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A low‑profile wideband 
compressed single‑arm spiral 
antenna array for mid‑band 5G 
beam steering applications
Benjamin J. Falkner1*, Hengyi Zhou1, Wei Zhang1, Georgios Metaxas1, Amit Mehta1*, 
Volker Ziegler2,5, Thomas Multerer2,5, Dariush Mirshekar‑Syahkal3,5 & Hisamatsu Nakano4,5

A low profile wideband spiral antenna array is presented for global mid-band 5G beam steering 
applications. In the global rollout of mid-band 5G, different frequencies have been licensed within 
each region (e.g. 3.4–3.8 GHz in the EU and 3.7–5 GHz in the USA). Therefore, antenna arrays must 
be able to cover a bandwidth of 3.3 GHz to 5 GHz to provide true global coverage. Initially, this work 
presents the design of a wideband compressed spiral antenna that provides an axial beam throughout 
its operational bandwidth of 3.3 GHz to 5 GHz, enabling beam steering functionality. Then, this 
antenna has been placed in a 4 × 4 array with a triangular lattice. The proposed spiral antenna array can 
provide a scanning range of − 40° ≤ θ ≤  + 40° in all azimuth directions with an average back lobe level of 
less than − 9.5 dB. This development will allow for low-cost integration of 5G systems for global use, 
such as passenger aircraft, UAVs, drones, and marine and ground vehicles.

The fifth generation (5G) mobile network is at the cusp of becoming the dominant form for wireless communi-
cation and internet access. Its advantages over previous generation cellular technology in speed and latency are 
already enabling new applications of big data and edge-cloud cooperation. However, in order to enable effective 
adoption of this technology across all industries, it is vital that integration of 5G communication is simple, low 
cost and comprehensive.

Aerospace and terrestrial multi-point high-throughput links are becoming a particularly challenging, but 
potentially groundbreaking new use cases for 5G communication. For instance, the internet access currently 
served to aircraft today is delivered via air-to-ground and satellite hybrid networks such as the European Avia-
tion Network1. However, such networks provide limited internet speeds up to 50 Mbps to be shared between all 
passengers and necessary aircraft communication. By implementing 5G in place of these LTE networks, data 
rates and latency can be improved by an order of magnitude2. Not only does this grant a better experience for 
passengers for streaming and communication but allows for live data transfer between the aircraft systems and 
ground services. Such data will enable live remote analysis on the cloud to improve the efficiency, safety, and cost 
of air travel3–5. Furthermore, this data can be sold to third parties such as climate and meteorological research. 
Unmanned Aerial Vehicles (UAVs) and drones can similarly benefit from wideband 5G coverage as it will enable 
autonomous drones that can operate cross-border in any region of the world6.

Yet, to enable these benefits effectively there are several technical requirements in relation to the antenna per-
formance and design. First, the size and complexity of the design is a key factor of success. A large and complex 
design can lead to incredibly high fuel costs over the lifetime of the aircraft or an inability to integrate the antenna 
all together (especially in the cases of UAVs). Hence, attention must be paid to the SWaP-C (Size, Weight, Power 
and Cost) factor of the design in order ensure it is suitable for productization. Reducing the profile of antenna 
array must therefore be a priority in order to ease integration and retrofitting while maintaining minimal drag. 
Secondly, wideband coverage is vitally important for complete global compatibility. While 5G has been predomi-
nantly standardized, the frequencies licensed in each region differ (e.g., 3.4–3.8 GHz in the EU and 3.7–5 GHz 
in the USA)7. As such, in order to cover 5G globally with a single system, a bandwidth from 3.3 GHz to 5 GHz8 
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at a minimum is required for mid-band 5G, even though only approximately 0.4 GHz bandwidth is necessary 
in any one location and its corresponding band. High gain beamforming is also necessary in order to effectively 
receive and transmit high speed communication over long distances. This further complicates the array design.

Planar wideband antenna arrays are the obvious choice to meet these requirements. However, previous such 
proposals have encountered a number of challengers that have impeded the development of such a solution. 
Indeed, existing single element designs such as slotted patches9–12 can provide reasonable bandwidth (< 35%), 
and more complex topologies such as spiral antennas13–15, using a traveling wave model, can offer even greater 
bandwidth coverage (> 50%). However, among these designs the radiation pattern direction can vary drastically 
across the operational bandwidth. This may be perfectly acceptable for many applications and, indeed, has been 
successfully exploited for many switch beam steering topologies16–18. Alas, for applications such as 5G and LEO 
satellite communication where array beam steering is required, such variation in unit element beam pattern will 
heavily restrict the beam steering capabilities of the array. Additionally, wideband beamforming performance 
will always be impacted by the physical geometry of the array structure as the optimal element distance will 
change with frequency. Careful optimization of the array geometry is therefore required to ensure consistent 
gain and steering performance across the bandwidth. To the best of our knowledge, it is for these reasons that 
there are currently no documented planar spiral antenna arrays capable of providing the wideband beam steering 
performance presented in this work while maintaining a low profile design.

For instance, some topologies of spiral antenna arrays have been developed that are capable of providing a 
wide operating bandwidth19,20. However, they lack good beam steering due to the large element size and variation 
of unit element radiation pattern over frequency. A wideband spiral antenna phased array designed by Fang.19 
demonstrates the challenges mentioned previously and emphasizes that beam steering performance is signifi-
cantly affected by the variation in unit beam pattern over the operational bandwidth. As mentioned earlier, the 
array pattern is also impacted by the distance between array elements, and indeed the unit element in the Fang’s 
work19 is larger than λ/2 for most of the operational band. Further, in both Fang’s design19 and a wideband array 
designed by Hovsepian20. 4-arm spiral is used that requires a complex feeding structure/network that increases 
the cost of the system. Another wideband antenna array presented by Hinostroza Sáenz21 uses a simpler 2-arm 
spiral design that is more compact than that of other existing designs19,20 and is therefore able to reduce the ele-
ment spacing to < λ/2. This allows for steering across its bandwidth up to ± 30°. Nevertheless, modern aerospace 
applications now need beam steering across a range greater than ± 30° not met by Hinostroza Sáenz’s work21. 
Further, to maintain the small antenna diameter and large bandwidth a thick cavity structure (0.35λmax) has been 
required. Hence, the high drag area of the antenna structure means that even with the reasonable performance 
demonstrated in Hinostroza Sáenz’s work21, the design would be unsuitable for applications such as aerospace 
and UAVs. Such restrictions, similarly, pose system integration challenges in other new terrestrial high through-
put applications. For example, high throughput Low Probability of Interception (LPI), which is presented as an 
application at the end of the paper.

Dipole designs such as those presented by Hangyu Zhang22 and Jian Xu Sun23 prove very capable at deliver-
ing bandwidths greater than 120% with suitable beamforming capability for 5G applications. However, in order 
to achieve such performance, these both rely on an antenna array heigh greater than 0.5λmax. Again, these are 
therefor challenging to integrate in many applications.

To solve these challenges, in this paper, a low-profile (< 0.13λ5GHz), compressed spiral antenna array is 
presented with wideband functionality covering 3.3–5 GHz. This work expands on an antenna design previously 
developed by the authors of this paper24. Here, the optimisation process of this antenna is fully detailed. Further, 
this element is placed in a 4 × 4 array prototype that is optimised with a triangular topology that provides excep-
tional scanning capability across the operational bandwidth. This optimised topology is greatly enhanced over 
the initial antenna array design24 and is a key achievement of this work. Here, measurements of this prototype 
are presented, analyzed, and compared against existing works. With is further optimisation, this work is the first 
fully documented low profile wideband single-arm spiral antenna array with this level of beam steering perfor-
mance. Crucial to this work, the spiral antenna element is compressed (spiral diameter < 0.35λmax) such that it 
provides an axial beam across all operational frequency bands. In summary, this work enables global mid-band 
5G with a single, low profile antenna array. The antenna element design and optimization are detailed in Section 
II. In Section III this proposed spiral antenna element is placed in a 4 × 4 triangular lattice array, enabling beam 
steering functionality. The array provides elevation steering of − 40° ≤ θ ≤  + 40° at all azimuth angles. The array 
has then been fabricated and its performance has been measured and analyzed with a bespoke beamforming 
network. Additional applications and implementation of this work is also provided.

Antenna element design
Antenna element structure.  A wideband compressed spiral antenna element has been designed and fab-
ricated, providing an axial beam at all target operating frequencies. These properties have been achieved in a 
low-cost low-profile (< 0.13λ5GHz) design. Figure  1(left) shows the geometry of the design. The antenna is 
constructed using a stratified medium of three layers. The antenna spiral pattern is milled onto a 1.5 mm thick 
Rogers RO4350b substrate (εr = 3.48 and δ = 0.0037) at the top of the structure. Added below this is a thicker 
4.59 mm layer of Delrin plastic (εr = 2.6 and δ = 0.005). This layer is used as it is low-cost and easy to manufacture 
into a single thick layer, and its permittivity of εr = 2.6 allows the antenna to be of lower profile compared to an 
equivalent effective layer of air. Finally, a 1.6 mm layer of FR-4 (εr = 4.8 and δ = 0.025) with a copper plating on 
its underside is used as a light-weight ground plane. The net height of the spiral antenna is h = 7.69 mm. An SMA 
connector is used to feed the spiral arm from the bottom of the antenna.

This Archimedean spiral antenna element has a radius of 10.2 mm and a strip width of 1.83 mm. The spiral 
element has been constructed using the Archimedean spiral equation:
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In this design, the spiral amplitude (a) has been set to 0.41 mm/rad and the number of turns (T) has been set to 
4.13. This optimized geometry was achieved after several iterations for achieving a stable pattern across a wide 
frequency band. These optimization iterations are presented in the following section.

Spiral compression and height optimization.  Compressing the spiral element is a key design feature 
that has enabled wideband coverage (> 40% bandwidth) whilst maintaining an axial beam. Figure 2 displays an 
orthographic radiation patterns of an optimized antenna design with a spiral amplitude of a = 0.41 mm/rad, a 
reduced amplitude of a = 0.32 mm/rad and an uncompressed amplitude of a = 0.65 mm/rad. For all of these vari-
ations, a constant ground plane diameter of 50 mm has been used. For a clear comparison, adjustments in the 
number of turns in the spiral and their orientation have been done to maintain a consistent central frequency of 
4 GHz and a broadly close spiral arm end point. Specifically, for the case when a = 0.32 mm/rad, the number of 
turns is increased to T = 4.6 and inversely, when the amplitude of the spiral is increased to a = 0.65 mm/rad, the 
number of turns is reduced to T = 3.75.

As can be seen in Fig. 2, the selected optimal spiral configuration of a = 0.41 mm/rad produce a nearly con-
stant axial beam across the band of interest. Both pre-optimal a = 0.32 mm/rad and post-optimal (a = 0.65 mm/
rad) have pattern deviation from the center. This stable axial beam with frequency will significantly improve the 
steering performance in an array. Further, it was found that the spiral amplitude and turn variations impacted 
the resultant reflection coefficient bandwidth. The reflection coefficients of these spiral amplitude variations 
are presented in Fig. 3. Here it is shown that it is only the optimal design that is able to provide a bandwidth of 
3.3–5.25 GHz, which exceeds our targeted applications. The most compressed model (a = 0.32) has a limited 
bandwidth of 3.5 GHz to 4.8 GHz and the uncompressed model provides a single bandwidth from 3.6 GHz to 
4.8 GHz. Aside from the compression of the antenna, the thickness of the substrate is another key factor for the 
radiation pattern stability and is also investigated next.

Figure 4 displays the radiation pattern variation of the optimal spiral as its substrate height is changed from 
3.7 mm to 11.7 mm across the target frequency band. The unit pattern remains constant when the substrate 
is thin (< 0.11λcentre), but it tilts away from the broadside at higher frequencies when the substrate thickness 
increases beyond 0.11λcentre. However, as with any planar antenna, the substrate thickness plays an important 
role in the antenna impedance bandwidth. This can be seen in Fig. 5. Indeed, considering Fig. 5, the height 
7.7 mm provides the largest bandwidth and a stable axial radiation across the targeted band. Therefore, it was 
selected for the test design.

Single‑arm spiral simulation and experimental validation.  A prototype of the optimal antenna ele-
ment has been fabricated and measured (Fig. 6). The simulated and measured reflection coefficients of the opti-
mal antenna element are shown in Fig. 7, which are in good agreement. The antenna has a reflection coefficient 
(S11) bandwidth of 3.3 GHz to 5.25 GHz. The simulated S11 remains below − 10 dB across the entire bandwidth. 
The measured results match this well, though increase slightly to − 8.7 dB at 4.6 GHz. This can be due to fabrica-
tion errors and material tolerances. The antenna prototypes have been measured using a Rhode and Schwartz 
ZVA 4025.

The simulated and measured results which are in good agreement as shown in Fig. 8 verify that the radiation 
pattern of this antenna element remains axial across the bandwidth 3.3 to 5 GHz. The gain is 6.22 dBi at 3.3 GHz 
and increases slightly to 6.42 dBi at 4 GHz, and finally drops to 4.31 dBi at 5 GHz. This gain drop at 5 GHz is 
negated by a natural increase in array gain with frequency due to the longer electrical distance between elements 

r = aφ

where
π

2
< φ < T × 2π

1.83mm

10.2mm

50mm

7.69mm

1.6mm

1.5mm

Figure 1.   Compressed spiral antenna, its dimensions and top view and side view (left) alongside the perspective 
and bottom view (right).
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in the array, as shown later in this work. In other words, a reduction in the unit element gain at high frequencies 
will lead to a more consistent array gain over the bandwidth.

The polarization of the compressed spiral antenna was found to remain elliptical across its operating band-
width due to its compact design. Figure 9 displays the horizontal and vertical polarisation components of the 
antenna over the operating frequency band. From 3.3 GHz to 4 GHz, these component values remain close 
(Difference < 1.5 dB), as it does from 4.8 GHz to 5 GHz. Between 4 GHz and 4.8 GHz, the horizontal component 
becomes the primary component and the difference between these reaches 3.2 dB at 4.5 GHz. This polariza-
tion profile is suitable for terrestrial communication. While there is some change in the polarisation over the 
frequency band, this can be resolved by choosing a circularly polarized antenna or a spiral element of the same 
design at both the base station and the user terminal. The array analysis of the single-arm spiral, its applications 
and its benefits are presented in the following section.

a = 0.32 mm/rad

T = 4.6

a = 0.41 mm/rad 

T = 4.13

(optimal)

a = 0.80 mm/rad

T = 3.75
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Figure 2.   Orthographic radiation patterns of the compressed spiral antenna with a spiral amplitude of 
a = 0.32 mm/rad, a = 0.41 mm/rad, and a = 0.6 mm/rad across the frequency bandwidth. The optimal design 
(a = 0.41 mm/rad) shows minimal deviation from the broadside direction.

Figure 3.   Reflection coefficients of the three-spiral antenna with spiral amplitudes of a = 0.32 mm/rad, 
a = 0.41 mm/rad and a = 0.65 mm/rad. Only the optimized model with amplitude a = 0.41 mm/rad provides the 
required bandwidth for the targeted application.
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Figure 10 displays the simulated radiation efficiency and total efficiency of the optimal spiral antenna element. 
The radiation efficiency is approximately 0.35 dB across the whole bandwidth. The total efficiency remains above 
0.8 dB for the entire operational bandwidth. This is suitable for most modern applications.

Compressed single‑arm spiral antenna array in a triangular lattice design
4 × 4 array design.  The compressed spiral antenna has been placed in a 16-element array configuration 
in a triangular lattice structure (Fig. 11). This array topology ensures that all neighboring elements have equal 
distance in all directions, thus reducing the grating lobes when the beam is steered (compared to a square lat-

Freq.  

Height
3.3 GHz 4 GHz 5GHz

3.7 mm

(0.05λcentre) 

5.7 mm

(0.08λcentre) 

7.7 mm

(0.11λcentre) 

(selected)

9.7 mm

(0.13λcentre) 

11.7 mm

(0.16λcentre) 

Figure 4.   Orthographic radiation patterns of the optimal spiral antenna where the height of the substrate has 
been varied from 3.7 mm to 11.7 mm with a constant amplitude of a = 0.41 mm/rad and a number of turns of 
T = 4.13.

Figure 5.   Reflection coefficients of the optimised spiral design with substrate height variation from h = 3.7 mm 
to h = 11.7 mm.
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Figure 6.   Prototype of compressed spiral antenna; left: front and right: back view.

Figure 7.   Reflection coefficients for the simulated model and measured prototype of the antenna.
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Figure 8.   Radiation pattern polar plot cuts of the antenna element at ϕ = 0° and ϕ = 90° at (a) 3.3 GHz, (b) 
4 GHz, (c) 5 GHz. The beam remains axial across all required frequencies.
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tice design)26,27. Figure 10. shows the array design and the fabricated prototype. The inter-element distance is 
selected to be 30 mm (varying from 0.33λ3.3 GHz to 0.5λ5GHz). As the compressed spiral element provides an 
axial beam, this array configuration was found to be able to provide a scanning range of − 40° ≤ θ ≤  + 40° from the 
broadside (Section C). Indeed, it was found that the average grating lobe levels were better than − 12 dB for + 20° 
scanning, better than − 11 dB for + 30° scanning and better than − 9.5 dB for + 40°, respectively. These all meet the 
terrestrial communication needs, which are highlighted in the application section later.

Figure 12a displays the simulated and measured reflection coefficients of the array when port 1, 6 and 11 are 
excited. The results are in good agreement and show an adequate reflection coefficient bandwidth ranging over 
3.3 GHz to 5 GHz. At a few ports the reflection co-efficient was close to − 7 dB. This was due to mutual coupling, 

Figure 9.   Polarisation components (in the Ludwig 3 coordinate system) of the antenna directivity in the 
broadside direction.

Figure 10.   Simulated efficiencies of the optimised spiral design.
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Figure 11.   Compressed spiral antennas in a triangular lattice array. (a) Design diagram with dimensions and 
some port locations. (b) Side and back view of the antenna array design. (c) Fabricated prototype.
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however, for terrestrial applications it does not affect the overall link budget as the minimum acceptable criteria 
for S11 is − 6 dB (75% transmission).

Figure 12b presents the isolation between three pairs of neighboring elements, i.e.: 1 and 2, 6 and 7, and 11 
and 12. It was found that the isolation remains below − 15 dB for most of the operational bandwidth, increasing 
to − 12.2 dB at 3.9 GHz for S7,6 and S12,11. Again the simulated and measured mutual coupling results were 
found to be better than − 10 dB cut off criteria. Isolation could be further improved at lower frequencies by the 
use of a via structure, slotted ground plane28 or the addition of a meta surface substrate or superstrate29,30.

Antenna feeding network and beam steering measurement
To experimentally examine the beam steering capability of the fabricated array, a feeding network was developed. 
This feeding network splits the main RF power into four feeding arms. Four phase shifters [P1–P4] are added to 
these four arms to produce four different phases (β1–β4) in the four columns of the array as shown in Fig. 13a. 
This allows for elevation beam steering along the x-axis only. In the final operation, individual phase shifters 
per element using RFICs31 can be implemented to enable full azimuth coverage. In this work we used two sets 
of phase shifters. One set of MACOM MAPS-010164 digital phase shifters were used up to 3.8 GHz and then 
MACOM MAPS-010165 phase shifters were used at higher frequencies from 3.8 to 5 GHz. Figure 13b shows the 
bespoke 1–4 Wilkinson’s power divider design, and its fabricated prototype is shown in Fig. 13c.

The set-up for the array radiation pattern measurement is shown in Fig. 14. The main RF is split to 16 feeding 
arms in group of four, each feeding one column. The 1–4 power divider s-parameters are presented in Fig. 15. 
As expected, the simulated results are close to − 6 dB across the operational bandwidth. The measured results 
match the simulated results.

Simulated {── S1,1 ── S6,6 ── S11,11}

Measured {- - - S1,1 - - - S6,6 - - - S11,11}

Simulated {── S2,1 ── S7,6 ── S12,11}

Measured {- - - S2,1 - - - S7,6 - - - S12,11}

(a) (b)

Frequency (GHz)

dB

Frequency (GHz)

dB

Figure 12.   S-parameters of the triangular lattice array. (a) Reflection coefficients of ports 1, 6 and 11. (b) 
Isolation between selected ports and neighboring elements 2, 7 and 12.
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Figure 13.   The prototype feeding network, (a) feeding network topology, (b) 1–4 Wilkinson power divider 
design, (c) 1–4 power divider prototype.
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Antenna array beam steering results
The simulated beamforming performance of the array in Fig. 16 demonstrates the steering capability of the 
antenna array for 3.3 GHz, 4 GHz and 5 GHz across the azimuth planes ϕ = 0°, ϕ = 45° and ϕ = 90°. The phase 
shift values used to achieve the results are shown in Table 1. The simulated gain in the broadside direction of 
the array varies from 13.9 dB at 3.3 GHz to 16.1 dB at 5 GHz. The array has a radiation efficiency of greater than 
88% in all beam steering directions across all operational frequencies.

The measured radiation patterns of the array including the bespoke beamforming network are also displayed 
in Fig. 16 for elevation steering. They are in good agreement with the simulated results while normalized to avoid 
the impact of losses in the feeding network. An important aspect to note is that the spiral array provides a wide 
bandwidth steering in which the gain varies by less than 3 dB from θ = 0° to θ = 40°, across all frequencies. The 
grating lobes vary between 11.7–8.7 dB (average grating lobe level of − 9.5 dB), which is better than the required 
value for terrestrial communications. There is an anomalous presence of one specific side lobe at θ = − 45° when 
steering to the boresight direction in the measured results beyond 4 GHz, which is not present in the simulation 
results. This is likely due to presence of 1–4 power dividers being close to the array, causing some reflection.

Table 2 displays a comparison between this work and other relevant array works. The design presented 
here provides a number of key advantages simultaneously, an ad. It provides a bandwidth > 40% while allowing 
for complete azimuth beamforming and steering to ± 40° across the entire antenna bandwidth. This has been 
achieved in a highly compact structure far smaller than most existing spiral array designs. Furthermore, the spiral 
presented here is a single arm design and is therefore simpler to integrate with a feeding network.

Figure 14.   Radiation pattern measurement set-up for the prototype compressed spiral antenna array including 
the feeding network. Each antenna path is of equal length.

Simulated: {── S21 ── S31 ── S41 ── S51}

Measured: {---- S21 ---- S31 ---- S41 ---- S51}

Figure 15.   Simulated and measured s-parameters of the 1–4 power divider.
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Simulated: { ── θ = -40°   ── θ = -20°   ── θ = 0°   ── θ = 20°   ── θ = 40° }

Measured: { • • • θ = -40°   • • • θ = -20°   • • • θ = 0° } 
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Figure 16.   Steering performance as evaluated through simulation and measurement for the 16-element 
antenna array at ϕ = 0° and ϕ = 90°. Measured data has been normalized in order to remove the impact of feeding 
network losses.

Table 1.   Phase shifting values used for beam steering results shown in Fig. 14.

Frequency 3.3 GHz 5 GHz

θmax 0° 20° 40° 0° 20° 40°

∠β0 0° 0° 0° 0° 0° 0°

∠β1 0° 35° 79° 0° 53° 110°

∠β2 0° 70° 158° 0° 106° 220°

∠β3 0° 105° 237° 0° 159° 330°

Table 2.   A comparison between this work and relevant and state-of-the-art wideband beamforming solutions. 
*Approximation calculated from array gain.

This work 32 21 19 20 18 22 23

Antenna ele-
ment type

Single arm 
spiral

Single arm 
spiral 2-arm spiral 4-arm spiral 4-arm spiral 4-arm curl Dipole Coupled 

Dipole

Element size 0.5λmax 0.88λmax 0.47λmax 1.5λmax 0.5λmax 0.92λmax 0.48λmax 0.5λmax

Element 
height 0.12λmax 0.27λmax 0.35λmax  > 0.12λmax 0.12λmax 0.1λmax 0.65λmax 0.51λmax

Bandwidth 
(%) 41 20 76 120 69 9.8 120 127

Azimuth 
steering Yes No Yes No Yes Yes Yes Yes

3 dB variation 
steering angle  ± 40° Not presented  ± 30° Not presented Not presented  ± 70°  ± 60°  ± 45°

Grating lobe 
level at 30° 
(dB)

− 9 Not presented − 8 0 − 6 − 9 − 15 Not pre-
sented

Max Isolation 
(dB) − 11 Not presented Not presented Not presented − 35 − 21 Not presented − 47

Max Unit Ele-
ment Gain 6.42 8.2 3.5* Not Presented 2* 8 5 5
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Applications
The work presented here has several distinct applications. This spiral array has been designed global 5G coverage 
for Airbus air-to-ground communications but has also been utilized for high-directivity beam steering for Low 
Probability of Interception (LPI) communications. The test bed for both these applications is shown in Fig. 17. 
Here, the wideband, wide beam steering and simple feed structure were the key properties that provided an 
edge over other conventional systems. The Size, Weight, Power and Cost (SWaPC) of our spiral array were 75% 
less compared to traditional multiband systems (four times greater bandwidth than a patch array). In addition, 
the wideband property enabled us to use frequency hopping which is a useful aspect in the list of military com-
munication needs33.

Conclusion
This work presents a wideband phased array consisting of compressed spiral radiating elements arranged in a 
triangular lattice. The spiral element uses an optimized compressed design to provide 41% bandwidth for cover-
age of licensed 5G mid-bands from 3.3 GHz to 5 GHz. The unit antenna element generates an axial beam across 
the bandwidth while having a low profile (0.128λ5GHz) and small size (0.5λ5GHz). When placed in a triangular 
lattice, a less than 3 dB gain variation in beam steering in range of − 40° ≤ θ ≤  + 40° is achieved with an average 
sidelobe level of only − 9.5 dB.

The method presented here provides a low profile, low-cost and effective wideband beam steering solution 
ideal for seamless global 5G applications and for LPI secure communication systems. While this has been devel-
oped primarily for terrestrial aviation scenarios, the final work is a light weight and compact design that will 
also enable usage in small UAVs and ground vehicles for both terrestrial 5G and LEO satellite communication 
(Supplementary Information).

Data availability
The simulated and measured antenna data presented in this paper is freely available from the corresponding 
author upon request.
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