Appendix

Proof of Theorem 1

We first show that for any given $\eta>0$, there exists a large constant C such that

$$
\begin{equation*}
P\left(\inf _{\|u\|=C} L\left(\beta_{0}+n^{-1 / 2} u\right)>L\left(\beta_{0}\right)\right)>1-\eta . \tag{A.1}
\end{equation*}
$$

By Taylor's expansion and condition (C1), we have

$$
\begin{aligned}
& L\left(\beta_{0}+n^{-1 / 2} u\right)-L\left(\beta_{0}\right)=\sum_{i=1}^{n} \rho_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{\top}\left(\beta_{0}+n^{-1 / 2} u\right)}{S_{n}}\right)-\sum_{i=1}^{n} \rho_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{\top} \beta_{0}}{S_{n}}\right) \\
& =-\frac{1}{\sqrt{n}} \frac{1}{S_{n}} \sum_{i=1}^{n} \psi_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{\top} \beta_{0}}{S_{n}}\right) X_{i}^{T} u+\frac{1}{2 S_{n}^{2}} u^{T}\left[\frac{1}{n} \sum_{i=1}^{n} \psi_{\tau, \lambda}^{\prime}\left(\frac{Y_{i}-X_{i}^{\top} \beta_{0}}{S_{n}}\right) X_{i}^{T} X_{i}+o_{p}(1)\right] u \\
& \triangleq I_{1}+I_{2} .
\end{aligned}
$$

By $S_{n} \xrightarrow{P} \sigma>0$, the law of large numbers, and classical central limit theorem, we obtain

$$
\frac{1}{n} \sum_{i=1}^{n} \psi_{\tau, \lambda}^{\prime}\left(\frac{Y_{i}-X_{i}^{\top} \beta_{0}}{S_{n}}\right) X_{i}^{T} X_{i}=E\left[\psi_{\tau, \lambda}^{\prime}(\epsilon / \sigma)\right] E\left(X^{T} X\right)+o_{p}(1)
$$

and

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{\top} \beta_{0}}{S_{n}}\right) X_{i}=O_{p}(1)
$$

Therefore, by choosing a sufficiently large C, I_{2} dominates I_{1} in $\|u\|=C$. Since $E\left[\psi_{\tau, \lambda}^{\prime}(\epsilon / \sigma)\right]>0$, this completes the proof of Equation (A.1). Equation (A.1) implies with probability at least $1-\eta$ that exists a local minimum of $L(\beta)$ in the ball $\left\{\beta_{0}+n^{-1 / 2} u:\|u\| \leq C\right\}$. The proof of Theorem 1 is completed.

Proof of Theorem 2

Let

$$
\phi_{n}(\theta)=\frac{1}{n S_{n}} \sum_{i=1}^{n} \psi_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{T} \theta}{S_{n}}\right) X_{i} .
$$

By Taylor's expansion, there exists a vector $\dot{\beta}_{n}$ on the line segment between β_{0} and $\hat{\beta}_{n}$ such that

$$
\phi_{n}\left(\hat{\beta}_{n}\right)=\phi_{n}\left(\beta_{0}\right)+\dot{\phi}_{n}\left(\beta_{0}\right)\left(\hat{\beta}_{n}-\beta_{0}\right)+\frac{1}{2}\left(\hat{\beta}_{n}-\beta_{0}\right)^{\top} \ddot{\phi}_{n}\left(\dot{\beta}_{n}\right)\left(\hat{\beta}_{n}-\beta_{0}\right),
$$

where $\dot{\phi}_{n}(\cdot)$ and $\ddot{\phi}_{n}(\cdot)$ are the first-order derivative and the second-order derivatives of $\phi_{n}(\cdot)$. From (2.2), we have $\phi_{n}\left(\hat{\beta}_{n}\right)=0$. By condition (C1) and Theorem 1, we have

$$
\frac{S_{n}}{\sqrt{n}} \sum_{i=1}^{n} \psi_{\tau, \lambda}\left(\frac{Y_{i}-X_{i}^{T} \beta_{0}}{S_{n}}\right) X_{i}=\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right) \frac{1}{n} \sum_{i=1}^{n} \psi_{\tau, \lambda}^{\prime}\left(\frac{Y_{i}-X_{i}^{T} \beta_{0}}{S_{n}}\right) X_{i}^{T} X_{i}+o_{p}(1)
$$

Since $S_{n} \xrightarrow{P} \sigma$ as $n \rightarrow \infty$, thus,

$$
\sqrt{n}\left(\hat{\beta}_{n}-\beta_{0}\right) \xrightarrow{D} N\left(\mathbf{0}, \frac{E \psi_{\tau, \lambda}^{2}(\epsilon / \sigma)}{\left(E \psi_{\tau, \lambda}^{\prime}(\epsilon / \sigma)\right)^{2}} \sigma^{2}\left(E X^{T} X\right)^{-1}\right) .
$$

Proof of Theorem 3

According to the definition of c_{n-m}, for all $\|\beta\|=1$, we can obtain

$$
\sharp\left\{i: m+1 \leq i \leq n \text {, and }\left|X_{i}^{\top} \theta\right|>0\right\} /(n-m) \geq 1-c_{n-m} .
$$

By the assumption of Theorem 3, there exists $c_{n 1}>c_{n-m}$ and $c_{n 2}>c_{n-m}$ such that

$$
\epsilon<\left(1-2 c_{n 1}\right) /\left(2-2 c_{n 1}\right), a(\tau, \lambda)<(1-\epsilon)\left(2-2 c_{n 2}\right) .
$$

We take $c_{n}^{*}=\min \left\{c_{n 1}, c_{n 2}\right\}$, then $c_{n}^{*}>c_{n-m}$, and have

$$
\begin{equation*}
\epsilon<\left(1-2 c_{n}^{*}\right) /\left(2-2 c_{n}^{*}\right), a(\tau, \lambda)<(1-\epsilon)\left(2-2 c_{n}^{*}\right) . \tag{A.2}
\end{equation*}
$$

By using a compacity argument (Yohai, 1987), we can find $\delta>0$ such that

$$
\inf _{\|\beta\|=1} \sharp\left\{i: m+1 \leq i \leq n \text {, and }\left|X_{i}^{\top} \beta\right|>\delta\right\} /(n-m) \geq 1-c_{n}^{*} \text {. }
$$

According to Equation (A.2), we can obtain $1-\epsilon>1 /\left(2-2 c_{n}^{*}\right)$. Therefore, we can find ζ such that $(1-\epsilon)\left(1-c_{n}^{*}\right)>1-\zeta>1 / 2$. Take $\Delta>0$ which satisfies

$$
1<1+\Delta<\min \left\{\frac{(1-\epsilon)\left(1-c_{n}^{*}\right)}{1-\zeta}, \frac{(1-\epsilon)\left(2-2 c_{n}^{*}\right)}{a(\tau, \lambda)}\right\} .
$$

Denote

$$
a_{0}=\frac{(1-\zeta) a(\tau, \lambda)(1+\Delta)}{(1-\epsilon)\left(2-2 c_{n}^{*}\right)} .
$$

Then, we have $a_{0}<\min \{1-\zeta, a(\tau, \lambda) / 2\}$. Therefore, $m / n \leq \epsilon$ implies

$$
a_{0}(n-m) / n \geq(1-\epsilon) a_{0}>(1-\zeta) a(\tau, \lambda) /\left(2-2 c_{n}^{*}\right)
$$

Since $\rho_{\tau, \lambda}(t)$ is a bounded, continuous, and even function, there exists $k_{2} \geq 0$ such that $\rho_{\tau, \lambda}\left(k_{2}\right)=$ $a_{0} /(1-\zeta)$. Let $C=\left(k_{2} S_{n}+\max _{m+1 \leq i \leq n}\left|Y_{i}\right|\right) / \delta$. Hence, $m / n \leq \epsilon$ implies

$$
\begin{aligned}
& \inf _{\|\beta\| \geq C} \sum_{i=1}^{n} \rho_{\tau, \lambda}\left(r_{i}(\beta)\right) \geq \inf _{\|\theta\|=1} \sum_{i \in A} \rho_{\tau, \lambda}\left(\frac{\left|Y_{i}\right|-C\left|X_{i}^{\top} \theta\right|}{S_{n}}\right) \geq(n-m)\left(1-c_{n}^{*}\right) \rho_{\tau, \lambda}\left(k_{2}\right) \\
& =(n-m)\left(1-c_{n}^{*}\right) a_{0} /(1-\zeta)>n a(\tau, \lambda) / 2 \geq \sum_{i=1}^{n} \rho_{\tau, \lambda}\left(r_{i}\left(\bar{\beta}_{n}\right)\right),
\end{aligned}
$$

where $A=\left\{i: m+1 \leq i \leq n\right.$ and $\left.\left|X_{i}^{\top} \theta\right|>\delta\right\}$.
For a contaminated sample \mathbf{D}_{n} with $m / n \leq \epsilon$, if $\left\|\hat{\beta}_{n}\right\| \geq C$, we have

$$
\sum_{i=1}^{n} \rho_{\tau, \lambda}\left(r_{i}\left(\hat{\beta}_{n}\right)\right)>\sum_{i=1}^{n} \rho_{\tau, \lambda}\left(r_{i}\left(\bar{\beta}_{n}\right)\right) .
$$

This is a contradiction with the fact that $\hat{\beta}_{n}$ minimizes $\sum_{i=1}^{n} \rho_{\tau, \lambda}\left(r_{i}(\beta)\right)$ for $\beta \in R^{p}$. Note that $m / n \leq \epsilon, \epsilon<\left(1-2 c_{n-m}\right) /\left(2-2 c_{n-m}\right)$, and $a(\tau, \lambda)<(1-\epsilon)\left(2-2 c_{n-m}\right)$. Therefore, we obtain

$$
B P\left(\hat{\beta}_{n} ; \mathbf{D}_{n-m}, \tau, \lambda\right) \geq \min \left\{B P\left(\bar{\beta}_{n} ; \mathbf{D}_{n-m}\right), \frac{1-2 c_{n-m}}{2-2 c_{n-m}}, 1-\frac{a(\tau, \lambda)}{2-2 c_{n-m}}\right\} .
$$

Since the sample \mathbf{D}_{n} is in general position, we have $c_{n-m}=(p-1) /(n-m)$. Because $\bar{\beta}_{n}$ is a robust estimator with asymptotic breakdown point $1 / 2$, therefore,

$$
B P\left(\hat{\beta}_{n} ; \mathbf{D}_{n-m}, \tau, \lambda\right) \geq \min \left\{1-\frac{\kappa}{2}, 1-\frac{\kappa}{2} a(\tau, \lambda)\right\} .
$$

