
1

Combating Stealthy Thermal Covert Channel Attack
with its Thermal Signal Transmitted in Direct

Sequence Spread Spectrum
Xiaohang Wang, Member, IEEE, Shengjie Wang, Yingtao Jiang, Member, IEEE, Amit Kumar

Singh, Member, IEEE, Mei Yang, Member, IEEE, and Letian Huang, Member, IEEE

Abstract—Many-core systems are susceptible to attacks
launched by thermal covert channel (TCC) attacks. Detection of
TCC attacks often relies on the use of threshold-based approaches
or variants, and a countermeasure to thwart the channel can be
applied only after an attack is deemed to be present. In this
paper, we describe a direct sequence spread spectrum (DSSS)
based TCC, where its thermal data are modulated by a pseudo-
random bit sequence. Unfortunately, such DSSS-based TCC
has an extremely low signal strength that the signal is nearly
indistinguishable from the noise and thus cannot be detected
by any existing threshold-based detection methods. To combat
this stealthy TCC, we propose a novel detection scheme that
lets the received signal pass through a differential filter where
irrelevant frequency components occupied mainly by the noise
gets eliminated and the filtered signal is next compared against
a threshold for successful detection. Experimental results show
that the DSSS-based TCC can effectively survive detection by
the existing detection methods with its BER as low as 4%.
In contrast, with the proposed detection and countermeasure
applied, the detection accuracy jumps to 89%, and the BER of
the DSSS-based TCC soars to 50%, which indicates that the TCC
is practically shut down.

Index Terms—Defense against covert channel attack, many-

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented at the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS) 2022
and appeared as part of the ESWEEK-TCAD special issue. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61971200, in part by Zhejiang Lab under Grants 2021LE0AB01 and
2021PC0AC01, in part by Major Scientific Research Project of Zhejiang Lab
under Grant 2021LE0AC01, in part by the Open Research Grant of State
Key Laboratory of Computer Architecture Institute of Computing Technology,
Chinese Academy of Sciences under Grant CARCH201916, in part by the Key
Technologies R&D Program of Jiangsu (Prospective and Key Technologies
for Industry) under Grant BE2021003, in part by the Key Laboratory of Big
Data and Intelligent Robot (South China University of Technology), Ministry
of Education, and in part by the National Key Research and Development
Program of China under Grant 2019QY0705.

X. Wang is with the School of Software Engineering, South China
University of Technology, and also with Zhejiang Lab and with State Key
Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences. Xiaohang Wang is the corresponding author.
E-mail: xiaohangwang@scut.edu.cn.

S. Wang is with the School of Software Engineering, South China Univer-
sity of Technology, Guangzhou 510006, China.
E-mail: 201921043708@mail.scut.edu.cn.

Y. Jiang and M. Yang are with the Department of Electrical and Computer
Engineering, University of Nevada, Las Vegas, USA.
E-mail: yingtao@egr.unlv.edu, mei.yang@unlv.edu.

A.K. Singh is with the School of Computer Science and Electronic
Engineer, University of Essex, CO4 3SQ Colchester, United Kingdom.
E-mail: a.k.singh@essex.ac.uk

L. Huang is with the School of Communication and Information Engineer-
ing, Electronic Science and Technology of China, Chengdu 610054, China.
E-mail: huanglt@uestc.edu.cn.

core systems, thermal covert channel attack.

I. INTRODUCTION

THERMAL covert channel (TCC) attacks in a many-
core chip can sustain serious attacks targeting sensitive

data/information [1]–[3], and data leaks can go unnoticed for
a long period of time. In a nutshell, a thermal covert channel
transforms a data stream into temperature variations, and the
data are transmitted between two cores by means of heat
transfer. Coming as a pair of transmitter and receiver [4], a
thermal covert channel sees its transmitter core’s temperatures
going up or down by turning its circuity on or off. The receiver
on the other end of the channel collects the thermal signals
by reading its local thermal sensor(s) [5] and then extracts
the data. Studies have shown that the transmission rate of a
thermal covert channel can go as high as 8 bits per second
and the channel’s bit error rate (BER) can be brought down
to below 10% [2].

To counter thermal covert channel attacks, recently, a couple
of countermeasures [6], [7] have been proposed. In [6], strong
noise whose spectrum matches that of the detected thermal
covert channel is emitted to jam the data transmission. In [7],
Dynamic Voltage and Frequency Scaling (DVFS) is applied to
any core identified as the TCC transceiver to block the TCC
traffic.

Any countermeasure can be applied only after a TCC is
detected. The threshold-based detection method [6], illustrated
in Fig. 1, remains the most popular one. If the signal amplitude
is greater than the threshold, a hard decision on the presence
of an attack will be made. Since this threshold-based detection
is entirely dependent on the signal strength, it fails to detect
TCCs whose amplitude is low and close to the noise floor.
In this paper, we show that thermal signals can actually be
embedded into noise with direct sequence spread spectrum
(DSSS) modulation, leaving no differentiation between signal
and noise to the detector as far as their amplitudes are
concerned.

Detecting this improved stealthy DSSS-based TCC is chal-
lenging and demands a novel detection scheme due to the
noise-like signal transmitted in the channel. In this regard,
we propose a scheme to separate out only the useful signal
components by removing low frequency noise and irrelevant
signal components, after which a threshold-based method
can be used to detect the existence of a potential thermal



2

Fig. 1. A threshold-based detection method, like the one used in [6], can
only detect a TCC whose signal strength is significantly higher than that of
the noise.

covert channel. Once a DSSS-based TCC attack is detected, a
countermeasure that relies on injecting strong noise to jam the
TCC can be applied. The experimental results show that the
proposed detection scheme can achieve a detection accuracy
of as high as 89% for both the TCC without DSSS (herein
referred as the baseline TCC) and the DSSS-based TCC. After
applying this jamming method, the BERs of both the baseline
TCC and the DSSS-based TCC skyrocket to 48.3%, which
means any TCC attack is literally shut down for good.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the design of the
improved stealthy thermal covert channel attack by DSSS,
and Section IV details a countermeasure method against such
DSSS-based TCC. Section V reports the experimental results.
Finally, Section VI concludes the paper.

II. RELATED WORK

A. Construction of TCCs

Thermal covert channels have been demonstrated and stud-
ied in the context of cloud systems [8], operating system [9],
and many-core chips [10], [11] etc. A thermal covert channel
in a many-core system is able to transmit sensitive data among
the cores in the way that a program running in the source
core (i.e., transmitter) affects the temperature that another core
(i.e., receiver) can observe. Of the proliferated thermal covert
channel designs that have been proposed, they differ from
each other in terms of line coding schemes adopted and their
application areas.

Masti et al. [1] implemented a TCC attack with a data rate
of 1.33bps and BER of 11% for a 1 hop channel on real
machines. Bits ‘1’ and ‘0’ are respectively encoded by high
and low temperature levels. A lower bit error rate can actually
be achieved by changing the coding scheme of the thermal
covert channel, as shown in [2], where bit ‘1’ is encoded as
a state transition from active to sleep, and bit ‘0’ as a state
transition from sleep to active. The TCC reaches 8 bps with
a BER of approximately 0.1% on a real machine. Unlike [2],
Long et al. [4] adopted return-to-zero (RZ) encoding in TCC.
Another TCC encoding scheme was considered in [12], where
sensitive data transmitted between the CPU and the DRAM in

a package-on-package system are encoded as the number of
bits flipped in the DRAM as a result of temperature variation.

With the proliferation of TCC coding schemes and target
application areas, it is necessary to estimate the channel
capacity of different TCC configurations [2]. In [13], a set
of analytical models concerning the BER, SNR, and channel
capacity of the TCC attacks were derived, which particularly
help reveal how the transmission frequency and transmission
power are related to TCC performance. For instance, the
impact of noise on the TCC can be suppressed by letting the
signal transmitted at a higher frequency.

B. TCC Detection Methods and Coutermeasures
The state-of-the-art countermeasures against TCC attacks

proposed in [6], [7], [13] rely on the use of threshold-
based detection approaches to detect the existence of a TCC.
Specifically, the threshold-based detection requires scanning
of the frequency spectrum, and a TCC attack is deemed to be
present if the signal amplitude is higher than the threshold.
Once a TCC is detected, a jamming noise whose transmission
frequency matches the detected TCC is emitted to block the
TCC transmission [6]. In [7], DVFS is applied to the cores that
have a TCC transceiver to shut down any data transmission
right from the source. Another countermeasure approach in
[14] tries to separate the identified transmitter and receiver
farther apart from each other through task migration. Since
thermal signals decay very fast with respect to distance, the
BER of TCC becomes unacceptably high when the distance
between the cores running the transmitter and the receiver is
beyond a few hops.

These threshold-based detection methods, however, fails
to detect the TCC whose signal amplitude drops to a level
comparable to or even lower than the thresholds. This problem
can be more pronounced in a DSSS-based TCC.

C. Direct Sequence Spread Spectrum (DSSS)
Direct sequence spread spectrum (DSSS) [15] is widely

used to reduce signal interference in digital communications.
In DSSS, transmitters use periodic pseudo-noise (PN) se-
quences before transmission to spread the spectrum of the
signal and transmit the signal close to the noise level. The
signal is difficult to be detected by a third party, should
the PN sequence used in the transmitter be unknown to the
eavesdropper.

Apparently, if the TCC signals can be modulated and
transmitted in DSSS, detection of the channel can be extremely
hard. The conventional DSSS cannot not be used directly
in TCC, due to the drastic difference between wireless and
thermal signals, and the high implementation cost which
cannot be supported in on-chip systems as considered in this
paper. For on-chip systems, thermal signals have the following
features.
1) Signal amplitude and transmission frequency are coupled,
since reducing amplitude can only be achieved by decreasing
the heating time and thus reducing period.
2) Thermal signal variation is slow and cannot be accurately
controlled, and the signal amplitude is very limited due to chip
thermal power budget cap.



3

3) Signal length is correlated to the initial temperature of
signal.
4) Thermal noise concentrates on the low-frequency domain.
5) The frequency band of TCC is much narrower than wireless
signals.

Therefore, the modulation and coding schemes in TCC
should be carefully designed. The purpose of the conventional
DSSS is to reduce signal interference. Different from the
conventional DSSS, the pseudo-random code is used in this
paper to reduce the heating time and thus the amplitude of
the TCC signal, so as to make the signal appear to look like
noise and improve the stealthiness of the TCC. Conventional
detection methods against DSSS as [16] cannot be directly
applied to TCC due to the high implementation overhead and
unique physical features and transmission characteristics of
thermal signals. The rest of the paper is thus dedicated to the
creation of a DSSS-based TCC and the countermeasure against
it.

D. Comparison with Other On-chip Covert Channels

The cache covert channel transmits sensitive information
by encoding the bits with the latencies of accessing last level
cache (LLC) [17], which can achieve throughputs up to tens of
Kbps. However, detection of cache covert channel is found to
be easy with the use of hardware performance counters [18]. In
addition, various defense mechanisms are proposed to mitigate
cache timing channel attacks (e.g., using prefetchers, based on
architectural changes, cache allocation technology, etc. [18]).
In a sharp contrast, TCC, even at a lower transmission rate, can
be made much more stealthy and thus, poses a much greater
security challenge to the system than cache overt channel.

Beyond caches, integer and floating-point units have been
found to be sources of information leaks [19], which can
achieve throughputs up to hundreds or even thousands of Kbps.
In addition, covert channel attacks through branch prediction
units [20] have been shown as well, which achieve up to
624 Kbps when the transmitter and receiver can have a well
optimized and aligned clock signals. However, the above two
types of covert channels can only be established between
different threads of the same core (that is, within a core),
which is different from the thermal covert channels that can
be established between different cores.

III. IMPROVED STEALTHY THERMAL COVERT CHANNEL
ATTACK

In this section, we propose an improved stealthy TCC with
signal transmitted in DSSS. Specifically, the baseband signal
is modulated by multiplying it with a pseudo-random code
such that the signal is spread over a wider spectrum and the
signal amplitude is close to the noise level.

A. Threat Model

There are at least one transmitter, one receiver, and one
possible defender in a TCC. The transmitter and the receiver of
a TCC are specially designed programs, where the former runs
on a processing core located in the secure zone, and the latter

runs on a processing core outside the secure zone. Supported
by ARM TrustZone [21], Intel software-guard extensions
(SGX) [22] technologies, or alike, the secure zone in a many-
core platform provides a secure environment to protect users’
private code and data from unauthorized access. Unfortunately,
it was demonstrated that both the ARM TrustZone and Intel
SGX could be compromised by some means [23]–[26]. A
TCC attack is set to bypass the security check/monitoring
mechanism on data transfer between a program/core sitting
inside the TEE enclave and another program/core outside
the TEE enclave. There are two possible cases of security
check/monitoring. (1) The data transfer between TEE enclaves
or outside is performed under attestation or monitoring [27].
(2) Runtime monitoring units monitor the data transfer be-
tween cores/programs [28]. However, TCC can bypass the
security check/monitoring and leak the protected data in TEE
without being supervised or monitored. The transmitter obtains
the sensitive data and sends it to the receiver via the thermal
covert channel, which can be loaded into the security zone
of a multi-core system by using the methods described in
[24]–[26]. For instance, the program in support of TCC can
be embedded into the self-signed application before a self-
signed application is loaded into an ‘Enclave’ [24]. Even
worse, this TCC-enabled data transmission cannot be detected
by the remote attestation mechanism of SGX. The malicious
program includes the TCC codes, which appear the same as
normal programs, except only a small portion of the malicious
code, and almost the entire program is legitimate. Therefore,
it is not possible to detect the TCC codes by the existing
approaches as the TCC codes are not faulty. Furthermore, there
are various fault injection attacks and side channel attacks
against TEEs, including CLKSCREW [24], Plundervolt [29],
VoltJockey [25], [26], TPM-Fail [30], and Bluethunder [31],
etc. which can obtain the key. Although these attacks need
many attempts or a few to tens of minutes, automating the
attack process (e.g., using a script file) or combining them will
greatly accelerate attacks. The receiver at the other end of the
channel collects the temperature signal by reading its thermal
sensors and recovers the original data from the temperature
signal. The defender runs a program that can access all the
cores’ thermal sensors, and it is granted ROOT privilege that
it can apply countermeasures to neutralize any detected TCC
attacks. Note that the defender can be located at any core and
the physical distance between the transmitter and the receiver
has no direct implication on the effectiveness of the defender.
In addition, the attacker cannot terminate the defender as the
defender is very possible to have a higher privilege (e.g., it
can be part of a secure OS or hypervisor).

Herein it is assumed that each core has a thermal sensor
[32], which is implied by modern many-core chips with fine-
grain power budgeting [33], [34]. In addition, the number and
resolution of thermal sensors have a significant effect on TCC
attack, which are possible to be ever improved in the future
[35]. The thermal sensors in a real machine have a resolution
of 1◦C [36], and the state-of-the-art thermal sensor has a
resolution close to 0.1◦C or better [37], [38].

Herein it is also assumed that the receiver, transmitter,
and defender all have access to the thermal sensors or the



4

(a)

(b)

(c)
Fig. 2. (a) The flow of the transmission and receiving of the improved stealthy
thermal covert channel signals. Signals of the modules in the (b) transmitter
and (c) receiver.

same thermal data files through the system APIs or calling
the rdmsr instruction from model-specific registers (MSR) in
the processor’s user space [36]. In the case that the receiver
or the defender does not have the permission to read the
thermal sensor data directly, it shall still be able to obtain the
temperature information by measuring DRAM decay times, as
indicated in [12].

B. Transmitting the Bit Streams

Like any TCCs, the improved stealthy TCC involves a
transmitter and a receiver pair, as shown in Fig. 2(a). They
run on the same or different cores and communicate with
each other through the thermal covert channel. In order to
support the bit stream transmission between the transmitter
and the receiver, the communication protocol in [6] is adopted
to ensure the synchronization between the transmitter and
receiver.

The transmitter has the following five modules:
1) The data input module reads the data to be transmitted.
2) The protocol handling module adds preamble (e.g., 101010)
and control bits into the sensitive data bit stream.
3) The digital modulation module uses on-and-off keying
(OOK) to modulate the data bit stream, and the binaries are
encoded with the return-to-zero (RZ) code. So, bit ‘1’ is
represented as a rise and fall sequence in temperature level,
and ‘0’ as keeping low temperature, as illustrated in Fig. 3.
That is,

(a)

(b)
Fig. 3. Power and temperature profiles of (a) bit ‘1’ and (b) bit ‘0’.

eOOK(t) = s(t)× c(t) (1)

s(t) =
∑
i

aig(t− iTb) (2)

where s(t) is the signal to be transmitted, c(t) is the carrier
signal, ai is the binary value (‘1’ or ‘0’) of the i-th bit, Tb is
the symbol width in baseband, and g(t) is the baseband pulse
with a duration of Tb.
4) The modulator generates a PN code. It is generally required
to have nearly equal numbers of bit ‘1’s and bit ‘0’s in the PN
code. According to [15], we must ensure

Pnum ≥ b
m+ 1

2
c (3)

where Pnum is the number of consecutive bit patterns in a
sequence (e.g., {0}, {1}, {00}, {11}, etc.), and m is the
number of bits in a PN code. Generally, as opposed to the
PN code of {1010101} with only two patterns, {1} and {0},
the PN code {0100011} is more preferable, since it has four
patterns: two patterns with a length of 1, i.e., {1} and {0};
one pattern with a length of 2, i.e., {11}; and one pattern
with a length of 3, i.e., {000}. The PN code is generated by
a program using a linear feedback shift register (LFSR) [15].
The modulated signal is multiplied by the PN code, pn(t), to
create the final signal, d(t).

d(t) = eOOK(t)× pn(t) (4)

In Fig. 2(b), the PN code is {1001}.
5) The temperature signal generation module generates tem-
perature signals by controlling the power consumption of the
cores according to the modulated data bit stream. That is, the
transmitter runs computation-intensive codes to generate heat
that contributes to the rising temperature, or keeps idle to cool
down the core for a desired lower temperature [6].

The receiver has the following four modules:
1) The thermal sensor recording module picks up the temper-
ature signal.



5

Fig. 4. Timing diagram of a communication session of the covert channel.

2) The digital demodulation module uses a band-pass filter
whose center frequency f corresponds to the transmission
frequency of the TCC to extract the thermal signal. The signal
r1(t) after the band-pass filter is shown in Fig. 2(c). After
filtering, the signal passes through a full-wave rectifier to
convert the alternating current (AC) signal to direct current
(DC). This DC signal then enters a low-pass filter so as to
extract the signal envelope. Finally, a hard binary decision is
made by having

a′i =

{
1 Ai ≥ Athre

0 Ai < Athre

(5)

where a′i is the binary value of the i-th bit, Ai is the amplitude
of the i-th bit after filtering, and Athre is a preset threshold.
Fig. 2(c) shows the signal r2(t) as it flows through the full-
wave rectification, the low-pass filtering, and hard decision to
recreate a′i ({1, 0} in this example).
3) The protocol handling module checks the integrity of the
packet by examining its preamble. If the packet is found
uncompromised, the receiver notifies the transmitter with an
acknowledgment.
4) The data output module finally extracts the sensitive data
from the bit stream.

The communication protocol is shown in Fig. 4. As shown
in Fig. 4, the transmission starts with the transmitter sending
an REQ packet to the receiver and keeps waiting. The receiver
sends the ACK packet to the transmitter if it receives the REQ
packet. Then the transmitter starts to send data packets to
the receiver after it receives the ACK packet. In particular,
the receiver sends an ACK packet to the transmitter when it
receives a packet with the correct preamble and the transmitter
continues to send data packets after receiving the ACK packet.
On the contrary, if an error is detected in the preamble,
the receiver does not send ACK to the transmitter, and the
transmitter resends this packet after a specific time. Once all
the data are transmitted, the transmitter sends an END packet
to the receiver to terminate the transmission.

Fig. 5(a) shows typical RZ-encoded TCC signals, and
Fig. 5(b) shows the signal in the improved stealthy TCC. It
can be seen that there is a continuous temperature buildup in

(a)

(b)
Fig. 5. Waveforms of (a) thermal signals encoded by the RZ scheme in [6],
and of (b) the proposed improved stealthy TCC.

Fig. 5(a). Compared with Fig. 5(a), the time of heating up
is greatly shortened in the improved stealthy coding scheme,
as shown in Fig. 5(b), which substantially suppresses sig-
nal amplitude. Correspondingly, the threshold-based detection
methods in [6] and [7] can no longer detect the improved
stealthy TCCs. Fig. 6 shows the signal spectrum of [6] and
the improved stealthy TCC with the transmission frequency in
band B. The noise in band A is fairly strong, and thus, it will
be much less desirable to have a TCC transmit data in this
band. One can see from Fig. 6(b) that the signal amplitudes
of the improved stealthy TCC are below the threshold, and as
a result, any threshold-based detection method will not be able
to detect this type of TCC. Simply decreasing the threshold
will do no good in signal detection. Actually, a lower threshold
tends to create a high false positive rate in signal detection and
can cause confusions between actual signals and noise.

The defender does not know the signal transmission fre-
quency, and thus it cannot detect the improved stealthy TCC.
However, the receiver knows the signal transmission frequency
and can correctly decode it as the filter center frequency equals
to the signal transmission frequency, and only the frequency
components within the filter band are left. After the filtering,
the receiver uses a threshold comparison to correctly decode
the signal since all the noise out of the band is filtered out,
and the signal amplitude is higher than noise in the filter band.

IV. COUNTERMEASURE USING DIFFERENTIAL FILTER

To countermeasure the above thermal covert channel attack,
an intuitive method is to use full-band jamming, where strong
noise covering the entire band of TCC is injected to the
channel with a sole purpose to jam the channel. However, this
approach causes excessive power consumption and degrades
system performance. In order to detect the DSSS-based ther-
mal covert channel, the key is to detect signals of reduced



6

(a)

(b)
Fig. 6. The signal spectrum of (a) the existing TCC [6] and of (b) the
improved stealthy TCC with the transmission frequency in band B.

Fig. 7. Workflow of the proposed countermeasure against the DSSS-based
TCC.

amplitude. In this section, we describe our two-step scheme
to detect and fight against the proposed thermal covert channel
attacks, as shown in Fig. 7. For detection, a differential filter is
applied, and it analyzes the spectrum and filters out the DC and
irrelevant components of the signal. Thereafter, a threshold-
based method can be used to detect the existence of a potential
thermal covert channel. In the jamming step, a narrow-band
noise with the same frequency of the detected thermal covert
channel is emitted to block the channel.

A. Differential Filter-based Detection Scheme

The differential filter is written as

y(n) = x(n)− x(n− L) (6)

where x(n) is the input signal, L is the difference step, y(n)
is the output signal after applying the filter.

The magnitude response function of the differential filter is
[15] ∣∣H(ejω)

∣∣ = 2
∣∣sin Lω

2

∣∣ (7)

Fig. 8. The noise spectrum.

where ω is the angular velocity and ω = 2πf/fs, and fs is
the sampling rate.

The differential filter can remove narrow-band noise at
frequency fi and its multiples,

fi =
i

L
fs, i = 0, 1, ...,

L

2
− 1 (8)

From the noise spectrum shown in Fig. 8, it can be seen
that the low frequency components of the noise have high
amplitudes. The TCC signal is severely jammed by noise if
the transmission frequency falls in band A, which makes TCC
transmission impossible, as shown in Fig. 8. In contrast, since
noise in band C is extremely low, TCC signals falling into
this band tend to be easily detected. However, signals in band
B can escape from being detected, as the noise is moderate.
For example, in our experimental setup in Table II, band A
is below 20 Hz, band B is from 20 to 50 Hz, and band C is
above 50 Hz.

Fig. 9(a) shows the magnitude response of the differential
filter. The sampling rate fs in this example is 1000. The
frequency of the improved stealthy TCC is in the range of fl
to fh, as shown in band B in Fig. 8. To avoid the differential
filter mistakenly filtering out the signal, fi cannot be in band
B (i.e., fi < fl or fi > fh). According to Eqn. 8, f0 < fl,
f1 = fs/L > fh (fs=1000, fh ≤100), and thus L is set to be
1 such that f1 is in band C. One can see from Fig. 9(a) that the
differential filter can filter out the thermal noise at low frequen-
cies as expected. Fig. 9(b) shows the signal in the time domain.
It can be seen that the differential filter converts the trace of
temperature signals into a trace of the temperature differences
(e.g., ∆1, ∆2, etc.), as in Eqn. 6. In TCC, information is
encoded by temperature variations/differences, the differential
filter keeps only the useful signal components and removes the
low frequency noise and irrelevant components of the signal to
improve the signal-to-noise ratio (SNR). Doing so would allow
a threshold-based method to be used over the filtered signal to
detect whether there is a potential thermal covert channel or
not, as shown in Fig. 9(c). The threshold ρ varies for different
system configurations. Herein we propose a three-step scheme
for calculating ρ. The threshold value ρ can be affected by a
number of external factors (e.g., cooling configuration, CPU
frequency, etc.), and these factors are already incorporated
in the method. In step 1, the average noise amplitude ρl is
calculated from the sampled noise after the differential filter.
In step 2, the maximum signal amplitude ρh is obtained from



7

(a)

(b)

(c)
Fig. 9. Detection of the DSSS signal. (a) The magnitude response of the
differential filter. (b) The signal in the time domain. (c) The signal spectrum
after the differential filter.

the sampled improved stealthy TCC signal after the differential
filter. In step 3, the proposed detection is applied to get the
detection accuracy with a threshold ρ ranging from ρl to ρh.
The threshold ρ is assigned with a value that leads to the
highest detection accuracy.

Fig. 10(a) shows the magnitude response of a high-pass filter
with a cut-off frequency of 20 Hz (lower than the transmission
frequency of TCC to ensure that no useful signal component
gets filtered out). Fig. 10(b) shows the signal spectrum of the
improved stealthy TCC with a transmission frequency of 30
Hz after applying the high-pass filter. It can be seen that the
threshold-based methods [6], [7] cannot detect the improved
stealthy TCC in 30 Hz with the high-pass filter. The reason is
that the high-pass filter only removes low frequency noise, but
it cannot extract the signal components needed for information
encoding.

To enable the detection, the temperature data are collected
from the local thermal sensors. Each core’s temperature signal
is recorded for a duration of 1.5 seconds (experimentally
determined). The recorded signal goes through the differential
filter, and the frequency spectrum of the filtered signal is
then determined by applying Fourier analysis. Threshold-based

(a) (b)
Fig. 10. (a) The magnitude response of the high-pass filter. (b) The signal
spectrum after passing the high-pass filter.

decision making is performed to check whether there is a
potential thermal covert channel attack or not. If a thermal
covert channel attack has been detected, the jamming process
is performed to block it.

B. The Jamming Scheme

The single-tone noise is adopted in the jamming process
in the defender. If the thermal covert channel is detected, a
consecutive bit sequence of bit ‘1’s is generated as jamming
noise by the single-tone noise module.

The bit sequence generated by the single-tone noise module
is modulated by the same frequency as the transmission
frequency of the detected TCC. The output of the modulation
module is

Njam(t) = njam(t)× cjam(t) (9)

where njam(t) is the jamming noise generated by the single-
tone noise module, and cjam(t) is the carrier signal.

Finally, the narrow-band noise is generated by passing
through the same temperature signal generation module as
described in Section III.B.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments have been performed on two different plat-
forms, both to evaluate the improved stealthy TCC attack and
the proposed countermeasure.

The first is a many-core simulator, Sniper [39], with McPAT
[40] integrated as the power model and Hotspot version 6.0
[41] as the temperature simulator. We simulate both 2-D and 3-
D many-core chips with different levels of power consumption
pertaining to the processor cores. Table I lists the simulator
configuration, and the benchmarks are selected from PARSEC
[42], SPLASH-2 [43], and AES [44]. In the experiments, the
cores other than the ones designated as the transmitters and
receivers are running multiple threads of these benchmarks;
actually, each of the benchmarks is expanded to include 4, 8,
or 16 threads. These threads shall be treated as the sources
of thermal noises to the TCC. The floorplan of the processor
cores follows the same one used in [45].

The second sets of experiments were performed in a real
computer with its configurations listed in Table II. The mod-
probe msr instruction is run to load the msr module for
thermal sensor reading and set the CPU frequency governor to
the performance mode with the cpufreq-set -g performance



8

TABLE I
SIMULATION CONFIGURATIONS

Instruction set architecture x86-64
CPU frequency 2000MHz
Number of cores (2D) 3×3 / 4×4
Number of cores (3D) 3×3×3 / 4×4×3
2D network topology Mesh
3D network topology 3-D mesh, with each layer

has its own 2D mesh and the
layers are connected vertically
through Through-Silicon-Vias
(TSV) [46]

Fetch/decode/commit size 4/4/4
L1 D cache 16KB, 2-way, 32B line, 2 cy-

cles, 2 ports, dual tags
L1 I cache 32KB, 2-way, 64B line, 2 cy-

cles
L2 cache 64KB, 64B line, 6 cycles, 2

ports
Main memory size 2GB

Benchmarks
PARSEC Blackscholes, Canneal,

Fluidanimate, Streamcluster,
Swaptions, X-264, Dedup,
Freqmine

SPLASH-2 Barnes, Raytrace
AES Encoder, Decoder

Hotspot configuration
Chip thickness 0.00015m
Specific heat capacity 1.75× 106J/(m3 ·K)
Silicon thermal conductivity 100W/(m ·K)
Temperature threshold for DTM 373.15K
Heat sink side 0.06m
Heat sink thickness 0.0069m
Heat sink thermal conductivity 400W/(m ·K)
Specific heat capacity of heat sink 3.55× 106J/(m3 ·K)
Thermal sensor resolution 0.1oC

TABLE II
REAL MACHINE CONFIGURATIONS

Processor Intel i7-8700 @4.6 GHz
Memory 16 Gbytes
DRAM frequency 2666MHz
Physical cores 6
Logical cores 12
Fan speed 1200rpm
Operate system Ubuntu 16.04.5 LTS
Dynamic fan speed OFF

instruction. Across these experiments, the CPU frequency is
fixed at 4.6 GHz, two hardware threads of a selected core
are dedicated to build a thermal covert channel, while the rest
of the cores are loaded with various benchmarks summarized
in Table I. Again, all these benchmarks running at different
cores pose as the sources of thermal noise to the thermal covert
channel under test.

B. Evaluating the Improved Stealthy Attack

The bit rate is set to vary between 1 and 120 bps in the 0
hop channel and between 1 and 25 bps in the 1 hop channel
in the simulator simulating the 2D many-core system, and the
BER vs. bit rate results are shown in Fig. 11.

Fig. 12 compares the BER of the proposed thermal covert
channel against that of the baseline TCC [6] in systems of
different sizes; here the countermeasure in [6] is adopted in

(a)

(b)
Fig. 11. BERs of (a) 0 hop and (b) 1 hop improved stealthy TCCs in the
simulator simulating the 2D many-core system.

(a) (b)
Fig. 12. Comparison of BERs of (a) 0 hop and (b) 1 hop of the improved
stealthy TCC and the baseline TCC [6] with the countermeasure in [6] in the
simulator simulating both the 2D and 3D many-core systems.

these experiments. In Fig. 12(a), the distance between the
transmitter and receiver is 0 and denoted as 0 hop (i.e., the
transmitter and receiver are running on the same core), and
the transmission frequency is 50 Hz. From Fig. 12(a), one
can see that the BER of the proposed thermal covert channel
is 89.7% lower than that of the baseline TCC on average. In
Fig. 12(b), the transmitter and the receiver are 1 hop away from
each other (i.e., the transmitter and receiver are placed on two
adjacent cores), and the transmission frequency is 30 Hz. From
Fig. 12(b), the BER of the proposed thermal covert channel
on average is 63.9% lower than that of the baseline TCC.
The reason is that the countermeasure in [6] cannot detect
the transmission frequency of the proposed thermal covert
channel, and thus no countermeasure, like jamming, can be
applied.

Fig. 13 compares the BER of the proposed thermal covert
channel against that of the baseline TCC [6] on the real
machine of different distances between the transmitter and
receiver; here the countermeasure in [6] is adopted in these
experiments. From Fig. 13, one can see that, when the distance



9

Fig. 13. Comparison of BERs of the improved stealthy TCC and the baseline
TCC [6] on the real machine with the countermeasure in [6].

Fig. 14. Comparison of BERs of the improved stealthy TCC and the baseline
TCC [6] with the countermeasure in [6] in the simulator simulating the 2D
many-core system.

is 0 hop, the BER of the proposed thermal covert channel is
91.1% lower than that of the baseline TCC. On average, the
BER of the proposed thermal covert channel is 76.6% lower
than that of the baseline TCC. The reason is that the counter-
measure in [6] cannot detect the transmission frequency of the
proposed thermal covert channel, and thus no countermeasure,
like jamming, can be applied.

Fig. 14 compares the BER of the proposed thermal covert
channel against that of the baseline TCC [6] in the simulator
simulating the 2D many-core system with different channel
noises (by running benchmarks from PARSEC, SPLASH-2,
and AES); here the countermeasure in [6] is adopted in these
experiments. The system is set to have a total of 4×4 cores,
and the distance between the transmitter and receiver is 1
hop. From Fig. 14, one can see that, the BERs with different
channel noises are close. It can also be seen that when the
benchmarks from SPLASH-2 run as channel noise, the BER
of the proposed thermal covert channel is 53.7% lower than
that of the baseline TCC. On average, the BER of the proposed
thermal covert channel is 52.5% lower than that of the baseline
TCC, with the same reason as in Figs. 12 and 13.

Fig. 15 compares the BER of the proposed thermal covert
channel against that of the baseline TCC [6] on the real
machine with different channel noises (by running benchmarks
from PARSEC, SPLASH-2, and AES); here the countermea-
sure in [6] is adopted in these experiments. The distance
between the transmitter and receiver is 0 hop. From Fig. 15,

Fig. 15. Comparison of BERs of the improved stealthy TCC and the baseline
TCC [6] on the real machine with the countermeasure proposed in [6].

one can see that, the BERs with different channel noises are
close. It can also be seen that when the benchmarks from
SPLASH-2 run as channel noise, the BER of the proposed
thermal covert channel is 80.7% lower than that of the baseline
TCC. On average, the BER of the proposed thermal covert
channel is 79.2% lower than that of the baseline TCC, with
the same reason as in Figs. 12 and 13.

C. Evaluating the Countermeasure

1) Evaluating the Proposed Detection Scheme:
Fig. 16 shows the performance of the proposed detection

scheme described in Section IV.A with different thresholds.
The detection error is measured by

error =
∣∣ftrans − fdetect∣∣ (10)

where ftrans is the TCC transmission frequency, and fdetect
is the detected TCC frequency. From Fig. 16, one can see
that, the detection error is high when the detection threshold
is set to be too high or too low; a low threshold leads to high
false positive (treating normal applications as TCCs) rate and a
high threshold leads to high false negative (failing to detect the
TCC), as shown in Fig. 17. Specifically, when the threshold
is lower than 0.07◦C, the true positive (TP) rate decreases
with the increase of threshold, but the true negative (TN) rate
increases with the increase of threshold. When the threshold
is 0.03◦C, the total detection accuracy reaches the maximum
of 88%, with the true positive rate and true negative rate being
46% and 42%, respectively. In the above experiments, half of
them generate TCC signals, and the remaining half generate
noise. Therefore, the ideal case of the true positive rate, the
true negative rate, and the total accuracy are supposed to be
50%, 50%, and 100%, respectively. In addition, the number of
samples (a.k.a., the number of data points collected from the
sensor to perform fast Fourier transform) affects the detection
error. Fig. 18 shows that the performance of the proposed
detection scheme described in Section IV.A with different
sampling numbers. From Fig. 18, one can see that higher
sample numbers lead to lower detection errors. It can also
be seen that when the sample size is greater than 1500, the
detection error is lower than 2.7 Hz. The reason is that large
sample numbers lead to high accuracy and thus improved
detection accuracy, as the case when the number of samples
is over 1500.



10

Fig. 16. Detection errors with different thresholds.

Fig. 17. The accuracies of detecting the improved stealthy TCC under
different detection thresholds. ‘TP’, ‘TN’ are the percentage of true positive
cases and true negative cases over all the cases, respectively, and “total” gives
the sum of ‘TP’ and ‘TN’.

Fig. 18. Detection errors with different sampling numbers.

Fig. 19(a) shows the average accuracy of the experiments
on the cases that the transmitter and the receiver are 0 hop
and 1 hop apart in the simulator simulating the 2D many-core
system. The experiments of Fig. 19(b) are performed on the
real machine, and the distance between the transmitter and
receiver is 0 hop. Accuracy is defined as follows. A total of
1000 experiments were performed and there are D0 cases that
the detection method successfully detects the TCC attacks. The
accuracy α is defined as

α =
D0

1000
× 100% (11)

Fig. 19. The detection accuracy of the proposed detection vs. the detection
in [6] against the improved stealthy TCC and TCC in [6] in (a) the simulator
simulating the 2D many-core system and (b) the real machine, respectively.

As can be seen from Fig. 19, for both simulations and the real
machine, the detection accuracies of the proposed detection
against both the improved stealthy TCC and TCC in [6]
are over 85%. The detection accuracy against the improved
stealthy TCC in the simulations even reaches 89%. The detec-
tion accuracy of the detection in [6] is low in both simulations
and the real machine against the improved stealthy TCC, i.e.,
lower than 5%. The reason is that the signal amplitude in the
improved stealthy TCC is close to that of noise, and thus the
detection in [6] fails to detect the improved stealthy TCC.

2) Evaluating the Countermeasure Scheme:
The BER performance of the proposed countermeasure with

both detection and against the improved stealthy TCC attack is
compared against that of the countermeasure proposed in [6] in
the simulator simulating the 2D many-core system, and the re-
sults are shown in Fig. 20. The transmitter and the receiver are
1 hop away from each other, and the transmission frequency
is set to be 30 Hz. One can see that with the countermeasure
in [6], the BER of TCC is low, i.e., 18.9%. The reason is
that the threshold-based detection method in [6] cannot detect
the improved stealthy TCC, and thus, this attack cannot be
blocked. On the contrary, the proposed countermeasure can
accurately locate the transmission frequency of the improved
stealthy TCC with a detection accuracy of 89%. Jamming
noise can precisely block the TCC transmission. Therefore,
with the proposed countermeasure, the BER of TCC is higher
than that with the countermeasure in [6] applied, which is close
to 50%. A TCC experiencing such a high BER is literally shut
down for meaningful data transmission.

D. Runtime and Power Overheads of the Countermeasure

The proposed countermeasure runs periodically (every two
seconds) where 1500 thermal sensor data are recorded (with a
sampling frequency of 1000Hz). Fast Fourier transform (FFT)
[47] and the differential filter are performed with these thermal
sensor data which take less than 8ms. It is negligible compared
to running normal applications (benchmarks from PARSEC)
whose execution times are usually tens of seconds or even
more.

The average power consumption of the proposed counter-
measure is 14.19W and is mainly contributed by the noise



11

Fig. 20. BERs of the countermeasure method proposed in [6] and the proposed
countermeasure method under different system configurations and sizes of the
2D and 3D many-core systems.

jamming module, which is only performed once a TCC is
detected. In a 4×4 many-core system, the energy consumption
overhead of the proposed countermeasure is lower than 0.32%
of the total energy consumption of the whole system on
average when running normal applications (benchmarks from
PARSEC).

VI. CONCLUSION

This paper described an improved stealthy thermal covert
channel attack that is based on DSSS to reduce the amplitude
of the signal and make the signal appear to look like noise. To
detect this type of stealthy thermal covert channel, the received
signal is first filtered with a differential filter to remove the
thermal noise at low frequencies and extract encoded informa-
tion, after which a threshold-based decision is made regarding
whether there is a potential thermal covert channel attack
or not. The experimental results confirmed that the DSSS-
based covert channel can defeat traditional threshold-based
detection schemes. However, when the proposed detection and
countermeasure is applied, the TCC’s BER jumps to 50%,
effectively shutting down the attacks.

REFERENCES

[1] R. J. Masti, D. Rai, A. Ranganathan, C. Muller, L. Thiele, and S. Capkun,
“Thermal covert channels on multi-core platforms,” in Proc. USENIX
Security Symp., pp. 865–880, 2015.

[2] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in Proc. ACM Conf. Computer Systems,
pp. 24–39, 2016.

[3] S. Chen, W. Xiong, Y. Xu, B. Li, and J. Szefer, “Thermal covert channels
leveraging package-on-package DRAM,” in Proc. IEEE Int’l Conf. Trust
Security Privacy Comput. Commun., pp. 319–326, 2019.

[4] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, T. Mak. “Improving the
efficiency of thermal covert channels in multi-/many-core systems,” in
Proc. Design, Automation and Test in Europe Conf. and Exhibition, pp.
1459-1464, 2018.

[5] D. Brooks and M. Martonosi, “Dynamic thermal management for
high-performance microprocessors,” in Proc. IEEE Int’l Symp. High-
Performance Computer Architecture, pp. 171–182, 2001.

[6] J. Wang, X. Wang, Y. Jiang, A. K. Singh, L. Huang and M. Yang,
“Combating enhanced thermal covert channel in multi-/many-core sys-
tems with channel-aware jamming,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3276-3287, 2020.

[7] H. Huang, X. Wang, Y. Jiang, A. K. Singh, M. Yang and L. Huang,
“On countermeasures against the thermal covert channel attacks targeting
many-core systems,” in Proc. Design Automation Conf., pp. 1-6, 2020.

[8] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed
covert channel attacks in the cloud,” in Proc. Symp. Usenix Security, pp.
9-23, 2013.

[9] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of L2 cache covert channels in virtualized environments,”
in Proc. ACM Cloud Computing Security Workshop, pp. 29–40, 2011.

[10] Y. Wang and G. E. Suh, “Efficient timing channel protection for on-
chip networks,” in Proc. IEEE/ACM Int’l Symp. Networks on Chip, pp.
142–151, 2012.

[11] G. Venkataramani, J. Chen, and M. Doroslovacki, “Detecting hardware
covert timing channels,” IEEE Micro, vol. 36, no. 5, pp. 17–27, 2016.

[12] S. Chen, W. Xiong, Y. Xu, B. Li, and J. Szefer, “Thermal covert channels
leveraging package-on-package DRAM,” in Proc. IEEE Int’l Conf. Trust
Security Privacy Comput. Commun., pp. 319–326, 2019.

[13] S. Wang, X. Wang, Y. Jiang, A. Singh, L. Huang and M. Yang,
“Modeling and analysis of thermal covert channel attacks in many-
core systems,” accepted for publication in IEEE Trans. Computers, doi:
10.1109/TC.2022.3160356.

[14] Q. Wu, X. Wang and J. Chen, “Defending against thermal covert channel
attacks by task migration in many-core system,” in Proc. IEEE Int’l Conf.
Circuits and Systems, pp. 111-120, 2021.

[15] S. Haykin, Communication systems. John Wiley, 1978.
[16] L. Chang, F. Wang, and Z. Wang, “Detection of DSSS signal in non-

cooperative communications,” in Proc. IEEE Int’l Conf. Communication
Technology, pp. 1-4, 2006.

[17] G. Saileshwar, C. W. Fletcher, M. Qureshi, “Streamline: a fast, flushless
cache covert-channel attack by enabling asynchronous collusion,” in
Proc. Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 1077-1090, 2021.

[18] J. Kaur, S. Das, “A survey on cache timing channel attacks for multicore
processors,” Journal of Hardware and Systems Security, vol. 5, no. 2, pp.
1-21, 2021.

[19] O. Aciicmez, J. Seifert, “Cheap hardware parallelism implies cheap
security,” Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 80-91, 2007.

[20] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath and M.
Tiwari, “Understanding contention-based channels and using them for
defense,” IEEE Int’l Symp. High Performance Computer Architecture,
pp. 639-650, 2015.

[21] ARM, “Building a secure system using TrustZone technology”, https:
//developer.arm.com/documentation/genc009492/c/.

[22] Victor Costan and Srinivas Devadas, “Intel SGX explained”, http:
//eprint.iacr.org/2016/086.

[23] B. Lapid and A. Wool, “Cache-attacks on the ARM TrustZone imple-
mentations of AES-256 and AES-256-GCM via GPU-based analysis”,
https://eprint.iacr.org/2018/621.pdf?source=post page.

[24] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “CLKSCREW: exposing
the perils of security-oblivious energy management,” in Proc. Usenix
Secur. Symp., pp. 1057–1074, 2017.

[25] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: breaching TrustZone
by software-controlled voltage manipulation over multi-core frequencies,”
in Proc. ACM SIGSAC Conf., pp. 195-209, 2019.

[26] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: breaking SGX
by software-controlled voltage-induced hardware faults,” in Proc. Asian
Hardware Oriented Security and Trust Symp., pp. 1-6, 2019.

[27] https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html.

[28] K. Wang, H. Zheng, and A. Louri, “TSA-NoC: learning-based threat
detection and mitigation for secure network-on-chip architecture,” IEEE
Micro, vol. 40, no. 5, pp. 56-63, 2020.

[29] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss and F.
Piessens, “Plundervolt: software-based fault injection attacks against Intel
SGX,” in Proc. IEEE Symp. Security and Privacy, pp. 1466-1482, 2020.

[30] D. Moghimi, B. Sunar, T. Eisenbarth and N. Heninger, “TPM-FAIL:
TPM meets timing and lattice attacks,” in Proc. USENIX Security Symp.,
pp. 2057-2073, 2020.

[31] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai and M. Li,
“Bluethunder: a 2-level directional predictor based side-channel attack
against SGX,” IACR Trans. Cryptographic Hardware Embedded Systems,
vol. 2020, no. 1, pp. 321-347, 2020.

[32] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, S. Kottapalli, and S. Vora, “A 45 nm 8-core enterprise Xeon
processor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 7–14, 2010.

[33] X. Wang, B. Zhao, T. Mak, M. Yang, Y. Jiang, and M. Daneshtalab,
“On fine-grained runtime power budgeting for networks-on-chip systems,”
IEEE Trans. Computers, vol. 65, no. 9, pp. 2780–2793, 2016.



12

[34] J. Long, S. O. Memik, G. Memik, and R. Mukherjee, “Thermal mon-
itoring mechanisms for chip multiprocessors,” ACM Trans. Architecture
and Code Optimization, vol. 5, no. 2, pp. 9–41, 2008.

[35] S. Paek, W. Shin, J. Lee, H.-E. Kim, J.-S. Park, and L.-S. Kim, “All-
digital hybrid temperature sensor network for dense thermal monitoring,”
in Proc. Int. Solid-State Circuits Conf., pp. 260–261, 2013.

[36] “8th gen Intelr CoreTM processor family datasheet.”
https://www.intel.com/content/www/us/en/products/docs/processors/
core/8th-gen-core-datasheet-vol-1.html.

[37] S. Pan and K. A. A. Makinwa, “A 0.25 mm2-resistor-based temperature
sensor with an inaccuracy of 0.12 ◦C (3σ) from -55 ◦C to 125 ◦C,” IEEE
J. Solid-State Circuits, vol. 53, no. 12, pp. 3347–3355, 2018.

[38] S. Pan, C. Gurleyuk, M. F. Pimenta, and K. A. A. Makinwa, “A 0.12mm2

wien-bridge temperature sensor with 0.1 ◦C (3σ) inaccuracy from -40 ◦C
to 180 ◦C,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 184–186,
2019.

[39] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Trans. Architect.
Code Optim., vol. 11, no. 11, pp. 1–25, 2014.

[40] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proc. IEEE/ACM Int’l
Symp. Microarchitecture, pp. 469–480, 2009.

[41] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. IEEE Int’l
Symp. Computer Architecture, pp. 2– 13, 2003.

[42] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proc. IEEE Int’l
Conf. Parallel Architectures and Compilation Techniques, pp. 72– 81,
2008.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological considera-
tions,” in Proc. IEEE Int’l Symp. Computer Architecture, pp. 24–36,
1995.

[44] Y. S. Yang, J. H. Bahn, S. E. Lee, and N. Bagherzadeh, “Parallel and
pipeline processing for block ciphe algorithms on a network-on-chip,” in
Proc. IEEE Int’l Conf. Information Technology: New Generations, pp.
849–854, 2009.

[45] C. Chao, K. Jheng, H. Wang, J. Wu and A. Wu, “Traffic- and thermal-
aware run-time thermal management scheme for 3D NoC systems,” in
Proc. ACM/IEEE Int. Symp. Networks-on-Chip, pp. 223-230, 2010.

[46] B. Li, X. Wang, A. K. Singh, and T. S. T. Mak, “On runtime
communication- and thermal-aware application mapping in 3D NoC,” in
Proc. IEEE/ACM Int. Symp. Networks-on-Chip, pp. 1–8, 2017.

[47] C. S. Burrus and T. W. Parks, DFT/FFT and convolution algorithms:
theory and implementation. John Wiley and Sons, New York, 1985.

Xiaohang Wang received the B. Eng. and Ph. D.
degree in communication and electronic engineering
from Zhejiang University, in 2006 and 2011, respec-
tively. He is currently a Professor at South China
University of Technology. He was the receipt of PDP
2015 and VLSI-SoC 2014 Best Paper Awards. He
was the special session organizer of NoCS 2018,
steering committee member of NoCArc 2014-2018,
and TPC chair of ICCS 2021. He also served as
the guest editor of the Mathematics, Integration, the
VLSI Journal, Microelectronics Journal, and Com-

puters and Electrical Engineering. His research interests include many-core
architecture, power efficient architectures, optimal control, and NoC-based
systems.

Shengjie Wang received the bachelor’s degree in
Software Engineering from South China University
of Technology, Guangzhou, China. He is currently
pursuing the master’s degree in the School of Soft-
ware Engineering. His research interests include
hardware security and covert channel attacks.

Yingtao Jiang received his Ph. D. in Computer
Science from the University of Texas at Dallas in
2001, and joined the Department of Electrical and
Computer Engineering (ECE), University of Nevada,
Las Vegas (UNLV) as an assistant professor in the
same year. He was promoted to the rank of full
professor at the same department in 2013. He served
as the ECE department chair between 2015 and
2018, and he is currently associate dean of UNLVs
college of engineering. Besides STEM education,
his research interests span a wide array of areas,

including VLSI integrated circuit design, computer architectures, wireless
networks, machine learning, cloud computing, biomedical engineering, and
nanotechnologies.

Amit Kumar Singh is an Associate Professor at
University of Essex, UK. He received the B.Tech.
degree in Electronics Engineering from Indian Insti-
tute of Technology (Indian School of Mines), Dhan-
bad, India, in 2006, and the Ph.D. degree from the
School of Computer Engineering, Nanyang Techno-
logical University (NTU), Singapore, in 2013. He
was with HCL Technologies, India for a year and
half until 2008. He has a post-doctoral research
experience for over five years at several reputed
universities. His current research interests are design

and optimisation of multi-core-based computing systems with focus on
performance, energy, temperature, reliability and security. He has published
over 110 papers in reputed journals/conferences, and received several best
paper awards, e.g., IEEE TC February 2018 Featured Paper, ICCES 2017,
ISORC 2016, PDP 2015, HiPEAC 2013 and GLSVLSI 2014 runner up.

He is associate editor of IEEE Embedded Systems Letters, Design Au-
tomation for Embedded Systems, Journal of Low Power Electronics and
Applications, and Frontiers in Neuroscience. He also edited a book for JLPEA
journal and currently editing a special issue for JLPEA. He served as the
publication chair of ESWeek-2021, Publicity co-chair of CF-2021, Local Co-
chair of NASA/ESA Conference on Adaptive Hardware and Systems 2019,
organized a special session at ESWeek-2021 and a tutorial at ESWeek-2018.
He has served on the TPC of IEEE/ACM conferences like DAC, DATE,
ICCAD, CASES and CODES+ISSS.

Letian Huang received the MS and Ph. D. degrees
in communication and information system from the
University of Electronic Science and Technology
of China (UESTC), Chengdu, China in 2009 and
2016, respectively. He is an associate professor with
UESTC. His scientific work contains more than 40
publications including book chapters, journal articles
and conference papers. His research interests include
heterogeneous multi-core system-on-chips, network-
on-chips, and mixed signal IC design.

Mei Yang received her Ph. D. in Computer Science
from the University of Texas at Dallas in Aug.
2003. In Aug. 2004, she joined in the Department
of Electrical and Computer Engineering, University
of Nevada, Las Vegas, where she was promoted to
full professor in 2016. Her research interests include
computer architectures, interconnection networks,
machine learning, and embedded systems.


