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Abstract: World models is a construct that is used to represent internal models of the world. It is
an important construct for human-artificial intelligence systems, because both natural and artificial
agents can have world models. The term, natural agents, encompasses individual people and human
organizations. Many human organizations apply artificial agents that include machine learning.
In this paper, it is explained how human survival first principles of interactions between energy
and entropy influence organization’s world models, and hence their implementations of machine
learning. First, the world models construct is related to human organizations. This is done in terms
of the construct’s origins in psychology theory-building during the 1930s through its applications in
systems science during the 1970s to its recent applications in computational neuroscience. Second, it is
explained how human survival first principles of interactions between energy and entropy influence
organizational world models. Third, a practical example is provided of how survival first principles
lead to opposing organizational world models. Fourth, it is explained how opposing organizational
world models can constrain applications of machine learning. Overall, the paper highlights the
influence of interactions between energy and entropy on organizations’ applications of machine
learning. In doing so, profound challenges are revealed for human-artificial intelligence systems.

Keywords: active inference; explainability; human–artificial intelligence systems; machine learning;
non-reinforced learning; preferences; reinforcement learning; triple-loop learning; world models

1. Introduction

Conceptualization of people having internal models of themselves in the world, i.e.
world models, can be found in psychology theory-building throughout the middle decades
of the twentieth century [1–4]. By the 1970s, world models were being considered in the
context of systems science and control theory [5,6]. More recently, there has been a framing
in computational neuroscience of world models that is applicable to natural and artificial
agents [7,8]. In computational neuroscience, efforts are ongoing to relate this framing of
world models to machine learning [9–11]. Although this world models framing describes
individuals’ interactions with the world in terms of entropy [12–14], efforts to relate it to
machine learning have not previously considered how human survival first principles of
interactions between energy and entropy influence machine learning (ML) implementations
that are based on the world models of human organizations. That is ML implementations
that are based on human organizations documented models of themselves in the world,
such as their business models and strategic plans. This is an important research gap as
many machine learning implementations are made by human organizations rather than by
individual people.

This important research gap is addressed in the remaining five sections of this paper.
Next, in Section 2, the world models construct is related to human organizations. This is
done in terms of the construct’s origins in psychology theory-building during the 1930s
through its applications in systems science during the 1970s to its recent applications in
computational neuroscience. Then, in Section 3, it is explained how human survival first
principles of interactions between energy and entropy influence organizational world
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models. In Section 4, a practical example is provided of how survival first principles lead
to opposing organizational world models. In Section 5, it is explained how opposing
organizational world models can constrain applications of machine learning. In Section 6,
principal contributions are stated, and directions for future research are proposed. Overall,
the paper highlights the influence of interactions between energy and entropy on organiza-
tions’ applications of machine learning. In doing so, profound challenges are revealed for
human-artificial intelligence systems.

2. World Models

In this section, developments of the world models construct are related to human or-
ganizations. In each subsection, notable developments in formalizing individuals’ models
of themselves in the world are described alongside chronologically corresponding devel-
opments in formalizing organizations’ models of themselves in the world. Individuals’
world models are embodied models of themselves in the world. These include some mental
models, but not all mental models need be included within world models. For example,
a person may have a mental model of prehistoric art as described to that person during
school lessons. Such mental models may not contribute to individuals’ internal model
of themselves in the world. By contrast, organizations’ world models are documented,
for example in business models and strategic plans that comprise their internal models of
themselves in the world.

2.1. Topological Psychology—Organizational Forecasting

Conceptualization of internal model and external world can be found in Kurt Lewin’s
topological psychology of the 1930s [1]. During the same decade, the economist, Ronald
Coase, considered interactions between the inside and outside of organizations: for example,
in terms of where companies should define their boundaries [15]. Development of the
world models concept took place in the 1940s through the work of psychologist Kenneth
Craik on the nature of explanations [2]. He wrote of small-scale mental models of external
reality that utilize knowledge of past events in dealing with the present and future. He
opined that small-scale mental models enable trying out alternative possible actions and
concluding which could be the best of them [2]. Also during the 1940s, organizations began
to develop forecasting models [16].

2.2. Evolutionary Psychology—Strategic Plans

Subsequently, in the 1960s, when considering evolutionary psychology, John Bowlby
opined that if an individual is to draw up a plan to achieve a set goal, the individual
must have some sort of working model of his environment, and must also have some
working knowledge of his own behavioral skills and potential [3]. In terms of human
organizations, this corresponds loosely with strategic planning practices required to model
an organization’s environment and its own capabilities in relation to the environment. These
can include analyses to map macroeconomic factors such as the political, economic, social,
and technological (PEST); five-forces analyses to map microeconomic forces (substituted
offerings, established rivals, new entrants, power of suppliers, and power of customers);
and analyses to determine one’s own internal strengths and weaknesses compared to
external opportunities and threats (SWOT) [17]. Such practices can contribute to the
development of organizations’ business models, which can provide structured descriptions
of how an organization will interact with its environment [18].

2.3. Psycho-Social Transitions—Business Models

Further developments of the world models construct took place in the 1970s in relation
to psycho-social transitions. In particular, Colin Murray Parkes [4] opined that people have
an assumptive world that comprises not only a model of the world as it is but also models
of the world as it might be. He opined that assumptive worlds encompass prejudices,
plans, and expectations, which can change due to changes in the life space. The term life
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space was coined decades earlier by Kurt Lewin, by which he meant the total psychological
environment that a person experiences subjectively but not necessarily consciously [19].
Parkes went on to propose that there can be three types of change in world models. One
type of change is that a world model may be modified and continue to influence behavior.
Another type of change is that a world model may be retained as an occasional determinant
of behavior. Alternatively, a world model may be abandoned and cease to influence
behavior [20]. In terms of human organizations, this corresponds loosely with issues in
business model innovation [21]. In particular, organizational survival can depend on
organizations changing their business models. However, business models can generate
self-reinforcing feedback loops [22], which can contribute to an organization failing due
to persisting with an old business model rather than changing its business model with a
changing environment [23–25]. One organizational behavior perspective, which originated
in the 1970s and can be applied to address this issue, is triple-loop learning. This involves
three feedback loops. In the first, organizations seek to align internal models with the
external world. In the second loop, internal models are revised to better fit the external
world. In the third loop, organizations can revise how they revise their internal models [26].

2.4. Neuroscience—Systems Models

Development of the world models construct moved towards neuroscience when
Parkes wrote about the capacity of the central nervous system to organize the most complex
impressions into internal models of the world, which allow us to recognize and understand
the world [27]. Similarly, organizational studies began to encompass neurological perspec-
tives, notably in Stafford Beer’s book, Brain of the Firm [28]. Moreover, world models were
considered in the context of system science by Jay Forrester who wrote: “Each of us uses
models constantly. Every person in private life and in business instinctively uses models for
decision making. The mental images in one’s head about one’s surroundings are models.
One’s head does not contain real families, businesses, cities, governments, or countries.
One uses selected concepts and relationships to represent real systems” [5]. At the same
time, world models were considered in control theory, when it was argued that internal
models need to resemble the systems that they are intended to control [6,29]. In the 1990s
and 2000s, notable studies by Thomas Metzinger focused on the self in world models. This
was reported in his book Subjekt und Selbstmodell [30], which was followed by several
papers in the 2000s in journals such as Progress in Brain Research [31]. During this time,
systems scientist, Peter Senge, argued for continuous adaptation between organizations
and environments [32]. Similarly, organizational theorist Karl Weick’s 1990s concept of
sensemaking provided a basis for the perspective that organizations need to adapt through
continuous learning [33]. The term sensemaking refers to an active process in which actors
enact their environment by isolating elements for closer attention, probing some activities
and seeing what responses they attract in order to deepen their insights. Sensemaking is
also retrospective because the meaning of actions is not known until they become lived
experiences [34].

2.5. Active Inference—Quality Management Manuals

More recently, development of the world models construct has led to a framing that
is applicable to natural and artificial agents [7,8]. This development follows some half a
century after artificial intelligence pioneer John McCarthy drew attention to the importance
of representations of the world in problem solving [35]. The recent framing [7,8] describes
individuals’ interactions with environments in terms of entropy [9–11]. This first principles
work provides examples of convergence between neuroscience concerned with world
models and organizational studies. In particular, triple-loop learning in organizational
studies [26] has some correspondence with homeostasis, allostasis, and metastasis in
psychology and neuroscience [36]. If successful, homeostasis regulates essential internal
variables at a set point (first loop). If homeostasis is not successful, allostasis can reorganize
input–output relations with the environment in order to restore a sustainable regulatory
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set point (second loop). If allostasis is not successful, there can be an explicit consideration
of failing implicit allostasis, and action can be taken to restore a sustainable regulatory set
point (third loop). However, if there is not an explicit consideration of allostatic failure,
metastasis can occur where regulatory processes are replaced by dysregulatory processes
(maladaptive third loop).

Furthermore, in the first principles’ framing of world models [7–11], Bayesian cycles
of perceptual, epistemic, and instrumental inference can exist [37–40]. Bayesian inference
involves assessing the probability of a hypothesis based on prior knowledge of things
that might be related to the hypothesis, and the updating of the hypothesis based on new
evidence as it becomes available [41]. Perceptual inference refers to inferring sensory stimuli
from predictions based on internal representations built from prior experience. Epistemic
inference refers to updating beliefs about how to survive in an environment. Instrumental
inference involves inferring action options and consequences in the environment. For
brevity, such inference can be described as active inference [40]. This first principles work,
which is led by neuroscientist Karl Friston, corresponds loosely with what organizational
theorist Karl Weick described in the 1990s as the active process of sense making [34].
Moreover, active inference corresponds loosely with the continuous improvement cycles
that organizations document in their quality management systems [42].

2.6. Embodied Personal World Models—Documented Organizational World Models

From the 1930s to the 2020s, a fundamental difference between the world models of
individual people and human organizations is that the world models of individual people
are embodied, while the world models of human organizations are documented in, for
example, business models, strategic plans, and quality management system manuals. In
computational neuroscience, efforts are ongoing to relate the active inference framework of
world models to machine learning [9–11]. Although this world model framework describes
individuals’ interactions with the world in terms of entropy [12–14], efforts to relate it to
machine learning have not previously considered how survival first principles of interac-
tions between energy and entropy influence the machine learning world models of human
organizations. That is machine learning models that are developed and implemented based
on, for example, human organizations’ documented business models, strategic plans, and
quality management practices. This is an important research gap as many machine learning
applications are made by human organizations rather than by individual people.

3. How Survival First Principles Lead to Opposing Organizational World Models

In this section, it is explained how survival first principles of interactions between
energy and entropy influence organizational world models. A survival first principle is
to maintain a positive energy balance by limiting the amount of energy lost to entropy.
This involves resisting the second law of thermodynamics by establishing boundaries
between internal states and external states. Establishing constraining boundary conditions
enables living things, including human organizations, to differentiate themselves from the
environment while being partially open to exchanges of information, matter, and energy
with the environment. Maintaining positive energy balance is inherently tied to having
boundaries [43,44]. In particular, living things construct their own constraining boundary
conditions so they are able to do the work needed to survive. Here, work refers to con-
strained release of energy within a few degrees of freedom. Release of energy within a
few degrees of freedom is necessary to prevent most energy being dissipated rapidly as
entropy. For practical purposes, entropy can be considered as overlapping information un-
certainty (information-theoretic entropy), physical disorder (statistical mechanics entropy),
and energy expenditure being lost in unproductive actions (thermodynamic entropy). For
example, a human organization with poorly defined boundaries in its strategic plan, busi-
ness model, and/or quality management system manual can experience much information
uncertainty about customer expectations. Accordingly, that organization can experience
much physical disorder in its efforts to meet customer expectations, which entails much
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energy expenditure being lost in unproductive actions. By contrast, constraining the release
of energy can enable much more work to be done with the same amount of energy [43,44].

Often, human formulation of boundaries can involve establishing borders, which
separate areas where energy is accessed more easily than in adjacent areas on the other side
of the border [45–47]. Human-made boundaries can entail ingroup love versus outgroup
hate [48] and ingroup humanization versus outgroup dehumanization [49]. Boundary-
based preferences can be deeply embodied in neurology [50,51]. They can entail related
preferences for the similar [52,53] and for the familiar [54,55]. Preferences for similar
people within familiar situations can become strongly related through homophily whereby,
metaphorically, birds of a feather seek to flock together, for example via so called Internet
echo chambers [56,57].

The need to balance energy input and energy output in exchanges across boundaries
between internal states and external states can manifest in instances of the principle of least
action [58], such as the principle of least effort during information seeking [59,60] and in
the principle of least collaborative effort in information exchanges involving people [61,62].
The principle of least effort and the principle of least collaborative effort can be served
by people paying more attention to their established internal models than by making
more effort by paying attention to changing external states. This can lead to organizations
having lock-ins [63] and path dependencies [64]. Paying more attention to internal models
than to external states can lead to exactly the same external information being interpreted
differently by different people in order to serve explanations that support their preconcep-
tions and confirm their biases: for example, in the opposing motivated social cognition
of so called culture wars [65,66]. Preference for least action to maintain own internal
models across opposing boundaries is congruent with argument that the development of
technology is driven by desire for own ease and for domination of others [67].

4. Example of Opposing Organizational World Models

Examples of opposing world models can be found in global food production, consump-
tion, and prosumption. The word, prosumption, is a portmanteau term, which summarizes
that people survive through a combination of production and consumption [68]. From the
everyday point-of-view of individual prosumers, the external state can be environments
that include a wide variety of organizations that offer different prosumption preference
options that are designed to target the preferences of particular groups, which they define
as market segments. This is done with the aim of making their offerings the prosump-
tion preferences of those particular groups. For example, two segments that have been
defined for the convenience food market are “kitchen evaders” and “convenience-seeking
grazers” [69]. Convenience food involves little production work as people perform some
minor tasks such as removing packaging. By contrast, preparing meals from home-grown
food involves a much higher proportion of production work. Some people will choose to
undertake a higher proportion of task work when that can keep them inside the boundaries
of their preferred socio-cultural group within which they believe they can best survive [70].
Thus, there can be interplay between preference for maintaining immediate positive energy
balance during tasks and maintaining overall positive energy balance by staying within
the boundaries of an ingroup. For brevity, these can be abbreviated to energy-positive
and ingroup-positive. These are the most fundamental of human preferred states, which
underlie a multitude of more transitory heterarchical prosumption preferences. The term,
heterarchical, refers to the potential for preferences to be ranked differently in different
situations at different times.

As summarized in Figure 1, active inference across triple loop learning can entail
heterarchical preference contests in the interface state between organizations in the external
state and individual prosumers’ internal states.
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Figure 1. Triple-loop learning in heterarchical preference competitions. Based on innate preferences
for energy-positive options and ingroup-positive options, prosumption preferences are inferred from
targeted and general preference options across triple-loop learning.

In the first loop, organizations can seek to maintain market equilibrium around a set
point: for example, high profit from high sales of convenience food. Organizations in the
external state can formulate choice architectures [71] to lead prosumers from awareness of
one of their products to involvement with their brand. This entails reinforcement teaching
to prosumers with the aim of prosumers’ reinforcement learning [72] that serves the goals
of the organization such as high consumption of convenience food.

In the second loop, an organization can seek to address homeostatic challenges, such as
high loss of prosumers to competitor organizations, through allostatic change. For example,
an organization could introduce a loyalty programme, which has step-by-step increases in
bonus rates and prosumer status in line with increased value of purchases. However, there
are limits to individual organizations’ reinforcement teaching of their predefined reward
functions to prosumers. For example, if one organization introduces a loyalty programme,
other organizations can quickly do the same through active inference. First, perceptual
inference that environment change threatens survival: in particular, customers are leaving
to a competitor that has introduced a loyalty programme. Next, epistemic inference
that survival in changed environment depends upon offering a rival loyalty programme.
Then, instrumental inference that survival depends on the new action of offering a loyalty
programme. However, when all organizations attempt new reinforcement teaching by
introducing loyalty programmes, there may be no survival advantage to any of them in
contests for prosumption preferences [73].

At the same time, prosumers can be prone to variety-seeking behavior, which can be
moderated by whether or not their prosumption is observed [74]. For example, when a
healthy food prosumer has little energy available, active inference may lead the healthy
food prosumer to get energy-dense food from the nearest possible source. First, there can
be perceptual inference that there is energy depletion that could prevent travelling to that
evening’s healthy food party. Next, there can be epistemic inference that it is acceptable at
a time of energy depletion to seek the nearest available source of energy-dense food. Then,
instrumental inference that it is time to go to get energy-dense junk food before there are
not sufficient energy resources to even stand up and move [75]. The nearest source could
be a petrol station selling junk food [76]. This source can be energy-positive but ingroup-
negative, because this prosumer seeks to survive within the boundaries of a healthy food
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community. Hence, if the prosumer notices that an ingroup member is unexpectedly close
by, for example buying petrol at the station, the prosumer may be impelled to expend
energy by walking passed the energy-positive but ingroup-negative source in order to get
to an ingroup-positive food shop. More broadly, people can just get bored with sourcing
resources to address their needs from already known organizations. Then, occasionally
and unpredictably, people can make an impulse purchase instead [77]. Hence, preference
contests are heterarchical because different innate needs can have primacy in different
situations at different times.

Human organizations in heterarchical preference contests can apply machine learning
in their efforts to gain competitive advantage against each other [78,79]. Yet, amidst
heterarchical preference contests, general preference options can emerge that can have a
determining influence over prosumption preferences. This can happen through culturally-
bounded rationality, within which heuristic decision-making due to imperfect information
and limited energy is based upon prevailing socio-cultural norms [80]. This can involve
mere-exposure conditioning, whereby repeated exposure to something leads to it becoming
part of the familiar background [81]. Rather than there being reinforcement teaching and
reinforcement learning of preferences through the targeted predefinition of specific rewards
(e.g. increasing loyalty programme bonus rate) and specific punishments (e.g. lower loyalty
programme bonus rate), there can be non-reinforced acquisition of preferences due to mere
exposure to the sociomaterial environment, such as a local retail landscape comprising
only convenience shops selling junk food. There can be mere-exposure effects and socio-
cultural norms from the combined presence of many organizations’ offerings of food-like
substances, which can lead to there being sensory ecologies where signals related to salt,
sugar and fat dominate sensory exchanges with the food environment [82,83].

Thus, heterarchical preference contests can take place in ecological traps where rapid
environmental change has led to preference for poor-quality habitats [84]. In particular,
where it has become the socio-cultural norm to minimize energy output and maximize
energy input through consumption of junk food: even when it is clear that this threatens
survival [85,86]. Here, it is important to note that humans are evolved to learn to minimize
energy expenditure through the regulation of movement economy. Hence, it can be ex-
pected that people will learn through repetitions of trial-and-error the shortest routes to
getting positive energy balance in their sociomaterial environment [87,88].

Yet, at the same time, organizations with world models that are opposed to junk food
can introduce triple loop learning initiatives to limit metastasis, such as the increasing
prevalence of survival threats from overconsumption of salt, sugar, and fat [89,90]. Such
initiatives can encompass food preference learning throughout life [91,92]. In preference
contests, organizations can develop choice architectures for healthier food alternatives [93].
At the same time, preference contests can include efforts to frame healthier food choices in
terms of bounded rationality [94]. In practical terms this can include initiatives to change
the sociomaterial environment from so-called food deserts into so-called food oases. This
involves healthier food options becoming available in areas where previously only highly
processed food were available [95].

However, triple loop learning initiatives for healthy food may not be successful if there
is insufficient consideration of innate preference for maintaining positive energy balance.
For example, food oases can be so called food mirages when the healthy food options are
not affordable and hence highly processed foods remain the only affordable option [96].
In terms of innate preferences, prosumers positive energy balance is facilitated by healthy
food being nearer in a newly set-up local food oasis. Yet, positive energy balance is not
facilitated if prosumers have to expend more energy by working more to earn the money
to buy the more expensive healthy food. Also, triple loop learning initiatives may not be
successful if there is insufficient consideration of innate preference for maintaining overall
positive energy balance by staying inside the boundaries of an ingroup situated within
the borders of a particular area. This can happen when establishing a food oasis leads to
the gentrification of the area and the local population has to disperse because it cannot
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afford to pay housing rents. Hence, there can be local opposition to the introduction of local
provision of healthy food options [97]. In their efforts to prevail in triple loop preference
contests, human organizations seeking to increase access to healthier food options can apply
machine learning [98,99], while organizations that they are in opposition to are already
applying machine learning in efforts to enable their own survival.

In summary, preference options can come to prosumers from individual organiza-
tions’ reinforcement teaching that is designed through individual organization’s active
inference. Preference options can also come to prosumers from mere-exposure effects in
sociomaterial environments. These can emerge from many organizations’ designing similar
preference options through active inference. The extent of reinforcement learning from
reinforcement teaching and non-reinforced learning from mere-exposure effects depends
on prosumers’ situated active inference as determined by, for example, prosumers’ phys-
ical borders and their ingroup boundaries. Subsequently, prosumers’ dynamic selection
of preference options is carried out through their active inference as influenced by, for
example, energy depletion and ingroup observation. Throughout, human organizations
that are in opposition to each other can be applying machine learning [78,79,98,99]. They
apply machine learning, and other technologies, in accordance with their own documented
world models, for example their business models, strategic plans and quality management
system manuals, as they compete against each other in efforts to enable their own survival.

5. How Opposing Organizational World Models Constrain Machine Learning

There are ongoing efforts to relate the active inference framing of world models to
ML [9–11]. Although this world model framing describes individuals’ interactions with the
world in terms of entropy [12–14], efforts to relate it to machine learning have not previously
considered how human survival first principles of interactions between energy and entropy
influence the machine learning world models of human organizations. Furthermore,
these efforts have not addressed the different levels of effects that organizations can seek
from applications of ML. In particular, organizations can apply machine learning (ML) in
efforts to bring about automational, informational, and/or transformational effects [100].
Automational effects can involve human labour being substituted by ML. Informational
effects can emerge from ML providing information to support human decision making.
Transformational effects refer to the potential for ML to support radical change. Another
short-coming of efforts to relate the active inference framing of world models to ML is lack
of consideration of the limiting influence of ingroup—outgroup opposition on potential to
bring about automational, informational and transformational effects. Opportunities and
limitations to bring about the three potential effects are related to triple loop learning in the
following paragraphs.

5.1. Automational Effects

ML can be applied to reduce human labour in data analyses when there are well-
defined inputs that are related to well-defined outputs, and large digital data sets exist
or can be created containing input-output pairs. Accordingly, ML automational effects
could contribute to single loop learning, which aims to keep regulation of inputs from the
environment and outputs to the environment around an existing set point. For example,
ML automational effects could be applied to extend and accelerate data analyses related to
assessing the efficacy of established food programmes implemented across society [101].
That is provided those programmes are not the focus of opposing ingroup-outgroup
exchanges about goals [102]. This can be a major limitation for application of ML because
ML works well when goals can be clearly described, and this is difficult when there are
opposing beliefs across society about goals [103].

5.2. Informational Effects

ML information effects could contribute to double loop learning when there is a need
to reorganize input-output relations to enable regulation around a new more sustainable
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set point. However, informational effects can be hindered by ongoing argument about
the explainability of ML models and their outputs [104]. Moreover, ML can be difficult to
implement if there are long unpredictable chains of causal interactions that do not facilitate
automated collection of large sets of perfectly labelled training examples. This could be an
intractable difficulty if opposing ingroup-outgroup exchanges limit agreed definition of
causal interactions, for example, related to food programmes [105,106]. Even if everybody
on both sides of boundaries has the same understanding of information provided by ML
that does not ensure that those people will agree on what should be done on the basis of that
information. Rather, ingroup versus outgroup motivated cognition can entail intractable
ongoing dispute that is informed by exactly the same information [63,64,107,108]. Apropos,
healthy food initiatives are not likely to involve prosumers who assess new food preference
options with impartial model-based optimization decision-making that is entirely free from
the influence of their existing beliefs. For example, optimization of decision-making that
is based on an impartial decision model, which compares satisfaction level from current
prosumption preferences against costs involved in changing to a new potential preference
option [109]. Instead, when new preference options could involve moving outside of the
boundaries of the current ingroup, persistence with belief-based preference decisions can
have the characteristics of deontology that eschews consequentialism [110].

5.3. Transformational Effects

ML transformational effects could contribute to triple loop learning that can establish
a new more sustainable set point around which regulation can be based. For example,
Bayesian ML may have some potential to improve analyses of wicked problems. Those are
complex problems that are characterised by stakeholder disagreements on the definition and
character of these problems and their possible resolution. The problem of how to improve
food prosumption to prevent global epidemics of obesity and chronic diseases [89,90] can
be characterized as being a wicked problem. It has been argued that Bayesian ML can
contribute to learning the structures and parameters of wicked problems [111] and, as
summarized in Figure 1, Bayesian inference is fundamental to triple loop heterarchical
preference competitions. However, it is unlikely that there can be explainability and
acceptability of outputs from such application of ML unless there is diverse human input
into a Bayesian Network Model to which ML can be applied.

This is possible as people who are not computer scientists can be involved in the
participatory design of technology deployments that involve automated data collection
with sensors [112]. In addition, there can be so called participatory sensing when sensing is
dependent upon observations being made by people [113]. This can be facilitated through
so-called citizen observatories that deploy citizen science methodologies [114]. As well as
data collection, citizen scientists can lead the ideation and implementation of improvement
initiatives [115]. However, ML has limited potential to learn structure and parameters
of wicked problems as they change quickly through accumulating non-linear setbacks or
small wins. This is because ML is not well-suited to the analyses of phenomena that change
rapidly [116]. Small wins are concrete, completed, implemented outcomes of moderate
importance. Wicked problems can be resolved through small wins because proposals for
small incremental steps are less likely than proposals for large-scale radical change to stir
up great antagonisms and paralyzing schisms. Nonetheless, small wins have the potential
to accumulate into a series of small wins that may result in transformative change [117].

Although ML has limited potential to keep up with the overall non-linear progress of
small wins in resolving wicked problems, ML can contribute to improving the performance
of transformational technology implementations that can bring about small wins. For
example, mobile retailers can satisfy innate preferences for energy-positive ingroup-positive
acquisition of healthy food. This is because healthy food is brought to where prosumers
are without bringing gentrification of the areas where they visits. Yet, the affordability
of healthy food from mobile retailers depends upon optimizing product mixes and route
plans [118]. These are well-established types of ML applications [119,120], which can bring
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ML automational effects and ML informational effects to support transformational effects
from mobile retailing that is ideated and implemented by people.

6. Conclusions
6.1. Principal Contributions

World models is a construct that is used to represent internal models of the world. It is
an important construct for human-artificial intelligence systems, because both natural and
artificial agents can have world models. The term, natural agents, encompasses individual
people and human organizations. Many human organizations apply artificial agents that
include machine learning. Although the active inference world model framing describes
individuals’ interactions with the world in terms of entropy [12–14], efforts to relate it to
machine learning have not previously considered how survival first principles of interac-
tions between energy and entropy influence the machine learning world models of human
organizations. Thus, this paper addresses an important research gap as many machine
learning applications are made by human organizations rather than by individual people.

First, the world models construct has been related to human organizations. This has
been done in terms of the construct’s origins in psychology theory-building during the 1930s
through its applications in systems science during the 1970s to its recent applications in
computational neuroscience. In doing so, similarities between research related to individual
people and research related to human organizations have been revealed. For example,
SWOT analysis to determine internal strengths and weaknesses compared to external
opportunities and threats was formalized in the 1960s [121]. Similarly, John Bowlby opined
in the 1960s that if an individual is to draw up a plan to achieve a set-goal the individual
must have some sort of working model of his environment, and must also have some
working knowledge of own behavioral skills and potential [3]. Another notable similarity is
between Weick’s action-orientated sensemaking and the active inference framing of world
models. There is ongoing convergence between them as narrative and storytelling are
important in sensemaking [122,123], and narrative and storytelling are being relating to
active inference world models [124]. With regard to implementations of ML, the important
characteristic of organizations’ world models is that they are documented, for example in
strategic plans and quality management system manuals. It is such documents that define
when, where, and how organizations develop and implement ML.

Second, it has been explained how survival first principles of interactions between
energy and entropy influence organizational world models. In particular, survival depends
upon maintaining a positive energy balance, and maintaining a positive energy balance
is inherently linked with establishing boundaries. Human-made boundaries can entail
ingroup love versus outgroup hate [48] and ingroup humanization versus outgroup de-
humanization [49]. Moreover, preference for least action to maintain own internal models
across opposing boundaries is congruent with argument that the development of technol-
ogy is driven by desire for own ease and for domination of others [67]. Third, a practical
example has been provided of how survival first principles lead to opposing organizational
world models in global food prosumption. The example illustrates the many opportunities
for applying machine learning, such as in customer loyalty programmes and in improving
access to healthy food. However, machine learning is applied by opposing organizations as
they compete against each other in their efforts to enable their own survival.

Fourth, as summarized in Table 1, it has been explained how opposing organizational
world models can constrain applications of machine learning. For example, ML automa-
tional effects could contribute to single loop learning, but this potential can be limited by
opposing ingroup-outgroup exchanges about goals. In addition, ML information effects
could contribute to double loop learning, but this potential can be limited by opposing
ingroup-outgroup exchanges that can confound definition of causal interactions. Moreover,
ingroup versus outgroup motivated cognition can entail intractable ongoing dispute that is
informed by exactly the same information. Furthermore, ML transformational effects could
contribute to triple loop learning, but such potential is limited by ingroup versus outgroup
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stakeholder disagreements on the definition and character of wicked problems and their
possible resolution. Thus, there are profound challenges for human-artificial intelligence
systems that involve machine learning implementations based on organizational world
models. Overall, this paper complements recent research that has focused on how opposing
positions of individuals can limit the potential of machine learning [125].

Table 1. ML implementation constraints.

Effect Type Example Constraint

Automational effects,
e.g., some work conducted by
ML instead of by people

Data analyses related to an
assessment of the efficacy of
food programs

ML works well when goals
can be clearly described, but
this is difficult when there are
opposing beliefs about goals

Informational effects,
e.g., ML provides information
that can support human
decision making

Information from comparative
analyses of healthy food
initiatives

Definition of causal
interactions can be
confounded by opposing
ingroup-outgroup exchanges

Transformational effects,
e.g., ML supports radical
change in products and/or
processes

Addressing wicked problems
in global food prosumption

Stakeholder disagreements on
the definition and character of
wicked problems

6.2. Directions for Future Research

Future research could involve deliberative integration of organizational studies and
computational neuroscience in development of the world models construct. This can be
important to make explicit alignments and misalignments between organizations’ world
models and machine learning world models. This could involve concurrent development
of organizational triple loop learning and machine learning transformational effects across
otherwise opposing boundaries. Such research can draw upon innovations in machine
learning development, which may have better potential to model the non-linear dynamics
of wicked problems [126,127] that emerge as human organizations try to survive through
active inference in a changing world.

Future research could also consider to what extent existing formulations related to
explainable artificial intelligence (XAI) are useful when organizations seek explanations
that support their documented world models, such as their business models, strategic plans,
etc., which are in opposition to the world models of other organizations. For example,
trust in artificial intelligence can depend upon progressing from explainability, through
transparency to interpretability. Explanability involves development of post-hoc models to
explain ML models that would otherwise be opaque “black box” models. Transparency
involves introduction of “glass box” models, which have structures and processes that are
visible to humans. Beyond explainability and transparency is interpretability, which in-
volves humans being able to interpret directly ML models and their functioning. However,
interpretability is not sufficient to transcend opposing machine learning world models.
That is machine learning development and implementation that is based human organi-
zations’ opposing world models as set-out in their business models, strategic plans, etc.
Rather, agreeable ML is required that transcends opposing machine learning world models.
Yet, this will require more than improving ML. Rather, human organizations will need to
recognize the influence of survival first principles that entail forming boundaries in order
to resist locally the tendency towards maximum entropy. Then, human organization will
need to generate new alternatives to resisting the tendency towards maximum entropy.
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