Appendix

Proof of Theorem 1

We first show that for any given n > 0, there exists a large constant C' such that

P <| iﬁlfCL(ﬁo +n V%) > L(ﬁo)> >1—n. (A.1)

By Taylor’s expansion and condition (C1), we have
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By S, LRSS 0, the law of large numbers, and classical central limit theorem, we obtain
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Therefore, by choosing a sufficiently large C, Io dominates I; in ||u|| = C. Since E [w;)\(e/a)] > 0,

this completes the proof of Equation (A.1). Equation (A.1) implies with probability at least 1 — n
that exists a local minimum of L(3) in the ball {Gy +n~"/?u : ||u|| < C}. The proof of Theorem 1
is completed.

Proof of Theorem 2

Let
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By Taylor’s expansion, there exists a vector ﬁn on the line segment between Gy and Bn such that
Gn(Bn) = dn(B0) + 6n(B0) (B — Bo) + 5 (B — Bo) on(Bn) (Bn — Bo),

where ¢, (-) and (;5,& (+) are the first-order derivative and the second-order derivatives of ¢, (-). From
(2.2), we have ¢, (3,) = 0. By condition (C1) and Theorem 1, we have
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Proof of Theorem 3
According to the definition of ¢,,_,, for all ||3|| = 1, we can obtain

tli:m+1<i<n, and |X]0] >0}/ (n—m)>1—cpm.
By the assumption of Theorem 3, there exists ¢,1 > ¢p—m and cpo > ¢p—p such that
€< (1=2¢cp1)/(2—=2cp1),a(r,\) < (1 —€)(2 —2¢u2).
We take ¢ = min{c,1, cp2}, then ¢ > ¢,_p,, and have
e<(1=2c)/(2—=2c),a(t,\) < (1 —¢€)(2—2c). (A.2)
By using a compacity argument (Yohai, 1987), we can find 6 > 0 such that

Héﬂflﬁ{i:m—{—lgign, and |X]3] > 0}/(n—m)>1-c.

According to Equation (A.2), we can obtain 1 —e > 1/(2 —2¢}). Therefore, we can find ¢ such that
(1-€)(1—¢;)>1—(>1/2. Take A > 0 which satisfies
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Then, we have ag < min{l — ¢, a(7, A)/2}. Therefore, m/n < e implies

ag —

ap(n —m)/n > (1 —¢€)ag > (1 —)a(r,\)/(2 — 2c}).

Since pr () is a bounded, continuous, and even function, there exists ko > 0 such that p,\(k2) =
ap/(1 — (). Let C = (ka2Sy, + maxy4+1<i<n |Yi|)/d. Hence, m/n < e implies
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where A= {i:m+1<i<nand|X,0| > 6}. A
For a contaminated sample D,, with m/n <, if ||5,|| > C, we have
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This is a contradiction with the fact that £, minimizes Yoisi pra(ri(B)) for B € RP. Note that
m/n <€ e<(1—=2¢-m)/(2—=2¢—m), and a(7,\) < (1 — €)(2 — 2¢;,—s,). Therefore, we obtain
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Since the sample D,, is in general position, we have ¢, _,, = (p—1)/(n —m). Because 3, is a robust
estimator with asymptotic breakdown point 1/2, therefore,

BP(BmDn—maTy A) > min{l - ga 1- ga(Ta )‘)} :



