
Appendix

Proof of Theorem 1

We first show that for any given η > 0, there exists a large constant C such that
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By Sn
P−→ σ > 0, the law of large numbers, and classical central limit theorem, we obtain
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Therefore, by choosing a sufficiently large C, I2 dominates I1 in ||u|| = C. Since E
[
ψ
′
τ,λ(ε/σ)

]
> 0,

this completes the proof of Equation (A.1). Equation (A.1) implies with probability at least 1− η
that exists a local minimum of L(β) in the ball {β0 + n−1/2u : ||u|| ≤ C}. The proof of Theorem 1
is completed.

Proof of Theorem 2

Let

φn(θ) =
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By Taylor’s expansion, there exists a vector β́n on the line segment between β0 and β̂n such that

φn(β̂n) = φn(β0) + φ̇n(β0)(β̂n − β0) +
1
2
(β̂n − β0)>φ̈n(β́n)(β̂n − β0),

where φ̇n(·) and φ̈n(·) are the first-order derivative and the second-order derivatives of φn(·). From
(2.2), we have φn(β̂n) = 0. By condition (C1) and Theorem 1, we have
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Since Sn
P−→ σ as n →∞, thus,
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Proof of Theorem 3

According to the definition of cn−m, for all ||β|| = 1, we can obtain

]{i : m + 1 ≤ i ≤ n, and |X>
i θ| > 0}/(n−m) ≥ 1− cn−m.

By the assumption of Theorem 3, there exists cn1 > cn−m and cn2 > cn−m such that

ε < (1− 2cn1)/(2− 2cn1), a(τ, λ) < (1− ε)(2− 2cn2).

We take c∗n = min{cn1, cn2}, then c∗n > cn−m, and have

ε < (1− 2c∗n)/(2− 2c∗n), a(τ, λ) < (1− ε)(2− 2c∗n). (A.2)

By using a compacity argument (Yohai, 1987), we can find δ > 0 such that

inf
||β||=1
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i β| > δ}/(n−m) ≥ 1− c∗n.

According to Equation (A.2), we can obtain 1− ε > 1/(2− 2c∗n). Therefore, we can find ζ such that
(1− ε)(1− c∗n) > 1− ζ > 1/2. Take ∆ > 0 which satisfies
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.

Then, we have a0 < min{1− ζ, a(τ, λ)/2}. Therefore, m/n ≤ ε implies

a0(n−m)/n ≥ (1− ε)a0 > (1− ζ)a(τ, λ)/(2− 2c∗n).

Since ρτ,λ(t) is a bounded, continuous, and even function, there exists k2 ≥ 0 such that ρτ,λ(k2) =
a0/(1− ζ). Let C = (k2Sn + maxm+1≤i≤n |Yi|)/δ. Hence, m/n ≤ ε implies
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For a contaminated sample Dn with m/n ≤ ε, if ||β̂n|| ≥ C, we have
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This is a contradiction with the fact that β̂n minimizes
∑n

i=1 ρτ,λ (ri(β)) for β ∈ Rp. Note that
m/n ≤ ε, ε < (1− 2cn−m)/(2− 2cn−m), and a(τ, λ) < (1− ε)(2− 2cn−m). Therefore, we obtain
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.

Since the sample Dn is in general position, we have cn−m = (p−1)/(n−m). Because β̄n is a robust
estimator with asymptotic breakdown point 1/2, therefore,
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