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Designing Enhanced Multi-dimensional
Constellations for Code-Domain NOMA

Haifeng Wen, Zilong Liu, Qu Luo, Chuang Shi, and Pei Xiao

Abstract—This paper presents an enhanced design of multi-
dimensional (MD) constellations which play a pivotal role
in many communication systems such as code-domain non-
orthogonal multiple access (CD-NOMA). MD constellations are
attractive as their structural properties, if properly designed,
lead to signal space diversity and hence improved error rate
performance. Unlike the existing works which mostly focus
on MD constellations with large minimum Euclidean distance
(MED), we look for new MD constellations with additional feature
that the minimum product distance (MPD) is also large. To this
end, a non-convex optimization problem is formulated and then
solved by the convex-concave procedure (CCCP). Compared with
the state-of-the-art literature, our proposed MD constellations1

lead to significant error performance enhancement over Rayleigh
fading channels whilst maintaining almost the same performance
over the Gaussian channels. To demonstrate their application,
we also show that these MD constellations give rise to good
codebooks in sparse code multiple access systems.

Index Terms—Multi-dimensional (MD) constellation, code-
domain non-orthogonal multiple access (CD-NOMA), sparse code
multiple access (SCMA), convex-concave procedure (CCCP),
minimum Euclidean distance, minimum product distance.

I. INTRODUCTION

A multi-dimensional (MD) constellation refers to a set of
equal-length vectors that exhibits certain distance properties.
At the transmitter, several incoming bits are grouped to select
a vector from an MD constellation which is then sent out over
a multi-channel communication system (e.g., a multicarrier
system). A judiciously designed MD constellation yields a
large constellation shaping gain owing to the so-called signal
space diversity [1], [2]. In general, the performance of an MD
constellation is measured by its minimum Euclidean distance
(MED) and/or minimum product distance (MPD). Specifically,
a large MED leads to reliable detection in a Gaussian channel,
whereas a large MPD is preferred for robust transmissions in
a Rayleigh fading channel.

In recent years, the search for good MD constellations has
attracted significant research attention due to their contem-
porary application in code-domain non-orthogonal multiple
access (CD-NOMA) systems [3]. Widely regarded as an
enabling paradigm for massive connectivity in future machine-
type communication networks, the codebook design of a CD-
NOMA system relies on certain good MD constellations. A
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representative CD-NOMA scheme is sparse code multiple
access (SCMA), in which low-complexity message passing
decoding is carried out at the receiver by efficiently exploiting
the sparsity structure of the codebooks [4], [5]. In SCMA,
certain user-specific operations (such as interleaving, permu-
tation, shuffling, phase rotations) may be applied to a common
MD constellation to generate multiple sparse codebooks [6]. A
comprehensive survey on various MD constellations for uplink
SCMA codebook design is given in [7]. In [8], Star-QAM
based MD constellation with large MED has been proposed
for downlink SCMA. Recently, such an MD constellation is
employed to construct power-imbalanced SCMA codebooks in
[9]. The applications of SCMA for massive access in 6G has
also been discussed in [10]. Besides, in the case of multiple-
input multiple-output (MIMO) transmission, there has been
a large body of literature concerning achieving the channel
capacity at a high signal-to-noise ratio (SNR) through certain
MD constellations with large MED [11]–[13].

The primary objective of this paper is to design enhanced
MD constellations with both large MED and MPD. Despite
numerous research attempts, this class of MD constellations
is rarely known in the literature, to the best of our knowledge.
From the numerical optimization point of view, a remarkable
algorithm (perhaps the only known algorithm so far) for good
MD constellations has been introduced in [15] by minimizing
the total constellation energy subject to an MED constraint.
As shown in Section IV, the MD constellations from [15] may
suffer from small MPD, making the resultant communication
system highly susceptible to transmission errors in Rayleigh
fading channels.

With the aid of the inequality of arithmetic and geometric
means, we first observe that the MPD of an MD constellation
tends to grow if the element-wise distances of any two MD
vectors are enlarged [3]. Thus, our optimization problem
is transformed to achieving the minimum total constellation
energy, while at the same time, the maximum element-wise
distances and a large MED value, which is balanced by a
trade-off factor. Such a problem is then tackled by the convex-
concave procedure (CCCP) [14] to obtain a sub-optimal solu-
tion. Our numerical simulation results show that the obtained
MD constellations lead to significant error performance en-
hancement over Rayleigh fading channels while maintaining
almost the same performance over the Gaussian channels as
compared to that of [15]. Additionally, by applying these new
MD constellations, we obtain improved SCMA codebooks
whose BER performances in uplink Rayleigh fading channels
outperform (or comparable to) those representative ones in the
literature.

ar
X

iv
:2

11
2.

02
53

7v
2 

 [
cs

.I
T

] 
 2

1 
Ju

l 2
02

2



2

Notations: x,x and X denote scalar, vector and matrix,
respectively. The n-dimensional complex and binary vector
spaces are denoted as Cn and Bn, respectively. Similarly,
Ck×n and Bk×n denote the (k × n)-dimensional complex
and binary matrix spaces, respectively. tr(X) denotes the trace
of a square matrix X. diag(x) gives a diagonal matrix with
the diagonal vector of x. (·)T and (·)H denote the transpose
and the Hermitian transpose. vec(·) denotes the vectorization
operator. ‖x‖2 and |x| return the Euclidean norm of vector x
and the absolute value of x, respectively. IN and 0N denote
the identity matrix of order N and the all zero matrix with
size N ×N , respectively.

II. PRELIMINARIES

A. MD constellation design

We consider a scenario where the transmit bits are mapped
to a K-dimensional complex constellation with cardinal-
ity of M . An MD constellation is denoted by CK×M =
[x1,x2, ...,xM ], where xi ∈ CK×1, i = 1, 2, ...,M . The key
performance indicators (KPIs) for an MD constellation include
MED, MPD and kissing number. The kissing number refers to
the number of constellation pairs that have the same MED (or
MPD) [7]. Since minimizing the kissing number is intractable,
it is desirable to maximize the MED or MPD first as they are
the dominating factors of the BER performances [2], [7]. Next,
we introduce MED and MPD for an MD constellation.

1) MED : The MED of an MD constellation is defined as

dE,min = min{‖xi − xj‖2, 1 ≤ i < j ≤M}. (1)

2) MPD : The product distance (PD) between two K-
dimensional complex constellation vectors, xi and xj , is
defined as:

dP,i,j =
∏
k∈Kij

|xi,k − xj,k|, (2)

where xi,k and xj,k are the k-th complex element of xi and
xj , respectively. Kij denotes the set of admissible k, for which
xi,k 6= xj,k. Then the MPD of such an MD constellation is
given by

dP,min = min{dP,i,j , 1 ≤ i < j ≤M}. (3)

Maximizing the MED and MPD of an MD constellation are
key for the reliable transmission over Gaussian and Rayleigh
fading channels, respectively [1], [2]. Given a power budget
with the goal of maximizing both MED and MPD, the design
problem can be formulated as

max
C

{dE,min, dP,min}

s.t.
1

M
tr(CHC) = P,

(4)

where P is the average power of the constellation vectors. It is
worth mentioning that the MED and MPD are also two design
KPIs for the CD-NOMA system [7].

B. Introduction to SCMA

To illustrate the application of the aimed MD constellations,
we first provide a brief introduction to SCMA. Let us con-
sider an SCMA system with J users communicating over N
orthogonal resource nodes. To enable massive connectivity,

the number of users is normally larger than that of resources,
i.e. J > N and thus the overloading factor is defined as
λf = J

N > 1. At the transmitter, for the j-th user, the
SCMA encoder maps log2 (M) coded binary bits to a K-
dimensional complex codebook set Xj , which is defined as
fj : Blog2 M → Xj ∈ CK , where Xj = [xj,1,xj,2, . . . ,xj,M ]
is the codebook of user j with cardinality of M . All the N -
dimensional complex codewords in each codebook are sparse
vectors with K non-zero elements and K < N .

The design of optimal multi-dimensional codebooks for
SCMA is still an open issue, hence a sub-optimal multi-
stage design is generally considered [8]. Let us consider
Vj ∈ BN×K which is a mapping matrix associated with
user j that maps the K-dimensional constellation point to an
N -dimensional sparse SCMA codeword. The mapping matrix
Vj is designed with N − K all-zero rows, i.e., the all-zero
elements in X j are in the same dimensions with Vj . The
structure of SCMA codebook X can be represented by an
indicator matrix F = [f1, . . . , fJ ], where fj = diag(VjV

T
j ).

User j and resource n are connected if and only if fn,j = 1,
where 1 ≤ n ≤ N , and 1 ≤ j ≤ J .

Based on Vj , user j’s codebook is generated by X j =
Vj∆jAMC , where ∆j is the constellation operator of user
j, 1 ≤ j ≤ J and AMC is the MD constellation which is to
be optimized in the next section. Similar to [9], we combine
the constellation operation matrix ∆j and mapping matrix Vj

together, i.e., sjN×J = Vj∆jIK , where IK denotes a column
vector of K 1’s. Hence, the codebook can be represented by
the signature matrix SN×J =

[
s1N×J , . . . , s

J
N×J

]
.

III. PROPOSED OPTIMIZATION METHOD

In this section, an MD constellation optimization scheme
for both large MED and MPD is proposed. Our idea is to
transform the MPD and MED constraints into a sequence of
quadratic forms with linear inequality constraints.

Since it is quite difficult, if not impossible, to directly solve
the optimization problem in (4), we consider a feasible way
by transforming it into a single target problem. An equivalent
problem is to find the minimum energy constellation C while
keeping the MPD and MED greater or equal to the thresholds
DP and DE , respectively, i.e.,

min
C

tr(CHC)

s.t.
dE,min ≥ DE ,
dP,min ≥ DP .

(5)

The detailed settings of DE and DP will be discussed later.
Unfortunately, the optimization problem in (5) is still hard to
solve due to the non-convex constraints of MED and MPD.
We thus reformulate the expressions of Euclidean distance and
product distance in linear inequality constraints and quadratic
forms.

Reformulation of MED: Define c = vec(C) ∈ CKM×1.
Then, the Euclidean distance square between xi and xj can
be expressed in the following quadratic form:

d2E,i,j = ‖xi − xj‖22 = cHEi,jc, i 6= j, (6)

where Ei,j = ET
i Ei − ET

i Ej − ET
j Ei + ET

j Ej , Ei = eT
i ⊗

IK , 1 ≤ i < j ≤ M , ei represents the i-th column of the
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identity matrix IM , and ⊗ denotes the Kronecker product. The
matrix Ei,j is very sparse, and with nonzero entries limited
to −1 and 1. Let + and − be +1 and −1, respectively. For
K = 2 and M = 4, as an example, Ei=1,j=2 is given below:

Ei=1,j=2 =

 + 0 − 0
0 + 0 −
− 0 + 0
0 − 0 +

04

04 04

 . (7)

Reformulation of MPD: To derive the quadratic form of
product distance square, we first give the equivalent expression
of product distance square in a logarithmic form, i.e.,

log(d2P,i,j) =
∑
k∈Kij

log(d2i,j,k), (8)

where d2i,j,k = |xi,k − xj,k|2 is the element-wise distance
square at the k-th dimension. The quadratic form of d2i,j,k
at the k-th dimension can be easily obtained by padding zeros
to other dimensions. Similar to (6), we have

d2i,j,k = cHBi,j,kc, i 6= j, k ∈ Kij , (9)

where Bi,j,k is obtained by keeping the ((i − 1)K + k) and
((j − 1)K + k) columns of Ei,j , while replacing all the
remaining columns with zeros. As an example of Bi,j,k for
K = 2 and M = 4 is given below:

Bi=1,j=2,k=1 =

 + 0 − 0
0 0 0 0
− 0 + 0
0 0 0 0

04

04 04

 . (10)

Based on the above analysis, the optimization problem in
(5) can be reformulated as:

min
c,t

t

s.t. ‖c‖2 ≤ t,
cHEi,jc ≥ D2

E ,∑
k∈Kij

log(cHBi,j,kc) ≥ 2log(DP ),

1 ≤ i < j ≤M.

(11)

Albeit the above problem can be solved by semi-definite
relaxation (SDR), the resultant solutions may suffer from small
MED values. This is due to the fact that the product distance
in logarithmic form belongs to exponential cone which is
considerably hard to be solved by symmetric primal/dual
solvers [16], thus affecting the performance of solving the
optimization problem in (11) and leading to MED degradation.
A possible solution to this problem is to further relax the MPD
constraints. Liu and Yang have shown in [3] the relationship
between Euclidean distance and product distance by utilizing
the inequality of arithmetic and geometric means, which is
given by

d2P =

K∏
k=1

|xi,k − xj,k|2 ≤

(∑K
k=1 |xi,k − xj,k|

2

K

)K
=

1

KK
‖xi − xj‖2K2 ,

(12)

where the equality is achieved if and only if

|xi,1 − xj,1| = |xi,2 − xj,2| = ... = |xi,K − xj,K |. (13)

Based on (12) and (13), the strong product distance con-
straints can be relaxed by element-wise distance constraints.
Let us consider that the element-wise distance is no less than
a threshold δ, i.e., |xi,k − xj,k| ≥ δ, ∀i, j, k. Then the product
distance dP is lower bounded by δK , i.e.,

dP ≥ δK . (14)

With this relaxation, more degrees of freedom may be ex-
ploited for maximizing the Euclidean distance while maintain-
ing high energy efficiency. Hence, the optimization problem
in (11) can be translated to the following one:

min
c,t,η

t− λη

s.t.

‖c‖2 ≤ t,
cHEi,jc ≥ D2

E ,
cHBi,j,kc ≥ η,
1 ≤ i < j ≤M,k = 1, 2, ...K,

(15)

where η is the introduced auxiliary variable corresponding to
δ2, and λ > 0 is a hyper-parameter which is used to strike
a trade-off between the MED and MPD. Small λ tends to
give rise to large MED but small MPD, whereas large λ
leads to increased MPD but small MED, i.e. approaching
the equality in (12). Hence, λ needs to be fine-tuned. In
Section IV, λ is set to be 1/2 such that the obtained MD
constellations possess both large MED and MPD. The aim of
(15) is to minimize the total constellation energy and maximize
the element-wise distance while maintaining a large MED.
Although the optimization problem (15) is still non-convex,
it can be simply linearized. In this paper, such a problem is
solved by convex-concave procedure (CCCP) [14].

Specifically, the optimization problem (15) can be solved
by iteratively solving the following convex problem:

min
c,t,η

t− λη

s.t.

‖c‖2 ≤ t,
cHq Ei,jc+ cHEi,jcq − cHq Ei,jcq ≥ D2

E ,
cHq Bi,j,kc+ cHBi,j,kcq − cHq Bi,j,kcq ≥ η,
1 ≤ i < j ≤M,k = 1, 2, ...K,

(16)

where the subscript q indicates the index of iterations.
It is noted that (16) is a convex second-order cone pro-

gramming (SOCP) problem which can be solved by convex
optimization tools, e.g. CVX. The optimization process ini-
tiates with q = 0 and a randomly sampled vector c0 that
meets the constraints. Then, in the q-th iteration, we solve
(16) by assigning the (q−1)-th optimized solution c∗q−1 to cq
to produce a new solution with a lower objective value. Note
that cHEi,jc ≥ D2

E and cHBi,j,kc ≥ η are always satisfied
during the iterations, since the left sides of the second and third
constraints are their affine tight lower bounds. Furthermore,
when cq−1 and cq are feasible, ‖cq‖2 ≤ ‖cq−1‖2 is also
satisfied, which means that the total constellation energy is
not increasing during the iterations. The algorithm stops when
‖cq − cq−1‖2 ≤ ε or the maximum number of iterations Iq
is reached. In our numerical simulation, ε and Iq are set to
be 10−4 and 100, respectively. Finally, the MD constellation
can be obtained by reshaping the latest optimized solution
c∗ to constellation matrix C∗. The above iteration process is
illustrated in Fig. 1.
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Fig. 1: Illustration of the CCCP iterations in solving the
optimization problem (16). Note that the algorithm may stop
when ‖cq − cq−1‖2 ≤ ε.
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Fig. 2: Plots of the proposed 2-dimensional complex constel-
lations, where the blue circles refer to the first dimension, the
yellow diamonds refer to the second dimension, and the index
upon each circle/diamond stands for the corresponding MD
vector number.

According to the interior-point methods [16], the worst-
case computational complexity of the proposed method is

O
((

1 + (K + 1)
(

M(M−1)
2

))3.5)
, which is moderate even

for large M and K.

IV. NUMERICAL EVALUATION

This section presents a numerical evaluation of the proposed
MD constellations. We first compare our proposed method
with the scheme in [15] in terms of MED, MPD and BERs.
For all the simulations, λ and DE are set to be 1/2 and 1,
respectively. The powers of all the obtained MD constellations
are normalized to unit, i.e. tr(CHC)/M = 1. Based on
these new MD constellations, we then construct 2-dimensional
SCMA codebooks for a 4 × 6 SCMA system (which is
widely adopted in the literature) and compare the error rate
performances with some known SCMA codebooks in uplink
Rayleigh fading channels. The indicator matrix of this 4 × 6
SCMA system is given by

S4×6 =

0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0

 . (17)

Fig. 2 presents the proposed 2-dimensional constellations
with M = 4, 8, 16, 32. As we can see, the constellation points
at the same dimension, i.e., the constellation points with the

TABLE I: A comparison of MED and MPD for the obtained
MD constellations and that from [15], where the energy of the
MD constellation is normalized to tr(CHC) =M .

(K,M)
Proposed [15]

MED MPD MED MPD
(2, 4) 1.633 1.0887 1.633 0.47
(2, 8) 1.4142 0.8165 1.4142 0.1355
(2, 16) 1.1368 0.3572 1.127 0.0781
(2, 32) 0.9297 0.1166 0.9275 0.0571
(2, 64) 0.7599 0.0454 0.7531 0.0109
(3, 4) 1.633 0.7698 1.633 0.3963
(3, 8) 1.4759 0.3086 1.4771 0.0207
(3, 16) 1.2969 0.0906 1.3042 0.0355
(3, 32) 1.1415 0.0425 1.1495 0.0034
(3, 64) 0.9965 0.0114 0.9972 0.0037
(5, 8) 1.5119 0.05 1.5119 1.45 × 10−4

(5, 16) 1.4254 0.0158 1.4254 0.004
(7, 8) 1.5119 0.0043 1.5119 4.45 × 10−4

(7, 16) 1.4537 8.28 × 10−4 1.4537 1.38 × 10−4

(9, 8) 1.5119 2.30 × 10−4 1.5119 3.72 × 10−5

(9, 16) 1.4606 3.27 × 10−5 1.4606 6.82 × 10−7

same color (same shape), own large MEDs. In other words,
the element-wise distance at each dimension is optimized,
thus helping contribute a large MPD for the obtained MD
constellations. Due to the irregular pattern of constellation
points, natural labeling is employed in the following BER
simulations.

Table I compares the MPD and MED values of the obtained
MD constellations with that from [15] for K ∈ {2, 3, 5, 7, 9}
and M ∈ {4, 8, 16, 32, 64}. For the MD constellation with
K = 2,M = 4, it has been proven in [17] that the MED is
upper bounded by 1.633. We can observe that the obtained
2× 4 constellation achieves the optimal MED and large MPD
values at the same time. Moreover, the MPDs of the obtained
MD constellations are significantly larger than those arising
from [15]. Let us denote by r(K,M) the ratio between the
MPDs of our obtained MD constellations with dimension
of K × M and that from [15]. Fig. 3 shows the MPD
improvements of the proposed method over [15] for K = 2, 3.
It is noted that our obtained MD constellations outperform the
MD constellations from [15] by 3 dB to 12 dB for different
K and M . Since the MPD is not considered in [15], the MPD
values of their MD constellations are random, thus leading to
the non-smooth ratio pattern.

Then we compare the BER performances of the obtained
MD constellations and that from [15] in Gaussian and
Rayleigh fading channels in Fig. 4. Specifically, K = 3 is
considered and the maximum likelihood detector with perfect
channel information is assumed at the receiver side. As can
be seen, the proposed codebook achieve similar BER perfor-
mance with that from [15] in Gaussian channels, however, our
obtained MD constellations outperform the constellations in
[15] significantly in Rayleigh fading channels in the high SNR
region. One can observe that our obtained MD constellations
enjoy 4 dB and 2 dB gains for K = 3,M = 8 and
K = 3,M = 16 respectively. To sum up, our proposed
enhanced MD constellation can achieve good performance in
both Gaussian and Rayleigh fading channels, due to the large
MED and MPD.

By adopting the indicator matrix in (17), Fig. 5 compares the
BER performances of the resultant SCMA codebooks (arising
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Fig. 5: Comparison of BERs between
different codebooks with M = 4, 8, 16
in uplink SCMA under Rayleigh fading
channels.

from the obtained MD constellations) with several representa-
tive codebooks with K = 2. These benchmarking codebooks
for comparison are that obtained from [15], the Star-QAM
codebook [8], Chen’s codebooks [18] and Jiang’s codebook
[19]. Overall, our obtained codebooks outperform the Star-
QAM codebooks, Jiang’s codebook and the codebooks from
in [15], and achieve comparable (but slightly worse) BER
performance with the codebooks in [18] for M = 4 and
M = 8.

The latter is because our obtained MD constellations ex-
hibit relatively flat (or almost flat) MPD spectra, leading to
limited error rate gain for optimizing the labeling between the
input bits and transmit sparse codewords. The excellent BER
advantage of our obtained codebooks is more prominent for
M = 16. In this case, the codebooks of [18] are not available
due to the intolerable computational complexity, whilst at the
same time, we obtain about 5 dB gain over that from [15] and
10 dB gain over Star-QAM codebooks at BER = 10−5.

V. CONCLUSIONS

In this paper, we have proposed a new method of designing
enhanced MD constellations for CD-NOMA with large MED
and MPD at the same time. The optimization problem is for-
mulated (and then solved by CCCP) to minimize the energy of
the MD constellations and maximize the element-wise distance
while keeping the MED greater or equal to a certain threshold.
Whilst maintaining almost the same performance over the
Gaussian channels as compared to that of [15], numerical
results have shown that the obtained MD constellations lead to
enhanced error performances over Rayleigh fading channels,
thanks to the enlarged MPD. Building upon these new MD
constellations, good error performances are also observed for
the resultant SCMA codebooks over uplink Rayleigh fading
channels.
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