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Abstract

Robust approach is often desirable in presence of outliers for more efficient parameter estimation.
However, the choice of the regularization parameter value impacts the efficiency of the parameter
estimators. To maximize the estimation efficiency, we construct a likelihood function for
simultaneously estimating the regression parameters and the tuning parameter. The ‘working’
likelihood function is deemed as a vehicle for efficient regression parameter estimation, because
we do not assume the data are generated from this likelihood function. The proposed method
can effectively find a value of the regularization parameter based on the extend of contamination
in the data. We carry out extensive simulation studies in a variety of cases to investigate the
performance of the proposed method. The simulation results show that the efficiency can be
enhanced as much as 40% when the data follow a heavy-tailed distribution, and reaches as high
as 468% for the heteroscedastic variance cases compared to the traditional Huber’s method with
a fixed regularization parameter. For illustration, we also analyzed two datasets: one from a
diabetics study and the other from a mortality study.
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1 Introduction

Suppose that observations {(z;,y;),i=1,---,n} satisfy a robust linear regression model
introduced by 7,

yi:x?ﬂ+06i, i:]-v"’,nv (1)

where 5 is a p x 1 unknown parameter vector of interest, and o > 0 is a scale parameter. We
assume that the error terms e1,--- ¢, are independent and identically distributed with an
unknown distribution F, that satisfies F.(0) = 1/2.

The method of least squares can obtain an estimator of 3, denoted as BLS = (XTxX)" X1y,
where X = (21, ,2,)T and Y = (y1, -+ ,y»)T. When F. is a normal distribution, BLS is
an uniformly optimal linear unbiased estimator. However, when F. deviates from the normal
distribution and/or is contaminated by outliers, such as F, is a heavy-tailed distribution, the
performance of the least square estimator is poor, and thus robust methods are more desirable
in these cases’”’

Several families of robust estimators have been developed. One of the robust methods is the M-
estimation method, which can provide much better regression coefficient estimates when outliers
are present in the data by minimizing the “maximum likelihood type” loss function. The most
widely used loss function is the Huber’s loss function given by

%ez le| < 7
pr(€) = 2 ) (2)

le|T — 5 le] > T
where 7 > 0 is a regularization parameter and must be specified. The regularization parameter 7
(also known as the tuning parameter) regulates the amount of robustness. When the data follow
a normal distribution, the best value of 7 is +00. When the data follow a Laplace distribution,
the best value of 7 should be very small. 7 proposed selecting a value of 7 between 1 and 2. The
default value of 7 is 1.345 in R package (rlm function), which can reach 95% efficiency when the

data follow a normal distribution.
The corresponding subgradient function of p(-) is

6e(6) € le] <7
T\€) = . .
sign(e)T le| >
The robust estimator of § can be obtained by solving the following equation
n o _.T
>z (W) =0, (3)
; g
=1
where 6 is a consistent estimator of 0. Let S be the estimator derived from equation (??), and
then /1 (B — B) 4 N(0,%), where

E[y3(e)]

Y= 02[E(XTX)}—1W.
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It is worth noting that the asymptotic variance ¥ depends on the regularization parameter 7

via an efficiency factor (7' = % The value of 7 has a great influence on the efficiency of

regression parameter estimation. Hence, ? proposed maximizing ¢ to choose the regularization
parameter, where ( is a moment estimator of (,

Doiny I(lel < )P

= ST < TvR@) + (el > 1)

(4)

where & = (y; — 1 fi)/6 and & = 1.4826  median; {&; — median;(é;)} is the median absolute
deviation (MAD) estimator of o. This data-driven method can automatically select a value of
7, and ? constructed an R package rlmDataDriven, which provides a rlmDD function to obtain
B g with an automatically chosen 7.

In this paper, we construct a robust density function that contains 3, 7 and a dispersion
parameter #. The proposed density function can fit the distribution of the data very well
by automatically selecting the regularization parameter and the dispersion parameter. Thus,
we propose selecting an “optimal” value for the regularization parameter 7 by minimizing
the negative log-working likelihood. The proposed method can automatically adjust the
regularization parameter 7 according to the data, and thus can improve the efficiency of
regression parameter estimators. The working likelihood function is introduced in Section 2.
A variety of simulation studies are carried out to evaluate the performance of the proposed
method in Section 3. Two real data examples are used to illustrate the proposed method in
Section 4. Finally, some conclusions are drawn in Section 5.

2 A working likelihood function

Considering the dispersion of the data, we rescale the Huber’s loss function and define

2

r I _
— — <7
! <
pro(r) = 260 ) 0 :
rlr T i
—_— = = — >T
0 2 0

where r = y — (3, and 6 > 0 is a parameter to control the dispersion of the data. We construct
a density function based on p; g(r)

f(r;8,7,0) = C™Y(r,0)erme(m)

where C(7,0) is a normalized constant and

+oo 2 2
c(r,0) = / e Pro gy = / e 202dr —|—/ eI/ gy
—o0 |r|<6r |r|>0T1
20 _ -2
= OV2m[20(7) — 1]+ —e 7 = A(7)6.
T
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Therefore, the density function

1 —r2 T ™
[ 570 = sge (rl <0m)+ goge G (e > o)

A(T)0

where A(T) = /27[2®(7) — 1] + 2r=le=% . We refer to f(r; B,7,0) as a robust working density
function of r, which is a mixture distribution of a trimmed normal distribution N(0,6?) and a
truncated Laplace distribution LP(0,6/7), and 27~ Le™ /2 /A(7) can be regarded as the proportion
of outliers. Figure 7?7 shows the performance of the proposed density function fitting a normal
distribution, a laplace distribution and two t-distributions with difference degrees of freedom.

Assume that r1,--- ,r, are independent and identically distributed random variables. Their
joint working likelihood function is

n

1 s N
L(ﬁ,’r, 9) = Hf(T‘i;ﬂ,T, 9) = me Ei:l pro( 1).
i=1 )

Therefore, L(8, 7, 0) is a unified likelihood function of parameters §, 7 and 0, and their estimators
can be obtained by minimizing the negative log likelihood function,

min{—log L(3,7,0)} = min -o(ri) +nlogC(7,0) p. 5
min{~ log L(5,7,6)} B,T,e{;f’ o(r)+ nlog C(r )} )
The corresponding estimating equations for 3, 7 and 6 can be expressed as

n

Z xiwr,a (Ti) = 07 (6)

i=1

where ¢, g(r) is the derivative of p, g(r),

1= [ |r4 2e" T

— — 71 I(|r;| > 01) = , 7

A > 0m) = 2 ™
and

1 n
922512:;{7"?](\7‘1\ < 01) + |ri|0TI(|r;] >97’)}. (8)

Therefore, the estimators of 3, 7 and 6 can be obtained by minimizing equation (7?) or solve
equations (?7), (?7) and (7?7). If f(r;B,7,6) is the true density function of ry,--- ,r,, we can
obtain

22 4+ 1)e " /2 B 20T /2| 2T
T2A(T) A(r) | AT

iéE{['Zﬂ—r] I(ri >97’)} -
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1 n
*ZE{T?IUMSGT)+|7"¢|THI(|7*Z-|>97)} — 2.
n

=1

We now describe the working likelihood procedure as follows.
Step 1. Obtain an initial estimate of 5 using the median regression, denoted by BE) .k =0.
Step 2. Obtain the residuals 7; = y; — xiTB(k).
Step 3. Obtain estimates of 7 and 6 via minimizing the negative log-likelihood (77).
Step 4. Obtain estimate Ag,kz' D of B by equation (77) via the iterative weighted least squares
(IWLS) method with 7 = 7 and 6 = §*) obtained from Step 3.
Step 5. Repeat Steps 2-4 until the algorithm converges.

Remark: In Step 1, any consistent estimator of 5 can be as an initial value, such as the
MM estimator, the Huber’s estimator with 7 = 1.345, and the finial estimator of the regression
coefficient 3 is consistent.

3 Numerical studies

To investigate the performance of the proposed method, we calculate the relative efficiency
(REF) of the estimator from the least-squares method (LS), the estimator (DD) by the Huber’s
method with 7 selected by the data-driven method of 7, and the estimator (PL) by the Huber’s
method with 7 selected by the proposed method, to the estimator (HF) via the Huber’s method
with fixed 7 = 1.345. The larger value of REF, the more efficient of the estimator relative to
the estimator with 7 = 1.345. As one referee suggested, we also compare the proposed estimator
with a fully efficient and enjoying high breakdown weighted-least estimator (RWLS) proposed
by 7. The RWLS is with a hard rejection weight w(u) = I'(u < 1) and starting from the least
median of squares estimator’ . To consider the influence of the initial value on the estimates,
we also use HF as an initial value to obtain the estimate in our procedures according to the
reviewer’s opinion. The corresponding estimate is denoted as PLH.
In our simulation studies, we consider a linear model

yi = Po+ zif1 + o€, i=1,---,n,

with By =1, 51 =2 and sample size n = 1000. The covariates zp,---,z, are independently
generated from N(0,1). A variety of error distribution types are considered:

Case 1. Normal errors, N (0, 1), and o takes a value of 1, 3 and 4.

Case 2. Normal errors, N(0,1), and the errors are contaminated by either t-distribution with
three degrees of freedom (t(3)), x?(3) — 3 or each value becomes 6 or —6 with a probability of
~. Different contaminated rates are considered, namely, v = 10%, 20% and 40%.

Case 3. Cauchy errors, € ~ f(€) = [rs(1 +¢€/5)?]~! (denoted as Cauchy(0, s)), and s = 1, 3 and
5.

Case 4. Student’s t-distribution, assume that e follows a t-distribution with v degrees of freedom,
and v = 2, 5 and 10.

Case 5. Laplace distribution, € ~ f(e) = (2\)~'e~l</* (denoted as LP(0,\)), and A = 1, 3 and
5.

Case 6. Heteroscedastic variance, 02 = u? = (8y + B12i)?, or o = |z;|. The errors follow LP(0, 1),
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N(0,1) and Cauchy(0, 1).

Case 1 and Case 2 are the normal errors without and with contaminations. Cases 3-5 are the
errors with a heavy-tailed distribution. Case 6 is heteroscedastic variance. The scale parameter
o takes a value of 1 for Cases 2-5. We carry out 1000 independent realizations for all cases. The
least squares estimates are obtained except for the Cauchy distribution. The simulation results
are presented in Tables 77-77.

When the errors follow a normal distribution without contaminations, the proposed method
is comparable with the least squares method which results in the optimal parameter estimation.
Furthermore, the two data-driven methods (DD and PL) outperform the fixed regularization
parameter method. The selected regularization parameters by the proposed method are
quite large for the purely normal case. When the errors follow a normal distribution with
contaminations, the efficiency of the two data-driven methods increases as the contaminated
rate increases, and the performance of PL is similar to that of DD in most of the cases. The
PL has a efficiency loss in the case of a normal distribution with 10% two-point contaminations.
The WLS outperforms when there are 10% and 20% contaminations.

When the distribution of errors is heavy-tailed, the robust methods perform better than
the least squares method. The least squares method cannot obtain consistent estimators when
errors follow a Cauchy distribution. The proposed method obtains substantial efficiency, and the
efficiency gain can be as high as 48% compared to that with the fixed regularization parameter
(Cauchy(0,3)). The DD method has a 30% efficiency loss when the distribution of errors is
Cauchy(0,1). For the heteroscedastic variance cases, the proposed method outperforms, and its
efficiency can reach as high as 4.68 compared to the Huber’s method with a fixed 7 = 1.345 when
errors follow Cauchy(0,1) and o = |z;|. The estimators based on Huber’s method perform better
than REWLS for the heteroscedastic variance cases. For all the cases, the PL and PLH are very
similar, which indicates that the estimator is not affected by the initial value.

4 Real data analysis

In this section, we illustrate the proposed method by two real datasets. The first data illustrate
the relationship between diabetes and obesity measured through the body mass index and the
waist /hip ratio of the participants’?. The second data were collected on 60 U.S. Standard
Metropolitan Statistical Areas (SMSA’s) in a study of whether air pollution contributes to
mortality” * .

4.1 Diabetes data

The diabetes data consist of 19 wvariables on 403 subjects screened for diabetes in
a study to understand the prevalence of cardiovascular risk factors such as obesity
and diabetes in central Virginia for African Americans’. The dataset is available at
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets. The response variable is glycocholated
hemoglobin (glyhb) which is usually taken as a positive diagnosis of diabetes when it exceeds
the value of 7. We consider the following covariates: age, gender (male=1 and female=0), body
mass index (bmi), waist/hip ratio (whip), body frame with three levels (small, medium and
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large), location (Louisa =1, Buckingham=0) and stabilized glucose (stabglu). We use two dummy
variables ‘framm’ with one for medium frame and zero otherwise, and ‘framl’ with one for large
frame and zero otherwise. There were missing values in the data, and we assume the data are
missing completely at random. We use a regression model to fit the data,

glyhb = By + pr1age + fagender + S3bmi + Sywhip + Bsframm + SBgframl + Srlocation 4+ Bgstabglu + oe.

Figure 77 indicates that there exists many underlying outliers in glycocholated hemoglobin, and
the distribution of the residuals is heavy-tailed. The estimates of the regression parameters and
their standard errors are presented in Table 77. The least squares estimates are quite different
with those obtained by the robust methods. The two data-driven methods produce 7 = 0.5 and
7 =0.19, which lead to smaller standard errors than the least squares method and the Huber’s
method with a fixed 7 = 1.345 for all the parameter estimates. With the least squares estimation,
only the variables age and stabglu are significant at the 5% level, while with the robust estimation,
the variable location is also significant. The proposed method has the smallest standard errors
compared to other three methods. The computation time of the proposed method is about 15.04
seconds on Double Core class PC with 2.60 GHZ processors and 8.00 GB of RAM.

4.2 Air pollution data

The air pollution data include 16 variables: variables measuring demographic characteristics
of the cities, variables measuring climate characteristics, and variables recording the pollution
potential of three different air pollutants. The data is available at https://www3.nd.edu/ busi-
forc/handouts/Data%20and %20

Stories/regression/Air%20Pollution/airpullution.html. The response variable is mortality. We
consider the following covariates: mean January temperature (JanTem, degrees Farenheit), mean
July temperature (JulyTem, degrees Farenheit), relatively humidity (RelHum), annual rainfall
(Rain, inches), median education (Education), population density(PopDeunsity), percentage of
non whites (X.NonWhite), percentage of white collar workers (X.WC), population (Pop), popula-
tion per house (Pop.house), median income (Income), hydrocarbon pollution potential (HCPot),
nitrous oxide pollution potential (NOxPot), sulfur dioxide pollution potential (SO2Pot). Due to
the skewness of the observations of the air pollution variables, we consider logarithm of them.
Observation number 21 contains two missing values, and we assume they are missing completely
at random. The response variable and the covariates are scaled to have mean equal to zero and
variance equal to one. Such that all the variables are in a similar observation range.

We use the linear regression model to fit the data. The estimates of the regression parameters
and their standard errors are presented in Table 7?7. The Q-Q plot in Figure ?? indicates the
there may exist some extreme values in the data, and the kernel density plot indicates the
error distribution is heavy-tailed. The parameter estimates are similar obtained by different
methods. However, the standard errors of the parameter estimators obtained by the robust
methods are smaller than those by the least squares method. The DD method obtains 7 = 1.5,
and the proposed method obtains 7 = 1.49 and has the smallest standard errors. In addition to
covariates JanTem, Rain, X.NonWhite and NOxPot, covariate X.WC is also significant at the 5%
level using the proposed method. Furthermore, we use only these five significant covariates to fit
the data (excluding other nonsignificant covariates), and find that X.WC is now also significant
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at the 5% level using others three methods, which indicates that the proposed method is more
reliable than other three methods.

5 Conclusion and Discussion

The Huber’s method has been widely used in robust analysis. ? proposed an approach for
automatic selection of the regularization parameter by maximizing the efficiency factor. Their
method based on the moment estimator of the efficiency factor, and hence the efficiency may be
when the In this paper, we utilize the idea of 7 to construct a working density function based
on the Huber’s loss function, and then obtain the regularization parameter by minimizing the
negative log-likelihood. The proposed density function can approximate the true density function
very well by automatically choosing the appropriate regularization parameter and dispersion
parameter. The simulation results indicate that proposed method has appealing efficiency for
the regression parameter estimation, especially for the Cauchy type distributions.

The Huber’s method is robust against outliers in response variable. As we known, the Huber
estimator is not fully efficient and does not enjoy high breakdown. Researchers have proposed
some robust methods, which are fully efficient and with high breakdown, such as 7,7, 7 and ?.
When there exists outliers in covariates, or in both covariates and response, we can consider a
weighted estimating function based on the Huber’s score function, where the weight function
can down-weight the influence of the extreme values in covariates’ . The weighted equation is
given as follows:

Zwa:ixi¢r,0(ri) =0, (9)
=1

where w,, = min{l,c/d*(z;)} is a function to down weight the influence of the outliers or/and
leverage points in covariates. The tuning constant ¢ in w,, takes a value of X3 o5(p) and d?(z;)
denotes the squared Mahalanobis distance of z; based on some robust measure of location and
dispersion for z; (see 7). The proposed procedures in Section 2 can be used to obtain the weighted
estimates by replacing (?7) with (?7). We construct simulation studies to explore the performance
of the weighted method. We consider the following model:

yi = Bo + frxin + Baxio + €, i =1,---,1000,

where x;; follows a contaminated normal distribution (1 —a)N(0,1) + aN(5,9) with o = 0.03,
and z;2 follows a uniform distribution U(—1,1). Three distributions for e; are considered:
the standard normal distribution N(0,1), a contaminated distribution 0.8N(0,2) + 0.2¢(5),
a laplace distribution f(e) = 1/4e~!€//2 and a contaminated normal distribution 0.8N(0,4) +
0.2N(0,25). The results based on 1000 replications are presented in Table ?7. When a covariate
is contaminated, the weighted method performs much better than the unweihgted Huber’s
methods, especially for the coefficient estimator corresponding to the contaminated covariate.
The robust full efficient estimator RWLS outperforms.

In this short article, we only consider the Huber’s loss function for the linear regression model.
The proposed method can be extended to generalized linear models or hypothesis testing. It is
of interest to investigate the performance of the proposed method in these cases in future work.
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Table 1. Relative efficiency of the least quare estimator (LS), and the estimator (DD) via the Huber’s

method with 7 selected by Wang et al. (2007), the estimator (PL) via the Huber’s method with 7

selected by the proposed working likelihood method, the proposed estimator (PLH) using the Huber’s
method with 7 = 1.345 an initial value,, and the weighted-least estimator (RWLS) proposed by Gervini
and Yohai to the estimator (HF) via the Huber’s method with 7 = 1.345 for 5 and f32. 7 is the mean
value of 7 using the DD and PL methods based on 1000 simulations.

e~ N(0,1)
oc=1 oc=3 oc=4
REF,;, REFS, 7 "REF; REF; 7 "REF; REF; 7
LS 1.0294  1.0582 — 1.0430  1.0820 — 1.0417  1.0655 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 1.0046  1.0395 2.434 1.0327  1.0488 2.437 1.0393  1.0483 2.448
PL 1.0263 1.0546 21.44 1.0424 1.0771 18.28 1.0429 1.0638 16.34
PLH 1.0263 1.0546 21.44 1.0424 1.0772 18.28 1.0431 1.0639 16.34
REWLS  0.9920 0.9769 — 1.0013  1.0081 — 0.9980 0.9749 —
N(0,1) with ¢(3) contamination

~=10% ~ = 20% ~ = 40%
REF,;, REFg, 7 "REF; REFg 7 "REF; REF 7
LS 0.8925 0.8467 — 0.7650 0.7872  — 0.6540  0.7003 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 1.0065 0.9775 1.755 0.9702 0.9835 1.424 0.9771 0.9562 1.145
PL 1.0022  1.0023 1.759 1.0016  0.9925 1.435 1.0019 0.9847 1.208
PLH 1.0022 1.0023 1.760 1.0016  0.9920 1.436 1.0014 0.9843 1.210

REWLS 0.9273 0.9772 0.9608  0.9041 0.8981  0.8957

N(0,1) with x*(3) — 3 contamination

~=10% ~ = 20% ~ = 40%
REF,;, REFg, 7 "REF; REF 7 "REF; REF 7
LS 1.2457  0.7501 — 1.8176  0.6706  — 4.0990 0.6463 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 0.9789 0.9813 1.350 1.0177  0.9874 1.041 1.0337 09717 0.738
PL 0.9959 0.9881 1.322 1.0316 0.9919 1.076 1.0367 0.9821 0.883
PLH 0.9966 0.9882 1.322 1.0329  0.9930 1.078 1.0359 0.9848 0.887
REWLS 0.6585  0.9267 0.4932  0.9193 0.4232  0.8387 —

N(0,1) with two-point contamination

~=10% v =20% ~ = 40%
REF,;, REFg, 7 REF; REF 7 "REF; REFg 7
LS 0.3455  0.3311 — 0.2959 0.3026 ~ — 0.7233  0.7279  —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 0.9768 0.9947 0.813 1.1259  1.1570 0.523 24853 2.4744 0.244
PL 0.8351 0.8626 0.371 1.0035 1.0513 0.201 2.2853  2.3224 0.635
PLH 0.8402  0.8698 0.375 1.0104  1.0570 0.205 2.2342  2.2990 0.714
REWLS 1.3280 1.4191 2.1010  1.9394 - 0.4695 0.2434 -
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Table 2. Relative efficiency of the least quare estimator (LS), and the estimator (DD) via the Huber’s
method with 7 selected by Wang et al. (2007), the estimator (PL) via the Huber’s method with 7
selected by the proposed working likelihood method, the proposed estimator (PLH) using the Huber’s
method with 7 = 1.345 as an initial value, and the weighted-least estimator (RWLS) proposed by
Gervini and Yohai to the estimator (HF) by the Huber’s method with 7 = 1.345 for 8, and f3,. 7 is the
mean value of 7 using the DD and PL methods based on 1000 simulations.

e~ fle) = [ms(1+¢/s)%] T

s=1 s=3 s=5
REF3, REFg, T REF3, REFg, T REF3, REFg, T
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 0.7261  0.7642 0.249 1.2370  1.1825 0.261 0.9227  0.8188 0.255
PL 14713 14444 0.144 1.4890  1.4772  0.102 14412  1.3962 0.088
PLH 1.4720  1.4456 0.144 1.4872  1.4777 0.102 1.4389  1.3974 0.088
REWLS 1.1385 1.0713 — 1.0999  1.1410 — 1.0532  1.0646 —
e~ t(v)
v=2 v=>5 v =10
REF;, REF,, 7 REF;, REFs, 7 REF;, REFs, 7
LS 0.1067  0.1172 — 0.8279  0.7977 — 0.9405  0.9588 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 1.0934  1.0928 0.442 0.9620  0.9880 0.908 0.9762  0.9800 1.394
PL 1.0481 1.0413  0.329 0.9951 1.0020 1.185 1.0059  1.0051 1.763
PLH 1.0590  1.0471  0.336 0.9960 1.0026 1.187 1.0058  1.0051 1.764
REWLS  0.9057 0.9244 — 0.8973  0.8700 — 0.9018  0.9141 —
e~ fl=0N)""e M
A=1 A=3 A=5
REF;, REF,, 7 REF;, REF,, 7 REF;, REF,, 7
LS 0.7632  0.7013 — 0.7042  0.7363 — 0.7305  0.7558 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 1.2867  1.2526  0.209 1.3356  1.2892  0.220 1.2971 1.2774  0.214
PL 1.3026  1.2203 0.249 1.3486  1.3082 0.413 1.3104 1.2731 0.399
PLH 1.3082  1.2464 0.287 1.3299  1.3025 0.420 1.3121 1.2771  0.409
REWLS 0.7983 0.8121 — 0.7808  0.8254 — 0.8046  0.8502 —
Heteroscedastic Variance: o2 = u?
e~ LP(0,1) e~ N(0,1) e ~ Cauchy(0,1)
REFg, REFg, T REFg, REFg, T REFg, REFg, T
LS 0.3511  0.3566 — 0.7133  0.7712 — 0.0000  0.0000 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 1.9043  1.4063 0.103 1.2358  1.0028 0.103 0.7593  0.6304 0.103
PL 2.0315  1.4340 0.166 1.2568  0.9987  0.233 2.0173  1.2898 0.107
PLH 2.0275 14317 0.167 1.2578  0.9998 0.233 2.0149  1.2886 0.107
REWLS  0.6492  0.5252 — 0.3161  0.2384 — 0.9177  0.7755 —
Heteroscedastic Variance: o = |z;]
e~ LP(0,1) e~ N(0,1) e ~ Cauchy(0,1)
REFg, REFg, T REFg, REFg, T REFg, REFg, 7
LS 0.2818  0.3847 — 0.4837  0.7440 — 0.0000  0.0000 —
HF 1.0000  1.0000 1.345 1.0000  1.0000 1.345 1.0000  1.0000 1.345
DD 4.0536  1.3150  0.103 3.2880 0.9173 0.103 3.0925 0.9179 0.103
PL 3.0515  1.2908 0.373 3.0302 0.9190 0.333 4.6823  1.2701 0.142
PLH 3.0115  1.2879 0.374 2.9570  0.9220 0.335 4.5961 1.2691  0.143
REWLS  0.9938  0.5368 - 0.8759  0.2116 - 1.1382  0.7711 -
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Table 3. Parameter estimates for analysis of the diabetes data, and standard errors are in parentheses.
LS is the least-squares method. HF is the Huber’s method with a fixed regularization parameter

7 = 1.345. DD is the method proposed by Wang et al. (2007). PL is the proposed working likelihood
method. The boldface indicates that p-value is less than 0.05.

LS HF DD PL
Intercept  0.3116 (1.0221 0.6866 (0.6649 0.9373 (0.6119 1.1342  (0.5535
age 0.0183 (0.0052 0.0132  (0.0034 0.0119  (0.0031 0.0127  (0.0028
gender -0.1122 (0.1827) -0.0810 (0.1188) -0.0933 (0.1094) -0.0932 (0.0989

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
bmi  0.0110 ( ) 0.0085 (0.0092) 0.0073 (0.0085)  0.0093 ( )
whip  1.2462 (1.2098) 0.8547 (0.7870) 0.7419 (0.7243) 0.3723 (0.6551)
framm  0.2014 ( ) 01320 (0.1277) 0.1766 (0.1176)  0.2188 ( )
framl -0.0843 ( ) 0.0475 (0.1694) 0.1268 (0.1560) 0.1682 ( )
location  -0.2092  ( ) -0.2321 (0.1018) -0.2924 (0.0937) -0.2708 ( )
stabglu ~ 0.0288  ( ) 0.0303 (0.0010) 0.0295 (0.0009)  0.0296 ( )
7 +00 1.345 0.50 0.19

Table 4. Parameter estimates for analysis of the air pollution data, and standard errors are in
parentheses. LS is the least-squares method. HF is the Huber’s method with a fixed regularization
parameter 7 = 1.345. DD is the method proposed by Wang et al. (2007). PL is the proposed working
likelihood method. The boldface indicates that p-value is less than 0.05.

LS HF DD PL

JanTem -0.3852 ( ) 02959 ( ) -0.3090 ( ) 02801 ( )
JulyTem -0.1291 ( ) -0.0941 ( ) -0.0976 ( ) -0.0898 ( )
RelHum  0.0295 ) 0.0345 ( ) 0.0348 ( ) 0.0335 ( )
Rain  0.2769 ( ) 0.2607 ( ) 02614 ( ) 0.2603 ( )
Education -0.1363 ( ) -0.0731 ( ) -0.0811 ( ) -0.0642 ( )
PopDensity ~ 0.1045  ( ) 0.1088 ( ) 0.1096 ( ) 0.1068 ( )
X.NonWhite  0.7426  ( ) 0.6979  ( ) 0.6993 ( ) 0.6973 ( )
X.WC -0.1529 (0.0973) -0.1771 (0.0913) -0.1735 (0.0945) -0.1822 (0.0778)
log(Pop)  0.0575 ( ) 0.0279 ( ) 0.0336 ( ) 0.0208 ( )
Pop.house -0.1340  ( ) -0.0823 ( ) -0.0898 ( ) -0.0740 ( )
Income -0.0494 ( ) -0.0359 ( ) -0.0365 ( ) -0.0345 ( )
log(HCPot) -0.3984 ( ) -0.3752  ( ) -0.3775  ( ) -0.3712  ( )
log(NOxPot)  0.6466  ( ) 05172 ( ) 05308 ( ) 0.5005 ( )
log(S O2Pot) -0.0856  ( ) 0.0870 ( ) 0.0649 ( ) 01135 ( )
+00 1.345 1.5 1.49
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Table 5. Bias and relative efficiency of the least quare estimator (LS), and the estimator (DD) via the
Huber’s method with 7 selected by Wang et al. (2007), the estimator (PL) via the Huber’s method
with 7 selected by the proposed working likelihood method, the estimator (PLN) via the weighted
Huber’s method with 7 selected by the proposed method to the estimator (HF) by the Huber’s method
with 7 = 1.345 for 81, B2 and (3. 7 is the mean value of 7 using the DD and PL methods based on
1000 simulations.

e~ N(0,1)
Bi&Sﬂ1 BiaS[32 BiaSg3 REFﬁl REF[32 REFlgg T
LS -0.1454 -0.9975 -0.0002 0.1502 0.0781  0.4269 0.0000
HF -0.0466 -0.2719  0.0003 1.0000 1.0000  1.0000 1.3450
DD -0.0500 -0.2924 -0.0002 0.8965 0.8577  0.9799 1.4473
PL -0.0368 -0.2125  0.0009 1.2361 1.6269 0.8934 0.7302
PLN -0.0178 -0.0796  0.0006 2.0435 9.7143  0.9676 0.6637
REWLS -0.0034 -0.0089 -0.0002 2.9938 60.968  1.2088 —
e~ 0.8N(0,2) + 0.2¢(5)
Biasg, Biasg, DBiasg, REFz,  REFg, REFg, T
LS -0.2166 -1.5490 -0.0048 0.9552 0.8731  0.9669 0.0000
HF -0.2114 -1.4456 -0.0032 1.0000 1.0000  1.0000 1.3450
DD -0.2116 -1.4777 -0.0041 0.9954 0.9548 0.9819 1.8832
PL -0.2134 -1.4900 -0.0041 0.9825 0.9406  0.9947 2.3976
PLN -0.1514 -0.8070 -0.0008 1.7329 3.0954 1.0122 0.3342
REWLS -0.0513 -0.1801  0.0017 6.7652 47.6912  1.4431 —
€~ 1/4e7 1172
Biasg, Biasg, Biasg, REFg, REFs, REFg, T
LS -0.1471 -1.0076  0.0015 0.5308 0.3613  0.6899 0.0000
HF -0.0974 -0.5915  0.0020 1.0000 1.0000  1.0000 1.3450
DD -0.0702 -0.4167  0.0055 1.5128 1.9343  1.1809 0.3935
PL -0.0637 -0.3791  0.0057 1.6874 2.3579  1.1954 0.4353
PLN -0.0300 -0.1338  0.0034 2.8578 15.6746  1.3606 0.3703
REWLS -0.0168 -0.0624 -0.0005 2.0412  27.7747  0.8710 —
e~ 0.8N(0,4) + 0.2N(0, 25)

BiasBl BiaSﬂ2 Biasﬂ3 REF[}I REF[32 REF[}S T
LS -0.1465 -0.9960 -0.0031 0.5331 0.3719  0.6762 0.0000
HF -0.0978 -0.5949 -0.0018 1.0000 1.0000  1.0000  1.3450

DD -0.0885 -0.5351 -0.0015 1.1029  1.2171  0.9777 0.9330

PL -0.0811 -0.4825 -0.0004 1.2206  1.4992 1.0010 0.8839
PLN -0.0338 -0.1544  0.0002 1.8912  11.231  0.9115 0.7642
REWLS -0.0246 -0.0895 -0.0015 2.0351 17.073  0.9178 —
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Figure 1. The density functions are fitted by the proposed density function (PL) with the selected
regularization parameter and the dispersion parameter.
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Figure 2. The left panel is a boxplot of glyhb, and the right panel is the Q-Q plot of the residuals from

Glycosolated hemoglobin

the least squares method.
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Figure 3. The left panel is the Q-Q plot of the residuals from the least squares method. The right

Theoretical Quantiles
Im(y ~ x)

Density

02 03 04 05 06 07

0.0 0.1

Standardized residuals

-2

-4

Normal Q-Q

3360

3090

-2 -1 0 1

Theoretical Quantiles
Im(y ~ x)

panel is the kernel density function of the residuals obtained from the proposed method.
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