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Introduction

This dissertation is in the mathematical physics area, more specifically, ap-
plications in the statistics field.

The thesis, under the supervision of Dr Gianni Pagnini, was carried out at
the BCAM - Basque Centre for Applied Mathematics in Bilbao, Spain. It is
the result of the continuous interaction with the team of Statistical Physics,
characterised by an international, stimulating and constantly growing envi-
ronment.

The subject of this thesis is PROPAGATOR: a stochastic cellular au-

tomaton model for forest fire spread simulation, conceived as a rapid method
for fire risk assessment.
The reason behind the popularity of cellular automata can be traced to their
simplicity, and to the enormous potential they hold in modeling complex sys-
tems, in spite of their simplicity. Cellular automata can be viewed as a simple
model of a spatially extended decentralized system made up of a number of
individual components: cells. The communication between constituent cells
is limited to local interaction.

PROPAGATOR is a cellular automata model which simulates wildfire
spread through empirical laws that guarantee probabilistic outputs. This
algorithm, whose first version was released in 2009, is currently in use, along
with other software, although it is constantly being updated.

In fact, the first version was requested by the Italian Civil Protection, but
later it became part of the ANYWHERE project. This project, active from
June 2016 to December 2019, was funded under the EU’s research and in-
novation funding program Horizon 2020 (H2020), which aimed to improve
emergency management and response to high-impact weather and climate
events such as floods, landslides, swells, snowfalls, forest fires, heat waves
and droughts.

As part of the ANYWHERE project, Propagator was rewritten in Python.
The version we worked with is the 2020 version, but an updated 2022 version



is already available.

The main aim of this work was to understand the distribution of the
wildfire propagation. As can be seen from Propagator input parameters,
the propagation depends on different factors: ignition point, wind speed and
direction, as well as fuel moisture content and firebreaks-fire fighting strate-
gies. Wind is recognized to be by far the most important factor in the entire
problem of forest fire propagation. In this paper, we analyzed four different
situations varying initial conditions, in particular we changed wind speed:
0 km/h, 10 km/h, 20 km/h, 30 km/h. However, the phenomenon of fire
spotting and firebreaks-fire fighting strategies were not taken into considera-
tion.

By modifying the code, it was possible to obtain the output required to
achieve the desired result. The conclusion we came to is that the distribution
of a wildfire spreading is described by the beta distribution.

This allows us, for the first time, to attribute a new application of the beta
function: describing the propagation of a process studied using a cellular
automaton algorithm.

The thesis is organised as follows:

e In the first chapter, there is an introduction to special functions. In
particular, their role in applied mathematics is analyzed, followed by
a discussion of the two most commonly used special functions: the
Gamma function and the Beta function.
For a more detailed discussion of these topics, we refer to the texts
"Special functions and their applications” by N. N. Lebedev [18], "Spe-
cial Functions, Encyclopaedia of Mathematics and Its Applications” by
G. Andreus, R. Askey and R. Roy [7], from which the thesis has been
deduced.

e In the second chapter, the PROPAGATOR model was introduced fol-
lowing the article "PROPAGATOR: An Operational Cellular-Automata
Based Wildfire Simulator” by A. Trucchia [26].

e The third chapter contains the analysis carried out on the output data.
A discussion of the obtained results and suitable observations can be
found in the conclusions.

e There are three appendixes containing:

— Appendix A: the lines of code we wrote to carry out the analysis;



— Appendix B: explanation of the software, apps and routines used,
with particular reference to the Hypathia server;

— Appendix C: discussion on stochastic processes carried out as an
approach and preparation for the subsequent work with Prop-
agator. Key references: "Stochastic calculus” di P. Baldi [8] e
"Stochastic processes and applications: diffusion processes, the
Fokker-Planck and Langevin equations” di G. A. Pavliotis [21].



Chapter 1

The Role of Special Functions in
Applied Mathematic

In general physics problems are described through partial differential equa-
tions which are harder to solve than ordinary differential equations, but the
partial differential equations associated with these problems can be reduced
to a system of ordinary differential equations through a process known as
separation of variables. These ordinary differential equations depend on
the choice of coordinate system, which in turn is influenced by the physi-
cal configuration of the problem. The solutions of these ordinary differential
equations form the majority of the special functions of mathematical physics.

It is the study of differential equations of this kind which lends to the

special functions of mathematical physics. The adjective special is used in
this connection because here we are not, as in analysis, concerned with the
general properties of functions, but only with the properties of functions
which arise in the solution of special problems [15].
The special functions of mathematical physics arise in the solution of partial
differential equations governing the behaviour of certain physical quantities.
Probably the most frequently occurring equation of this type in all physics
is Laplace’s equation

V) =0 (1.1)

satisfied by a certain function ¢ describing the physical situation under
discussion. The mathematical problem consists of finding those functions
which satisfy equation (1.1) and also satisfy certain prescribed conditions on
the surfaces bounding the region being considered.



Special function, which include the trigonometric functions, have been
used for centuries. Their role in the solution of differential equations as ex-
ploited by Newton and Leibniz, and the subject of special functions has been
in continuous development ever since. In just the past thirty years several
new special functions and applications have been discovered.

They are particular mathematical functions that have more or less established
names and notations due to their importance in mathematical analysis, func-
tional analysis, geometry, physics, or other applications [24].
Prominent examples include the gamma function, beta function, hypergeo-
metric function, Whittaker function, and Meijer G-function.

Someone once remarked that special functions would be more appropri-
ately labeled useful functions; because of their remarkable properties, special
functions have been used for centuries.

In the past years, the discoveries of new special functions and of applications
of special functions to new ares of mathematics have initiated a resurgence
of interest in this field. About this, we have results from the past but also
recent developments.

One reason for the interest in these functions was the fact that several other
important functions in mathematics are expressible in terms of hypergeo-
metric functions, special functions represented by the hypergeometric series.
They have two significant properties: they satisfy certain identities for special
values of the function and they have transformation formulas.

The term is defined by consensus, and thus lacks a general formal def-
inition, but the List of mathematical functions contains functions that are
commonly accepted as special, this because in mathematics, some functions
or groups of functions are important enough to deserve their own names.
There is a large theory of special functions which developed out of statistics
and mathematical physics. A modern, abstract point of view contrasts large
function spaces, which are infinite-dimensional and within which most func-
tions are anonymous, with special functions picked out by properties such
as symmetry, or relationship to harmonic analysis and group representations.

It is common for a special function to be defined in terms of an integral
over the range for which that integral converges, but to have its definition
extended to a larger domain by analytic continuation in the complex plane
or by the establishment of suitable functional relations.

Many special functions appear as solutions of differential equations or inte-
grals of elementary functions. Therefore, tables of integrals usually include
descriptions of special functions, and tables of special functions include most
important integrals; at least, the integral representation of special functions.



Because symmetries of differential equations are essential to both physics and
mathematics, the theory of special functions is closely related to the theory
of Lie groups and Lie algebras, as well as certain topics in mathematical
physics; in fact the theory of special functions is connected with group rep-
resentations, with methods of integral representations and with methods in
probability theory.

Special functions can be defined by means of power series, generating

functions, infinite products, repeated differentiation, integral representations,
differential, difference, integral, and functional equations, trigonometric se-
ries, or other series in orthogonal functions.
In the broad sense, they could be seen as a set of several classes of functions
that arise in the solution of both theoretical and applied problems in vari-
ous branches of mathematics. In the narrow sense, the special functions of
mathematical physics, which arise when solving partial differential equations
by the method of separation of variables.

This branch of mathematics has a respectable history with great names,
including Gauss, Euler, Fourier, Legendre, Bessel, and Riemann.
All of them spent a lot of time on this topic. A good portion of their work
was inspired by physics and the resulting differential equations. These ac-
tivities culminated in the standard work of Whittaker and Watson about 70
years ago, A Course of Modern Analysis, which has had a great influence and
is still important. As well as in applied fields such as electric current, fluid
dynamics, heat conduction, wave equation, and quantum mechanics, special
functions have extensive applications.
The theory of special functions with its numerous beautiful formulas is very
well suited to an algorithmic approach to mathematics.

One of the simplest and most important special functions is the Gamma
function, knowledge of whose properties is a prerequisite for the study of
many other special functions, notably the cylinder functions and the hyper-
geometric function.

Euler discovered the gamma function, I'(z), when he extended the domain
of the function. This function has several representations, but the two most
important, found by Euler, represent it as an infinite integral and as a limit
of a finite product.

It is illuminating to think of the Beta function as a class of integrals that
can be evaluated in terms of gamma function.

We refer to gamma and beta functions because, in developing series so-



lutions of differential equations and in other formal calculations, it is often
convenient to make use of properties of these two functions [12].

1.1 The Gamma Function

The Gamma function was first introduced to generalize the factorial function
to non-integer numbers. The gamma function belongs to the category of the
special transcendental functions and its history, reflects many of the major
developments within mathematics since the 18th century.

The problem of extending the factorial to non-integer arguments was ap-
parently first considered by Daniel Bernoulli and Christian Goldbach in the
1720s. In particular, in a letter from Bernoulli to Goldbach dated 6 October
1729 Bernoulli introduced the product representation

k+1
+x

- (1.2)

n—aoo

T n
= i 1 —$—1||
x im (n + +2) 11

which is well defined for real values of x other than the negative integers.

Lately Leonard Euler gave two different definitions: the first was an in-
finite product that is well defined for all complex numbers n other than the
negative integers,

0+ )"
nl =] 2% (1.3)
o 1T

In the 1729, he wrote about his discovery of the integral representation:

n! = /01(—lns)”ds (1.4)

which is valid when the real part of the complex number n is strictly greater
than —1.

The Gamma function was defined by an infinite product:

= (1+ 1)
> 05 (1.5)

If z be taken as the complex variable x + iy, Euler’s product for I'(z) con-
verges at every finite z except z = 0, —1,—2,—3,.... The function defined
by the product is analytic at every finite z except for the singular points just

['(z) =

SE N

SRR

n=1



mentioned. At each of the singular points, I'(z) has a simple pole.
The notation I'(z) and the name Gamma function were first used by Legen-
dre in 1814.

From Euler’s infinite product for I'(z) can be derived the formula

['(z) = /000 t* e tdt. (1.6)

This integral formula is convergent only when the real part of z is positive.
Nevertheless this integral formula for I'(z) often is taken as the starting point
for introductory treatments of the gamma function. Moreover, the variable
z is often confined to real values z, so we define:

I'(z) = / t*le7'dt, Re z > 0 (1.7)
0

whenever the complex variable z has a positive real part Re z.
We can write (1.7) as the sum of two integrals,

1 00
[(z) = / t=le~tdt + / t=te~tdt, (1.8)
0 1

where it can easily be shown that the first integral defines a function P(z),
which is analytic in the half plane Re z > 0, while the second integral defines
an entire function.

If follows that the function I'(z) = P(z) + Q(%) is analytic in the half-plane
Re z > 0. The values of I'(z2) in the rest of the complex plane can be found by
analytic continuation of the function defined by (1.7). First, we replace the
exponential in the integral for P(z) by its power expansion and we integrate
term by term, we obtaining

' (1" — (=)F
P(z):/o ety o th=>" o /Ot’““ldt

(1.9)

where it is permissible to reverse the order of integration and summation



since

! 1 S (_1)k k ! 1 1 ' tyz—1
/O}t dt| > — :/Ot dtZH:/O et"'dt < oo (1.10)
k=0 k=0

The last integral converges for x = Re z > 0. The terms of the series
(1.9) are analytic functions of z, if z #£ 0,—1,—2,.... In the region

|lz4+kl >6>0, k=0,1,2,...,

(1.9) is expressed by the convergent series
= 1
> T3 (1.11)
k=0

and, hence, it is uniformly convergent in this region.
We conclude that the sum of the series (1.9) is a meromorphic function with

simple poles at the points z = 0,—1,—2,.... For Re z > 0, this function
coincides with the integral P(z) and, hence, is the analytic continuation of
P(z2).

The function I'(z) differs from P(z) by the term ()(z), which is an entire
function. Therefore, I'(2) is a meromorphic function of the complex variable
z, with simple poles at the points z =0, —-1,—-2,....

An analytic expression for I'(z), suitable for defining I'(2) in the whole com-
plex plane, is given by

= e ldt 0,-1,-2,... 1.12
z;,dw/e eAO-L-2 (L1

It follows from (1.12) that I'(z) that has the representation
Q 1.13
kZ:O n! z+n +(z+n) (1.13)

in a neighborhood of the pool z = —n(n = 0,1,2...), with regular part
Q(z+n).

We can define the upper and lower incomplete gamma functions that
are types of special functions which arise as solutions to various mathematical
problems such as certain integrals.

Their respective names stem from their integral definitions, which are



defined similarly to the gamma function but with different or incomplete in-
tegral limits. As we said, the gamma function is defined as an integral from
zero to infinity ((1.6)). This contrasts with the lower incomplete gamma
function, which is defined as an integral from zero to a variable upper limit.
Similarly, the upper incomplete gamma function is defined as an integral
from a variable lower limit to infinity.

The upper incomplete gamma function is defined as:

[(s,z) = / 5=t e™t dt, (1.14)

whereas the lower incomplete gamma function is defined as:

(s, z) = / t57t et dt. (1.15)
0

In both cases s is a complex parameter, such that the real part of s is
positive.

1.1.1 Properties

Euler further discovered some of the gamma function’s important functional
properties, including the reflection formula.

The gamma function satisfies these three basic relations which play an
important role in various transformations and calculations involving I'(z):

e Fuler’s reflection formula:
T
F)ril—=z) = Z 1.16
(AP -2)= =" =¢ (1.16)
e Legendre’s duplication formula:
1
2271 () (2 + 5) = /7[(22) (1.17)
e Stirling’s formula:
D(z+ 1) ~ V2r2(Z)? (1.18)
e
e Raabe’s formula:
a+1 1
/ lnF(z)dz:iln%T—i—alna—a, a>0 (1.19)

10



in particular, if @ = 0 then

a+1 1
/ Inl(z)dz = §ln27r. (1.20)

1.1.2 Applications

The gamma function finds application in such diverse areas as quantum
physics, astrophysics and fluid dynamics. The gamma distribution, which
is formulated in terms of the gamma function, is used in statistics to model a
wide range of processes; for example, the time between occurrences of earth-
quakes.

The primary reason for the gamma function’s usefulness in integration
problems. In such contexts is the prevalence of expressions of the type
f (t)e_g(t) which describe processes that decay exponentially in time or space.
Integrals of such expressions can occasionally be solved in terms of the gamma
function when no elementary solution exists.

Another application can be found in calculating products. The gamma
function’s ability to generalize factorial products immediately leads to appli-
cations in many areas of mathematics; in combinatorics, and by extension in
areas such as probability theory and the calculation of power series. Many
expressions involving products of successive integers can be written as some
combination of factorials, the most important example is the binomial coef-
ficient.

An important application of the gamma function is in the analytic number
theory, the branch of mathematics that studies prime numbers using the tools
of mathematical analysis.

In particular, in this field, an application of the gamma function is the study
of the Riemann zeta function.

1.2 Beta function

The Beta function was first studied by Euler and Legendre and was given its
name by Jacques Binet. Just as the gamma function for integers describes
factorials, the beta function can define a binomial coefficient after adjusting
indices. The beta function was the first known scattering amplitude in string
theory, first conjectured by Gabriele Veneziano. It also occurs in the theory

11



of the preferential attachment process, a type of stochastic urn process.

The beta function is function of two arguments. As basic definition for
the Beta function B(z,y) we shall take, as is usually done, the definition

B(z,y) = /Oltx—l(l — )4~ 1dt, (1.21)

for complex number inputs z,y such that Re x > 0, Rey > 0.
By putting ¢t = sin®# in equation (1.21), we get another definition for the
beta function:

™

B(z,y) =2 / " sin® ! 0sin? ! o (1.22)
0

We can define a generalization of the beta function: the incomplete beta
function

B(z; a,b) = /0z (1 —1)" dt. (1.23)

For x = 1, the incomplete beta function coincides with the complete beta
function. The relationship between the two functions is like that between
the gamma function and its generalization the incomplete gamma function.

The regularized incomplete beta function (or regularized beta function for
short) is defined in terms of the incomplete beta function and the complete
beta function:

B(z; a,b)
B(a,b)
The regularized incomplete beta function is the cumulative distribution
function of the beta distribution, and is related to the cumulative distribution
function of a random variable X from a binomial distribution, where the
"probability of success" is p and the sample size is n.

I(a,b) = (1.24)

1.2.1 Properties

e Symmetry:

B(z,y) = B(y,z) (1.25)

12



Because of the convergent property of definite integrals

/Oaf(t)dt - /Oaf(a—t)dt

so we can rewrite the above integral as

1
Bla,y) = / (1 — ),
0

Thus, we get that the beta function is symmetric, B(z,y) = B(y, x).

Relation with Gamma Function:

['(2)T'(y)
I'(z+y)
For positive integers  and y, we can define the beta function as

(x — D)y — 1!
(x+y—1)!

B(z,y) = (1.26)

B(z,y) =
Recall the definition of gamma function (1.6) Now one can write
L(m)l(n) = / mm_le_xdx/ y" e Vdy.
0 0
Then we can rewrite it as a double integral:
C(m)['(n) = / / 2™y e @) dady.
o Jo
Applying the substitution x = vtandy = v(1 — t), we have
1 ]
L'(m)(n) = / (1 — t)”_ldt/ V™t ey,
0 0
Using the definitions of gamma and beta functions, we have
I'(m)C'(n) = B(m,n)['(m + n) (1.27)

Hence proved.

Recurrence Relation:

13



The recurrence relation of the beta function is given by

x
B(z +1,y) = Bz, . 1.28
(z+1y) = Ble.y) — (1.28)
We have
zly—1!  (z—1)(y—1)! x x
B 1,y) = = =B .
(z+1y) (x4 y)! (x+y—1)! X.?H—y (:B’y):v—l—y

From the above relation and because of symmetry of the beta function,
the following two results follow immediately:

Yy
B(z,y+1)= B(x,
(z.y+1) = Blz,y)_— ;
Bz +1,y) + B(z,y + 1) = B(z,y).
e Relationship with Central Binomial Coefficient:
1

n(’)

We observe the reciprocal of central binomial coefficient:

1 nin!
" (2n)!
T(n+1)T(n+ 1)
I'2n+1)
F(n)l'(n+1)
I'(2n+1)
=nB(n,n+1)

This is a really useful relation, especially when solving summations.

1.2.2 Derivatives

The derivative of the beta function is a great way to solve some integrals:

14



0

5-Ble,y) = Bla.y) (w(x) - b(x + )

82

0x 0y

B(z,y) = B(z,y) (v (z) — ¥(z +y)) (V(y) — v(z +y)) — ' (z +y)).
(1.30)

where 1 is the digamma function.
The digamma function is defined as the logarithmic derivative of the gamma
function: p Iy .
z
= —InT(z) = ~Inz—— 1.31

V() = () = fy ~ Iz — o (1.31)
It is the first of the polygamma functions. In mathematics, the polygamma
function of order m is a meromorphic function on the complex numbers C,

defined as the (m + 1)th derivative of the logarithm of the gamma function.

1.2.3 Approximation

Using Stirling’s formula, we can easily define the asymptotic approximation
of the beta function as
(r— 1)y —1)! =1/ 2yy=1/2

Ble:w) = @t+y-1l m(m’ +y)ryl/? (1:32)

for large x and large y. If on the other hand z is large and v is fixed, then

B(z,y) ~T(y) 7. (1.33)

1.3 Beta Distribution

Beta distributions are very versatile and a variety of uncertainties can be use-
fully modeled by them. Many of the finite range distributions encountered
in practice can be easily transformed into the standard distribution. It has
been applied to model the behavior of random variables limited to intervals
of finite length in a wide variety of disciplines.

In probability theory and statistics, the beta distribution is a family of
continuous probability distributions defined on the interval [0, 1] parameter-
ized by two positive shape parameters, denoted by alpha o and beta 3, that
appear as exponents of the random variable and control the shape of the

15



POF
CDF

Figure 1.1: Probability density func- Figure 1.2: Cumulative distribution
tion function

distribution. The generalization to multiple variables is called a Dirichlet
distribution.

The probability density function (PDF) of the beta distribution, for 0 <

x < 1, and shape parameters «, 5 > 0, is a power function of the variable x
and of its reflection (1 — x) as follows:

f(2;, B) = constant - 2271 (1 — z)°~! (1.34)

= — (1.35)
/ u (1 —u)? ! du

_ TI'la+p) 201(1 — 2)B1

“ Tare T 56

1 201(1 — 2)B-1

= B ) (1—2) (1.37)

where I'(2) is the gamma function. The beta function, B, is a normaliza-
tion constant to ensure that the total probability is 1. In the above equations
x is a realization, an observed value that actually occurred, of a random pro-
cess X.

The parameters a and [ are symmetrically related by

flzso, ) = f(1—x;8,0) (1.38)

16



This implies that if X has the beta distribution with parameters a and
then 1 — X has the beta distribution with parameters 5 and «.

The special case of (1.34) for « = f = 1 is the uniform distribution. When
[ =1 the beta distribution is known as the power function distribution.
The cumulative distribution function of (1.34) is:

Flesa,8) = 2808 _ o gy (1.39)

B(a, B)
where B(z; «, ) is the incomplete beta function and I, (v, 3) is the reg-
ularized incomplete beta function.

1.3.1 Properties

Measures of central tendency

e Mode:
The mode of a Beta distributed random variable X with o, 8 > 1 is
the most likely value of the distribution (corresponding to the peak in
the PDF), and is given by the expression:

a—1
P (1.40)
When both parameters are less than one (o, < 1), this is the anti-
mode: the lowest point of the probability density curve.

Letting a = 3, the expression for the mode simplifies to %, showing
that for « = 8 > 1 the mode (resp. anti-mode when «a, f < 1), is at
the center of the distribution: it is symmetric in those cases.

e Median:
The median of the beta distribution is the unique real number

z =17, B) (1.41)

for which the regularized incomplete beta function I, (c, 5) = 3.
There is no general closed-form expression for the median of the beta
distribution for arbitrary values of o and [, but only for particular

values of the parameters. For example:

— for symmetric cases a = 3, median = %;

17



— for a =1 and 8 > 0, median = 1 —2*%;
— for @« > 0 and 8 = 1, median = 27
e Mean:
The expected value (mean) p of a Beta distribution random variable X

with two parameters o and (3 is a function of only the ratio g of these
parameters:

= E[X] :/0 zf(x;a, ) dx

B 1 xafl(l_m)ﬁ—l
- e

Qe

«

-+
=

—
+
RI=

Letting a = (8 in the above expression one obtains u = %, showing that
for @ = [ the mean is at the center of the distribution: it is symmetric.

Measures of statistical dispersion

e Variance:
The variance (the second moment centered on the mean) of a Beta
distribution random variable X with parameters o and [ is:

af

X)=E[(X —p)? = 1.42
wr(X) = BlX —)’) = gy (L)
Letting a = 3 in the above expression one obtains
(X)= (1.4
var RETCEESTE )

showing that for o = 3 the variance decreases monotonically as a =
increases. Setting a = 8 = 0 in this expression, one finds the maximum
variance var(X) = i which only occurs approaching the limit, o = 8 =
0.

The beta distribution may also be parametrized in terms of its mean

18



(0 < p < 1) and sample size v = a+ B(v > 0):

a = puv, where v = (a+ ) >0 (1.44)
f=(1—p)v, where v = (a+ ) >0 (1.45)

Using this parametrization, one can express the variance in terms of
the mean p and the sample size v as follows:

p(l —p)
X)=——"+ 1.46
var(X) = ! (1.46)
Since v = o + 3 > 0, it follows that var(X) < pu(1 — p).
For a symmetric distribution, the mean is at the middle of the distri-
bution, y = %, and therefore:

var(X) = ] if p=3 (1.47)

41+v

Mean absolute deviation around the mean:
The mean absolute deviation around the mean for the beta distribution
with shape parameters a and S is:

2037
B(a, B)(a + B)otht

E[|X — E[X]|] = (1.48)
The mean absolute deviation around the mean is a more robust es-
timator of statistical dispersion than the standard deviation for beta
distributions with tails and inflection points at each side of the mode,
Beta(q, 8) distributions with a, 8 > 2, as it depends on the linear (ab-
solute) deviations rather than the square deviations from the mean.
Therefore, the effect of very large deviations from the mean are not as
overly weighted.

Skewness:
The skewness (the third moment centered on the mean, normalized by
the 3/2 power of the variance) of the beta distribution is:

_B(X -] _28-a)Va+BFT (1.49)

T ar(X)2 ~  (a+ B +2)v/aB
Letting o = S in the above expression one obtains vy; = 0, showing
once again that for @« = f the distribution is symmetric and hence
the skewness is zero. We have positive skew (right-tailed) for a < 3,
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negative skew (left-tailed) for a > f.
It is possible to write the skewness in terms of mean p and sample size

CE(X =) 21— 20T
= (var(X))32 (24 v)\/u(l — p) (1.50)

or in terms of variance var and mean p:

_ B =] 20 = 2p)yvar B
= (var(X))3/2  u(l — p) + var f <pd—n) (151)

Kurtosis:

In probability theory and statistics, kurtosis is a measure of the tailed-
ness of the probability distribution of a real-valued random variable.
The ezcess kurtosis is defined as kurtosis minus 3.

excesskurtosis = kurtosis — 3

_EX =Y
(var(X)?)
_ 60’ —a?(28—1)+ B*(B+1) — 2a53(5 + 2)]
afla+p+2)(a+8+3
_6[a—BPat+B+1)—aBla+f+2)]
afla+B+2)(a++3) '

Letting a = 3 in the above expression one obtains

ifa=8 (1.52)

excesskurtosis = 5T %0
Therefore, for symmetric beta distributions, the excess kurtosis is nega-
tive, increasing from a minimum value of -2 at the limit as o« = f — 0,
and approaching a maximum value of zero as a = § — oco. The value
of -2 is the minimum value of excess kurtosis that any distribution (not
just beta distributions, but any distribution of any possible kind) can
ever achieve. This minimum value is reached when all the probability
density is entirely concentrated at each end x = 0 and x = 1, with
nothing in between.
When rare, extreme values can occur in the beta distribution, the higher
its kurtosis; otherwise, the kurtosis is lower. For anot = [, skewed
beta distributions, the excess kurtosis can reach unlimited positive val-

20



ues (particularly for o — 0 for finite 3, or for § — 0 for finite «)
because the side away from the mode will produce occasional extreme
values. Minimum kurtosis takes place when the mass density is con-
centrated equally at each end (and therefore the mean is at the center),
and there is no probability mass density in between the ends.

Using the parametrization in terms of mean p and sample size v = a+f:

a = uv, where v = (a+ ) >0 (1.53)
S =(1-pu)v, where v = (a + ) > 0. (1.54)

one can express the excess kurtosis in terms of the mean p and the
sample size v as follows:

6 ((1=2p(+r)
excesskurtosis = 51 ( =2 1) (1.55)

1.4 Applications of the Beta function

Applications of beta function can be found in probability and cumulative
density functions. The Beta density function is a very versatile way to rep-
resent outcomes like proportions or probabilities.

For example beta function can be used in calculating the probability distribu-
tive function of relative wind distributions or modelling the experimental fre-
quency distribution of several meteorological data such as relative sunshine
and humidity of a place.

We will discuss some applications here, but for a more complete study, please
consult the texts [20], [23], [4], [17].

The Beta function was the first known Scattering amplitude in String
theory first conjectured by Gabriele Veneziano, an Italian theoretical physi-
cist and a founder of string theory. Gabriele Veneziano, a research fellow at
CERN, in 1968, observed a strange coincidence of many properties of the
strong nuclear force that are perfectly described by the Euler beta-function,
an obscure formula devised for purely Mathematical reasons two hundred
years earlier by Leonhard Euler. In the flurry of research that followed,
Yoichiro Nambu of the University of Chicago, Holger Nielsen of the Niels
Bohr Institute and Leonard Susskind of Stanford University revealed that
the nuclear interactions of elementary particles modelled as one-dimensional
strings instead of zero-dimensional particles were described exactly by the
Euler beta function. This was, in effect, the birth of string theory. The
Euler Beta function appeared in elementary particle physics as a model for

21



the scattering amplitude in the dual resonance model.

A beta distribution is a type of probability distribution that is commonly

used to describe uncertainties about the true value of a proportion. There
are appropriate distributions to express uncertainties about the prior val-
ues for prevalence sensitivity. The beta distribution can be defined by the
two parameters, alpha and beta, written as B(«q, ), with a = s+ 1 and
b8 =n— s+ 1. Where s is the number of successes out of n trials. If there
is no information on which to base a prior distribution, & = # = 1 should
be used. This result is a uniform distribution in which all values between 0
and 1 has equal probability of occurrence. The o and [ parameters are best
understood in terms of success and failures of an event where a@ = success+1
and 8 = failures + 1. Therefore zero success and zero failure may be rep-
resented as B(a = 1,5 = 1) distributions and the mean (expectation) of the
beta distribution is pu = ﬁ = % = (0.5. Based on zero success and failure
the expectation of a success has a 50% probability (p = 0.5).
The Beta can be used to describe not only the variety observed across people,
but it can also describe your subjective degree of belief (in a Bayesian sense).
The Beta distribution can be used to model events which are constrained
to take place within an interval defined by a minimum and maximum value.
For this reason, the Beta distribution is used extensively in PERT, critical
path method (CPM) and other project management or control systems to
describe the time of completion of a task.

The beta distribution is a conjugate prior (meaning it has the same func-
tional form therefore also often called convenient prior) to the binomial likeli-
hood function in the Bayesian inferences and as such is often used to describe
the uncertainty about a binomial probability.

In risk analysis, if we are sure that data is collected according to a bi-
nomial process, we can use the beta distribution to describe our uncertainty
about the proportion or probability by applying the formula:

p = riskbeta(s +1,n —s+1)

where n is the number of trials of sample and s is the number of successes.
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Chapter 2

A Cellular-Automata Fire
Simulator: PROPAGATOR

2.1 Mathematical Modeling in Wildfire Man-
agement

Mediterranean countries are particularly prone to wildfires, which represent
a significant menace to environment, properties, and human lives. Even in
countries aware of the fire danger conditions and well equipped for firefight-
ing, there is still a lack of prevention and preparedness capacities in order to
deploy in a short time all the activities able to share among the first respon-
ders and Civil Protection Authorities (CPAs) the main information to cope
with direct impacts on exposed people.

The tragic wildfires that occurred in Greece and in Portugal in the last few
years, which caused many fatalities, and the more recent event that occurred
in Gran Canaria, where 9000 people were evacuated, constitute examples of
the consequences of such shortcomings.

Most of the wild-land fires in the Mediterranean are human caused; however,
natural ignition caused by lightning are not negligible and could be increased
by climate change. Human-caused fires result from many different reasons,
ranging from campfires left unattended to stubble burning, negligently dis-
carded cigarettes, or intentional acts of arson. In addition, wild-land fires can
be ignited by anthropic elements such as power lines and railways. Wildfire
emergencies, especially in the southern EU Countries, are related with ex-
treme weather conditions, characterized by persistent dry strong winds over
flammable land cover species. In this case, the ignition probability increases
and, in case it happens, the fire propagation is rapid and difficult to cope
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with: in most of the recent wildfire emergencies, casualties happened in few
hours after the fire ignition. For this reason, it is extremely urgent to sup-
port first responders and CPAs with operational tools in emergency response,
based on reliable wildfire risk maps and efficient emergency plans.

The recent dramatic events occurred in Greece and Portugal (such as the
mega-fires of June and October 2017) made evident the need of tools able
to anticipate the behavior of fire in order to implement prevention and com-
munication activities in time to save lives. This can be achieved using ad
hoc mathematical and numerical models, or implementing some other kind
of decision-making process.

Unfortunately, physical processes influencing wildfire propagation are com-
plex, meaning that the effects of slopes, wind conditions and fuel moisture
interconnect and combine together, determining the evolution of the fire
event. Such factors make wildfires multi-scale, multi-physics, and nonlinear
phenomena. This makes the formulation of efficient and reliable mathemati-
cal models particularly hard, as well as their computational implementation.
Nevertheless, in literature, there are many different approaches and models
dedicated to this specific task. Such modeling efforts are usually divided into
three main approaches [2]:

1. empirical and semi-empirical models, which rely on statistically derived
laws of fire propagation;

2. macroscopic-deterministic models, where the fire spread is modeled in
a continuum, mainly by using computational fluid dynamics techniques
coupled with atmospheric, heat transfer, and combustion models;

3. stochastic lattice or grid-based models, where the evolving quantities are
usually described adopting a discretization in space and time, and deal-
ing with the propagation of the fire front from a cell to the neighboring
ones by adopting detailed localized evolution rules that comprehend
the underlying physics at the desired level of resolution [2],[14].

It is common knowledge that any of the aforementioned modeling is char-
acterized by strengths and drawbacks; in any case the distinction between
such categories is not so strict since, in many works, different approaches are
mixed together.

To begin with, empirical models are quite straightforward to implement
and use, and do not require a high computational budget. They have proved
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to approximate, under certain restrictions due to their simplified nature,
fire-spread dynamics in an acceptable way. However, most such models are
derived from controlled laboratory experiments, and their reliability in pre-
dicting fires that took place under different conditions and landscapes is to
be questioned.

The second category, macroscopic-deterministic models, are mostly based on
first principles. However, since they try to model intrinsically nonlinear,
multi-scale, stochastic, and complex phenomena, their prediction accuracy
cannot be always ensured. Moreover, these models typically need high com-
putational resources for simulations on large-scale heterogeneous areas, and-
or the computational time is not comparable to the simulated time, making
such model not suitable for tactical intervention scenarios.

Grid-based stochastic modeling techniques may thus fill the gap between the
first two formulations. Such techniques approximate the complex and in-
herent stochastic underlying physics, grasping the very mechanisms of fire
spread by describing via probabilistic methods the physics at the microscop-
ic/local scale. The front propagation at the macroscopic scale emerges as
the result of the rules operating at the detailed (local) level. They are often
lightweight models, versatile in the sense that they can be integrated in the
framework of existing databases with relative ease.

At the cost of some preliminary modeling, these models can:

e at the physical level incorporate both theoretical/first principles and
(semi-) empirical relations inside of the probabilistic mathematical core;

e casily integrate spatial and temporal heterogeneity of the initial and
boundary conditions of the simulation, i.e., dealing with spatial pat-
terns of the vegetation type, orography, meteorological conditions.They
can easily be coupled with Geographical Information Systems (GIS)
and take (possibly real-time) meteorological data as input

Adopting grid-based stochastic modeling techniques, also more complex fire
propagation patterns, such as the fire spotting effect, can be also simulated
in a rather straightforward way via ad hoc probabilistic rules that may make
use of fire intensity, wind field, and fuel characteristics. Cellular Automatas
(CA) constitute one of the most well known examples of the latter category
of models.
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2.1.1 Cellular Automata

From a mathematical point of view, cellular automata (CA) are binary lat-
tices that are updated iteratively. In the automata discussed in this paper,
the value of a cell is flipped based only on the number of ones in the neigh-
borhood of the cell to be updated.

We call an automaton synchronous if all cells are updated simultaneously,
respectively asynchronous if the updating affects only one cell at a time. We
further call an automaton deterministic if the update follows deterministic
rules, respectively probabilistic if at least one of the following holds:

e the updated cell is picked at random

e the local transition rule is probabilistic - i.e., a cell may flip from zero
to one with some probability p, and the same cell may stay in zero with
probability 1 — p.

This work was carried out taking into consideration probabilistic cellular au-
tomata.

CA models for wildfire simulation model discretize spatial interactions
by adopting a square or hexagonal grid. The macroscopic fire spread dy-
namics is simulated by the means of an ensemble of different realization of a
stochastic process. In every realization, the spreading of the fire front from
burning cells to neighboring ones is modeled by the means of probabilistic
rules. Although CA models may simplify the underlying physical processes,
their modular nature allows them to reach the desired level of complexity
and accuracy. This can be achieved under more accurate physical modeling
and-or employing state-of-art numerical algorithms [13], [1]. For what con-
cerns the first path, in [9], a CA model has been coupled with existing forest
physical models to ensure better accuracy of fire spread simulation. On the
other hand, Ghisu et al., in [14], provided elaborate CA models that overcome
typical constraints imposed by the shape of the grid and may perform com-
parably to deterministic models, requiring, however, higher computational
budget.

To look at other cellular automata models for forest fire prediction, the
reader is referred to [22], [3].
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2.2 PROPAGATOR

PROPAGATOR is an operational cellular-automata based software code for
simulating forest fires that is already in use, among others, by the European
partners of the EU project ANYWHERE H2020, as the Burned Area product
within the challenge Weather-induced forest fires, by the Italian Civil Pro-
tection, and also by the fire-fighter agency (Vigili del Fuoco) of the Liguria
Region (Italy).

Propagator is a tool designed and activated by researchers of the CIMA
Research Foundation and it operates at the prototype level since summer
2009. The system is interfaced with the Dewetra platform, which is an in-
tegrated system of the Central Functional Center of the Department of Na-
tional Civil Protection. This platform aims to provide decision-makers with
useful information to implement civil protection activities and to support for
effective forest fire fighting activities. The system is currently being tested
by the Department of National Civil Protection.

Propagator is a model of fire propagation, which is able to simulate the
behaviour of a single fire triggered in a given area of the territory. The system
is able to provide maps of the probability of fire propagation by predicting
the dynamics of the flame front and defining emergency scenarios. In order
to do this, propagator is based on the availability of detailed maps of vegeta-
tion cover, a digital model of the terrain and the representation of the wind
field.

Propagator is a stochastic cellular automaton model for forest fire spread
simulation, conceived as a rapid method for fire risk assessment. The model
uses high-resolution information such as topography and vegetation cover
considering different types of vegetation. Propagator simulates independent
realizations of one stochastic fire propagation process, and at each time-step
gives as output a map representing the probability of each cell of the domain
to be affected by the fire. These probabilities are obtained computing the
relative frequency of ignition of each cell. The model capabilities are assessed
by reproducing a set of past Mediterranean fires occurred in different coun-
tries (Italy and Spain), using when available the real fire fighting patterns.

Propagator simulated such scenarios with affordable computational re-
sources and with short CPU-times. The outputs show a good agreement
with the real burned areas, demonstrating that the it can be useful for sup-
porting decisions in Civil Protection and fire management activities.
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2.2.1 ANYWHERE project

The first aim of the ANYWHERE (EnhANcing emergencY management and
response to extreme WeatHER and climate Events) was the development of
real-time warning systems for high-impact weather events in order to support
emergency response and management.

This project, active from June 2016 to December 2019, was funded under
the EU’s research and innovation funding program Horizon 2020 (H2020)
and had the goal of improving emergency management and response to ex-
treme or high-impact weather and climate events such as floods, landslides,
swells, snowfalls, forest fires, heat waves and droughts.

Working in the field of applied research, the project aimed at the imple-
mentation of real-time warning systems, able not only to monitor the state of
the events but also to identify how many and which areas were at risk. This
provided decision makers the opportunity to understand how many people
and infrastructure could be involved and thus to obtain a proactive response.

In addition, ANYWHERE contributed to the production of standard

tools useful for both decision makers and end users. In fact, the project
led to the creation of the A4EU platform, which provides products and ser-
vices for improving the response to emergencies and high-impact weather
and climate phenomena. This platform has been tested in seven pilot sites
identified by the project (Liguria; Spain and Catalonia; Canton of Bern,
Switzerland; Corsica; Roagaland, Norway; South Savo, Finland).
Public Protection and Disaster Relief (PPDR) institutions have at their dis-
posal a pan-European multi-hazard platform (A4EU) which provides a better
identification of the expected weather-induced impacts and their location in
time and space before they occur. The operational A4EU prototypes are cur-
rently running live at the Civil Protection command centres of seven pilot
sites, representing different climatic scenarios around Europe.

Within the project, CIMA Research Foundation was the leader of Work
Package 6, concerning the demonstration activity of A4EU in the different
pilot sites during the operational period, between October 2018 and Septem-
ber 2019. It should be noted that many of the A4EU systems remained active
even at the end of the project, confirming their usefulness.
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rnplamentstion of PROPAGATOR om Deweira platform

Figure 2.1: All the regions were PROPAGATOR simulations can be run
using a Dewetra platform.

2.2.2 History of the development

The implementation of Propagator has spanned across more than a decade;
robustness, ease of implementation, and quick operational deployment have
always been the beacon during the overall process.

The first implementation of PROPAGATOR started from a request of the
Italian Civil Protection Department, to support the organization of the G8
summit 2009, originally planned in La Maddalena, Sardinia, a region fre-
quently affected by severe forest fires in summer season in order to evaluate
the best prevention measures and support the fire fighting activities in case
of a forest fire event. It was the first time in which it was possible to run
fire propagation simulations all over Italy, from a simple web interface. Since
its first release, it was able to reproduce burned areas up to 10,000 ha in a
few minutes of computational time. Given an ignition point, it highlighted
the zones more likely to be affected by fire propagation and the output in
this version has been used as a worst-case scenario, highlighting the most
endangered areas given conditions of totally dry fuel (figure 2.2 letter a, b).

In 2011 was released the second version of Propagator, in which the model

has been implemented in a 3D environment named NAZCA (letter ¢ of fig-
ure 2.2). The previous version algorithm and server code were mixed: they
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were equipped with a Google Web Toolkit based interface, with a server writ-
ten in MATLAB; at this stage, the algorithm was running as a standalone
MATLAB script, much easier to maintain and to develop. The model was
shipped as a plugin, together with the data-set of fuel cover and DEM of
the whole Italy. This was still quite cumbersome and the object of further
improvements. At this stage, taking into account wind and orography, were
added timing algorithms, probability maps and isochrones as visual output
of the model (letter d of figure 2.2).

At this stage, Propagator did not include a real parametrization of the prop-
agation speed (and thus gave no information on the absolute time scale of
the overall process).

In 2014, the third release was completed (letter e of figure 2.2). The
web interface was redesigned and it was integrated into the multi purpose
MyDewetra platform, a tool for the forecasting, monitoring and real-time
surveillance of all the environmental risks.

In 2017, the fourth release saw a total rewriting of the code in the Python
programming language, with a new server stack, with Django REST API and
database, and Celery task dispatcher (letter f of figure 2.2). Some of the al-
gorithms for the treatment of slope and wind data have been rewritten from
scratch, and it has been made possible to change wind conditions over time.
An open API had been released to several developers during the ANY-
WHERE Project (letter g of figure 2.2) and the fuel - DEM dataset had been
extended from the sole Italian territory to Finland, Portugal, Spain (Catalo-
nia, Cantabria, Asturias) France (Corsica and Cote D’Azur) and Switzerland.
Figure 2.1 portrays the regions in the Europe and Mediterranean basin where
Propagator simulations can be run using Dewetra platform and-or the ANY-
WHERE open API.

In 2020, the fifth release of Propagator (letter & of figure 2.2) saw the im-
plementation of a Rate of Spread (RoS) model in order to give the isochrones
a more realistic time parametrization, and the introduction of the fuel mois-
ture into the computational core. The 2020 version also saw the introduction
of fire fighting actions (lines and polygons where some kind of fire fighting
procedure is going to be put in charge) that may be prescribed by the user
in a time-dependent way. The Python3 code has been substantially rebuilt
according to Object Oriented Programming procedures, in order to rise its
modularity for further improvements. In the standalone version, there is the
opportunity to furnish directly the data for DEM and fuel cover, in order to
launch simulation of any part of the globe, provided that there is available
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field data. Running within the Mydewetra platform, meteorological Numer-
ical Weather Prediction (NWP) models have been integrated in Propagator
providing synoptic data for wind direction and magnitude. Dead Fine Fuel
Moisture Content model data have been integrated as well into the platform.

Figure 2.2: The roadmap of operational Propagator implementation, from
2009 to 2020. Each letter represents a milestone in the development of the
project.

2.2.3 Propagator: the model

The PROPAGATOR model is a quasi-empirical stochastic cellular automa-
ton model based on a raster implementation and designed for predicting
forest wildfires propagation.

The core functioning of the software is based on the discretization of the
space into a grid composed of square cells of arbitrary length Az = Ay = L.

The cell size reflects the resolution in space of the analysis and the final
results. Here L has been fixed to 20 m, allowing Propagator to give high res-
olution output, fundamental for reproducing the middle-sized Mediterranean
fires object of the following sections.

Input parameters are wind speed and direction; the ignition point dead

fine fuel moisture content and firebreaks-fire fighting strategies can also be
considered. The fire spread probability depends on vegetation type, slope,
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wind direction and speed, and fuel moisture content instead its speed is de-
termined through the adoption of a Rate of Spread model.

With an appropriate implementation of a ROS model the probability of prop-
agation of the fire from a cell to the adjacent ones for a given time step can
be computed. The grid is implemented as a 2D array and for each time step,
every cell is characterized by a state taking values from a finite set. More
specifically, each cell of the domain can assume one out of three different
possible states:

e state 1 corresponds to cells that are burning during the current simu-
lation step;

e state 0 corresponds to cells that are already burned in previous steps
of the simulation;

e state -1 corresponds to cells that are unburned, but that can burn in
the following steps of the simulation.

At a given time t, an unburned cell has a probability p~'7! to burn. Such
probability is given by the overall state of the stochastic realization, initial,
and boundary conditions. At the subsequent time step of the stochastic pro-
cess, every burning cell is going to be set to a burned cell (and thus inactive).
In operational terms, the computed time step At for the state change is ap-
pended accordingly to a scheduler which manages the fire propagation mech-
anism of the cellular automaton. Then after a time step the possible changes
in the state of the cells are: an unburned cell can become a burning cell or
it can remain unburned, a burning cell becomes a burned cell after one time
step with probability equal to 1 and a burned cell can not change its state.
The state diagram of this automata is depicted in figure 2.3.

1-1 -1 -1

1- p(t) p(t)

Figure 2.3: The state diagram of the automata adopted in Propagator.
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The probability of fire spreading from a cell to one of its neighborhood
is p;; and is calculated starting from the nominal fire spread probability p,,
which is then modified considering several factors.
For each cell of the simulation, corresponding to a point xp = (z,y) of the
spatial domain, the model calculates the probability u(zp,t) of being burnt
at time t and space x evaluating the fire frequency for each cell, based on a
significant number of stochastic simulations and each simulation is performed
for the same ignitions and wind conditions. This procedure is resumed in fig-
ure 2.4.

Probabilistic rules
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Figure 2.4: Averaging procedure of single realization adopted in Propagator.

The cellular automata is applied on the Moore neighborhood, a two-
dimensional square lattice composed of a central cell, the ¢ — cell that is the
ignited one, and the eight cells that surround it, as shown in figure 2.5, which
can be ignited by the ¢ — cell. The fire spreading is stochastically calculated
considering the directions between the center of the i-cell and the ones of
the neighboring cells, the slopes between the cells and the possible different
moisture conditions and considering that each cell is characterized by a veg-
etation type.

The fire propagates from a cell 7 to the neighbor cell 7 with a probability

pij, called Fire Spread Probability, which depends heavily on the involved
vegetation types. The p;; is also influenced by the slope between the two
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cells, the wind effect (direction and velocity), and the fuel moisture content
of the j — cell. The probability of the fire propagation p;; from an ignited
1 — cell at the time t; to a j — cell is calculated applying the cumulative
binomial probability formula:

pij = (1= (1 =pn)™") - em (2.1)

where p,, is the nominal Fire Spread Probability, a,,, is the factor that com-
bines the topographic and wind influence on the probability and e, is the
factor that simulates the effect of the fine fuel moisture content. In general
we can say that an unburned cell has a certain probability of becoming a
burning one given that one or more adjacent cells are burning, a burning
cell will always become a burned one after a certain time depending on the
parameters, and a burned cell remains inactive.

Moore neighbourhood

Figure 2.5: Moore neighborhood implemented in Propagator.

The model takes into account the vegetation of the cell that is burning
and the cells where the fire can propagate and it analyzes how a certain type
of vegetation can ignite other types of vegetation, or also the same vegeta-
tion type. These probability values are given in input through a fire spread
probability table, table in figure 2.6, which considers all the possible combi-
nations between the different vegetation and land-cover types.

In particular, in order to preserve ease of use and portability, Propaga-
tor adopts a manageable simplified custom fuel model with seven available
fuel types corresponding to seven different types of vegetation. The consid-
ered fuel types are the following: broad-leaves, shrubs, grasslands, fire-prone
conifers, agro-forestry areas, non-fire prone forest, and non-vegetated areas.
The nominal Fire Spread Probability p, represents the possibility for the
1 — cell, characterized by a certain vegetation cover, to ignite an adjacent
J — cell, characterized by the same, or another, vegetation cover. The class
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called non-vegetated areas includes man-made buildings and infrastructures
(e.g., streets, villages and towns) and the non-vegetated terrains, such as
natural bare soil (rivers, lakes, and seas are considered by default as non-
burnable areas as well). Fire propagation cannot take place in this class.

Burning Cell
Broadleaves Shrubs Grassland Flre-]l’mne Agro-Forestry  Not Fire-Prone
Conifers Areas Forest
= Broadleaves 03 0.375 0.25 0.275 0.25 0.25
E Shrubs 0.375 0.375 0.35 0.4 0.3 0.375
H Grassland 0.45 0.475 0.475 0475 0.375 0.475
2 Fire-prone conifers 0.225 0.325 0.25 0.35 0.2 035
%ﬁ Agro-forestry areas 0.25 025 0.3 0.475 0.35 0.25
= Not fire-prone forest 0.075 0.1 0.075 0.275 0.075 0.075
Nominal Fire 100 140 120 200 120 60

Spread Velocity [m/min]

Figure 2.6: n the first six rows, the values of the nominal fire spread prob-
ability p, between all the species are given. In the last row, nominal fire
spread velocity v, is reported.

The p,, values were defined according to a continuous and thorough cali-

bration through all the development of the model, and valuable information
deriving from fire susceptibility mapping.
The slope and the wind speed and direction can modify the initial value of
Pn, increasing or decreasing the nominal value depending on the direction of
propagation. The influence of the topography is taken into account through
the slope between the two cells. The slope increases the propagation prob-
ability p, when the slope increases in the direction of propagation (uphill
case) and it decreases p,, if slope decreases in the direction of propagation
(downhill case). In general, macroscale factors, such as the atmospheric sta-
bility, but also mesoscale factors, have a big influence on the propagation
of the wildfire [10]. For a more in-depth look at the phenomenology of the
phenomenon, see [5], [6], [27].

2.3 The role of the wind in wildfire propagation

A model for predicting a wildfire spread would have to take into account ex-
ternal environmental factors like meteorological conditions as well as specific
characteristics of the terrain. The most important factors that affect the rate
of spread and shape of a forest fire front are the fuel type (type of vegeta-
tion) and humidity, wind speed and direction, forest topography (slope and
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natural barriers), fuel continuity (vegetation thickness).

Many empirical relationships have been suggested in the literature to

model the effect of wind on the rate of fire spread. Here the wind influence is
taken into account by considering the wind velocity and its direction (both
considered to be homogeneous in the domain) relative to the direction from
the burning cell and the adjacent ones. At every time step, the value of wind
for every cell is perturbed in both magnitude and direction.
The influence is significant only if wind speed is quite high: in the low-speed
case, it does not modify the probability of propagation, not increasing nor
decreasing. However, when the wind speed is sufficiently high, it has a big
impact on the probability of propagation. The wind direction plays a key
role in the overall process because the probability of burning is increased
when the propagation direction is aligned with the wind direction, while it is
decreased when the directions are opposite. The wind influencing factor «,,
is shown in figure 2.7.
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Figure 2.7: Wind influencing factor o,

The factor that combines the topographic influence «y, with the wind in-
fluence «a, on the Fire Spread Probability, named «,,y, is obtained as follows:

Qh = Oy - O (2.2)

The way «,,, impacts the Fire Spread Probability, p is shown in figure 2.8.
[i is possible to see that: when a,, is equal to 1, the nominal80 probability is
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obtained; when this factor is not unitary, it is possible to evaluate the effect
of the possible combinations of slope, wind speed, and direction. The Fire
Spread Probability can thus vary in a range between at about zero and 0.7, a
value that in numerical experiments makes propagation quite always possible.

. with ey,

Figure 2.8: Influence of the combined slope-wind factor on the Fire Spread
Probability. The plot portrays the dependence of p;; of formula (2.1) on the
slope-wind factor o, given a fixed e,, = 1 and several values for p,.

When a cell is ignited, the transition time of the fire is modeled by com-
bining the Rate of Spread v,,,, and the fuel moisture factor f,,, with the
distance d from the center of the ¢ — cell which propagated the fire to the
center of the newly ignited j — cell. In particular, the transition time At is

calculated as:

A= —4 (2.3)

Uprop . fm
It is acknowledged that the flammability of the vegetal fuel and, conse-
quently, the rate of the spread of a fire depends exponentially on the fuel
moisture content. f,, is calculated using the following formulation:

Fru = M (2.4)

where ¢ is a constant that has been set at -0.014 and M, is the fuel
moisture (ranging from 0 to 1).
The Rate of Spread vy, is calculated starting from the nominal v,,, which
stands for the Fire Spread Velocity for each vegetation type without slope
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and wind effects, and then modifying it by considering the slope and the
wind effects. Values for v,, are reported in the table in figure 2.6 . Slope and
wind effects have been evaluated through the formulations calculated as:

e the wind speed factor K, is evaluated as
K, = exp(0.1783V) (2.5)

where V' is the wind velocity in the direction of propagation, in [m/s|;

e the slope factor K¢ is evaluated as
Ky = exp(3.533(tan®)'?) (2.6)

where ® is the terrain slope angle in the direction of propagation.

The Rate of Spread vp,,, is then evaluated multiplying the nominal Fire
Spread Velocity v,, by the two factors, K,, and Kg.

Fire spotting is an important phenomenon associated with wildfires. It
is documented as a dominant aspect that has contributed to the rampant
spread of fire in many devastating historical fires. Spot fires occur when
fragments of the fuel tear off from the main fuel source and horizontal wind
transports the burning embers beyond the zone of direct ignition. The burn-
ing embers/firebrands can develop new secondary ignition spots and lead to
a perilous increase in the effective rate of spread of the fire [25].

The fire-spotting mechanism over varying wind speeds shows similar be-
haviour for the different sized firebrands. The effective burnt area increases
with increasing wind speeds, but after a certain threshold an increase in the
wind speed leads to a decline in the effective burnt area. Wind speed affect
the ability of spot fires to accelerate wildfire propagation [19], [11].

At the same time, the increasing wind speed also causes a decrease in

the magnitude of the probability; therefore, beyond a certain threshold the
overall contribution from fire spotting starts to fall.
In terms of the physical quantities used in the parameterisation, it can be
argued that strong winds can carry the firebrands longer distances from the
main source and result in a larger fire perimeter (increasing “long-range prob-
ability”).

Historically it has been reported that strong winds coupled with extremely
dry conditions formed the perfect recipe for long-range fire spotting. Strong
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wind speeds can loft the smaller firebrands longer distances, but with an
increasing wind speed the combustion process quickens and the firebrands
reach the ground at a lower temperature. This fact explains the reduced
effect of fire spotting on the burned area at high wind conditions.
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Chapter 3

Analysis and Results

In this chapter we will show all the analysis we did and all the results we
obtained.
Propagator input parameters are:

e ignition point: 44.4099;9.1774
e wind speed: floating

e wind direction: 0

e time limit: 1000 min

e time resolution: 10 min

e number of threads: 1000

e dimension of the grid: 20 km
e moisture: 2

We consider uniform vegetation and uniform Digital Elevation Model (DEM),
we are also considering no fire spotting and no fire fighting actions.

To better study the wildfire propagation we simulated three different sit-
uations changing the value of wind speed, we considered wind speed equal
to: 0km/h, 10km/h, 20km/h, 30km/h.

The aim is to understand how is better to describe the fire propagation and
we will see that the best approximation is from the beta distribution.

Propagator outputs:
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A[11 x 2]: a matrix with the mean area values every 1000 realizations
in the first column and the corresponding instant of time in the second
one (this is like a report of the situation every 10 minutes);

X[11011 x 2]: a matrix with the random area values for each realization
in the first column and the corresponding instant of time in the second
one.

We obtained the matrix X with a modification of the code because the de-
fault output of propagator was only the matrix A.

3.1

Steps of the analysis

The first thing we did was a statistical analysis which can be divided in the
following sections:

Data Separation: given the output X matrix, we split it in [1000 x 2]
matrices. Each of them has in the first column the area value of each
tread for a particular instant of time and in second one the referred
instant of time;

Data Cleansing: given the X matrix of output, we remove the area
values that don’t vary with time. From a phenomenological point of
view we delete the cells which do not contribute to the extension of the
fire;

Histogram representation: for each time step we construct the cor-
responding histogram considering an empirical distribution. In order
to appreciate the trend over the time, we plot all the histograms on the
same graph;

Study of trends: we look at the trend of mean area, variance, corre-
lation, pdf maximum, last point;

Data Scaling: we scale the data of X matrix and they are indicated
with Y,

Parameters calculation: with the help of a python function, it has
been possible to calculate, in an empirical way, the parameters required
for the beta distribution;

Data fitting: thanks to the calculated parameters a fit of the data is
performed;
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e Analysis of moments of various order: we compare mean, vari-
ance, skewness and kurtosis of the beta fit with that of the data from

which it is obtained.

The described analysis was conducted for the four different cases which will
be shown in detail below. All the results discussed here, derive from the

codes in the Appendix A.

3.2 Case I: no wind

e Data separation and data cleansing: Given the output matrix
X, it has been split in the different matrices. The matrix X1 doesn’t
appear because at the time ¢ = 10min there is no new burnt cell.

X0[1000] =0
X2[969] t=20
X3[951] t=30
X4[949] t=40
X5[949] t=50

X6[949]  t=60
X7]949]  t=70
X8[949] t=80
X9[949]  t=90

X10[949] =100

Table 3.1: The X matrix is divided into column vectors representing the

number of threads for each time t.

e Histogram representation: Shown below the histograms for each
time step with the correspondent empirical distribution.

Figure 3.1: X0[1000], t = 0.

Figure 3.2: X2[969], t = 20.

Figure 3.3: X3[951], t = 30.
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Figure 3.4: X4[949], t = 40.
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Figure 3.5: X5[949], ¢t = 50. Figure 3.6: X6[949], t = 60.

Figure 3.7: X7[949], t = 70. Figure 3.8: X8[949], ¢ = 40.
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Figure 3.9: X9[949], ¢t = 90. Figure 3.10: X'10[949], ¢ = 100.
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The histograms and the empirical distributions obtained for each indi-
vidual vector are plotted on the same graph to observe its trend over
time:

Figure 3.11: Histograms trend over Figure 3.12: Distribution trend over
the time the time

Considering the variable X — A, i.e. area for each tread minus A mean,
a change in the trend and in the accumulation point can be observed:

Figure 3.13: Histograms trend over Figure 3.14: Distribution trend over
the time the time

e Study of trends:

Considering the outputs, we study the trends of mean, variance, cor-
relation, maximum of the distribution and last point. Note that max-
imum of the distribution means the element belonging to the dataset
to which the highest point of the curve corresponds.
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e Data scaling: To proceed with the analysis we now consider the scaled
data, therefore we calculate
X — A

y =" " 3.1
var(X) (3.1)

as well as the X matrix, the Y matrix is divided into column vectors
corresponding to the instants of observation.

We conducted the same analysis reported above also for the Y vectors
but in order to focus the attention on the successive results, we do not
show it.

e Parameters calculation and data fitting: Considering the variable
Y, our goal is to find the parameters for it to be a beta distribution.
For this purpose, we can use the beta.fit Python function (Appendix
B) which calculate, in an empirically way, the parameters o and £.

In order to use beta.fit it is necessary a data scaling in the interval [0, 1].
Using the obtained values of the needed parameters, a fit of the data
is performed obtaining the following plots:

Figure 3.20: Linear beta fit Figure 3.21: Logarithmic beta fit
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e Analysis of moments of various order: Considering the four mo-
ments (mean, variance, skewness and kurtosis), they are calculated on
the scaled Y vectors and their distribution. The results are shown in
the following plots:

\
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Figure 3.22: Mean Figure 3.23: Variance
\\\ // 8
N /
=3 N :\: /’//
Figure 3.24: Skewness Figure 3.25: Kurtosis
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3.3 Case II: wind speed 10 km/h

e Data separation and data cleansing: Given the output matrix X,
it has been split in the different matrices.

X0[1000] t=0 | X6[958] t=60
X1[917] t=10 | X7[949] =70
X2[962] t=20 | X8[949] t—80
X3[961] t=30 | X9[949] t=90
X4[958] t=40 | X10[949] =100
X5[958]  t=50

Table 3.2: The X matrix is divided into column vectors representing the
number of threads for each time t.

¢ Histogram representation: Shown below the histograms for each
time step with the correspondent empirical distribution.

= 0mn
3
5 ‘ ‘ ‘ | I 5
‘ L.l
ol o om o% ok o

Figure 3.26: X1[917], ¢ = 10. Figure 3.27: X2[962], t = 20.
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Figure 3.28: X3[961], t = 30. Figure 3.29: X4[958], t = 40.

48



= =50min | 04 030
025
03
020
02 015
010
01
008
00 000

Figure 3.30: X5[958], t = 50. Figure 3.31: X6|958], t = 60.
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Figure 3.32: X7[958], t = 70. Figure 3.33: X8[958], t = 80.

Figure 3.34: X9[958], t = 90. Figure 3.35: X'10[958], ¢ = 100.
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The histograms and the empirical distributions obtained for each indi-
vidual vector are plotted on the same graph to observe its trend over
time:

: *p})‘_\ T —
Figure 3.36: Histograms trend over Figure 3.37: Distribution trend over
the time the time

Considering the variable X — A, i.e. area for each tread minus A mean,
a change in the trend and in the accumulation point can be observed:

Figure 3.38: Histograms trend over Figure 3.39: Distribution trend over
the time the time

e Study of trends:

Considering the outputs, we study the trends of mean, variance, cor-
relation, maximum of the distribution and last point. Note that max-
imum of the distribution means the element belonging to the dataset
to which the highest point of the curve corresponds.
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e Data scaling: To proceed with the analysis we now consider the scaled
data, therefore we calculate
X — A

y =" " 3.2
var(X) (3:2)

as well as the X matrix, the Y matrix is divided into column vectors
corresponding to the instants of observation.

We conducted the same analysis reported above also for the Y vectors
but in order to focus the attention on the successive results, we do not
show it.

e Parameters calculation and data fitting: Considering the variable
Y, our goal is to find the parameters for it to be a beta distribution.
For this purpose, we can use the beta.fit Python function (Appendix
B) which calculate, in an empirically way, the parameters o and £.

In order to use beta.fit it is necessary a data scaling in the interval [0, 1].
Using the obtained values of the needed parameters, a fit of the data
is performed obtaining the following plots:

Figure 3.45: Linear beta fit Figure 3.46: Logarithmic beta fit
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e Analysis of moments of various order: Considering the four mo-
ments (mean, variance, skewness and kurtosis), they are calculated on
the scaled Y vectors and their distribution. The results are shown in
the following plots:
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Figure 3.49: Skewness Figure 3.50: Kurtosis
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3.4 Case III: wind speed 20 km/h

e Data separation and data cleansing: Given the output matrix X,
it has been split in the different matrices.

X0[1000] t=0 | X6[970] t=60
X1[931] t=10 | X7[970] =70
X2[969] t=20 | X8[970] t—80
X3[970] t=30 | X9[970] t=90
X4[970] t=40 | X10[970] =100
X5[970]  t=50

Table 3.3: The X matrix is divided into column vectors representing the
number of threads for each time t.

¢ Histogram representation: Shown below the histograms for each
time step with the correspondent empirical distribution.

Figure 3.51: X1[931], t = 10. Figure 3.52: X2[969], ¢t = 20.

Figure 3.53: X3[970], t = 30. Figure 3.54: X4[970], t = 40.
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Figure 3.55: X5[970], ¢t = 50. Figure 3.56: X6[970], ¢t = 60.
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Figure 3.57: X7[970], t = 70. Figure 3.58: X8[970], t = 80.
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Figure 3.59: X9[970], t = 90. Figure 3.60: X'10[970], ¢ = 100.
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The histograms and the empirical distributions obtained for each indi-
vidual vector are plotted on the same graph to observe its trend over
time:

Figure 3.61: Histograms trend over Figure 3.62: Distribution trend over
the time the time

Considering the variable X — A, i.e. area for each tread minus A mean,
a change in the trend and in the accumulation point can be observed:

Figure 3.63: Histograms trend over Figure 3.64: Distribution trend over
the time the time

e Study of trends:

Considering the outputs, we study the trends of mean, variance, cor-
relation, maximum of the distribution and last point. Note that max-
imum of the distribution means the element belonging to the dataset
to which the highest point of the curve corresponds.
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e Data scaling: To proceed with the analysis we now consider the scaled
data, therefore we calculate
X — A

) ——— 3.3
var(X) (3:3)

as well as the X matrix, the Y matrix is divided into column vectors
corresponding to the instants of observation.

We conducted the same analysis reported above also for the Y vectors
but in order to focus the attention on the successive results, we do not
show it.

e Parameters calculation and data fitting: Considering the variable
Y, our goal is to find the parameters for it to be a beta distribution.
For this purpose, we can use the beta.fit Python function (Appendix
B) which calculate, in an empirically way, the parameters o and £.

In order to use beta.fit it is necessary a data scaling in the interval [0, 1].
Using the obtained values of the needed parameters, a fit of the data
is performed obtaining the following plots:

Figure 3.70: Linear beta fit Figure 3.71: Logarithmic beta fit
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e Analysis of moments of various order: Considering the four mo-
ments (mean, variance, skewness and kurtosis), they are calculated on
the scaled Y vectors and their distribution. The results are shown in

the following plots:

Figure 3.72: Mean
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3.5 Case IV: wind speed 30 km/h

e Data separation and data cleansing: Given the output matrix X,
it has been split in the different matrices.

X0[1000] t=0 | X6[973] t=60
X1[918] t=10 | X7[971] =70
X2[887] t=20 | X8[970] t—80
X3[965] t=30 | X9[973] t=90
X4]961] t=40 | X10[973] =100
X5[966] t=50

Table 3.4: The X matrix is divided into column vectors representing the
number of threads for each time t.

¢ Histogram representation: Shown below the histograms for each
time step with the correspondent empirical distribution.

Figure 3.76: X'1[918], t = 10. Figure 3.77: X2[887], t = 20.

1

Figure 3.78: X3[965], t = 30. Figure 3.79: X4[961], t = 40.
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Figure 3.80: X5[966], t = 50.

Figure 3.81: X6[973], t = 60.

Figure 3.82: X7[971], t = 70.

Figure 3.83: X8[970], ¢ = 80.

Figure 3.84: X9[973], t = 90.

Figure 3.85: X'10[973], t = 100.
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The histograms and the empirical distributions obtained for each indi-
vidual vector are plotted on the same graph to observe its trend over
time:
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Figure 3.86: Histograms trend over Figure 3.87: Distribution trend over
the time the time

Considering the variable X — A, i.e. area for each tread minus A mean,
a change in the trend and in the accumulation point can be observed:
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Figure 3.88: Histograms trend over Figure 3.89: Distribution trend over
the time the time

e Study of trends:

Considering the outputs, we study the trends of mean, variance, cor-
relation, maximum of the distribution and last point. Note that max-
imum of the distribution means the element belonging to the dataset
to which the highest point of the curve corresponds.

62



area

correlation

last points

Figure 3.90: Mean Area trend

100 A

095

090 4

0.85

0.80

Figure 3.92: Correlation trend

variance

140

120 4

100

20 1

=4

20 40 B0 80 100

Figure 3.91: Variance trend

.;-
5]
5
8
]
g

Figure 3.93: Trend of the maximum of
the pdf

0.014

0.012

0010 4

0.008

0.006

0.004

Figure 3.94: Last point trend

63



e Data scaling: To proceed with the analysis we now consider the scaled
data, therefore we calculate
X — A

y =" " 3.4
var(X) (34)

as well as the X matrix, the Y matrix is divided into column vectors
corresponding to the instants of observation.

We conducted the same analysis reported above also for the Y vectors
but in order to focus the attention on the successive results, we do not
show it.

e Parameters calculation and data fitting: Considering the variable
Y, our goal is to find the parameters for it to be a beta distribution.
For this purpose, we can use the beta.fit Python function (Appendix
B) which calculate, in an empirically way, the parameters o and £.

In order to use beta.fit it is necessary a data scaling in the interval [0, 1].
Using the obtained values of the needed parameters, a fit of the data
is performed obtaining the following plots:

Figure 3.95: Linear beta fit Figure 3.96: Logarithmic beta fit
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e Analysis of moments of various order: Considering the four mo-
ments (mean, variance, skewness and kurtosis), they are calculated on
the scaled Y vectors and their distribution. The results are shown in

025

the following plots:
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Conclusions

The objective of the thesis was to identify how the burnt area is distributed
over a limited observation interval. To this aim, a simplified fire propagation
case was considered.

To achieve the main goal of the work, it was necessary to modify the
PROPAGATOR algorithm. The change allowed us to have as output the
burnt area values for each realization, for each instant of time. This modifi-
cation, necessary for greater accuracy of the analysis, cost in terms of com-
putational effort and since the study was made on 1000 realizations, it was
necessary to use the server Hypatia made available by the BCAM-Basque
Center for Applied Mathematics, since our computers supported the use of
the Propagator algorithm for a maximum of 100 realizations.

As mentioned, the subject of the analysis are values representing areas,
so it is evident that we are talking about a closed and limited domain. For
an easier understanding: we are studying a wildfire, thus a phenomenon that
has a limited duration in time and therefore the area subtended by the curve
describing its propagation is also limited.

Hence the difficulty encountered was: finding a distribution with a limited
domain that describes the propagation of this process. The most of the
known statistical tests for parameter estimation are usable for unlimited do-
main distributions, hence our choice to do the analysis by direct comparisons.

What we did was, by looking at the propagation trend, notice that the
beta distribution could be a good approximation of it. Then, to validate the
hypothesis, moments of different order were calculated and compared.

As can be seen from the plots in the discussion of the analysis, for mean and
variance the trends are almost similar, whereas for skewness and kurtosis it
is not possible to say the same.

The reason for this difference is an error due to the continuous rescaling of
the data. There is an accumulation of this type of error and a consequently
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repercussion in the calculation of these two moments.

What can be concluded is that certainly for short times the beta function is
suitable for such a comparison, but for long times the same cannot be said
with certainty.

Given the phenomenon under consideration, it was realised that a sim-
ple mathematical model based on differential equations would not have been
suitable for describing the problem, as it was quite complex. Therefore, a
modelling approach to the phenomenon was necessary, resulting in the choice
of a probabilistic cellular automata model, which proved to be more flexible,
suitable and rapid. This represented, for us, a new method for modelling a
physical phenomenon.

Developing this thesis was not only carrying out a scientific work but,
in order to achieve these results, it was necessary to expand our wealth of
knowledge. We dealt with writing new routines in Python and statistical in-
depth analysis, topics which were not furthered during the University lessons.

Moreover, the scientific growth come up beside the personal development.
Working in an international environment let people deal with new cultures
and realities. To grow up and move from the University into the wider re-
search areas, entails to plunge into a world full of obstacles and mistakes.
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Appendix A
Codes

In this appendix we report all the lines of code we wrote to carry out the
analysis we discuss in the chapter 3.

The codes are written for a general case in fact we write ¢ in place of the
particular matrix considered. All the analysis reported here has been done
in the same way for the different four cases: wind equal to 0 km/h, 10 km/h
20 km/h, 30 km/h, considering the corresponding data.

Data separation e cleansing

import numpy as np
import pandas as pd

dati = ’dati_1000.csv’ # data set 1000 threads
CSVData = open(dati)

X = np.loadtxt (CSVData, delimiter=",") # we are putting
# all the data imn a matriz

# data separation

X1=X[1002:2002,0]
X2=X[2003:3003,0]
X3=X[3004:4004,0]
X4=X[4005:5005,0]
X5=X[5006:6006,0]
X6=X[6007:7007,0]
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X7=X[7008:8008,0]
X8=X[8009:9009,0]
X9=X[9010:10010,0]
X10=X[10011:11011,0]

# data cleansing

def no_repertir (X_curr,

dif_x = X_curr-X_

return X_curr

X1 = no_repertir (X1, XO)
X2 = no_repertir (X2, X1)
X3 = no_repertir (X3, X2)
X4 = no_repertir (X4, X3)
X5 = no_repertir (X5, X4)
X6 = no_repertir (X6, X5)
X7 = no_repertir (X7, X6)
X8 = no_repertir (X8, X7)
X9 = no_repertir (X9, X8)

X_prev):
prev
X_curr = X_curr[dif_x > np.exp(-9)]

X10 = no_repertir (X10, X9)

A.1 Histogram representation

import matplotlib.pyplot as plt
import seaborn as sns

Ni,Bi,_=plt.hist(Xi,bins=30,density=True,edgecolor=’black’,
label=’t=10_min’)

plt.legend ()

plt.show ()

#pdf

sns.distplot (Xi,bins=30,color="blue" ,hist_kws=dict(density=True,
edgecolor="black",linewidth=1,label="t=10,ymin’))

plt.legend ()

plt.show )

69



sns.distplot (Xi,bins=30,color="green" ,hist_kws=dict(density=True,
edgecolor="black",linewidth=1,label="t=10_,min’))

plt.legend ()

plt.semilogy ()

plt.show ()

#empirical distribution
Ci = 0.5%x(B1[1:]+B1[:-1])

plt .plot(C1,N1) ## wusing bin_centers rather than edges
plt.show ()

from matplotlib import rcParams

rcParams [’figure.figsize’] = 20, 15

plt .hist (X0,bins = 5,density=True,edgecolor=’black’,label="t=0m’)
plt.hist(X1,bins = 5,density=True,edgecolor=’black’,label="t=10m’)
plt.hist (X2,bins = 20,density=True,edgecolor=’>black’,label="t=20m’)
plt.hist (X3,bins = 30,density=True,edgecolor=’black’,label="t=30m’)
plt.hist (X4,bins = 50,density=True,edgecolor=’"black’,label="t=40m’)
plt.hist (X5,bins = 80,density=True,edgecolor=’black’,label="t=50m’)
plt.hist (X6,bins = 80,density=True,edgecolor=’black’,label="t=60m’)
plt.hist (X7 ,bins = 80,density=True,edgecolor=’black’,label="t=70m’)
plt.hist (X8,bins = 80,density=True,edgecolor=’black’,label="t=80m’)
plt .hist (X9,bins = 90,density=True,edgecolor=’black’,label="t=90m’)
plt.hist (X10,bins = 100,density=True,edgecolor=’black’,label="t=100m’)
plt.legend ()

plt.show ()

from matplotlib import rcParams

rcParams[’figure.figsize’] = 20, 15
kwargs = dict(hist_kws={’alpha’:.6}, kde_kws={’linewidth’:2})

sns.distplot (X1, 1label=’pdfl,-,ty=,10ymin’, **kwargs)
sns.distplot (X2, 1label=’pdf2,-,ty=,20ymin’, **xkwargs)
sns.distplot (X3, 1label=’pdf3,-,t,=,30ymin’, **xkwargs)
sns.distplot (X4, 1label=’pdf4,-,ty=,40umin’, **xkwargs)
sns.distplot (X5, 1label=’pdf5,-,t,=,50ymin’, **xkwargs)
sns.distplot (X6, label=’pdf6,-,t,=,60,min’, **kwargs)
sns.distplot (X7, 1label=’pdf7,-,ty=,70ymin’, **xkwargs)
sns.distplot (X8, 1label=’pdf8,-,t,=,80,min’, **kwargs)
sns.distplot (X9, 1label=’pdf9,-,ty=,90umin’, **xkwargs)
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sns.distplot (X10, label=’pdfl10,-,t,=,100 min’, **kwargs)
#plt.plot(maxz, label=’maz’)

plt.legend ()

plt.show ()

A.2 Study of trends

Mean Area

area_mean = ’areamean_wind20_1000.csv’
CSVData = open(area_mean)

A = np.loadtxt (CSVData, delimiter=",")
y=A[:,0]
x=A[:,1]

fig = plt.figure()
plt.plot(x,y)
fig.suptitle(’mean area’)
plt.xlabel (’time’)
plt.ylabel(’area’)
plt.show ()

Variance

from statistics import variance

# the wariance has been calculated with
# python function, following the formula:
# Var(X)=E[(X-mu) 2]

VO=variance (X0)
Vi=variance (X1)
V2=variance (X2)
V3=variance (X3)
V4=variance (X4)
V6=variance (X5)
V6=variance (X6)
V7=variance (X7)
V8=variance (X8)
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V9=variance (X9)
Vi0=variance (X10)

V= [VO )
V =
print (V)

Vi

t=A[:,1]
fig =
plt
fig.
plt
plt
plt

plt

, v2, V3, V4, V5, V6,

np.array (V)

.figure ()

.plot (t,V)
suptitle(’variance trend’)
.xlabel (’time’)

.ylabel (’variance’)

.show ()

V7,

V8, V9, Vi10]

Correlation

from scipy.stats import pearsonr

H R

output:

r correlation coefficient;

two-sided p-value

# s fized to the second time step

function which calculate the Pearson correlation coefficient:

#corr2l=np.array (pearsonr (X[2003:3003,0],X[1:1001,0]))

corr22=np.
corr23=np.
corr24=np.
corr25=np.
corr26=np.
corr27=np.
corr28=np.
corr29=np.

array (pearsonr (X[2003:
array (pearsonr (X [2003:
array (pearsonr (X[2003:
array (pearsonr (X [2003:
array (pearsonr (X [2003:
array (pearsonr (X [2003:
array (pearsonr (X[2003:
array (pearsonr (X [2003:
corr210=np.array(pearsonr (X[2003:3003,0] ,X[10011:11011,0]1))

3003,0] ,X[2003:
3003,0] ,X[3004:
3003,0] ,X[4005:
3003,0] ,X[5006:
3003,0]1 ,X[6007:
3003,0],X[7008:
3003,0]1,X[8009:
3003,0] ,X[9010:

3003,0]1))
4004,01))
5005,01))
6006 ,01))
7007 ,01))
8008,01))
9009,01))
10010,01))

corr2=np.array([corr22[0],corr23[0],corr24[0],corr25[0],

corr26 [0], corr27[0], corr28[0], corr29[0],corr210([0]11])

print (corr2)

t=A[:,1]
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fig = plt.figure()
plt.plot(t[2:11],corr2)
fig.suptitle(’correlation trend’)
plt.xlabel(’time’)

plt.ylabel (’correlation’)
plt.show )

Maximum of the pdf

from scipy.stats import norm

norm_dist_Xi = norm(Xi.mean(), Xi.std())

xi = np.linspace(np.min(Xi, np.max(Xi), 1000)
pdf _Xi = [norm_dist_Xi.pdf(x) for x in xi]
pdf_Xi = np.array(pdf_Xi)

dxi=pdf_Xi [999]

maxi=np.max (pdf_Xi)

while True:
for x in Xi:
pdf _maxi = np.array([norm_dist_Xi.pdf(x)])
maxxi=x
if not abs(maxi-pdf_maxi)<np.exp(-7):
break

maxx=np.array ([X0[1] ,maxxl ,maxx2 ,maxx3 ,maxx4 ,maxx5,
maxx6 ,maxx7 ,maxx8 ,maxx9 ,maxx10])

fig = plt.figure()

plt.plot (t,maxx)

fig.suptitle (’maxpoint,trend’)

plt.xlabel(’time’)

plt.ylabel (’max’)

plt.show )

Last point

dx=np.array ([dx0,dx1,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10])
print (dx)
#plt.rcdefaults ()

dx=np.array ([dx1l,dx2,dx3,dx4,dx5,dx6,dx7,dx8,dx9,dx10])
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fig = plt.figure()
plt.plot(t[1:11],dx)
fig.suptitle(’lastpoint_ trend’)
plt.xlabel(’time’)
plt.ylabel (’last points’)
plt.show )

A.3 Data scaling

# now we constider the wvariable Y=4-Amean/sqrt (var(4))
tot=np.concatenate ((Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10),axis=None)
# data scaling

import numpy as np

def NormalizeData(data):
return (data-np.min(data)) / (np.max(data)-np.min(data))

scaled_tot = NormalizeData(tot)

A.4 Parameters calculation and data fitting

Beta distribution

from sklearn.datasets import load_diabetes
import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import pandas as pd

from distfit import distfit

from scipy.stats import beta

#loc 1s short for "location parameter”,

# and scale 1s any scale parameter

location parameters would include the mean in the

normal distribution and the median in the Cauchy distribution
scale parameters are like the standard deviation in the normal
distribution, or either parameter of the gamma distribution

H R B R
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a, b, loc, scale = beta.fit(scaled_tot)
print(a, b, loc, scale)
ax = plt.subplot(111)

ax.plot(np.linspace(0, 1, 100), beta.pdf(np.linspace(0, 1, 100),

a, b, loc, scale))
plt.show ()

1=[min(CY1), min(CY2), min(CY3), min(CY4), min(CY5),
min(CY7), min(CY8), min(CY9), min(CY10)]

g=[max (CY1), max(CY2), max(CY3), max(CY4), max(CY5),
max (CY7), max(CY8), max(CY9), max(CY10)]

mm=min (1)

MM=max (g)

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta

fig, ax = plt.subplots(l, 1)
x=np.linspace (0,1,100)

y= mm + x*(MM-mm)

z=(y-mm) /(MM-mm)

ax.plot(y, beta.pdf(z, a, b, loc, scale)*[1/(MM-mm)],

’r-’, lw=5, alpha=0.6, label=’beta,pdf’)

min (CY6),

max (CY6),

plt.plot (CY2,NY2_new,label=’pdf2,-,t,=,20,min’)
plt.plot (CY3,NY3_new,label=’pdf3,-,t,=,30,min’)
plt.plot (CY4,NY4_new,label=’pdf4 -, t,=,40,min’)
plt.plot (CY5,NY5_new,label=’pdf5,-,t,=,50,min’)
plt.plot (CY6,NY6_new,label="pdf6,-,t,=,60,min’)
plt.plot (CY7 ,NY7_new,label=’pdf7,-,t,=,70,min’)
plt.plot (CY8,NY8_new,label="pdf8,-,t,=,80,min’)
plt.plot (CY9,NY9_new,label=’pdf9,-,t,=,90,min’)
plt.plot(CY10,NY10_new,label="pdf10,-,t,=,100,min’)

plt.plot(y, beta.pdf(z, a, b, loc, scale)*x[1/(MM-mm)], ’r-’,

lw=5, alpha=0.6, label=’beta,pdf’)

plt.title(’Distribuzione  di (A-Amedia)/sqrt[var(A)]’)

plt.legend ()
plt.show ()
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# logarithmic

plt
plt
plt
plt
plt
plt
plt
plt
plt
plt

plt.
.title(’Distribuzione di  (A-Amedia)/sqrt[var(A)]’)
.ylim(np.exp(-5),3)

.legend ()

.show ()

plt
plt
plt
plt

.plot (CY2,NY2_new,label=’pdf2,-,t,=,20,min"’)

.plot (CY3,NY3_new,label=’pdf3,-,t,=,30,min’)

.plot (CY4,NY4_new,label=’pdf4,,-,t,=,40,min’)

.plot (CY5,NY5_new,label=’pdf5,-,t,=,50,min’)

.plot (CY6 ,NY6_new,label="pdf6,-,t,=,60,min’)

.plot (CY7 ,NY7_new,label=’pdf7,-,t,=,70,min’)

.plot (CY8,NY8_new,label="pdf8,-,t,=,80,min’)

.plot (CY9,NY9_new,label=’pdf9,-,t,=,90,min’)

.plot (CY10,NY10_new,label=’pdf10,-,t,=,100,min’)

.plot(y, beta.pdf(z, a, b, loc, scale)*[1/(MM-mm)], ’r-’,

lw=5, alpha=0.6, label=’beta,pdf’)

semilogy ()

The different beta distributions, which are plot in figures 3.20, 3.45, 3.70,
3.95, in order to have a better approximation, are obtained as a sum of beta
distributions.

A.5 Analysis of moments of various order

scaled_totY2 = NormalizeData(Y2)
scaled_totY3 = NormalizeData(Y3)
scaled_totY4 = NormalizeData(Y4)
scaled_totY5 = NormalizeData(Y5)
scaled_totY6 = NormalizeData(Y6)
scaled_totY7 = NormalizeData(Y7)
scaled_totY8 = NormalizeData (Y8)
scaled_totY9 = NormalizeData(Y9)
scaled_totY10 = NormalizeData(Y10)

a_y2, b_y2, loc_y2, scale_y2 = beta.fit(scaled_totY2)
a_y3, b_y3, loc_y3, scale_y3 = beta.fit(scaled_totY3)
a_y4, b_y4, loc_y4, scale_y4 = beta.fit(scaled_totY4)
a_y5, b_y5, loc_y5, scale_y5 = beta.fit(scaled_totY5)
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a_y6, b_y6, loc_y6,
a_y7, b_y7, loc_y7,
a_y8, b_y8, loc_y8,
a_y9, b_y9, loc_y9,

scale_y6 = beta.fit(scaled_totY6)
scale_y7 = beta.fit(scaled_totY7)
scale_y8 = beta.fit(scaled_totY8)
scale_y9 = beta.fit(scaled_totY9)

a_yl0, b_yl10, loc_y10, scale_y10 = beta.fit(scaled_totY10)

mY2,vY2,sY2,kY2=beta.
mY3,vY3,sY3,kY¥3=beta.
mY4 ,vY4,sY4 ,kY4=beta.
mY5,vY5,sY5,kY5=beta.
mY6 ,vY6,sY6 ,kY6=beta.
mY7 ,vY7,sY7 ,kY7=beta.
mY8 ,vY8,sY8,kY8=beta.
mY9,vY9,sY9,kY9=beta.

stats(a_y2,b_y2,loc_y2,scale_y2 ,moments=’"mvsk’)
stats(a_y3,b_y3,loc_y3,scale_y3 ,moments=’mvsk’)
stats(a_y4,b_y4,loc_y4,scale_y4 ,moments=’mvsk’)
stats(a_y5,b_y5,loc_y5,scale_y5 ,moments="mvsk’)
stats(a_y6,b_y6,loc_y6,scale_y6 ,moments=’mvsk’)
stats(a_y7,b_y7,loc_y7,cale_y7 ,moments=’mvsk’)
stats(a_y8,b_y8,loc_y8,scale_y8 ,moments=’mvsk’)
stats(a_y9,b_y9,loc_y9,scale_y9 ,moments=’mvsk’)

mY10,vY10,sY10,kY10=beta.stats(a_yl10,b_y10,loc_y10,

scale_y10 ,moments=’mvsk’)

Mean

MY2=np.mean(scaled_totS2)
MY3=np.mean(scaled_totS3)
MY4=np.mean(scaled_totS4)
MY5=np.mean(scaled_totS5)
MY6=np.mean (scaled_totS6)
MY7=np.mean(scaled_totS7)
MY8=np.mean(scaled_totS8)
MY9=np.mean(scaled_totS9)
MY10=np.mean(scaled_totS10)

mY=[mY2,mY3,mY4 ,mY5,mY6 ,mY7 ,mY8 ,mY9 ,mY10]

mY=np.array (mY)
print (mY)

MY=[MY2, MY3, MY4, MY5, MY6, MY7, MY8, MY9, MY10]

MY = np.array(MY)
print (MY)

t=A[:,1]

plt.plot(t[2:],mY, ’r-’, label=’distribution mean’)
plt.plot(t[2:],MY, ’g-’, label=’data mean’)
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plt.xlabel (’time’)
plt.ylabel(’mean’)
plt.title (’Beta Mean’)
plt.legend ()
plt.show ()

Variance

from statistics import variance

VY2=np.
VY3=np.
VY4=np.
VY5=np.
VY6=np.
VY7=np.
VY8=np.
.var(scaled_totY9)

VY9=np

var (scaled_totY2)
var (scaled_totY3)
var (scaled_totY4)
var(scaled_totY5)
var(scaled_totY6)
var(scaled_totY7)
var (scaled_totY8)

VY10=np.var(scaled_totY10)

vY¥=[vY2,vY3,vY4,vY5,vY6,vY7 ,vY8,vY9,vY10]
vY=np.array(vY)
print (vY)

vVY=[VY2, VY3, VY4, VY5,
VY = np.array(VY)
print (VY)

t=A[:,1]

plt.plot(t[2:],vY, ’r-7,
plt.plot(t[2:],VY, ’g-7,
plt.xlabel (’time’)
plt.ylabel (’variance’)
plt.title(’Beta,Variance’)
plt.legend ()
plt.show ()

vYyeé, VY7, VY8, VY9, VY10]

label=’distribution variance’)
label=’data,variance’)

Skewness
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from scipy.stats import skew

SY2=skew(scaled_totY2)
SY3=skew(scaled_totY3)
SY4=skew(scaled_totY4)
SYS5=skew(scaled_totY5)
SY6=skew(scaled_totY6)
SY7=skew(scaled_totY7)
SY8=skew(scaled_totY8)
SY9=skew(scaled_totY9)
SY10=skew(scaled_totY10)

SY=[SY2, SY3, SY4, SY5, SY6,
SY = np.array(SY)
print (SY)

sY=[sY2,sY3,sY4,sY5,sY6,sY7,
sY=np.array(sY)
print (sY)

t=A[:,1]

plt.plot(t[2:],sY, ’r-’, lab
plt.plot(t[2:],8Y, ’g-’, lab
plt.xlabel(’time’)
plt.ylabel (’skew’)
plt.title(’Beta,Skewness’)
plt.legend ()

plt.show ()

SY7,

sY8,sY9,sY10]

el=’distribution skew’)
el=’data skew’)

Kurtosis

from scipy.stats import kurt

KY2=kurtosis(scaled_totY2)
KY3=kurtosis(scaled_totY3)
KY4=kurtosis(scaled_totY4)
KY5=kurtosis(scaled_totY5)
KY6=kurtosis(scaled_totY6)
KY7=kurtosis(scaled_totY7)
KY8=kurtosis(scaled_totY8)

osis
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KY9=kurtosis(scaled_totY9)
KY10=kurtosis(scaled_totY10)

KY=[KY2, KY3, KY4, KY5, KY6, KY7, KY8, KY9, KY10]
KY = np.array(KY)
print (KS)

kY=[kY2,kY3,kY4,kY5,kY6 ,kY7 ,k¥Y8,kY9,kY10]
kY=np.array (kY)
print (kY)

plt.plot(t[2:],kY, ’r-’, label=’distributionkurtosis’)

plt.plot(t[2:],KY, ’g-’, label=’datagkurtosis’)
plt.xlabel (’time’)

plt.ylabel (’kurtosis’)
plt.title(’Beta Kurtosis Efficiency’)
plt.legend ()

plt.show ()
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Appendix B

Software

In this Appendix, you can find some of the functions from Python library used
for the analysis. This function are used in the codes reported in Appendix A.

e plt.hist: uses numpy.histogram to bin the data in x and count the
number of values in each bin, then draws the distribution either as a
BarContainer or Polygon.

Parameters:

— x: (n,) array or sequence of (n,) arrays
Input values, this takes either a single array or a sequence of arrays
which are not required to be of the same length.

— bins: int or sequence
If bins is an integer, it defines the number of equal-width bins in
the range. If bins is a sequence, it defines the bin edges, includ-
ing the left edge of the first bin and the right edge of the last
bin; in this case, bins may be unequally spaced. All but the last
(righthand-most) bin is half-open.

— range: tuple or None, default: None
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, range is (z.min(),z.max()). Range
has no effect if bins is a sequence. If bins is a sequence or range is
specified, autoscaling is based on the specified bin range instead
of the range of x.

— density: bool, default: False
If True, draw and return a probability density: each bin will dis-
play the bin’s raw count divided by the total number of counts and
the bin width (density = counts/(sum(counts) «np.dif f(bins))),
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so that the area under the histogram integrates to 1 (np.sum(densityx*
np.dif f(bins)) == 1). If stacked is also True, the sum of the his-
tograms is normalized to 1.

— color: color or array-like of colors or None, default: None
Color or sequence of colors, one per dataset. Default (None) uses
the standard line color sequence.

— label: str or None, default: None
String, or sequence of strings to match multiple datasets. Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that legend will work as expected.

Returns:

— n: array or list of arrays

The values of the histogram bins. See density and weights for a
description of the possible semantics. If input x is an array, then
this is an array of length nbins. If input is a sequence of arrays
[datal, data2, ...], then this is a list of arrays with the values of the
histograms for each of the arrays in the same order. The dtype of
the array n (or of its element arrays) will always be float even if
no weighting or normalization is used.

— bins: array
The edges of the bins. Length nbins + 1 (nbins left edges and
right edge of last bin). Always a single array even when multiple
data sets are passed in.

— patches: BarContainer or list of a single Polygon or list such ob-
jects
Container of individual artists used to create the histogram or list
of such containers if there are multiple input datasets.

e sns.distplot: a Distplot or distribution plot, depicts the variation in the
data distribution. Seaborn Distplot represents the overall distribution
of continuous data variables. The Seaborn module along with the Mat-
plotlib module is used to depict the distplot with different variations
in it. The Distplot depicts the data by a histogram and a line in com-
bination to it.

Parameters:

— data: pandas.DataFrame, numpy.ndarray, mapping, or sequence
Input data structure. Either a long-form collection of vectors that
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can be assigned to named variables or a wide-form dataset that
will be internally reshaped.

— label: str or None, default: None
String, or sequence of strings to match multiple datasets. Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that legend will work as expected.

— kwargs
Other keyword arguments are documented with the relevant axes-
level function.

Returns:

FaceGrid: an object managing one or more subplots that correspond
to conditional data subsets with convenient methods for batch-setting
of axes attributes.

nunpy.mean: compute the arithmetic mean along the specified axis.
Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.

Parameters:

— a: array _ like
Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.

— axis: None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is
to compute the mean of the flattened array.

Returns:

m: ndarray

If out=None, returns a new array containing the mean values, otherwise
a reference to the output array is returned.

variance: returns the variance of the array elements, a measure of the
spread of a distribution. The variance is computed for the flattened
array by default, otherwise over the specified axis.

Parameters:

— a: array_ like
Array containing numbers whose mean is desired. If a is not an
array, a conversion is attempted.
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— axis: None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is
to compute the mean of the flattened array.

Returns:

m: ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise
a reference to the output array is returned.

correlation: return Pearson product-moment correlation coefficients. The
relationship between the correlation coefficient matrix, R, and the co-
variance matrix, C', is

Cy;

Rij —
Parameters:

— x: array_ like
A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables.

— y: array_ like
An additional set of variables and observations. y has the same
shape as x.

Returns:
R: ndarray The correlation coefficient matrix of the variables.

beta fit: given the input data, this function gives as outputs the pa-
rameters for the distribution to be a beta one. Therefore, it is possible
to say that the distribution was calculated empirically.

Parameters: data: array like

Returns:
— a, b: array _like
Shape parameters

— loc: array_like
Location parameter

— scale: array like
Location parameter
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e beta.stats: is a beta continuous random variable that is defined with a
standard format and some shape parameters to complete its specifica-
tion.

Parameters: a, b, loc, scale

Returns: mean, variance, skweness, kurtosis.

e skewness: for normally distributed data, the skewness should be about
zero. For unimodal continuous distributions, a skewness value greater
than zero means that there is more weight in the right tail of the distri-
bution. The function skewtest can be used to determine if the skewness
value is close enough to zero, statistically speaking.

Parameters:

— a: ndarray
Input array

— axis: int or None, default: 0
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear
in a corresponding element of the output. If None, the input will
be raveled before computing the statistic.

Returns:

skewness: ndarray

The skewness of values along an axis, returning NaN where all values
are equal.

e kurtosis: compute the kurtosis (Fisher or Pearson) of a dataset. Kurto-
sis is the fourth central moment divided by the square of the variance.
If Fisher’s definition is used, then 3.0 is subtracted from the result to
give 0.0 for a normal distribution. If bias is False then the kurtosis is
calculated using k statistics to eliminate bias coming from biased mo-
ment estimators.

Parameters:

— a: ndarray
Data for which the kurtosis is calculated.

— axisint or None, default: 0
If an int, the axis of the input along which to compute the statistic.

85



The statistic of each axis-slice (e.g. row) of the input will appear
in a corresponding element of the output. If None, the input will
be raveled before computing the statistic.

Returns:

kurtosis: array

The kurtosis of values along an axis, returning NaN where all values
are equal.

Hypatia

Hypatia is the Cloud infrastructure that has been developed to support the
computational needs of the ELIXIR-GR community, but also the broader
community of life scientists in Greece and abroad. It currently hosts impor-
tant ELIXIR-GR services and resources (e.g., the national COVID19 Data
Portal of Greece), while it undertakes computational tasks in the context of
various projects of ELIXIR-GR members. The infrastructure is named after
Hypatia, a Greek philosopher, astronomer, and mathematician, who lived in
Alexandria, Egypt.

Under the hood, Hypatia consists of a powerful computational cluster of
heterogeneous physical machines. Currently, its cluster is comprised of: 32
basic nodes: (2 CPUs, 14 cores/CPU, 512GB DDR4 RAM), 2 hefty nodes:
(2 CPUs, 24 cores/CPU, 1TB DDR4 RAM), 3 GPU nodes: (2 CPUs, 14
cores/CPU, 768GB DDR4 RAM, 2 GPUs), 8 I/O nodes: (2 CPUs, 14
cores/CPU, 512GB DDR4 RAM, 2x2TB SSD 6G), 9 infrastructure nodes:(2
CPUs, 14 cores/CPU, 192GB DDR4 RAM).

Hypatia’s computational resources are allocated for predetermined time
periods to particular user-created projects.
We had the opportunity to use this computational resource because it was
provided by BCAM.
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Appendix C

On Stochastic Processes

In this appendix there is a dissertation on stochastic processes carried out,
in the first months of the project, as an approach and preparation for the
subsequent work with Propagator.

The aim of these exercises was to get us used to working with such processes
whose results are known so that we can then work with unknown processes.
For further details, please refer to the texts [8], [16], [21], taken as sources.

C.1 Introduction to Stochastic Processes

A stochastic process is a mathematical object that describes dynamical sys-
tems whose time evolution is of a probabilistic nature, i.e they are phenomena
that appear to vary in a random manner. In probability theory and related
fields, a stochastic or random process is defined as a family of random vari-
ables.

Definition C.1 (Stochastic Process). Given an order set T, (2, F,P) a prob-
ability space and (F,G) a measurable space.

A stochastic process is a collection of random variables X = X;; t € T such
that for each fixed t € T, X; is a random variable from (2, F,P) to (F,G).
The set €2 is known as the sample space, where E is the state space of
the stochastic process X; .

The set T' can be either discrete, for example the set of positive integers
Z.., or continuous, T = R, ; the state space E will usually be R? equipped
with the o -algebra of Borel sets.

X, will represent the random position of our object at time t.
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C.1.1 Stochastic Processes Classes

A very important class of continuous-time processes is that of Gaussian
processes, which arise in many applications.

A Gaussian process is a stochastic process (a collection of random variables
indexed by time or space), such that every finite collection of those ran-
dom variables has a multivariate normal distribution, i.e. every finite linear
combination of them is normally distributed.

Definition C.2 (Gaussian Stochastic Process). A time continuous stochastic
process {Xy;t € T'} is Gaussian if and only if for every finite set of indices
t1,...,tx in the index set T’

..... t, — (th‘-'uth)

is a multivariate Gaussian random variable.
That is the same as saying every linear combination of (Xy,,..., X;,) has a
univariate normal (or Gaussian) distribution.

The distribution of a Gaussian process is the joint distribution of all those
(infinitely many) random variables, and as such, it is a distribution over func-
tions with a continuous domain.

Another class is that of Stationary processes.
In mathematics and statistics, a stationary process is a stochastic process
whose unconditional joint probability distribution does not change when
shifted in time.

Definition C.3 (Stationary Stochastic Process). Formally, let { X;} be a stochas-
tic process and let Fx (x4, 4+, ..., 2y, +-) represent the cumulative distribution
function of the unconditional (i.e., with no reference to any particular start-
ing value) joint distribution of {X,;} at times ¢t; + 7,...,¢, + 7. Then, {X;}
is said to be strictly stationary, strongly stationary or strict-sense stationary
if:

Fx(xpyiry. ooy 4r) = Fx (24, ..., 2,) forall 7,¢,...,t, € Rand for all n € N

Since 7 does not affect Fix(-), Fx is not a function of time.

Consequently, parameters such as mean and variance also do not change
over time.
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Brownian Motion

Brownian motion is a process with almost surely continuous paths and inde-
pendent Gaussian increments. A process X; has independent increments if
for every sequence ty < t; < ... < t,, the random variables

Xy, — X, Xy — Xoyy oo, Xy, — Xo,

are independent. If furthermore, for every ¢y, t5, s € T and Borel set B C R,

we have
P<Xt2+s - th + S € B) - P(th — th € B),

then the process X; has stationary independent increments.

Definition C.4. A one-dimensional standard Brownian motion X (¢) : Rt —
R is a real-valued stochastic process with almost surely (a.s.) continuous
paths such that X(0) = 0 (with probability 1), it has independent incre-
ments, and for every ¢ > s > 0, the increment X (¢) — X (s) has a Gaussian
distribution with mean 0 and variance t — s, i.e., the density of the random
variable X (t) — X(s) is

g@:as):(zw@-s»5exp(-§@§;5).

A standard d-dimensional standard Brownian motion X (¢) : R — R¢
is a vector of d independent one-dimensional Brownian motions:

X(t) = (Xq(t),...,Xq(t)),

where X;(t),7 =1,...,d are independent one-dimensional Brownian motions.
The density of the Gaussian random vector X (t) — X (s) is thus

g(x;t,s) = (2m(t — s))_% exp ( - %)

Brownian motion is also referred to as a Wiener process.

For computational purposes it is useful to consider discretized Wiener
process, where X (t) is specified at discrete t values. We thus set 6t = T'/N
for some positive integer N and let X; denote X (¢;) with t; = jot.

From the definition we can say that

X, =X, +dW;, j=12,... N (C.1)

where each d; is an independent random variable of the form v/6t N (0, 1).
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Figure C.1: Brownian sample paths.

C.2 Discretized Brownian paths computation

Given the idea of Brownian motion, we want to compute discretized Brown-
ian paths.

Considering a time interval [0, 7], N discretization step and n number of par-
ticles, the MATLAB function wiener process performs the Wiener Process
corresponding to each considered particle.

Here the diffusion coefficient D is chosen equal to 1 and we use the MATLAB
function normrnd to generate a random numbers from the normal distribu-
tion with mean p = 0 and standard deviation sd = 1.

The initial point for each Wiener process is 0, so X (0) = 0.

AT=1 JN=100 Zn=1000

function [X]=wiener_process(T,N,n)

AThis function creates the Wiener Process
4 (Standard Brownian Motion )

Ainput: T= time period;

A N= discrtizion step;

X n= particles number;

foutput:X= Wiener process;

dt=T/N;
t=[0:dt:T]; Zinstant of time vector
mu=0;
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sd=1;

D=1; Jdiffusion coefficient

h=sqrt (2*D) ;

X(:,1)=zeros(n,1);

Anormrnd: generates a random number from the normal
X distribution with mean parameter mu and

A standard deviation parameter sd

A [N,1] <ndicates the size of each dimension
for i= 1:N
X(:,i+1)=X(:,i)+h*sqrt (dt)*normrnd (mu,sd, [n,1]);
end

Anow we plot the Wiemer process for each particle
plot (t,X)

xlabel(’Time’), ylabel(’Process,State’)
title(’Wiener Process?’)

end

Varying the number of particles n, we can have different numbers of paths.

Wiener Process
0.2 :

-02

-04 —

Process State

-08 —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure C.2: Trajectory of one particle with T=1 and N=100.
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Figure C.3: Trajectories of n = 1000 particles with T=1 and N=100.

C.2.1 Distribution of the Wiener Process

In this section we want to study the distribution of the Wiener Process and
verify if it can be compared with a Gaussian distribution.

In order to do this comparison, the hist tot MATLAB function first
create the Wiener Process for n = 1000 particles and the corresponding his-
togram.

The trend of the histogram was then considered and subsequently it has
been compared with the Gaussian trend.

AT=1 JN=100 Jn=10000

function [X]=hist_tot(T,N,n)

4 This function looks at the density distribution of the
4 standard Browian motion and verifies that it has a

/4 Gaussian distribution.

Ainput: T= time period;

A N= discrtizion step;
A n= particles number;
Joutput:X= Wiener process;
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/AWiener Process
[X]=wiener_process(T,N,n);

figure (1)
n_in=100;

[nn,y] = hist(X(:,end),n_in); 7 hist matladb function

n_norm = (nn

./length(X(:,end))) ./(y(2)-y(1));
/4 mormalize hist func

bar(y,n_norm); hold (’on’);
plot(y,n_norm,’r’);

xlabel (’x’),

ylabel (’Distribution’)

title(’Histogram_of the Wiener ,Process’)

figure (2);

semilogy(y,n_norm,’r’); hold(’on’);

Aplot (y,n_morm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jcreating the gaussian function
f = pdf(pd, y);

c1=[0.6350 0.0780 0.1840];

scatter(y,f,10,cl, ’filled’)

xlabel (’x’),

ylabel (’Distribution’)

title (’Histogram of the Wiener Process?’)

figure (3)

bar(y,n_norm); hold(’on’);

pd = fitdist(X(:,end),’Normal’);
f = pdf(pd, y);

c=[0 0.4470 0.7410];
scatter(y,f,10,c1, ’filled’)

set (gca, ’yscale’,’log’)

xlabel (’x’),

ylabel (’Distribution’)

title(’Histogramyof the Wiener Process’)

figure (3);

plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jcreating the gaussian function
f = pdf(pd, y);

c1=[0.6350 0.0780 0.1840];

scatter(y,f,10,cl, ’filled’)

xlabel (’x?),

ylabel (’Distribution’)

title(’Histogramyof the Wiener Process’)

figure (5)
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bar(y,n_norm); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0 0.4470 0.7410];

scatter(y,f,10,cl1, ’filled’)
xlabel(’x’), ylabel(’Distribution?’)
title(’Histogram_of the Wiener ,Process’)
end

Figures C.45, C.46 and C.47 show the comparison

scale.

Histogram of the Wiener Process
T T

using a logarithmic

0.25 -

Distribution
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3

Figure C.4: Histogram of X(¢) and its distribution with T=1, N=100,

n—=10000.
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Figure C.5: Comparison between the histogram distribution trend and the
Gaussian one with T=1, N=100, n=10000.
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Figure C.6: Gaussian distribution on X(¢) histogram with T=1, N=100,
n—10000.
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Figure C.7: Histogram of X(¢) and its distribution with T=1, N=100,
n—=10000.
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Figure C.8: Comparison between the histogram distribution trend and the
Gaussian one with T=1, N=100, n=10000.
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Distribution of the Wiener Process with different n and T

Now we want to verify the similitude between the histogram distribution and
the Gaussian one, changing both the time 7" and the number of particles n.
In this way it is possible to notice how the empirical distribution of the his-
togram resembles the Gaussian one as time and particles increase.

The histograms MATLAB function performs an unique plot with the
histogram, the empirical distribution and the Gaussian distribution.
Recalling this function changing the input arguments, it is possible to obtain
different plots in order to highlight the behaviour of the Wiener process.

AN=500

function [X,fl=histograms(T,N,n)

4 This function looks at the density distribution of the
4 Wiener Process and verifies that <t has a Gaussian

4 distribution changing times and the particle number.
Ainput: T= time period;

/ N= discrtizion step;

A n= particles number;

foutput:X= Wiener Process;

A f= density distribution funciion

/Wiener Process
[X]=wiener_process(T,N,n);

Ahistogram with empirical and gaussian distribution
[nn,y] = hist(X(:,end) ,50);

n_norm = (nn ./length(X(:,end))) ./(y(2)-y(1));
bar(y,n_norm); hold(’on’);

set(gca, ’YScale’, ’log’);

plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0.6350 0.0780 0.18401];

scatter(y,f,10,c, ’filled’)

xlabel(’x’), ylabel(’Distribution’)

title(’Distribution trend’)
end
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figure(1); n1=50; T1=50; [X,fl=histograms(T1,N,nl);
figure (2); n2=100; T2=100; [X,f]=histograms(T2,N,n2);
figure (3); n3=250; T3=200; [X,f]l=histograms(T3,N,n3);
figure (4); n4=500; T4=500; [X,f]=histograms(T4,N,n4d);
figure(5); n5=800; T5=1000; [X,f]l=histograms(T5,N,n5);
figure(6); n6=1000; T6=10000; [X,fl=histograms(T6,N,n6);
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Figure C.10

98



1
100 % o EY 100 00 300

N=500, T=1000, n=800 N=500, T=10000, n=1000

Figure C.11

If we fix the time T" and we change the particles number n, it is possible
to see how the fit gets better.

AT=50; JN=500;

figure(1); n1=50; [X,fl=histograms(T,N,nl);
figure(2); n2=100; [X,f]l=histograms(T,N,n2);
figure(3); n3=250; [X,f]l=histograms(T,N,n3);
figure(4); n4=500; [X,f]l=histograms(T,N,n4);
figure(5); n5=800; [X,f]=histograms(T,N,nb5);
figure(6); n6=1000; [X,fl=histograms(T,N,n6);

Diswbutiontrend . Distibutiontrend

T=50, N=500, n=50 T=50, N=500, n=100

Figure C.12
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Distribution trend

T=50, N=500, n=200

Figure C.
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C.2.2 Variance

The aim of this section is to show the variance behaviour with respect to
time: we want calculate the variance o2 and show that it has a proportional
trend with respect to time ¢.

The variance of the process X (t) was calculated by the MATLAB func-
tion var and then it was compared with the linear trend V' = 2% D xt because
theoretically we know it should be like that.

AT=1; N=100; n=7000;

function [X] = variance_D(T,N,n,D)

Z This function displays the wvariance of the Wiener Process
4 wvarying the diffusion coefficient D and compare its

4 trend with the linear one.

Jinput: T= time period;

A N= discrtizion step;
A n= particles number;
A D= diffusion coefficient;

Joutput:X= Wiener process;

Jconstruction of th Wiener process
dt=T/N;

t=[0:dt:T];

mu=0;

sd=1;

h=sqrt (2xDx*dt);

X(:,1)=zeros(n,1);

for i= 1:N
X(:,i+1)=X(:,i)+h*normrnd(mu,sd,[n,1]);
end

V=var(X(:,:),1);

t = [0:dt:T];

VV=2xDx*xt;

plot (t,V)

hold on

plot(t,VV, ’Linewidth’, 1)

xlabel (’Time’), ylabel(’Variance?’)
title(’Variance_ Trend’)

end
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Plotting the variance with respect to time, we can see that the trend is
quite linear. There is some noise due to the numerical error but we can no-
tice that increasing the number of particles n it is possible to obtain a better
plot.

This is showed in the following figures.

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure C.16: T =1, N =500, D = 1, n = 3000

102



Variance

Variance Trend
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Figure C.17: T =1, N =500, D = 1, n = 5000

Variance Trend

Variance

03

Figure C.18: T'=1, N =500, D =1, n = 7000

Changing the diffusion coefficient D it is possible to obtain a plot as the
one in figure C.19.

AT=1; N=100
figure (1);
hold (’omn?)

n=7000;

2

D1=0.1; [X] = variance_D(T,N,n,D1);
D2=0.5; [X] = variance_D(T,N,n,D2);
D3=1; [X] = variance_D(T,N,n,D3);
D4=3; [X] = variance_D(T,N,n,D4);
D5=7; [X] = variance_D(T,N,n,D5);
D6=10; [X] = variance_D(T,N,n,D6);
D7=20; [X] = variance_D(T,N,n,D7);
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Figure C.19: T = 1, N = 500, n = 7000, D1 = 0.1, D2 = 0.5, D3 = 1,
D4=3, D5="17, D6 =10, D7 =20

Gaussian distributions

Using the scale law obtained from the variance calculation we want to verify
that, as time varies, all distributions tend to the same Gaussian curve.

In the MATLAB function gaussian_tt first the Wiener process is built
and then it is considered with respect to the standard deviation o as %

After that, it is possible to consider the Gaussian distribution and its
trend, varying the time 7T, is showed in figure C.20.

function [X,f,y]l=gaussian_tt(T,N,n,D)
AThe gaussian function allows us to see the density distribution
Jinput: T= time period;

A N= discrtizion step;

A n= particles number;

A = diffusion coefficient;
foutput:X= Wiener process;

A = density distribution funciion
A y= histogram columns centers

fconstruction of th Wiener process
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dt=T/N;
t=[0:dt:T];

mu=0;

sd=1;

h=sqrt (2*D) ;
X(:,1)=zeros(n,1);
for i= 1:N

X(:,i+1)=X(:,i)+h*xsqrt (dt)*normrnd (mu,sd, [n,1]);

end

sigma=sqrt (var(X(:,:),1))
X=X/sigma;

n_in=100;

[on,y] = hist(X,n_in);
n_norm = (nn ./length(X(:
pd = fitdist(X,’Normal’);
f = pdf(pd, y);

c=[0.4660 0.6740 0.1880];

b

,end))) ./(y(2)-y(1));

scatter(y,n_norm,5,c, >filled’)

xlabel (’X(t)/sigma(t)?’),
title(’GaussianTrends’)
end

figure(1);
hold on

ylabel (’Distribution sigma(t)’)

T1=0.1; [X,f,yl=gaussian_tt(T1,N,n,D);
T2=1; [X,f,yl=gaussian_tt(T2,N,n,D);

T3=10; [X,f,yl=gaussian_tt(T3,N,n,D);
T4=100; [X,f,yl=gaussian_tt(T4,N,n,D);
T5=1000; [X,f,yl=gaussian_tt(T5,N,n,D);
T6=100000; [X,f,y]l=gaussian_tt(T6,N,n,D);
T7=10000000; [X,f,yl=gaussian_tt(T7,N,n,D);

plot(y,f,’Linewidth’,0.7)
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Figure C.20: N=500, n=7000, D=1, T1=0.1, T2=1, T3=10, T4=100,
T5=1000, T6=100000, T7=10000000.

C.3 Ornstein-Uhlenbeck Process

The classical Gaussian Ornstein-Uhlenbeck (OU) process was first intro-
duced by Uhlenbeck and Ornstein (1930) in physics, and later became pop-
ular in finance, economics and many other fields.
Its original application in physics was as a model for the velocity of a massive
Brownian particle under the influence of friction.

C.3.1 General facts

The Ornstein—Uhlenbeck process was introduced as a model for the veloc-
ity of a Brownian particle, it is a stationary Gauss—Markov process, which
means that it is a Gaussian process, a Markov process, and is temporally
homogeneous. In fact, it is the only nontrivial process that satisfies these
three conditions, up to allowing linear transformations of the space and time
variables. Over time, the process tends to drift towards its mean function:
such a process is called mean-reverting.

The process can be considered to be a modification of the Wiener process,

in which the properties of the process have been changed so that there is a
tendency of the walk to move back towards a central location, with a greater
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attraction when the process is further away from the center.

Roughly speaking, a Markov process is a stochastic process that retains
no memory of where it has been in the past: only the current state of a
Markov process can influence where it will go next. A bit more precisely, a
Markov process is a stochastic process whose past and future are statistically
independent, conditioned on its present state. Perhaps the simplest example
of a Markov process is a random walk in one dimension.

Brownian motion and the Ornstein—Uhlenbeck process are examples of a
diffusion process: a continuous-time Markov process with continuous paths.

Definition

In many stochastic processes that appear in applications, their statistics re-
main invariant under time translations. Such stochastic processes are called
stationary. It is possible to develop a quite general theory of stochastic pro-
cesses that enjoy this symmetry property.

It is useful to distinguish between stochastic processes for which all FDDs are
translation-invariant (strictly stationary processes) and processes for which
this translation invariance holds only for the first two moments (weakly sta-
tionary processes).

Definition C.5 (Strictly Stationary Processes). A stochastic process is

called (strictly) stationary if all FDDs are invariant under time translation:

for every integer k and for all times ¢; € T, the distribution of (X (¢1), X (t2), ..., X (tx))
is equal to that of (X (s+t1), X(s+t2),..., X (s+tg)) for every s such that

s+t; €T foralltel,... k. In other words,

P(Xt1+s < Al,XtQ +s € AQ o .thJrs < Ak) = P(th € A17Xt2 S A2 .. .th € Ak),\V/S eT
(C.2)

Let (Q, F,P) be a probability space. Let X;, t € T (with T'= R or Z),
be a realvalued random process on this probability space with finite second
moment E[|X;||* < +oo (i.e., X; € L*(Q,P) for all t € T'). Assume that it is
strictly stationary. Then

E(Xys) =EX,, seT, (C.3)
from which we conclude that EXt is constant, and

]E((thJrS - M)(Xt2+s - :U)) = E((Xh - M)(XtQ - M))? s € T7 (04)
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implies that the covariance function depends on the difference between the
two times t and s: C(t,s) = C(t — s).
This motivates the following definition.

Definition C.6. A stochastic process X, € L? is called second-order station-
ary, widesense stationary, or weakly stationary if the first moment EX; is a
constant and the covariance function E(X; — u)(X, — i) depends only on the
difference t-s:

EXy =p, E(Xe—p)(Xs —p)) =C(t —s). (C.5)

The constant y is the expectation of the process X;. The function C(t) is
the covariance (sometimes also called autocovariance) or the autocorrelation
function of the X,. Notice that C(t) = E(X,X,), whereas C(0) = EX?,
which is finite, by assumption. Since we have assumed that X, is a real val-
ued process, we have that C(t) = C(—t), t € R.

A strictly stationary process with finite second moment is also stationary
in the wide sense. The converse is not true, in general.
It is true, however, for Gaussian processes: since the first two moments of a
Gaussian process are sufficient for a complete characterization of the process,
a Gaussian stochastic process is strictly stationary if and only if it is weakly
stationary.

The covariance function of a second-order stationary process is a nonneg-
ative definite function and it enables us to associate a timescale to X;, the
correlation time Tyop:

1 [~ 1 o
Teor = ?0/0 C(T)dT = M/(; E(XTXo)dT. (CG)

The slower the decay of the correlation function, the larger the correlation
time is. Note that when the correlations do not decay sufficiently fast, so
that C(t) is not integrable, then the correlation time will be infinite.

If we consider a mean-zero second-order stationary process with correla-
tion function

C(t) = C(0)e~ Ml with o > 0. (C.7)

We have that C'(0) = £ and the correlation time is

Teor = / e dt = ot (C.8)
0
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A real-valued Gaussian stationary process defined on R with correlation func-
tion given by (C.7) is called a stationary Ornstein—Uhlenbeck process.

The stationary Ornstein—Uhlenbeck process can be defined through the
Brownian motion via a time change. It is a stochastic process that satisfies
the following stochastic differential equation:

dXt = /43(9 — Xt)dt + O'th (C9>

where W, is the Wiener Process on ¢ € [0, 00) and the constant parameters
are:

e 1 > ( is the rate of mean reversion;
e 0 is the long-term mean of the process;
e 0 > ( is the diffusion coefficient.

The solution to the stochastic differential equation (C.9) defining the
Ornstein-Uhlenbeck process is, for any 0 < s <, is

t
X, =0+ (X, —0)e " 4o / e =W aw, (C.10)
where the integral on the right is the Ito6 integral.

For any fixed s and t, the random variable X, conditional upon Xj, is
normally distributed with

2

mean = 0 + (X, — 0)e™"=%) variance = g—(l — g 2n(t=9)) (C.11)
K

It is possible to notice that the Ornstein-Uhlenbeck process is a time-
homogeneous Ito diffusion.

C.3.2 Process construction

Let us consider a Wiener Process with no drift and constant diffusion coeffi-
cient o:

Xp = X1 +V20dW,,, X(0) =z (C.12)

where the initial condition Xy can be either deterministic or random.
Adding a restoring force to (C.12), we obtain the Ornstein-Uhlenbeck process
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in the following form:

X
X, = X1 — 222 dt +V20dW,,  X(0) = z. (C.13)

TCOT‘

Considering a time interval [0, 7], N discretization step and n number of
particles,the MATLAB function ornstein__uhlenbeck performs the Ornstein-
Uhlenbeck Process corresponding to each considered particle.

Here the diffusion coefficient D and the correlation time 7 are chosen equal
to 1 and we use the MATLAB function normrnd to generate a random num-
bers from the normal distribution with mean p = 0 and standard deviation
sd = 1.

The initial point for each Ornstein-Uhlenbeck process is random.

AX0=randn(n,N); T=1; N=500; D=1; tau=1;

function [X]=ornstein_uhlenbeck (X0,T,N,n,D,tau)
AThis function creates the Ornstein-Uhlenbeck Process
Ainput: X0=initial point;

I'= time period;

V= discrtizion step;

n= particles number;

D= diffusion coefficient;

tau=correlation time;

BT TR SR SRS

Joutput:X= Ornstein-Uhlenbeck process;

dt=T/N;

t=(0:dt:T); Jinstant of time vector

mu=0; /mean

sd=1; /standard deviation

h=sqrt (2*D);

X=zeros (n,N);

X(:,1)=X0(:,1);

Anormrnd: generates a random number from the normal

A distribution with mean parameter mu and
A standard deviation parameter sd [N,1]
A indicates the stize of each dimenstion

for i= 1:N

X(:,i+1)=X(:,1)-((X(:,1i)/tau)*dt)+h*sqrt (dt)*normrnd (mu,sd, [n,1]);

end

plot (t,X)

xlabel(’Time’), ylabel(’Process, State’)
title (’0Ornstein-Uhlenbeck Process’)
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end

Ornstei Process

Process State

Process State

Figure C.22: Trajectory of n=1000 particle with T=1, N=500, D=1, 7,.=1.
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It is possible to verify that if we consider 7., = oo the Ornstein-Uhlendeck
process become a Wiener process; this is shown in figure C.23.

s Ornstein-Uhlenbeck and Wiener P
T T T

Process State
o

Time

Figure C.23: In pink the Ornstein-Uhlendeck process trajectories of n=1000
particles and in yellow their Wiener process trajectories.
Xo=0, T=1, N=500, n=1000, D=1, 7.,=1.

C.3.3 Distribution of the Ornstein-Uhlenbeck Process

In this section we want to study the distribution of the Ornstein-Uhlenbeck
process and verify if it can be compared with a Gaussian distribution.

As we did for the Wiener Process, in order to do this comparison we
use the hist tot _ou MATLAB function which first create the Ornstein-
Uhlenbeck Process for n = 10000 particles and then the corresponding his-
togram.

The trend of the histogram was then considered and subsequently it has
been compared with the Gaussian trend.

AX0=randn; T=10; N=500; n=10000; D=1; tau=1;

function [X]=hist_tot_ou(X0,T,N,n,D,tau)

4 This function looks at the density distribution of the
Z Ornstein-Uhlenbeck process and verifies

4 that it has a Gaussian distribution.
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Ainput: X0=initial point;
T= time period;
N= discrtizion step;

D= diffusion coefficient;
tau=correlation time;

i
4
A n= particles number;
i
A
"

output :X= Ornstein-Uhlenbeck process;

Z0rnstein-Uhlenbeck process construction
[X]=ornstein_uhlenbeck (X0,T,N,n,D,tau);

figure (1)
n_bins=150;

[nn,y] = hist(X(:,end),n_bins); % hist matladb function

n_norm = (nn

./length(X(:,end))) ./(y(2)-y(1));
Anormalize hist function

bar(y,n_norm); hold (’on’);
plot (y,n_norm,’r’);

xlabel (’x’),

ylabel (’Distribution’)

title(’Histogramyof the 0rnstein-Uhlenbeck process’)

figure (2);

semilogy (y,n_norm,’r’); hold(’on’);

Aplot (y,n_mnorm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jcreating the gaussian function
f = pdf(pd, y);

c1=[0.6350 O.

0780 0.1840];

scatter(y,f,10,c1, ’filled’)

xlabel (’x7),

ylabel (’Distribution’)

title (’Histogram of the Ornstein-Uhlenbeck process’)

figure (3)

bar(y,n_norm); hold(’on’);

pd = fitdist(X(:,end),’Normal’);
f = pdf(pd, y);

c=[0 0.4470 0.7410];
scatter(y,f,10,cl, ’filled’)
set(gca,’yscale’,’log’)

xlabel (’x?),

ylabel (’Distribution’)

title(’Histogramyof the ,Ornstein-Uhlenbeck process’)

figure (4);
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plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jfcreating the gaussian function

f = pdf(pd, y);

c1=[0.6350 0.0780 0.1840];

scatter(y,f,10,cl1, ’filled’)

xlabel(’x’), ylabel(’Distribution?’)
title(’Histogram_of the Ornstein-Uhlenbeck process’)

figure (5)

bar(y,n_norm); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0 0.4470 0.7410];

scatter(y,f,10,c1, ’filled’)

xlabel(’x’), ylabel(’Distribution?’)
title(’Histogram_of the ,Ornstein-Uhlenbeck process’)
end

Figures C.24, C.25 and C.26 show the comparison using a logarithmic

scale.

Histogram of the Ornstein-Uhlenbeck process
T T
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¥
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o
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o
o
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1. i

2

Figure C.24: Histogram of X (¢) and its distribution with X,=randn, T=10,

N=500, n=10000, D=1, 7,0, —1.
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Histogram of the Ornstein-Uhlenbeck process
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Figure C.25: Comparison between the histogram distribution trend and the
Gaussian one with Xy=randn, T=10, N=500, n=10000, D=1, 7.,,.=1.

Histogram of the Ornstein-Uhlenbeck process
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Figure C.26: Gaussian distribution on X (t) histogram with Xy=randn,
T=10, N=500, n=10000, D=1, 7,,,=1.
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Histogram of the Ornstein-Uhlenbeck process
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Figure C.27: Histogram of X (¢) and its distribution with X,=randn, T=10,
N=500, n=10000, D=1, 7z,=1.

Histogram of the Ornstein-Uhlenbeck process
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Figure C.28: Comparison between the histogram distribution trend and the
Gaussian one with Xg=randn, T=10, N=500, n=10000, D=1, 7.,.=1.
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Distribution of the Ornstein-Uhlenbeck Process with different n
and T

In order to study the distribution of the process and to compare it with the
Gaussian one, we consider the empirical distribution of the histograms.
Changing both the time 7" and the number of particles n it is possible to
notice how the empirical distribution of the histogram resembles the Gaussian
one as time and particles increase.

The histograms ou MATLAB function performs a plot with the his-
togram, the empirical distribution and the Gaussian distribution.

Changing the input arguments, it is possible to obtain different plots in
order to highlight the behaviour of the Ornstein-Uhlenbeck process.

function [X]=histograms_ou(X0,T,N,n,D,tau)
4 This function looks at the density distribution
4 of the Ornstein-Uhlenbeck process and verifies

12

14

16

18

20

22

24

26

4 that it has a Gaussian distribution changing times
4 and the particle number.

Ainput: X0=tinitial point;

A T= time period;

A N= discrtizion step;

X n= particles number;

A D= diffusion coefficient;

VA tau=correlation time;

Joutput:X= Ornstein-Uhlenbeck process;

Z0rnstein-Uhlenbeck process construction
[X]=ornstein_uhlenbeck (X0,T,N,n,D,tau);

Ahistogram with empirical and gaussian distribution
[nn,y] = hist(X(:,end) ,50);

n_norm = (nn ./length(X(:,end))) ./(y(2)-y(1));
bar(y,n_norm); hold(’on’);

set (gca, ’YScale’, ’log’);

plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0.6350 0.0780 0.18401];

scatter(y,f,10,c, ’filled’)
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xlabel(’x’), ylabel(’Distribution’)
title(’Distribution trend’)
end

AX0=randn; N=500; D=1; tau=1;

figure(1); n1=50; T1=50; [X]=histograms_ou(X0,T1,N,nl1,D,tau);
figure(2); n2=100; T2=100;[X]=histograms_ou(X0,T2,N,n2,D,tau);
figure (3); n3=250; T3=250; [X]=histograms_ou(X0,T3,N,n3,D,tau);
figure(4); n4=500; T4=500; [X]=histograms_ou(X0,T4,N,n4,D,tau);
figure (5); n5=800; T5=800; [X]=histograms_ou(X0,T5,N,n5,D,tau);
figure(6); n6=1000; T6=1000; [X]=histograms_ou(X0,T6,N,n6,D,tau);

nnnnnnnnnnnnnnn

X0O=randn, N=500, D=1, 7.=1, XO=randn, N=500, D=1, 7.,=1,
T=50, n=>50. T=100, n=100.

Figure C.29

X0O=randn, N=500, D=1, 7.r=1, XO=randn, N=500, D=1, 7.,=1,
T=250, n=250. T=500, n=>500.

Figure C.30
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X0=randn, N=500, D=1, 7¢r=1, XO0=randn, N=500, D=1, 7¢0=1,
T=800, n=>500. T=1000, n=1000.

Figure C.31

If we fix the time T" and we change the particles number n, it is possible
to see how the fit gets better.

AX0=randn; T=1000; N=500; D=1; tau=1;

figure(1); n1=50; [X]=histograms_ou(X0,T,N,nl1,D,tau);
figure(2); n2=100;[X]=histograms_ou(X0,T,N,n2,D,tau);
figure (3); n3=250; [X]=histograms_ou(X0,T,N,n3,D,tau);
figure(4); n4=500; [X]=histograms_ou(X0,T,N,n4,D,tau);
figure(5); nb5=800; [X]=histograms_ou(X0,T,N,n5,D,tau);
figure(6); n6=1000; [X]=histograms_ou(X0,T,N,n6,D,tau);

50

X0—randn, T—1000, N—500, D—1, XO—randn, T—1000, N—500, D—1
Teor—1, n=50. Teor=1, n=100.

Figure C.32
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X0O=randn, T=1000, N=500, D=1, XO=randn, T=1000, N=500, D=1,
Teor—1, 1=250. Teor=1, n=500.

Figure C.33
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X0=randn, T=1000, N=500, D=1, XO=randn, T=1000, N=500, D=1,
Teor—=1, n=>500. Teor—=1, n=1000.

Figure C.34
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C.3.4 Variance

The Ornstein—Uhlenbeck process is an example of a Gaussian process that
has a bounded variance and admits a stationary probability distribution.

The variance trend is different form the linear one of the Wiener process,
in fact for the The Ornstein—Uhlenbeck process the variance saturate after
T.or that is the correlation time.

function [X,V]=variance_ou (X0,T,N,n,D,tau)
AThis function displays the wvariance of the
A0rnstein-Uhlenbeck Process

Jinput: X0=initial point;

A T= time period;

A N= discrtizion step;

A n= particles number;

A D= diffusion coefficient;

VA tau= correlation time;

Aoutput :X= Ornstein-Uhlenbeck process;
A

Jornstein_uhlenbeck process

dt=T/N;

t=(0:dt:T); Jinstant of time wvector
mu=0; /[mean

sd=1; /standard deviation

h=sqrt (2.%*D);

X=zeros(n,N);

X(:,1)=X0(:,1);

for i= 1:N
X(:,i+1)=X(:,1)-((X(:,1)./tau)*dt)+h*sqrt(dt)*normrnd (mu,sd, [n,1]);
end

V=var(X(:,:),1); Zvartance calculation with the matlab function
plot (t,V)

xlabel(’Time’), ylabel(’Variance’)
title(’Variance_ Trend’)
end

If we fix all the inputs of the MATLAB function variance ou and we
only change the particles number n, it is possible to see how the trend gets
better. This is showed in figures C.35, C.36, C.37.
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Figure C.35: Xy=randn, T=10, N=500, n=10000, D=1, 7.,=1
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Figure C.36: Xy=randn, T=10, N=500, n=80000, D=1, 7.,.=
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Variance Trend
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Figure C.37: Xy=randn, T=10, N=500, n=100000, D=1, 7,,.=1

Otherwise, if we fix the particles number n = 10000 and we change the

correlation time 7, it is possible to notice that saturation rate changes, figure
C.38.

Variance Trend

Variance
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Figure C.38: Xy=randn, T=15, N=500, n=10000, D=1, 7.,=1, 7., =2.5,
Teor—9
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Variance with respect to 7 and D

In order to find the relationship between variance, correlation time and dif-
fusion coefficient, we study before the variance behaviour with respect to 7
and then with respect to D.

T=10; N=500; n=10000; D=1; XO=randn;

taul=0.2; [~“,Vli]=variance_ou (X0,T,N,n,D,taul); hold on;
tau2=0.4; [~,V2]=variance_ou (X0,T,N,n,D,tau2);
tau3=0.6; [~,V3]=variance_ou (X0,T,N,n,D,tau3);
tau4=0.8; [~,V4]l=variance_ou (X0,T,N,n,D,taud);
taub=1; [~,V5]=variance_ou (X0,T,N,n,D,taub);
tau6=1.2; [~“,V6]=variance_ou (X0,T,N,n,D,tau6);
tau7=1.4; [~,V7]=variance_ou (X0,T,N,n,D,tau7);
tau8=1.6; [~,V8]=variance_ou (X0,T,N,n,D,tau8);
tau9=1.8; [~,V9]=variance_ou (X0,T,N,n,D,tau9);
taul0=2; [~,Vi0]=variance_ou (X0,T,N,n,D,taul0);

Using the function variance ou the figure C.39 shows the variance be-
haviour as 7 varies.

Variance Trend
25 .

Variance

Figure C.39: Xo=randn, T=10, N=500, n=10000, D=1, 7.,,=0.2, 7,,,—=0.4,
Teor=0.6, Te0r=0.8, Teor=1, Teor=1.2, Teor=1.4, To0,=1.6, 0, =1.8, T0, =2
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Now we do the same for D and figure C.41 shows the variance behaviour
as D varies.

T=10; N=500; n=10000; D=1; XO=randn;

D1=0.2; [",Vi]=variance_ou (X0,T,N,n,Di1,tau); hold on;
D2=0.4; [~,V2]=variance_ou (X0,T,N,n,D2,tau);
D3=0.6; [~,V3]=variance_ou (X0,T,N,n,D3,tau);
D4=0.8; [~,V4]=variance_ou (X0,T,N,n,D4,tau);
D5=1; [~,V5]=variance_ou (X0,T,N,n,D5,tau);
D6=1.2; [~,V6]=variance_ou (X0,T,N,n,D6,tau);
D7=1.4; [~,V7]=variance_ou (X0,T,N,n,D7,tau);
D8=1.6; [~,V8]=variance_ou (X0,T,N,n,D8,tau);
D9=1.8; [",V9]=variance_ou (X0,T,N,n,D9,tau);
D10=2; [~,V10]l=variance_ou (X0,T,N,n,D10,tau);

Variance Trend
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Figure C.40: Xy=randn, T=10, N=500, n=10000, 7.,,=1, D=0.2, D=0.4,
D=0.6, D=0.8, D=1, D=1.2, D=1.4, D=1.6, D=1.8, D=2

We can now consider the two trends: (V) 7.,) and (V, D).
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Figure C.41: Xy=randn, T=10, N=500, n=10000

C.3.5 Correlation

In Wiener process the correlation it was 0 because at each step there was the
independence from the previous one.

In this case there is the dependence of each step from previous one so we
want to verify that the correlation trajectory is exponential.

In order to compare the two trends, with the MATLAB function correlation
we first calculate the correlation from the data, with the formula:

E[X,X.] = —— 3 (Xfi - Xt) (X - XS) (C.14)

_ 2
n—1= lop o;

and then we calculate the analytical correlation with the formula:

C’:exp{—|t_sl} (C.15)

T

AX0=randn; T=10; N=500; n=10000; D=1; tau=1;

function [E,C] = correlation(X0,T,N,n,D,tau)
Ainput: X0=initial point;

A T= time period;

/ N= discretization step;

A n= particles number;

126



11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

A D= diffusion coefficient;

A tau= correlation time;

foutput:E= empirical correlation;
4 C= analytical correlation;

dt=T/N; JDiscretization

t=(0:dt:T); JVector of sample times
Jassociated with all simulated paths

AConstruction of the Ornstein-Uhlenbeck Process:

mu=0; /mean

sd=1; /standard deviation
h=sqrt (2.x*D);
X=zeros(n,N);
X(:,1)=X0(:,1);

for i= 1:N

X(C,i+1)=X(C:,1)-((X(:,1)./tau)*dt)+h*xsqrt (dt)*normrnd (mu,sd, [n,1]);

end

Jvariance
V=var(X(:,:),1);

fempirical correlation
E=zeros (1,N+1);
m=mean (X) ;
for i=1:N+1

for j=1:n

E(1)=E(i)+(X(j,i)-m(i)).*(X(j,250)-m(250));

end

E(i)=E(i)./(V(i).*xV(250));

E(i)=E(i)./(n-1);
end
plot (t, E)

Zanalytic correlation
C=exp(-abs(t-5)./tau);
hold on

plot (t,C)

xlabel(’Time’), ylabel(’Correlation’)

title(’Correlation_ Trend’)
end
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Figure C.42: Xg=randn, T=10, N=500, n=10000, D=1, 7.,,=1, s=5.

C.4 Langevin Equation

Langevin equation (LE) is a stochastic differential equation describing how
a system evolves when subjected to a combination of deterministic and fluc-
tuating ("random") forces.

LE contains both frictional and random forces. The dependent variables in a
Langevin equation typically are collective (macroscopic) variables changing
only slowly in comparison to the other (microscopic) variables of the system;
the fluctuation-dissipation theorem relates the external driving force to the
random internal force. The fast (microscopic) variables are responsible for
the stochastic nature of the Langevin equation.

One application is to Brownian motion, which models the fluctuating mo-
tion of a small particle in a fluid.
The theory of Brownian motion has been extended to situations where the
fluctuating object is not a real particle at all, but instead some collective
porperty of a macroscopic system.

If we consider a colloidal system, we have three different timescales: 7, 75
and 7,. The first one is the short atomic scale: 74 =~ 1072 s; 75 is the Brown-
ian timescale for the relaxation of the particle velocity and 75 ~ % ~ 1073 s;
7, is the relaxation time for Br2ownian particle, i.e the time the particle have

a

diffused its own radius: 7, = %.
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In general
T << Tp << Ty (C.16)

In classical mechanics we can describe particle motion with the Newton
equation

du(t)
m— == F(t) (C.17)

where F'(t) is the total instantaneous force on the particle at time t and it is
due to the interaction of the Brownian particle with the surrounding medium.

In the case of a Brownian particle we expect a friction force and a random
one. The friction force is given by —ywv(t), with v = 67na and the random
force £(t) due to random density fluctuations in the fluid.

The equations of motion of the Brownian particle are:

dalt) _
= = u(t) (C.18)
W _ ey + e (C19)

This is the Langevin equations of motion for the Brownian particle.

If we would neglect the random force £(t), we obtain that the velocity of
the Brownian particle is predicted to decay to zero at long times and this is
in conflict with the equipartition theorem so the random force is therefore
necessary to obtain the correct equilibrium.

In the conventional view of the fluctuation force it is supposed to come
from occasional impacts of the Brownian particle with molecules of the sur-
rounding medium. The force during an impact is supposed to vary extremely
rapidly over the time of any observation and the effect of the fluctuating force
can be summarized by giving its first and second moments

<E(t) >e=0, < E(t1)E(t2) >e= go(ts — t2) (C.20)

The average is with respect to the distribution of the realizations of the
stochastic variable (). Since we have extracted the average force —yv(t) in
the Langevin equation the average of the fluctuating force must by definition
be zero, instead ¢ is a measure of the strength of the fluctuation force.

The delta function in time indicates that there is no correlation between im-
pacts in any distinct time intervals dt; and dts.
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Another mathematical specification of this dynamical model is that the
fluctuating force has a Gaussian distribution determined by the moments in
(C.20). Those properties imply that £(¢) is a wildly fluctuating function, and
it is not obvious that the differential equation (C.19) has a unique solution
for a given initial condition, or even that % exists. There is a standard ex-
istence theorem for differential equations which guarantee the existence of a
local solution if £(t) is continuous. A local solution is one which exists in
some neighborhood of the point at which the initial value is given. But even
if a solution exists it may be only local, or it may not be unique, unless some
stronger conditions are imposed on £(t).

An explicit formal solution of (C.19) is

__t @

v(t) =e Bv(0) + %/0 dse T?{(s) (C.21)

but we don’t know if this integral exists, so we write the (C.19) as

dv(t) =~ Lo(t)dt + %dU(t) (C.22)
where
dU(t) = £(t)dt (C.23)

U(t) is a continuous Markov process with zero mean. The continuity
follows from (C.22) since

U(t)=U(0) + /Otf(s)ds (C.24)

and we must require that the integral be a continuous function of its upper
limit, as for ordinary integrals.

On account of the randomness of the motion the random force £(¢) must av-
erage to zero, which is also implied by the separation in (C.19). If we choose
our time origin so that U(0) = 0 we must have < U(tk) >= 0.

For what we said, the increments U(t;) — U(0), U(ts) — U(ty), ..., U(t,) —
U(t,_1) are independent. For long times we suppose that the random motion
of the medium has attained a steady state. Then these increments are also
stationary and identically distributed with zero mean.

Finally we can deduce that U(t) is Gaussian with zero mean. Therefore, it
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10

has all the requirements for a Wiener process, i.e.

U(t) =W(t)
so we can rewrite (C.22) as
du(t) = — Lo()dt + ~aw (@)
om m

and the solution (C.21) becomes

t (t—s)

v(t) =e Bv(0)+ %/0 dse B dW(s)

C.4.1 Computational view

Considered an Ornstein-Uhlenbeck process V, we have

dV = —Kdt +V2DdW
T

and we want find the process X as

dX =Vdt

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

Considering a time interval [0, 7], N discretization step and n number of
particles, the MATLAB function langevin performs the Langevin Process

corresponding to each considered particle.

Here the diffusion coefficient D and the correlation time 7 are chosen equal
to 1 and we use the MATLAB function normrnd to generate a random num-
bers from the normal distribution with mean p = 0 and standard deviation
sd = 1 for the construction of the Ornstein-Uhlenbeck process. For this one
the initial point X, is random instead for the Langevin process is equal to 0.

JX0=randn; T=50; N=100; n=10000; D=1; tau=1
function [X]=langevin(X0,T,N,n,D,tau)
AThis function creates the Langevin Process
Ainput: X0=tinitial point;

T'= time period;
V= discrtizion step;
n= particles number;

= diffusion coefficient;
tau=correlation time;
Joutput:X= Langevin process;

B TR TR TR TR RS
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12 dt=T/N;
t=(0:dt:T); Jinstant of time wvector
14
AO0rnstein-Uhlenbeck process
16 mu=0; /[mean
sd=1; /standard deviation
18 h=sqrt (2x%D);
v=zeros (n,N);
20 v(:,1)=X0(:,1);
Anormrnd: generates a random number from the normal

2 [ distribution with mean parameter mu and
A standard deviation parameter sd [N,1]
24 ) indicates the stize of each dimension

for i= 1:N
26 v(:,i+1)=v(:,i)-((v(:,i)/tau)*dt)+h*sqrt(dt)*normrnd (mu,sd,[n,1]);
end
s Jcostruction of Langevin process
X=zeros(n,N); /initial point= 0
30 for i= 1:N
X(:,i+1)=X(:,i)+v(:,1)*dt;
32 end
plot (t,X)
34 xlabel(’Time’), ylabel(’Process State’)
title(’Langevin Equation Application’)
36 end

Langevin Process
T

Process State
o
T

Time

Figure C.43: Xy=randn, T=50, N=100, n=5, D=1, 7.,,=1
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Figure C.44: Xy=randn, T=50, N=100, n=10000, D=1, 7,.,=1

C.4.2 Distribution of Langevin Process

In this section we want to study the distribution of the Langevin process and
verify if it can be compared with a Gaussian distribution. As we did for the
previous processes, in order to do this comparison we use the hist _tot lang
MATLAB function which first create the Langevin Process for n = 10000
particles and then the corresponding histogram.

The trend of the histogram was then considered and subsequently it has
been compared with the Gaussian trend both with logarithmic scale and lin-
ear scale.

function [X]=hist_tot_lang(X0,T,N,n,D,tau)
# This function looks at the density distribution of the Langevin
4 process and verifies that it has a Gaussian distribution.

Ainput: X0=initial point;

T= time pertod;

V= discrtizion step;

n= particles number;

D= diffusion coefficient;
tau=correlation time;

Joutput:X=Langevin process;

BRI T T TR

ALangevin process construction
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[X]=1langevin(X0,T,N,n,D,tau);

figure (1)
n_bins=150;
[nn,y] hist(X(:,end),n_bins); % hist matlab function
n_norm (nn ./length(X(:,end))) ./(y(2)-y(1));
4 mnormalize hist function

bar(y,n_norm); hold (’on’);
plot(y,n_norm,’r’);

xlabel(’x’), ylabel(’Distribution’)
title(??)

figure (2);

semilogy(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jcreating the gaussian function
f = pdf(pd, y);

c1=[0.6350 0.0780 0.1840];

scatter(y,f,10,cl1, ’filled’)

xlabel(’x’), ylabel(’Distribution’)

title (??)

figure (3)

bar(y,n_norm); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0 0.4470 0.7410];
scatter(y,f,10,c1, ’filled’)
set(gca,’yscale’,’log?’)
xlabel(’x’), ylabel(’Distribution’)
title(??)

figure (4)

plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’); Jcreating the gaussian function
f = pdf(pd, y);

c1=[0.6350 0.0780 0.1840];

scatter(y,f,10,cl, ’filled’)

xlabel(’x’), ylabel(’Distribution’)

title (??)

figure (5)

bar(y,n_norm); hold(’on’);
pd = fitdist(X(:,end),’Normal’);
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f = pdf(pd, y);

c=[0 0.4470 0.7410];
scatter(y,f,10,c1, ’filled’)
xlabel(’x’), ylabel(’Distribution?’)
title(??)

end
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Figure C.45: Histogram of X (¢) and its distribution with X,=randn, T=50,
N=100, n=10000, D=1, 7,0, =1.

Distribution of Langevin Process changing the number of particles

As we did for the previous processes, in order to study the distribution of the
process and to compare it with the Gaussian one, we consider the empirical
distribution of the histograms.

Changing the number of particles n it is possible to notice how the em-
pirical distribution of the histogram resembles the Gaussian one as time and
particles increase.

The histograms_lang MATLAB function performs a plot with the his-
togram, the empirical distribution and the Gaussian distribution.
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Figure C.46: Comparison between the histogram distribution trend and the
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Distribution

Figure C.47: Gaussian distribution on X (¢) histogram with X,=randn, T=50,
N=100, n=10000, D=1, 7p=1
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Figure C.48: Histogram of X (¢) and its distribution with X,=randn, T=50,
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function [X]=histograms_lang(X0,T,N,n,D,tau)

This function looks at the density distribution of the
Langevin process and vertfies that it has a

Gaussian distribution changing times

and the particle number.

SR e e

Ainput: X0=initial point;

A T= time period;

N= discrtizion step;

n= particles number;

D= diffustion coeffictent;
tau=correlation time;
foutput:X= Langevin process;

ALangevin process construction
[X]=langevin(X0,T,N,n,D, tau);

Ahistogram with empirical and gaussian distribution
[nn,y] = hist(X(:,end),150);

n_norm = (nn ./length(X(:,end))) ./(y(2)-y(1));

bar (y,n_norm); hold(’on’);

set(gca, ’YScale’, ’log’);

plot(y,n_norm,’r’); hold(’on’);

pd = fitdist(X(:,end),’Normal’);

f = pdf(pd, y);

c=[0.6350 0.0780 0.1840];

scatter(y,f,10,c, ’filled’)

xlabel(’x’), ylabel(’Distribution?’)
title(’Distribution trend’)
end

ZAX0=randn; T=50; N=100; D=1; tau=1;

figure(1); n1=100; [X]=histograms_lang(X0,T,N,nl1,D,tau);
figure (2); n2=250;[X]=histograms_lang(X0,T,N,n2,D,tau);
figure(3); n3=500; [X]=histograms_lang(X0,T,N,n3,D,tau);
figure(4); n4=800; [X]=histograms_lang(X0,T,N,n4,D,tau);
figure(5); n5=1000; [X]=histograms_lang(X0,T,N,n5,D,tau);
figure(6); n6=5000; [X]=histograms_lang(X0,T,N,n6,D,tau);
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C.4.3 Variance

The aim of this section is to show the variance behaviour with respect to
time: we want to calculate the variance 0% and show that its trend before
increase asymptotically as t? and then linear with respect to t.

With the MATLAB function variance lang we calculate the variance of
the process X (t) with the function var and then it is plotted and it is also
compared with the Ornstein-Uhlenbeck process variance.

AX0=randn; T=10; N=100; n=10000; D=1; tau=1;
function [V,Vo]l=variance_lang (X0,T,N,n,D,tau)
AThis function displays the wvariance of the Langevin Process
Ainput: X0=tinitial point;

T= time period;

V= discrtizion step;

n= particles number;

D= diffusion coefficient;

tau= correlation time;
output:V=variance of the Langevin process;

Vo=variance of the UOrnstein-Uhlenbeck;

ST SR e e L w e

[X,v]=langevin(X0,T,N,n,D,tau);

dt=T/N;

t=(0:dt:T); Zinstant of time wvector

Vo=var(v(:,:),1); Jwvariance of the Ornstein-Uhlenbeck
V=var(X(:,:),1); Zvartance calculation with the matlab function ’wvar’
figure (2);

plot(t,V); hold on;

plot (t,Vo)

xlabel(’Time’), ylabel(’Variance’)

title(’Variance Trend?’)

end
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Figure C.54: Xy=randn, T=10, N=100, n=10000, D=1, 7,,,=1
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In the following figure is showed the comparison between the variance
from data and
Va=2Dr1*t (C.30)

Variance Trend
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Figure C.55: Xy=randn, T=10, N=100, n=10000, D=1, 7,,=1
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