by the size of the union of two label sets:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(4.2)

4.3 Time complexity

Finally, it is also interesting to know the computational complexity of each
algorithm. Although variable selection techniques are analysed separately in this
project, they are usually included in pipeline that includes other steps and algo-
rithms. Therefore, it is important for an algorithm to be relatively fast. Given two
algorithms which are stable and similar enough to each other, the faster is much
more practical.

Being p the number of features, n the number of instances of the data-set,
nfeat the number of features to select, k the number of cross-validation folds, K
the number of nearest neighbors, ngen the number of generations or iterations
and npop the size of the population in GA andBPSO, some approximations of
the asymptotic time-complexities are shown in table 4.1. Actual execution times
depend on calculations other than the heuristic of the selection algorithm itself. In
particular, for wrappers and embeddeds, the complexity of the chosen estimation
model must be considered too.
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Algorithm Asymptotic time-complexity

MI O(n · p), O(n
√
K · n) [31]

mRMR O(nfeat · p) [34]
FCBF O(n · p · logp) [4]
ReliefF, MultiSURF O(p · n2) [58]
Forward SFS O(p · nfeat)
RFE O(p− nfeat)
RFECV O(k · p)
BPSO O(k · ngen · npop)
GA O(k · ngen · npop)

Table 4.1: Asymptotic time-complexities of feature selection
algorithms

In terms of the general approach of the analysis, a number of M = 100
bootstrap samples is established. Although larger values would bring the estimate
closer to the real value, it is necessary to guarantee a reasonable computation time,
as some feature selection algorithms are slow. For each bootstrap sample, every
feature selection algorithm is applied and the average computational time and the
stability are estimated. Just those showing a better stability will be compared in
terms of similarity, estimating an average similarity value considering similarities
for each bootstrap sample.
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Experimental design

Both the pre-processing of the data and the techniques for selecting variables
and analysing them have several parameters and aspects that need to be defined.
In particular, the target variable Y of the data-set corresponds to the severity of
the pneumonia suffered by the patient and three levels have been defined: 0, 1
and 2. In this case, a higher level indicates a higher severity and this is why two
possible approaches are proposed:

a) Consider Y as a categorical variable and apply pure classification algorithms

b) Consider Y as an ordinal variable and apply regression algorithms with
discretisation.

Almost all filters use a classification approach, but as embedded and wrapper
methods include a estimation model, both classification and regression models can
be analysed. In this chapter an attempt will be made to give a brief description
and justification, if any, for the selected parameters and predictive algorithms and
the used code libraries used will be mentioned. The code designed for this project
can be consulted on a GitHub repository. The instructions to access there can be
found in appendix B.

5.1 Pre-processing

It has been explained above that given the characteristics of the data-set, it is
necessary to pre-process it in order to make possible to apply the algorithms. A
brief explanation of the different pre-processing steps is given below:

5.1.1 Encoding

The majority of Machine Learning algorithms do not support categorical data,
so they must be converted into numeric data. When a simple Ordinal Encoder is
applied for a multi-class problem, which assigns a number from 0 to the number of
classes minus one to each class, most of the algorithms interpret a numerical order
between values, when in fact there is none. In such cases, the so-called One-Hot
Encoding [59] is applied, which assigns to each class a different binary number with
a single high bit. This way, the original variable is replaced by as many binary
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categorical variables as it has classes minus one. Both encoders are implemented
in the Python [60] library Scikit-Learn [61]. When One-Hot Encoding is applied,
the 131 variables of the data-set turn into 148.

5.1.2 Scaling

As previously mentioned, it is necessary to standardize the data-set and this
is done by applying the Robust Scaler from Scikit-Learn. While typical scalers
remove the mean and scale to unit variance, it decreases the influence of the outliers
considering the median and the range between the 1st and the 3rd quartiles:

x̃ =
x−median

quart3 − quart1
(5.1)

5.1.3 Imputation

The imputation of missing variables may affect the calculations and therefore
the results of the algorithms, as it introduces substitute values estimated on the
basis of other data instances. For this reason, feature selection algorithms which
do not support missing values, will be analysed separately for two different impu-
tation techniques.

The K-Nearest Neighbors Imputer (knn 1) [62] uses the mean value from K
nearest neighbors found in the training set. For this project K = 9 neighbors are
considered and each of them is weighted by the inverse of their distance.

The Iterative Imputer [63, 64] estimates each feature from other nearest features
iteratively, computing a new value for each iteration, until the difference between
the previous and the actual value is small enough. In this case, just 4 nearest
neighbors are considered so as not to lengthen the computational time as well as
to safeguard against overfitting of the internal estimator, and the median of them
is chosen to impute the missing values.

5.1.4 Balancing

As mentioned in 2.2, the class distribution is not uniform in the data-set: there
are under and over-represented classes. As it can lead to poor performance of the
different Machine Learning algorithms, balancing the under-represented classes
may be considered, especially if there is any training involved in the feature se-
lection algorithm. The imbalance of the data-set is tackled differently depending
on the feature selection technique. As data balancing techniques may introduce
correlation between samples, no balancing is applied in the case of filters, as they
assume independence among samples [65]. For embedded and wrapper meth-
ods, the Random Over-Sampling [66] strategy implemented in the Python library
Imbalanced-Learn [67] is used. It supplements the data with multiple copies from
some of the minority classes. These copies can have slight variations from the

1Lower case is used in the imputer to differentiate it from the classification and regression
algorithm of the same name.
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originals, and this can be performed by introducing a shrinkage.

When it comes to a train-test process repeated to perform cross-validation,
usually present in wrapper methods and some parameter tuning, oversampling in-
creases the risk of training and testing on the same sample and, therefore, getting
an over-fitted model and a misleading score. This is why pipelines which only
consider oversampling at the training part have been designed carefully.

In the case of the studied embedded method, training is performed once at the
whole data-set. In this case, a little shrinkage has been introduced at oversampling
not to train the models on the same instances. First, a preliminary study was
conducted to determine which amount of shrinkage is suitable. Using the knn
imputer, Linear Discriminant analysis (LDA) [68] have been used to analyse the
effect of different shrinkage values, as it helps for the visualisation of the data.
As figure 5.1 shows, a shrinkage of 0.01 is enough to smooth the data without
changing it too much.

Figure 5.1: LDA representation for different shrinkage val-
ues. From top to bottom, left to right: No
shrinkage, 0.01, 0.05 and 0.1
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5.2 Implementation of filters

Each filter method has certain parameters which must be defined. The MI-
based univariate filter is the only feature selection method which admits both
classification and regression approaches, the others are designed only to support
classification outcome variable Y . As explained in section 3.2.1, the algorithm
which estimates MI between two variables takes into account K-nearest neigh-
bors of samples when at least one of the variables is discrete. In this case K = 3
neighbors are used as it is the default value in the source code for calculating MI
in Scikit-Learn. On the other hand, authors of mRMR and FCBF algorithms rec-
ommend a discretisation of the continuous variables, so they are discretised using
Scikit-Learn’s K Bins discretiser, which, in this case, creates 10 bins with the same
number of points.

Regarding the number of features to select, all the filters except FCBF have
been programmed to choose 5, 10, 20 and 40 features, to emphasise the most im-
portant variables and to perform a considerable reduction of dimension. For FCBF
there is just one parameter to tune, and it is the threshold δ. After some testing,it
was found that for δ > 0 the algorithm did not work well for the data-set, so δ = 0
has been set.

For ReliefF algorithm, two possible variants are analysed, depending on the
number of nearest neighbors considered. K = 10 neighbors is the most common
value, [58] and the higher it is, the better. Therefore, in this project K = 10 and
K = 100 are chosen. In table 5.1 a scheme of all filter configurations analysed.

Filter method
(code source)

Parameters Pre-processing
Features
to select

δ
Maximization
function

Approach Neighbors Imputer Encoding Scaling

MI
(Scikit-Learn)

5, 10,
20, 40

Classification,
Regression

knn,
iterative

One-Hot Robust
mRMR
(pymrmr [33])

MIQ, MID

ReliefF
(ReBATE [40])

10, 100 None (RBA
support
NaN)

MultiSURF
(ReBATE [40])
FCBC
(Scikit-Feature [69])

0
knn,
iterative

Table 5.1: Analysed filter configurations

5.3 Implementation of wrappers

The implementation of wrappers involves taking into account more details than
in the case of filters, as they include, on the one hand, estimation models, and on
the other hand, several aspects related to search heuristics. In this case, the two
approaches (classification and regression) differ only in the estimation model they
use for scoring subsets of features.
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5.3.1 Configuration of the internal estimators

For each approach, internal estimation models with different philosophy have
been used, all implemented in Scikit-Learn:

1. Models with linear boundaries: L2-norm penalised linear models have been
chosen to ensure that the estimator learns without overfitting. A penalty
λR(β2

i ), where βi are the coefficients of the model for each feature Xi is
added to the loss function (the one to be optimised for getting βi).

a) L2-norm penalised Logistic Regression (LR) for classification approach.

b) Ridge Regression [70] for regression approach.

2. Models with non-linear boundaries:

2.1. Histogram-based Gradient Boosting (HGB) algorithm: Gradient Boost-
ing techniques create an ensemble of weak estimation models (usually
decision trees) [71] and the Histogram-Based differs from the classic one
in that it discretises the continuous features to a certain number of bins
in order to accelerate the algorithm. It supports missing values.

a) Histogram-Based Gradient Boosting Classifier (HGBC).

b) Histogram-Based Gradient Boosting Regressor (HGBR).

2.2. K-Nearest Neighbors Algorithm (KNN) [72, 73]: performs estimation
based on the K-nearest neighbors’ target value.

a) K-Nearest Neighbors Classifier (KKNC): the decision over an object
is made based on the ”vote” of its neighbors.

b) K-nearest Neighbors Regressor (KNNR): the estimation is the
average of the values of the neighbors.

Weights are assigned to the contribution of the neighbors, considering
the distance between the object and them.

These models have also some parameters which must be defined. For the linear
models, the most important one is the hyperparameter λ, which controls overfit-
ting by penalizing large βi. Larger values of λ lead to underfitting. Because of the
way the models are implemented within the feature selection algorithms, each time
they are applied on different data. Tuning this parameter for each case lengthens
the computational time considerably, so as an approximation, this parameter has
been calculated using a 3-fold cross validation on 100 different bootstrap of the en-
tire data-set. The Scikit-Learn algorithm uses an hyperparameter C, inverse of the
regularisation strength, for classification, and α = 1

2C
for regression, so these are

the hyperparameters to tune. Based on the results shown in figure 5.2, C = 0.001
and α = 0.1 have been chosen.

Only two parameters are adjusted in the case of the KNN algorithms. The first
one is the weight function used in estimation, which has been set as the inverse
of the distance between points. The other and most important is the number K
of neighbors to consider. As has been done to adjust other parameters, the best
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Figure 5.2: Occurrences of α and C parameters selected by
cross-validation in M = 100 bootstraps.

Figure 5.3: Occurrences of K selected by cross-validation in
M = 100 bootstraps.

value for K has been chosen by 3-fold cross-validation for 100 different bootstraps
of the entire data-set, from the possible values {5, 10, 15, 20, 25}. Figure 5.3 shows
how many times each value has been chosen. For regression it is clear that the
K-nearest neighbor algorithm performs better when K = 5, so this is the chosen
value. For classification the difference of the behaviour of the algorithm is not
that clear: K=5, 20 and 25 have been chosen in a similar number of times. For
simplicity and to use the same parameter as in the case of regression, K = 5 has
also been set.

In the case of the Histogram-Based Gradient Boosting models, there are many
parameters to be tuned. One of them is the number of iterations or trees in the
ensemble. Gradient Boosting methods start with an initial model (a decision tree),
and iteratively improves it adding a new estimator, considering the errors of the
previous one. The number of iterations has been set in 100, but a tolerance of
0.0001 has been set too: the loop stops if in 10 iterations the score of the model
does not improve up to that tolerance. Also the number of bins has been set to
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25, in order to accelerate the algorithm.

5.3.2 Configuration of the search heuristics

Another important aspect of the wrapper methods is the scoring function used
for evaluating different feature subsets, known as fitness function in the case of the
bio-inspired algorithms GA and BPSO. This function must reflect the performance
P of the model which considers the feature subset S ′ to evaluate, and for this
purpose, the Geometric Mean Score (GMS) [74, 75] implemented in Imbalance-
Learn library has been chosen, due to its class-wise sensitivity (remember the
imbalance of the data-set). It considers the product of sensitivity (TPR) for each
class:

GMS =

(∏
c∈C

TPR(c)

) 1
|C|

(5.2)

In some cases (SFS, RFE) the number of features is fixed previously by design.
When it is not (RFECV, GA, BPSO), it is interesting to add another term to
score smaller subsets, as the objective is to reduce the number of features, and
that is why a scoring or fitness function based on the one proposed in [76] has
been chosen,

f(S ′) = γP + (1− γ)

(
1− |S

′|
|X|

)
(5.3)

where γ sets the weight of each objective: model accuracy and subset size. γ = 0.8
has been chosen.

In the case of the bio-inspired algorithms, as explained in sections 3.3.3 and
3.3.4, there are some influencing parameters in the behaviour of the algorithms
which must be tuned. Although there is some knowledge about their effect, it
is advisable to adjust them to each application in order to ensure a good result.
However, this leads to laborious work that is beyond the scope of this project,
so some general configurations have been chosen, while ensuring a certain conver-
gence of the algorithm.

In the case of the Genetic Algorithm a population size of npop = 100 individuals
has been set to ensure a good enough space search, with two mutation probabilities:
0.001 for a faster convergence and 0.02 for a more exploratory algorithm. In
both cases the crossover rate has been set to an intermediate value of 0.7. As an
approach, for a configuration with knn imputer and a linear model, the convergence
of the algorithm has been studied in 10 bootstrap, in order to adjust the number of
generations ngen needed. As shown in figures 5.4 and 5.5, 500 and 1000 generations
seem to be enough for 0.001 and 0.02 mutation probability, respectively.
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Figure 5.4: Fitness values for GA with knn imputer, linear
models and Pm = 0.001 in 10 different bootstrap.

Figure 5.5: Fitness values for GA with knn imputer, linear
models and Pm = 0.02 in 10 different bootstrap.

The approach for BPSO is similar to that of GA. The values |v|max = 2 and
|v|max = 6 and w = 0.9 and w = 0.6 have been chosen to analyse a more and less
exploratory BPSO algorithm, respectively. Otherwise, the following values have
been set: φp, φg = 0.5, npop = 30 and ngen = 2000. As shown in figures 5.6, 5.7, 5.8
and 5.9, it seems that 2000 iterations are enough for the algorithm to converge. In
these initial tests, it was found that the algorithm is quite slow, and taking into
account that there are many configurations to be analysed, it was decided to apply
BPSO for feature selection only with ω = 0.9, as it seems to reach higher fitness
values.

32



CHAPTER 5. EXPERIMENTAL DESIGN

Figure 5.6: Fitness values for BPSO with knn imputer,
linear models, |v|max = 6 and ω = 0.6 in 10
different bootstrap.

Figure 5.7: Fitness values for BPSO with knn imputer,
linear models and |v|max = 6 and ω = 0.9 in
10 different bootstrap.
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Figure 5.8: Fitness values for BPSO with knn imputer,
linear models, |v|max = 2 and ω = 0.6 in 10
different bootstrap.

Figure 5.9: Fitness values for BPSO with knn imputer,
linear models and |v|max = 2 and ω = 0.9 in
10 different bootstrap.

To conclude with the implementation of wrappers, in cases where the number
of variables to be selected has to be determined in advance, the same values as for
the filters have been chosen. The sum of all the models and configurations of each
algorithm means that there are many different configurations of wrapper methods.
Table 5.2 provides a summary of all of them.
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Wrapper method
(code source)

Parameters Model
Pre-processing

Imputer Encoding Scaling

SFS
(Scikit-Learn)

Features to select:
5,10
20,40

LR, Ridge,
KNNC, KNNR

knn,
iterative

One-Hot Robust

HGBR, HGBC None
RFE
(Scikit-Learn) LR, Ridge knn,

iterativeRFECV
(Scikit-Learn)

PSO
(PySwarms [77])

Pm = 0.001 ngen = 500
Pm = 0.02 ngen = 1000

LR, Ridge,
KNNC, KNNR
HGBR, HGBC None

GA
(Feature Selection GA [78])

|vmax| = 2
|vmax| = 6

LR, Ridge,
KNNC, KNNR

knn,
iterative

HGBR, HGBC None

Table 5.2: Analysed wrapper configurations

5.4 Implementation of embeddeds

In order to carry out the analysis of the embedded methods, the same linear
models as in wrapper methods have been chosen, but, in this case, with L1-norm
regularisation. In other words, L1-norm penalised logistic regression is used for
the classification approach, and Lasso [79, 80] for the regression approach. As with
L2-norm regularisation, the penalty hyperparameter λ of the, in this case, λR(βi)
loss function must be set. With the aim of analysing the effect of regularisation,
feature selection has been performed for different values of λ. In the case of logistic
regression, the set C = {0.075, 0.05, 0.025, 0.01, 0.005} has been chosen, and for
Lasso, the set α = {0.005, 0.01, 0.025, 0.05, 0.075}, from less to more regularisation.

Regarding the number of features to select, there are several approaches. Based
on the importance of features, a certain number of features with the highest im-
portance can be selected, or a threshold value of the importance can be set just
to select the ones which overcome this value. As explained in section 3.4.1, it has
been decided to eliminate those features whose coefficient βi after regularisation is
zero, so a threshold of 0.0 has been set.

Both the models and the feature selection algorithm are implemented in Scikit-
Learn. As they do not support missing values and categorical values, the One-Hot
encoder has been used, as well as knn and iteraitve imputers.

5.5 Time complexity measurement

As already mentioned, the computational time required by each algorithm will
be analysed. In order to make the results as comparable as possible, all codes have
been run on BCAM’s Hipatia cluster. It is worth mentioning that at some point
in time the cluster had a breakdown, so some of the results may not be completely
accurate.

35



Chapter 6

Results and discussion

In this chapter, the different algorithms will be analysed in the terms explained
in chapter 4. First the stability and computational time for each algorithm are
shown, to continue with the similarity between algorithms.

6.1 Stability and computational time

Let us start with filter algorithms and its configurations. The 95% confidence
interval of stability and computational time have been plotted for different algo-
rithms. In order to achieve a clear visualisation of the data, the graphs have been
divided by imputation technique.

Much information can be obtained from figures 6.1, 6.2 and 6.3. The applied
imputer technique seems to influence the feature selection, as shown by the dif-
ferent values of stability for the same algorithm. In the case of the knn imputer,
stability increases with the number of selected features. In contrast, for iterative
imputer stability increases with the number of features except in the case of 40
features for MI-based filters, and it remains more or less stable for mRMR algo-
rithms . Both for the classification and the regression approach, the univariate
filters obtain better stability estimations than the multivariate ones, with the ben-
efit of being much faster. Within the RBA algorithms, ReliefF10 obtains poor
results compared to the other two algorithms. With similar stability estimations,
ReliefF100 algorithm is twice as fast as MultiSURF.

In the case of wrapper methods, as already seen, there are several configura-
tions per algorithm, so each method will be analysed separately.

Figure 6.4 and 6.5 show the results obtained for different RFE algorithms. For
the classic RFE, the algorithm obtains higher stability estimation values when
a classification model is used, although the difference decreases with number of
selected features. When the number of features to be selected is decided by
cross-validation (RFECV), the mean and standard deviation of the number of
chosen features is 12.21 ± 6.15, 10.32 ± 6.82, 46.51 ± 11.34 and 45.07 ± 12.13 for
configurations of classification and regression with knn and iterative imputers,
respectively. That is, on average, many more variables are selected with the
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Figure 6.1: Stability and computational time for filter algo-
rithms with knn imputer.

Figure 6.2: Stability and computational time for filter algo-
rithms with iterative imputer.

Figure 6.3: Stability and computational time for filter algo-
rithms with no imputer.
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regression approach, but again it shows a worse performance (see figure 6.5). It is
clear that when the number of features to be selected is determined the algorithm
seems to be more stable. In the case of RFECV, there is significant variability in
the number of selected variables; the standard deviation is not much smaller than
the mean, and this may be a reason why it is less stable than RFE.

Figure 6.4: Stability and computational time for RFE algo-
rithm

Figure 6.5: Stability and computational time for RFECV
algorithm

As was the case with filter methods, the imputation technique seems to influ-
ence the algorithm selections: knn imputer appears to add robustness. Addition-
ally, the effect of the model on the computation time can be seen. As mentioned
in section 4.3, besides the computational time of the feature selection algorithm
itself, it is essential to consider how fast the algorithms included in it are: Logistic
Regression is slower than Ridge Regression.

To continue with the deterministic wrapper methods, the results from
sequential forward method are shown in figure 6.6. In general, it seems that
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the algorithm is rather unstable: just six configurations obtain the estimation
above the acceptable value 0.4. This may happen because the performance of the
used models changes from one bootstrap to another. In the case of linear models,
better results are obtained with the regression approach except when 40 features
are selected. The application of the Histogram-based Gradient Boosting models
has proved to be a failure: in addition to being unstable, they are extremely slow,
so there is no advantage to using sequential feature selection with them. The
best results are obtained with the K-Nearest Neighbors algorithms, specifically
in its regression version and for 40 features, although it is far from the value of
0.75. Again, the imputation technique influences the algorithm’s selection, but
not that noticeably. In most configurations with halfway decent stability, the 95%
CIs overlap quite a lot, which may indicate a marginal influence. For very low
stabilities the difference becomes more noticeable.

Figure 6.6: Stability and computational time for SFS algo-
rithm

To conclude with wrappers, let us take a look at the randomised algorithms.
As the figures 6.7 and 6.8 show, both the GA and BPSO algorithms obtain very
low stability estimates. In both cases it seems that applying regression models
gives slightly better results. Regarding the imputer technique, when linear models
are used the stability estimate with the two different imputers overlaps. However,
when KNN algorithms are used, they perform better with the iterative imputer. In
the case of GA, it seems that the algorithm with the highest mutation probability
achieves slightly better results, although it must be taken into account that it
performs twice as many iterations as the other. However, these conclusions are
not relevant given the poor performance of the algorithms. Moreover, it should be
added that the algorithms have proven to be very slow.
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Figure 6.7: Stability and computational time for GA algo-
rithm

Figure 6.8: Stability and computational time for BPSO
algorithm

Embedded techniques remain to be analysed. Figures 6.9 and 6.10 show the
stability and computational time of the L1-norm penalty based embedded algo-
rithm, in its classification and regression approach, respectively. The greater the
regularisation, in other words, the more variables are discarded, the more stable
the selection appears to be. Again, the imputation method affects stability: with
the iterative imputer, model building seems to be more sensitive to different boot-
strap samples.

In terms of behaviour with respect to the model used, there do not seem to be
major differences between the classification and regression approach. In the case
of the first one, all results are acceptable considering the threshold value of 0.4,
while in the latter, with little regularisation the algorithm is not stable enough,
but increases more markedly with regularisation. Once more, the algorithm is
faster when a regression model is used. Anyway, as models are trained once, this
embedded method is fast.
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Figure 6.9: Stability and computational time for L1-norm
penalty based embedded algorithm: classifica-
tion approach.

Figure 6.10: Stability and computational time for L1-norm
penalisation based embedded algorithm: re-
gression approach.

It is interesting to analyse how many features have been selected in each
configuration of the algorithm and see how the regularisation has affected. Table
6.1 provides this information. As expected, the number of variables selected
decreases the higher the regularisation is. It can also be seen that when variables
are imputed with the iterative imputer, more variables are chosen for the same
model. Thus, it can be said that the more variables are discarded, the more stable
the algorithm is.

41



CHAPTER 6. RESULTS AND DISCUSSION

Classification Regression
C knn iterative α knn iterative
0.075 75.18±3.68 79.22±4.23 0.005 73.56±4.09 77.75±3.74
0.05 58.73±3.58 62.92±3.85 0.01 50.32±3.37 53.98±3.62
0.025 34.15±3.19 38.53±3.46 0.025 27.84±2.64 31.60±2.95
0.01 13.33±1.82 16.71±2.13 0.05 19.45±1.80 19.34±2.14
0.005 4.51±1.06 4.93±1.11 0.075 11.00±1.52 13.53±1.69

Table 6.1: Number of features selected for each configura-
tion of the L1-norm penalty based embedded al-
gorithm

In summary, it is not entirely clear which of the approaches favours stability
the most. In the case of RFE algorithms, better results are achieved with L2-norm
penalised Logistic Regression (classification approach) than with Ridge (regression
approach), while in the case of SFS, GA and BPSO the regression models gener-
ally seem to perform better than classification models, although they do not show
much stability either. In the case of the embedded methods, for a similar number
of variables to choose, L1-norm penalised Logistic Regression seems to be more
stable than Lasso. What is clear is that in general the regression models are faster.

The imputation technique has also been found to influence the stability of the
applied algorithms. In the case of the MI-based univariate filter it is convenient to
use iterative at least up to 20 features, and knn in the case of 40. For the RFE and
embedded algorithms better results are achieved with kkn, contrary to SFS, GA
and BPSO. For SFS and randomised algorithms with linear models results with
both imputation techniques are comparable, while for randomised algorithms and
KNN classification-regression algorithms iterative imputer works better. Although
the effects of imputer and selection methods are difficult to separate, it is worth
mentioning that in the case of the iterative imputer, if the variable contains many
NaNs (a situation which is not rare in our data-set), the iterative imputation in-
troduces many values computed via linear combination of other features, therefore
forcing an increased correlation.

It is also interesting to analyse what happens with stability and the number
of variables chosen. The MI-based univariate filter seems to be more stable the
more variables are chosen, but when the iterative imputer is used and 40 variables
are chosen, this trend is broken. In the case of the mRMR filters, no trend is dis-
cernible with the iterative imputer, while in the case of knn a slight increase can be
seen from 10 variables onwards. For RBA, RFE and SFS no trend is discernible
either, except when the KNN classification-regression models are used with the
latter: greater stability is achieved the more variables are chosen. In the case of
embedded models with regularisation, they are more stable the higher the regu-
larisation (and fewer the chosen variables).

Although each algorithm behaves differently, we hypothesize that a certain
number of features (unknown a priori) may carry most of the meaningful
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information, and hence demanding to select beyond that number may introduce
less informative features into the selected subset, and thus reduce overall
robustness: above a certain amount the importance of the features may not be
as meaningful that the choice is clear, so for larger numbers of features to select
the algorithm may be less robust. In an attempt to estimate such ”optimal”
number, we deployed RFECV as well as BPSO and GA algorithms. However,
their results were in overall with low stability, a behaviour which highlights the
difficulty of the feature selection task in this context. Thus, it can be concluded
that stability is lost when the number of variables to be chosen is not established
beforehand.

6.2 Similarity

Once the stability of the algorithms have been studied, it is time to analyse
how much the most stable algorithms resemble each other. To decide whether an
algorithm is enough stable to consider its selection or not, it is necessary to set a
threshold value for the estimation of the stability. Even if the recommended value
to consider that there is a high level of agreement between feature sets is 0.75, as
a not valid result is considered below 0.4, a slightly lower limit of 0.7 has been
set. This way, just 21 configurations have been taken into account. Figure 6.11
shows the values of the Jaccard index for each pair. In general it does not appear
that the algorithms’ selections are very similar to each other, but it is possible
to observe a high similarity between some similarly configured algorithms. For
the same imputer and number of features to select, the MI-based univariate fil-
ters perform close selections in their classification and regression approaches. The
MultiSURF and ReliefF algorithm with 100 neighbors seem also to be similar to
each other for the same quantity of features. Finally, the features maintained after
applying a Lasso regression with α = 0.075 correspond to a certain extent to the
ones maintained after applying the same model with α = 0.05.

In short, it seems that the selections made by algorithms of different natures
do not coincide very well. This makes it more difficult to provide certainty as to
how important and influential a variable may be. However, the individual analysis
of the variables chosen by each method may shed some light on this issue, as
two selections can be very different from each other and achieve a very different
Jaccard index, but agree on a few variables. It may be the case that two methods
are very clear on the choice of a few variables, but the decision on the others is not
so clear. The latter may make them dissimilar in terms of the Jaccard index, but
if those few variables that they choose robustly are the same for both methods,
these variables could be considered important.
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Figure 6.11: Similarity between algorithms whose stability
is above 0.7.

6.3 Analysis of the selected features

Once the stability and similarity of the algorithms is known, it is time to analyse
which variables have been chosen most frequently by the most stable algorithms.
The frequencies of the variables chosen in more than 80% of the cases will be
shown. To do so, let us start with the MI-based univariate filters. Figures 6.12,
6.13, 6.14 and 6.15 show their selections. As foreseen through the stability index,
for the same imputer and number of features, the selections made by the regres-
sion and classification approaches are very similar at least in the case of the most
chosen variables. Specifically, for this univariate filter, a clear preference can be
seen for the variables related to contamination, in addition to some health-related

44



CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.12: Frequencies of the features selected in more
than 80% of the cases for knn imputer, MI
filter and 20 features: regression (left) and
classification (right)

ones. The BMI and the PSI score, as well as the Oxigen levels seem to influence
the severity of the pneumonia developed by the patient. On the other hand, the
level in blood of urea nitrogen, neutrophils, C-reactive protein, lactate dehydroge-
nase and lymphocytes seem to vary from less severe to more severe patients.

Let us continue with the RBA filters (see figures 6.16, 6.17, 6.18 and 6.19). The
vast majority of the variables selected are related to patient health. The selection
of features related to the Oxigen saturation in blood (safr and sato2), the PSI
score and the qSOFA index for sepsis seems to be unconditional. Even when there
are few variables to choose, they appear among the most chosen. The patient’s
respiratory rate on emergency admission, and the levels of lactate dehydrogenase,
C-reactive protein and neutrophils-lymphocytes rate also appear to be related to
the severity of the patient. When there are more variables to choose, the number
of times that the algorithms select the variables related to the blood procalcitonin,
D-dimer urea and lymphocytes values, the level of LMWH anticoagulant used in
treatment and the Charlson comborbidity and CURB-65 indices are selected in
most cases too. Finally, the following features are added when reaching 40: age,
blood creatinine, urea nitrogen, leukocytes, sodium and glucose levels, systolic
blood pressure and number of infiltrated lobes on admission, the use of Macrolid
and Betalact antibiotics at the same time and the recent exposure to NO and NO2

contaminants.

As RBA filters do, embedded methods (see figures 6.20 and 6.21) give promi-
nence to Oxigen saturation parameters at the time of admission and in subsequent
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Figure 6.13: Frequencies of the features selected in more
than 80% of the cases for iterative imputer,
MI filter and 20 features: regression (left) and
classification (right)

Figure 6.14: Frequencies of the features selected in more
than 80% of the cases for knn imputer, MI
filter and 40 features: regression (left) and
classification (right)
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Figure 6.15: Frequencies of the features selected in more
than 80% of the cases for iterative imputer,
MI filter and 40 features: regression (left) and
classification (right)

tests, PSI, respiratory frequency at admission, LMWH anticoagulant used in treat-
ment and procalcitonin, C-reactive protein, creatinine and lymphocytes in blood.
Apart from these, RFE algorithms (see figure 6.22) highlight level of lactate de-
hydrogenase in blood, Charlson comorbidity index, age, and chronic exposure to
SO2 and PM10 contaminants.

All in all, it can be seen that although in principle the similarity between
the algorithm selections seemed low, many of them coincide in the most common
variables. The algorithm which differs the most from the others is the MI-based
univariate filter. It is the only one that does not consider correlations between
features; it only examines the relation of each of them with the target variable. It
has become clear, according to MI univariate filters, that there is a high correla-
tion between exposure to contaminants and the severity of pneumonia. What is
less clear is whether this correlation is so important, as other methods hardly se-
lect for contaminants, and whether this correlation is direct, with no other factors
latent. Several factors need to be taken into account. On the one hand, exposure
to pollutants is not specific to each patient, but to his or her postcode, so patients
in the same hospital tend to have similar values. In addition, the distribution of
severities has been found to be very different from one hospital to another. Specif-
ically, at the Clinic, the percentage of patients with severity 2 is higher because,
as it has many more ICU beds, many serious patients in the area were referred
there, leaving the less serious patients for other hospitals that are not included in
this study. All this leads one to think that perhaps the MI filters are trying to
infer, in some way, which hospital the patients belong to.
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Figure 6.16: Frequencies of the features selected in more
than 80% of the cases for RBA filters and
5 features: ReliefF100 (left) and MultiSURF
(right)

Figure 6.17: Frequencies of the features selected in more
than 80% of the cases for RBA filters and
10 features: ReliefF100 (left) and MultiSURF
(right)
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Figure 6.18: Frequencies of the features selected in more
than 80% of the cases for RBA filters and
20 features: ReliefF100 (left) and MultiSURF
(right)

Figure 6.19: Frequencies of the features selected in more
than 80% of the cases for RBA filters and
40 features: ReliefF100 (left) and MultiSURF
(right)
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Figure 6.20: Frequencies of the features selected in more
than 80% of the cases for embedded method
with Lasso: α = 0.05 (left) and α = 0.075
(right)

Figure 6.21: Frequencies of the features selected in more
than 80% of the cases for embedded method
with L1-norm penalty Logistic Regression: C =
0.005
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Figure 6.22: Frequencies of the features selected in more
than 80% of the cases for RFE and knn imputer:
5 features (left) and 20 featres (right)

For this reason, it has been decided to carry out a small analysis of the data
from a single hospital, specifically the one in Galdakao. MI-based univariate filter
and mRMR filter have been applied to Galdakao hospital’s data. Figure 6.23 shows
stability and time complexity for these algorithms: they are less stable than when
applied over the whole data-set. Looking at the variables chosen by the stable
methods (again considering 0.7 as the threshold value) visible in figures 6.24 and
6.25 it can be seen that it is not very different from the one performed by the same
filters on the entire data-set. The hospital can therefore be ruled out as the cause
of the correlation between contamination and severity, and the reason why other
methods don’t choose contaminants may lie in the fact that contaminants may be
also correlated to other features, for example affecting other pathologies.

What about the features selected by the other algorithms? It is interesting to
first understand what each variable measures to get an intuition of how they relate
to the severity of the pneumonia, and that is why the definitions and information
about the features that have been repeatedly selected by the different algorithms
are added in appendix A. Although it would be interesting to know why each
variable is related to severity, this is not the aim of the paper, but to test whether
they are valid for predicting severity.

The results obtained are aligned with medical evidence, following a different
methodology. In [81] concluded that Oxygen saturation (SaO2) below 90% on ad-
mission is a strong predictor of mortality in hospital patients with COVID-19. It
can be said that most of the methods have been able to give importance, above
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Figure 6.23: Stability and computational time for MI and
mRMR filters applied to Galdakao hospital’s
data

Figure 6.24: Frequencies of the features selected in more
than 80% of the cases for knn imputer, MI
filter and 40 features from Galdakao’s data:
regression (left) and classification (right).
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Figure 6.25: Frequencies of the features selected in more
than 80% of the cases for iterative imputer,
MI filter and 40 features from Galdakao’s data:
regression (left) and classification (right).

many others, to the variables related to oxygen saturation, which adds evidence
that these may be good predictors of pneumonia severity. For its part, in [11] au-
thors determined increasing values of age, D-dimer, C-reactive protein and SOFA
score (qSOFA gives an initial idea about it) and diabetes as high consistency pre-
dictors for COVID-19 severity and elevated values of procalcitonin (pct), LDH,
neutrophils, creatine, CURB65 and lower values of lymphocytes as medium con-
sistency predictors, among others. Furthermore, in [12] correlation is found also
between severity and death and levels of lymphocytes, neutrophils, D-dimer and
C-reactive protein. For its part, in [10] two models are proposed to predict the
probability of worse outcomes and survival of COVID-19 patients which consider
significant the age, FiO2, SpO2, systolic blood pressure and C-reactive.

In [82] authors summarise that for patients with CURB65 > 2, PSI III to V
or C-reactive protein level > 150 mg/l a combination of β-lactam and macrolide
treatment should be used, only when there is strong suspicion of bacterial co-
infection. The reason why the methods have detected this variable is unclear. It
may be that these rates already indicate a high severity and many patients have
received this treatment, or that knowing these rates and assuming a high severity,
these antibiotics have been able to decrease the severity. As the clinical experi-
ment, data collection and computational analysis are designed, it is not possible
to determine causalities, at most correlations.

Regarding the relationship between COVID-19 and kidney disease, results ob-
tained in [83] show a very high early mortality among kidney-transplant recipients,
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and in [84] authors concluded that infection with SARS-CoV-2 can cause new kid-
ney damage and increase the difficult of treatment for people with kidney diseases.
On the other hand, in [85] authors concluded that the bun/creatinine ratio may be
associated with severity and use of that parameter may be beneficial in the eval-
uation of the disease. For its part, in [86] authors concluded that sodium balance
disorder is associated with a higher risk of severe illness.

Many studies link COVID-19 with leukocyte levels. Specifically, in [87] a esti-
mation model was created to identify high risk patients which combine the level of
leukocytes among its parameters, while in [88] authors concluded that leukocyte
level on admission are valid to predict the diagnosis of pulmonary embolism in
patients with COVID-19.

Concerning the different severity and comorbidity indexes, in [89] authors de-
duced that patients who had any comorbidity had worse clinical outcomes than
those who did not. Specifically in [90] authors concluded that Charlson comorbid-
ity index should be used to stratify the risk of hospitalised COVID-19 patients.
However, even if some stated that PSI predicts mortality [18], the validity of PSI
in predicting the severity and development of pneumonia is less clear [91, 92].

Finally, it remains to be seen whether other studies have found the exposure
to contaminants useful in predicting the severity of SARS-CoV-2 pneumonia. [14]
shows that exposure to NO2 and PM2.5 may increase the susceptibility of infection
and mortality from COVID-19, while [93] shows that high CO concentration is
a risk factor and [94] linked PM10 and COVID-19 mortality. In [15] authors also
proposed NO2 exposure may cause severe form of SARS-CoV-2, although in [16]
authors hold more studies should be conducted to verify the impact of NO2. For
their part, the analysed multivariate feature selection techniques highlight the
effect of NO, NO2, SO2 and PM10.
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Conclusions

For this master’s final thesis we have worked on a real clinical data-set on
SARS-CoV-2 pneumonia, collected during the first wave of COVID in 4 hospitals
in Bizkaia, Barcelona and Valencia, which contains information on the patient’s
health, as well as demographic, socioeconomic and exposure to pollutants in their
postcode, collected with the aim of predicting the severity of pneumonia. Given
its characteristics, operating with it has required preprocessing tasks to scale and
encode some variables and impute the missing values, as well as an evaluation
that takes into account its particularities. On the one hand, the ordinal nature
of the variable of interest or outcome has been taken into account, which reflects
increasing severities 0, 1 and 2. On the other hand, it has been necessary to deal
with the imbalance present in the data in terms of the number of cases per severity.

On this data-set, a study of different variable selection techniques has been car-
ried out, analysing in detail the performance of these techniques. Different families
of algorithms of the three main classes such as filters, wrappers and embeddeds
have been implemented, giving rise to a wide and varied set of strategies. Many
of them have required the adjustment of configuration parameters, so that some
of the methods have been studied in an empirical-experimental way to determine
appropriate values.

The analysis of these techniques has been divided in two. First, we have fo-
cused on the properties of stability, similarity and computational execution time,
for which it has been necessary to apply a bootstrapping technique to create dif-
ferent samples of the data-set. In this way, we have been able to obtain details to
evaluate the relevance of the algorithms, their robustness and their computational
efficiency. We then focused on which variables were most frequently selected by the
different algorithms, in order to empirically identify useful information for clinical
experts when assessing a patient’s risk and to prioritise the collection of new data
in the next waves of COVID-19.

In view of the results discussed in detail in chapter 6, it can be extracted that
the algorithms that have shown the best overall properties are, among the filters,
the MI-based univariate filters when 20 or more variables are chosen, the ReliefF
filter with 100 neighbours and MultiSURF. Among wrappers, almost none have
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proven to have good properties, both because of their instability and their high
computational cost. However, the RFE combined with L1-norm penalised Logistic
Regression when up to 20 variables are chosen has shown enough good qualities.
Regarding embedded methods, L1-norm penalised Logistic Regression and Lasso
with a regularisation sufficient to choose at most 20 variables are also sufficiently
stable and fast. In terms of computational time, the fastest are the univariate fil-
ters and Lasso regularisation, followed by L1-norm penalised Logistic Regression ,
RFE with the classifier and finally RBA. The choice of the best method to include
in a future AI pipeline depends on many factors, such as how many variables to
choose and what is the maximum computational time that is acceptable. However,
considering the different aspects, it is worth mentioning that embeddeds offer the
advantage of encompassing in a single step the selection of variables and the pre-
dictive model itself, and that RFE and the aforementioned RBA, although slower,
do not seem to vary so much in stability with the number of values to be chosen.

Some algorithms have not shown the expected stability. No SFS configura-
tion has reached the stability value considered to be of high agreement, and GA
and BPSO have achieved values very close to 0. Therefore, it can be concluded
that the previous analysis carried out on them has not been sufficient to achieve
good results and it remains as a possible future work to carry out a more in-depth
study on the parameters to be adjusted. Moreover, especially GA and BPSO have
proved to be very slow compared to others, so that their performance should be
much improved in order to make them worth using.

When analysing the similarity between algorithms, although the similarity val-
ues were not very high among the different methods, some agreement was observed
in the most common selected variables, except in the case of univariate filters. The
latter have been found to behave differently from other algorithms when selecting
the most informative variables. Specifically, they have given some importance that
others have not given to contaminants. Although an analysis was carried out to
see if this was due to the imbalance of severities between hospitals, the results were
not enlightening, and a more exhaustive analysis of each hospital is proposed as a
possible future work.

Among the limitations of the methodology followed in this thesis, we could
mention the challenge of working with real data, having to perform extra analysis
to process the data as correctly as possible. In particular, the missing values and
the imbalance of the data-set have influenced the results. The imputation tech-
nique used has had a significant influence on the stability of the algorithms, but it
has not been possible to determine which is universally better. Therefore, it also
remains as a possible future work to analyse the reasons for these differences and
to try to minimise them.

In addition to the analysis of the methods themselves, another aim of the study
was to try to provide evidence of which factors may be the most meaningful in pre-
dicting the severity of pneumonia caused by SARS-CoV-2 in each patient, both for
the prediction itself and for doctors to collect only the essential data. Most meth-
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ods have coincided in giving priority over other variables to the PSI and qSOFA
score, Charlson comorbidity and CURB-65 indexes, Oxigen saturation, BUN, neu-
trophile, C-reactive protein, LTD, lymphocyte, creatinine, leukocyte, sodium, glu-
cose and D-dimer levels, age and exposure to NO2 and PM10 contaminants, adding
evidence of the effect of these variables. The in-depth interpretation of this selec-
tion is the responsibility of our collaborators at the Respiratory Medicine Service
of the Galdakao-Usansolo University Hospital, but there is medical literature on
COVID-19 that is in agreement with the results presented here, in the sense that
they show evidence of the impact of such factors on disease severity and lethality.
This undoubtedly reinforces the relevance of the results and conclusions obtained
here.

In short, this master’s thesis has made a systematic and exhaustive exploration
of a wide range of feature selection techniques applied to a data-set of real
clinical relevance, with the practical peculiarities and challenges that this presents.
We have worked through different methodological phases of a Machine Learning
project pipeline, emphasising the suitability of feature selection techniques based
on relevant objective criteria such as stability and similarity of the methods. This
has enabled us to distinguish which techniques have a more favourable behaviour
in this application scenario.
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Data-set variables

• analit bun[log10]: Logarithm10 of the urea nitrogen in blood (bun). Blood
urea nitrogen values may be indicative of kidney function.

• analit creatin[log10]: Logarithm10 of the creatinine in blood. Blood
creatinine values may be indicative of kidney function.

• analit dimer-d[log10]: Logarithm10 of D-dimer in blood. The D-dimer test
is for clinical use when deep vein thrombosis (DVT), pulmonary embolism
(PE) or disseminated intravascular coagulation (DIC) is suspected [95, 12].

• analit gluco[log10]: Logarithm10 of glucose in blood. It may indicate the
presence of diabetes.

• analit ldh[log10]: Logarithm10 of lactate dehydrogenase (LDH) in blood.
Its elevation is a sign that an organ or tissue has been damaged and may
indicate, for example, heart disease, hematological disease, hepatopathies or
tumour metastases.

• analit leucoc[log10]: Logarithm10 of leukocytes in blood. It may be
indicative of presence of infection, bone marrow cancers, or medications such
as corticosteroids.

• analit linfoc[log10]: Logarithm10 of lymphocytes in blood. It may be
indicative of presence of infection or leukemia.

• analit neutro-linfo[log10]: Logarithm10 of the ratio neutrophils-lymphocytes
in blood.

• analit neutrof[log10]: Logarithm10 of neutrophils in blood. It is an
inflammatory marker of prognostic value in cardiovascular disease. [96]

• analit pcr [log10]: Logarithm10 of the C-reactive protein in blood. This
protein is produced by the liver and it is sent into the bloodstream in response
to inflammation.

• analit pct [log10]: Logarithm10 of procalcitonin in blood. Infection marker
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• analit sodio: Sodium in blood. If sodium levels in the blood are too high or
too low, it may indicate a problem with the kidneys, dehydration or other
illness.

• analit urea[log10]: Logarithm10 of the urea in blood. It assesses kidney
function

• comorb charlson: The Charlson comorbidity index predicts one-year mortal-
ity for a patient who may have a range of comorbid conditions [97].

• contam aguda-no2 perc90: 90th percentile of NO2 level in the 7 days prior
to admission.

• contam crónic-pm10 perc90: 90th percentile of PM10 level during 2019.

• contam crónic-so2 perc90: 90th percentile of SO2 level during 2019.

• covid-tto antibiót macrolid+betalact: Indication of whether Macrolide and
β-lactams antibiotics have been administered at the same time in the
treatment of the pneumonia. Macrolide antibiotics are a group of antibiotics
commonly used to treat acute and chronic infections. Beta-lactam antibiotics
are indicated for the prophylaxis and treatment of infections caused by
susceptible microorganisms.

• covid-tto hbpm: Indication of the use of low molecular weight heparis
(LMWH). Used for prevention of blood clots, treatment of venous throm-
boembolism and myocardial infarction [98].

• gasom safi: Rate between arterial oxygen partial pressure SaO2 and inspired
oxygen fraction FiO2 detected by blood gas measurement.

• neumo curb65: CURB-65 is a mortality prediction scale used in patients
with pneumonia [99]. It considers confusion (C), BUN level (U), respiratory
rate (R), systolic and diastolic blood pressures (B) and whether age of the
patient is over 65 (65).

• neumo psi-sc: Pneumonia severity index reflects the probability of morbidity
and mortality among patients with pneumonia [18]. It is used to predict the
need for hospitalisation.

• pac edad: Age of the patient.

• sepsis qsofa: qSOFA score assess the possibility of high risk in patients with
suspected sepsis (syndrome of life-threatening physiological, pathological and
biochemical abnormalities associated with an infection) with low endpoints.

• sintm d́ıas: Days since onset of symptoms.

• urg-estado f-resp: Respiratory rate on admission.

• urg-estado infiltr lobs: Number of infiltrated lobs on admission.
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• urg estado safi: Rate between arterial oxygen partial pressure SaO2 and
inspired oxygen fraction FiO2 measured on admission.

• urg estado safr: Rate between arterial oxygen partial pressure SaO2 and
exhaled oxygen fraction FiO2 measured on admission.

• urg estado sato2: Arterial oxygen partial pressure SaO2 on admission.

• urg estado ta-sist: Systolic blood presure.
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Instructions for accessing the
code

The code is available in a GitHub repository. To be able to access there, these
are the steps to follow:

1. Go to GitHub.

2. Click on Sign in button. Username: TFMmhotri Password: TFM mho varsel SARS 19

3. Once signed in, go to the repository on the left. In the figure below, it is
marked in fuchsia.
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