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Designing Low-PAPR Waveform for OFDM-based
RadCom Systems

Yixuan Huang, Su Hu, Shiyong Ma, Zilong Liu and Ming Xiao

Abstract— This paper is focused on the fusion of radar
and wireless communication, called RadCom, which has been
extensively studied in recent years for future intelligent
transportation systems. We propose a new waveform design
algorithm for reducing peak-to-average power ratio (PAPR)
in OFDM-based RadCom systems. We consider a flexible and
generic RadCom structure in which a number of non-contiguous
sub-bands for data transmission are located within a large
contiguous spectrum band for radar detection/sensing. New
RadCom waveforms with low PAPR are obtained by carrying out
optimization over those subcarriers which are complementary
to the communication bands. As an application of the
majorization-minimization (MM) optimization method, our
major contribution is an l-norm cyclic algorithm which is
capable of efficiently reducing the maximum PAPR of RadCom
waveforms. We show by numerical simulation results that
significant performance enhancements can be achieved compared
to OFDM RadCom waveforms from legacy approaches.

Index Terms—RadCom, Peak-to-Average Power Ratio
(PAPR), Orthogonal Frequency-Division Multiplexing (OFDM),
Waveform Design, Internet-of-Vehicles (IoV).

I. INTRODUCTION

THE safety and user experiences of drivers and passengers
are vital in vehicular field. Both the communication

and radar functions are becoming increasingly indispensable
in a modern car. While the former is used for information
exchange, the latter is key for the prevention of any
potential traffic hazards and/or collisions. Since both the
communication and radar systems bear certain similarities
with respect to the system structure and signal processing
algorithms, an emerging trend is to integrate these two into
one, where the resultant system is called “RadCom” [1] or
joint radar-communications (JRC) [2] for internet-of-vehicles
(IoV) and autonomous driving so as to attain a number
of benefits such as low hardware cost and high spectrum
efficiency. Specifically, the radar sensing/detection precision
may be improved based on the feedback from the
communication module which potentially carries certain key
driving information, such as the geographical locations,
moving speeds, and planned driving routes. The outputs of
the radar module can also help improve the performances
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of the communication counterpart, for example, by adjusting
the antenna position to facilitate direction-sensitive signal
processing (such as beamforming) and/or adjusting the
coding rates and modulation schemes based on the estimated
distances/speeds of vehicles to meet a vast range of
quality-of-service requirements. In Fig. 1, four vehicles
exchange different types of vehicular information with the
aid of RadCom waveforms while the targets, such as
neighboring vehicles, pedestrians, or road-side units, are
captured simultaneously by an in-car RadCom equipment for
enhancement of traffic safety.

A. Literature Review

Existing contributions on RadCom mainly focus on
two aspects [3]: 1) co-existence of existing radar and
communication devices and 2) co-design for dual-functional
systems. One of the best candidates for RadCom is orthogonal
frequency division multiplexing (OFDM), which has found
applications in numerous communication systems/standards
owing to their capabilities of efficient system implementation
and high spectrum efficiency [1], [4]–[7]. With the total
power constraint and based on information theory, an adaptive
OFDM-based RadCom waveform design method has been
devised in [8]. A robust OFDM radar waveform design has
been introduced in a co-existence RadCom system by three
power minimization criteria [9]. [1] studied an OFDM-based
RadCom system, in which traditional communication OFDM
is applied to capture target range and relative velocity in
IoV scenarios by continuous wave (CW) radar processing1.
An orthogonal frequency division multiple access (OFDMA)
JRC system, including a bi-static automotive radar and IoV
communications, has been investigated in [2]. To minimize
the downlink multiuser interference with the total power
constraint, [10] considers weighted optimizations for a flexible
tradeoff between radar and communications performances
in multi-input-multi-output (MIMO) RadCom beampattern
design.

To attain excellent detection and communication
performances in IoV scenarios, efficient design approaches
of RadCom waveforms which not only enable high data
rates but also possess good correlation characteristics (for
radar sensing/detection) are desired [11]. The waveform
autocorrelation property is of prime importance for ranging.

1Since all the subcarriers are employed for data transmission in [1], it is
difficult to ensure a low PAPR. In comparison, this paper considers a generic
RadCom structure that only a portion of certain contiguous frequency band is
used for communication. This allows us to leverage the remaining frequency
bands for PAPR reduction of the RadCom waveforms.
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Fig. 1: An illustration of the communication and radar fusion system, i.e., RadCom, in an IoV scenario.

Specifically, low/zero periodic autocorrelation (PAC) property
is highly required by OFDM-based RadCom systems.
Spectrally-constrained sequences and the related correlation
lower bounds have been derived in [12]. A unimodular
sequence design algorithm has been developed in [13]
through directly minimizing the integrated sidelobe level
(ISL) with the aid of the majorization-minimization (MM)
technique. Several algorithms based on the general MM
method have been devised in [14] to tackle the weighted ISL
and peak sidelobe level (PSL) minimization problem.

To deploy OFDM in a practical RadCom system, it is
pivotal to reduce the peak-to-average power ratio (PAPR) of
waveforms [15]. It is noted that traditional OFDM suffers
from the high PAPR problem, which could result in serious
nonlinear distortion of transmit signals incurred in a high
power amplifier (HPA) of the radio frequency (RF) front end
[17]. A PAPR-constrained Pareto-optimal waveform design
approach has been proposed for low-PAPR OFDM radar
waveform in [18]. OFDM waveforms with low autocorrelation
and low PAPR have been derived under spectral constraints
through the Gerchberg-Saxton (GS) algorithm in [19]. To
reduce the PAPR of RadCom waveforms, a co-design OFDM
waveform design based on a self-disarrange Golay block
coding algorithm has been proposed in [20]. Furthermore, [21]
investigated an OFDM-Chirp waveform which obtains PAPR
about 6 dB lower than that of traditional OFDM. However,
the data rates of these works may not be able to meet the
communication rate requirements in practice. When a high-rate
constraint is imposed in a RadCom system, in general, it is
relatively difficult to achieve both good PAC characteristics
and low PAPR.

B. Motivations and Objectives

Albeit extensive research efforts have been made on
RadCom, a contiguous spectral band is mostly assumed in
many existing RadCom systems. For sub-6 GHz bands, such

a luxury has become very difficult to continue nowadays
due to the increasingly congested and fragmented spectrum
[22], [23]. Hence, there have been rapid advances on
radar and communication systems operated over wideband
millimeter-wave (mmWave) bands which provide relatively
abundant spectrum resources. According to the 3GPP TS
38.104 standard, for example, mmWave communications can
be conducted in the frequency range of 24.25-40 GHz and
the specified bandwidths for 5G New Radio (NR) mmWave
bands are 50 MHz, 100 MHz, 200 MHz and 400 MHz [24].
For excellent radar detection/sensing performance (e.g., good
range resolution), in principle, the bandwidth allocated to a
radar system, ranging from hundreds of megahertz to several
gigahertz, may be far more larger than that for a traditional
communication system.

In view of the increasingly congested and contiguous
spectrum as well as different bandwidth requirements between
communication and radar, a radical rethinking on the design
of RadCom waveform structure with ultra flexibility in
bandwidth allocation is becoming increasingly urgent. First,
such a waveform design structure should allow radar to
utilize contiguous or non-contiguous communication bands
to increase the total detection bandwidth for enhanced range
resolution. Second, the communication module can flexibly
choose the desired transmission bandwidth and spectral
locations based on its own quality-of-service requirements.
With such a flexible waveform design structure, we aim
for developing an OFDM-based RadCom system which can
strike a balance between low-PAPR, sensing accuracy, and
communication rates.

C. Problem Formulation and Contributions

We consider a generic OFDM-based RadCom waveform
design structure where the communication bands lie at
arbitrary positions of a large contiguous radar band (see
Subsection II-A). Such a structure is highly flexible to
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balance the different needs of radar and communication,
where the former generally requires a large bandwidth for
improved sensing resolution. We optimize the PAPR of the
OFDM-based RadCom waveform over those bands which
are complementary to the communication bands. When a
low PAPR is required, for example, one may reduce the
total communication bandwidth accordingly to reserve more
bandwidth for RadCom waveform optimization. Also, one may
allocate a larger bandwidth to communication when a high
data rate is needed. The major contributions of this paper are
summarized as follows:
• By observing that the short-range radar sensing/detection

performance (e.g., range measurement) heavily relies on
the PAC property of the waveform, we prove that the
minimum period ISL (PISL) of the RadCom waveform
is achieved when uniform power allocation is adopted for
both radar and communication bands.

• Based on the proposed RadCom waveform structure, we
propose a new efficient iterative waveform algorithm,
called l-norm cyclic algorithm (LNCA), for effective
PAPR reduction of OFDM-based RadCom waveforms by
the general framework of the MM method.

It is found that the PAPR of the proposed RadCom
waveform can be minimized by optimizing the infinite-norm
(∞-norm) of energy spectrum of the oversampled waveforms
(see Subsection III-B). Furthermore, we show that such
an ∞-norm problem can be simplified by optimizing the
associated l-norm, where l is a positive integer [14]. In the
proposed algorithm, we first transform the l-norm problem
associated to waveform energy spectrum into a quartic
function problem by the MM method. Subsequently, the
MM method is employed twice to transform the quartic
function problem into a linear function optimization problem
in Subsection IV-B. Thanks to the MM method, our proposed
LNCA algorithm is guaranteed to converge and can be
efficiently implemented by fast Fourier transform (FFT). In
short, our proposed LNCA algorithm is capable of directly
majorizing the maximum PAPR of OFDM-based RadCom
waveforms in an effective manner for randomly distributed
communication subcarriers.

D. Organization of this paper

This paper is organised as follow. The proposed generic
RadCom waveform structure and the block diagram of
OFDM-based RadCom systems are first introduced in Section
II. The constraint and design objective of OFDM-based
RadCom waveforms are shown in Section III. In Section IV,
we show that optimized waveforms display PAPR of lower
than 3 dB with a probability of higher than 99.99% by the
proposed LNCA waveform, when the data bandwidth ratio2 is
20%. To evaluate the performance of OFDM-based RadCom
systems with the LNCA waveform, we present in Subsection
V-A a set of 24 GHz ISM band-based mmWave system
parameters to meet the demands of both the 5G NR and IoV
radar. By taking a HPA at the RF front-end into account, we

2The data bandwidth ratio in this paper is defined as the communication
bandwidth over the entire RadCom bandwidth.

evaluate the performances of proposed low-PAPR waveforms
in wireless communication and radar detection in Subsections
V-B and V-C. Finally, we conclude this paper in Section VI.

Notations

The following notations will be used throughout this paper.
— IDFT (·) and DFT (·) denote inverse discrete

Fourier transformation (IDFT) and discrete Fourier
transformation (DFT) operations, respectively;

— (·)T, (·)∗ and (·)H denote the matrix transpose, conjugate
and conjugate transpose operations, respectively;

— (X ·Y) denotes a Hadamard product of matrices or
vectors, X and Y;

— Tr (·) denotes the matrix trace operation;
— vec (·) denotes the matrix vectorization operation in

column order;
— diag (·) denotes a diagonal matrix formed with a vector

as its principal diagonal;
— λmax (·) denotes the maximum matrix eigenvalue obtained

from a matrix;
— |·|2 denotes the element-wise absolute-squared value;
— ‖·‖ denotes the Euclidean norm of a vector;
— ‖·‖l denotes the l-norm of a vector;
— Q (x) =

∫∞
x
e−y

2/2 dy/
√

2π denotes the Gaussian
Q-function.

II. OFDM-BASED RADCOM SYSTEMS AND WAVEFORM
STRUCTURE

Section II is a preparatory section in which we first
introduce a generic OFDM-based RadCom waveform structure
where the communication bands are allocated arbitrarily over a
large contiguous radar band. Then we introduce a symbol-level
OFDM-based RadCom system framework.

A. OFDM-based RadCom Waveform Structure

For compatibility with a wide range of spectrum usage
patterns in both sub-6 GHz bands and mmWave bands, it
is assumed throughout this paper that there are arbitrary
number of (potentially non-contiguous) spectral bands which
are used for communication purpose lying within a large
contiguous radar band, as shown in Fig. 2. In this structure, the
waveform PAPR can be reduced by optimizing those spectral
bands (called “optimization band”) complementary to the
communication bands and the OFDM-based radar processing
may be improved by adopting waveforms with the constraint
of good PAC properties, which is shown in Subsection III-A.

Suppose that the set of all OFDM subcarriers is Ω =
{0, 1, . . . , N − 1}, where N denote the number of subcarriers.
Let Ωc be the set of communication subcarrier indies with Nc
as its cardinality. Also let Ωd denote the set of subcarrier
indices over which the PAC property and PAPR of the
RadCom waveform is optimized, where Nd denotes its
cardinality. Note that N = Nc + Nd, Ωc ∪ Ωd = Ω and
Ωc ∩ Ωd = Φ0, where Φ0 stands for the empty set. The
communication symbol vector and the optimization symbol
vector in discrete-frequency domain are defined as C ∈ CN
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Fig. 2: Generic RadCom waveform structure in discrete-frequency domain.

and D ∈ CN , respectively. It is noted that in any subcarrier
position of C and D, there is only one non-zero value,
whilst the other one should be zero. The symbol vector in
discrete-frequency domain is denoted as X = C + D =
[X0, X1 . . . , XN−1]

T ∈ CN , and the element of X can be
expressed as

Xk =

{
Ck, if k ∈ Ωc,

Dk, otherwise,
(1)

where Ck denotes the element of C, Dk denotes the element
of D and k = 0, 1, . . . , N − 1. The proposed waveform
optimization is conducted over the Nd subcarriers.

B. OFDM-based RadCom System Structure

Based on the proposed waveform structure, the symbol-level
signal processing flow in OFDM-based RadCom systems is
depicted in Fig. 3, where the data bandwidth ratio is defined
as w = Nc/N . At the transmitter, without loss of generality,
binary data are modulated by a phase shift keying (PSK)
modulator to generate C and an unimodular sequence with
random phases is used to generate D which will be optimized
by the proposed waveform optimization algorithm in Section
IV. The optimized X is then passed through an IDFT block
module to generate the symbol vector in discrete-time domain,
i.e., x = [x0, x1, . . . , xN−1]

T ∈ CN and x = IDFT(X).
At last, the obtained x is passed through the cyclic prefix
(CP) insertion and RF front end for transmission. For radar
processing, the conjugate X is sent to generate a reference
matrix in discrete-frequency domain. To calculate target range
and relative velocity, let us assume that Nf, which denotes the
number of evaluated OFDM symbols, symbols are needed. The

element of the i-th symbol vector in discrete-time domain, i.e.,
xi ∈ CN , can be defined as

xi,n =
1√
N

N−1∑
k=0

Xi,ke
j2π kn

N ,

n = 0, 1, . . . , N − 1, i = 0, 1, . . . , Nf − 1,

(2)

where Xi,k is the element of the i-th symbol
vector in discrete-frequency domain, i.e., Xi =
[Xi,0, Xi,1, . . . , Xi,N−1]

T ∈ CN . The reference matrix
is given by [

X∗0 X∗1 . . . X∗Nf−1

]
. (3)

At the receiver, after RF-level signal processing and CP
removal, the received vector in discrete-time domain, defined
as y ∈ CN , is obtained. Then y is transformed by a DFT
computation into the received vector in discrete-frequency
domain, defined as Y = DFT(y). According to the DFT
result, i.e., Y, the data in communication subcarriers will
be extracted for PSK demodulation to get binary data and
complete communication reception.

Let Tsym, T , TCP and ∆f be the total OFDM symbol
duration, the OFDM symbol duration, the CP duration and
the subcarrier spacing, respectively. We have Tsym = T + TCP
and T = 1/∆f . In order to highlight the effect of delay
and Doppler, let us ignore the noise. Assume that the OFDM
radio waveforms are reflected by an object or obstacle in a
certain range, calling L delays in a two-way propagation, with
a Doppler shift fD,rad due to a relative movement. Thus, the
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element of the i-th received vector in discrete-time domain,
i.e., yi = [yi,0, yi,1, . . . , yi,N−1]

T ∈ CN , can be written as [1]

yi,n =
1√
N

N−1∑
k=0

Yi,ke
j2π kn

N

=
1√
N

N−1∑
k=0

Ai,kXi,ke
−j2π kL

N ej2πifD,radTsymej2π
kn
N ,

n = 0, 1, . . . , N − 1, i = 0, 1, . . . , Nf − 1,

(4)

where Ai,k denotes the complex amplitude factor describing
the attenuation and phase shift occurring due to the
propagation and scattering process, Yi,k is the element of
the i-th received vector in discrete-frequency domain, i.e.,
Yi = [Yi,0, Yi,1, . . . , Yi,N−1]

T ∈ CN . Obviously, we have

Yi,k = Ai,kXi,ke
−j2π kL

N ej2πifD,radTsym ,

k = 0, 1, . . . , N − 1, i = 0, 1, . . . , Nf − 1.
(5)

Let kL =
[
1, e−j2πL/N , . . . , e−j2π(N−1)L/N

]T
and Ai =

[Ai,0, Ai,1, . . . , Ai,N−1]
T, we have

Yi = ej2πifD,radTsymAi ·Xi · kL, i = 0, 1, . . . , Nf − 1. (6)

The information about the objective is included in the symbol
vectors and the received vectors in discrete-frequency domain,
hence the Nf received vectors will be sent for constituting the
received matrix in discrete-frequency domain, which can be
written by [

Y0 Y1 . . . YNf−1

]
. (7)

The radar processing algorithm used in this paper is based
on a Hadamard product between the received matrix and the
reference matrix. Then the typical OFDM radar processing
[1] is adopted. Provided that the echo delay is shorter than
the CP duration, the range can be calculated by exploiting the
IDFT results of the Hadamard product of X∗ and Y, where
the results are equivalent to the PAC function of x and y. The
Doppler shift is obtained by taking advantage of the DFT of
samples on every subcarrier.

Time
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Fig. 4: The reflected echo diagram in time domain. T ,
TCP, NCP and L denote the OFDM symbol duration, the
CP duration, the CP length and the maximum number of
multi-paths, respectively. fs stands for the sampling frequency
which is equal to N/T . x and y are the symbol vector and
the received vector in discrete-time domain, respectively.
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III. OFDM-BASED RADCOM WAVEFORM: CONSTRAINT
AND DESIGN OBJECTIVE

In this section, we first introduce the optimization constraint
and then formulate PAPR optimization objective function in
OFDM-based RadCom waveform design. Since our objective
is to optimize the PAPR of one symbol, the index i is ignored
in the rest of this paper.

A. Optimization Constraint of RadCom Waveform

Consider an OFDM-based RadCom system, where NCP
and fs denote the CP length and the sampling frequency,
respectively. Obviously, fs = N/T . In radar sensing/detection
stage, as illustrated in Fig. 4, the OFDM symbol is reflected
by a neighboring target and then the echo, which may be
propagated through L delays, is received. When the attenuation
of the transmit signal is ignored and NCP ≥ L, it is evident
that y is a cyclic shift of x, indicating that the ranging
processing in the radar receiver can be equivalent to a periodic
correlation function. Therefore, PAC properties of waveforms
are significant for RadCom waveform design.

Formally, the PAC function (PACF) of x can be expressed
as

rx(k) =

N−1∑
n=0

xnx
∗
(n−k) mod N , (8)

where k = −(N − 1), . . . , N − 1, and “mod” is the modulo
operator. It is easy to find rx(k) = r∗x(−k) = r∗x(N − k) at
k = 0, 1, . . . , N − 1.

In OFDM radar signal processing, low/zero PACF sidelobes
of the waveforms are preferred to prevent the masking

effect3. It is noted that the power spectrum
{
|Xk|2

}N−1

k=0
and

{rx(k)}N−1
k=0 form a Fourier transform pair [19]. The PISL of

x can be written as [11]

PISL =

N−1∑
k=−(N−1)

k 6=0

|rx(k)|2

= 2

(
N−1∑
k=0

|rx (k)|2 − |rx (0)|2
)

= 2

(
N−1∑
k=0

(√
N |Xk|2

)2

−N2

)

= 2

(
N

N−1∑
k=0

|Xk|4 −N2

)
.

(9)

Due to the Parseval’s theorem and by assuming that∑N−1
n=0 |xn|

2
= N , we have

∑N−1
k=0 |Xk|2 = N . One can

easily show through the Cauchy-Schwarz inequality that the
PISL can be minimized to zero by setting |Xk| = 1, ∀ k =
0, . . . , N − 1. This indicates that when the elements of X
are unimodular, the corresponding x has ideal PAC properties,
i.e., PISL = 0. Hence, in OFDM-based RadCom systems with

3The masking effect defined in this paper is that the target peak with weaker
echo power is masked by the sidelobes of other targets.

uniform power allocation, i.e., unimodular frequency samples,
we consider the following settings as the constraint{

|Xk| = 1, k ∈ Ωd,

Xk = Ck, k ∈ Ωc,
(10)

where |Ck| = 1, k ∈ Ωc denote unimodular communication
symbols, such as PSK symbols.

B. Optimization Objectives of RadCom Waveform

Many radar systems require the waveform PAPR to be lower
than 3 dB [18]. However, this may be hard to meet for OFDM
systems, even using some traditional PAPR reduction methods
(e.g., selected mapping, tone injection, tone reservation, etc.).
It is widely believed that the PAPR of analog OFDM symbols
can be very close to discrete OFDM symbols with four-times
oversampling [15]. Based on this observation, for given X ∈
CN , the elements of normalized four-times oversampled x ∈
C4N can be redefined as

xn =
1√
N

N−1∑
k=0

Xke
j2π kn

4N , n = 0, 1, . . . , 4N − 1. (11)

The PAPR of a four-times oversampled OFDM symbol is
defined as

PAPR =
max
n

{
|xn|2

}
1

4N

4N−1∑
n=0
|xn|2

. (12)

For a given RadCom symbol vector in (10),
(1/4N)

∑4N−1
n=0 |xn|

2
= 1. Therefore, the PAPR optimization

problem can be written as

min
X

max
n

{
XHanaH

nX
}

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc,
(13)

where an = 1√
N

[
1, ej2π

n
4N , . . . , ej2π

(N−1)n
4N

]H
∈ CN and

xn = aH
nX. This shows that the PAPR optimization in

OFDM-based RadCom waveforms is equivalent to optimizing
the ∞-norm of |x|2.

IV. PROPOSED l-NORM CYCLIC ALGORITHMS FOR PAPR
REDUCTION IN OFDM-BASED RADCOM SYSTEMS

In this section, we introduce the MM method and then
the proposed LNCA algorithm. Our key idea is to simplify
the associated l-norm one which is then transformed into a
linear optimization problem by employing the MM method
for several times.

A. Majorization-Minimization Method

For minimization problem f (x) over χ ∈ CN , the MM
method minimizes the objective function by optimizing an
approximate function which majorizes f (x). The function
u
(
x,x(q)

)
is said to majorize f (x) at point x(q), where q

in the superscript denotes the q-th iteration, provided that

u
(
x,x(q)

)
≥ f (x) , ∀ x ∈ χ, (14)
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u
(
x(q),x(q)

)
= f

(
x(q)

)
. (15)

It is clear that u
(
x,x(q)

)
is an upper bound of f (x) over

χ and coincides with f (x) at x(q) [13]. Let x(q+1) be the
solution to u

(
x,x(q)

)
at the (q+1)-th iteration, i.e., x(q+1) ∈

arg min
x∈χ

u
(
x,x(q)

)
. One can see that the objective function

decreases monotonically at every iteration, i.e.,

f
(
x(q+1)

)
≤u
(
x(q+1),x(q)

)
≤u
(
x(q),x(q)

)
=f
(
x(q)

)
. (16)

A simple and useful majorization result [13] is presented
below:

Lemma 1: Let M ≥ L, where L and M are N ×
N Hermitian matrices. Then for any point x0 ∈ CN ,
the quadratic function xHLx is majorized by xHMx +
2 Re

(
xH (L−M) x0

)
+ xH

0 (M− L) x0 at x0.

B. l-Norm Cyclic Algorithm
In this subsection, we propose the LNCA algorithm

for PAPR reduction over four-times oversampled RadCom
waveforms. Since the ∞-norm optimization of a vector is
not obvious, we consider the following l-norm optimization
problem

min
X

(
4N−1∑
n=0

(
XHanaH

nX
)l) 1

l

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc,

(17)

with 2 ≤ l < +∞. It is evident that the objective function of
the above problem is the l-norm of |x|2. By choosing different
l values, we may get different metrics of particular interest.
For instance, by choosing l→ +∞, the l-norm metric tends to
the∞-norm of |x|2 [14]. Therefore, the∞-norm optimization
problem in (13) can be converted into the l-norm optimization
problem in (17) by choosing l → +∞. The above problem
can be further simplified to

min
X

4N−1∑
n=0

(
XHanaH

nX
)l

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.

(18)

With the increase of l, the above l-norm optimization
approaches to an ∞-norm optimization. Hence, this problem
can be majorized with the aid of Lemma 2 below [14]:

Lemma 2: Consider the l-th power function f(x) = xl,
where l ≥ 2 and x ∈ [0, t]. Then, for any x0 ∈ [0, t), f(x)
is majorized at x0 over the interval [0, t] by the following
quadratic function

αx2 +
(
lxl−1

0 − 2αx0

)
x+ αx2

0 − (l − 1)xl0, (19)

where

α =
tl − xl0 − lxl−1

0 (t− x0)

(t− x0)
2 . (20)

By assuming Xq = X(q), which denotes the value of X at
the q-th iteration,

(
XHanaH

nX
)l

is majorized at XH
q anaH

nXq

over [0, t] by

αn
(
XHanaH

nX
)2

+ βn
(
XHanaH

nX
)

+ αn
(
XH
q anaH

nXq

)2 − (l − 1)
(
XH
q anaH

nXq

)l
,

(21)

where

αn =
tl −

(
XH
q anaH

nXq

)l(
t−XH

q anaH
nXq

)2 − l
(
XH
q anaH

nXq

)l−1

t−XH
q anaH

nXq
,

βn = l
(
XH
q anaH

nXq

)l−1 − 2αnXH
q anaH

nXq.

(22)

As the objective function decreases at every
iteration in MM optimization,

∑4N−1
n=0

(
XHanaH

nX
)l ≤∑4N−1

n=0

(
XH
q anaH

nXq

)l
. Therefore, we choose

t =
(∑4N−1

n=1

(
XH
q anaH

nXq

)l)1/l
. Since the constant

term of the objective function does not affect the solution of
the optimization problem, it can be ignored. By ignoring the
constant terms of (21), the problem in (18) is majorized by

min
X

4N−1∑
n=0

(
αn
(
XHanaH

nX
)2

+ βnXHanaH
nX
)

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.

(23)

Thus, the l-norm problem in (18) is transformed into the
quartic optimization problem in (23) by using Lemma 2. Then
we have

4N−1∑
n=0

(
αn
(
XHanaH

nX
)2

+ βnXHanaH
nX
)

=

4N−1∑
n=0

(
αn

(
XHanaH

nX +
βn

2αn

)2

− β2
n

4αn

)

=

4N−1∑
n=0

(
αn

(
XHanaH

nX +
XHX

N
· βn

2αn

)2

− β2
n

4αn

)

=

4N−1∑
n=0

αn

(
XH

(
anaH

n +
βn

2Nαn
I

)
X

)2

−
4N−1∑
n=0

β2
n

4αn
.

(24)

In order to simplify the quadratic power terms of
XH

(
anaH

n + βn

2Nαn
I
)

X, we let Φ = XXH ∈ CN×N ,

ζn = anaH
n + βn

2Nαn
I ∈ CN×N , and we note that

XH
(
anaH

n + βn

2Nαn
I
)

X = Tr(Φζn). Since Tr(Φζn) =

vec (ΦH)
H

vec(ζn) = vec (Φ)
H

vec(ζn), by ignoring the
constant terms of (24), we have

4N−1∑
n=0

αn|Tr (Φζn)|2

=

4N−1∑
n=0

αn vec (Φ)
H

vec(ζn) vec (ζn)
H

vec(Φ)

= vec (Φ)
H

(
4N−1∑
n=0

αn vec(ζn) vec (ζn)
H

)
vec(Φ)

= vec (Φ)
H
L vec(Φ),

(25)

where L =
∑4N−1
n=0 αn vec(ζn) vec (ζn)

H ∈ CN2×N2

. Hence,
(23) can be simplified to

min
Φ=XXH

vec (Φ)
H
L vec(Φ)

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(26)

Obviously, the optimization process is divided into two steps,
where the first is in (23) and the second in (26). For given
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Φq = XqX
H
q and substituting M = λmax (L) I ∈ CN×N into

Lemma 1, (26) can be majorized by the following function at
Φq

u1(Φ,Φq)=λmax (L) vec (Φ)
H

vec(Φ)

+2 Re
(
vec (Φ)

H
(L−λmax (L) I) vec(Φq)

)
+vec (Φq)

H
(λmax (L) I− L) vec(Φq).

(27)

By ignoring the constant terms, we consider the following
majorized problem

min
Φ=XXH

Re
(

vec (Φ)
H

(L− λmax (L) I) vec(Φq)
)

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(28)

The quartic function problem in (23) has been converted to the
quadratic optimization problem in (28) by applying Lemma 1
first. Recalling the equivalent relationship in (25), the objective

function in (28) can be rewritten as

Re
(

vec (Φ)
H

(L− λmax (L) I) vec(Φq)
)

= Re
(
vec(Φ)

H
L vec(Φq)−λmax(L)vec(Φ)

H
I vec(Φq)

)
= Re

(
4N−1∑
n=0

αn vec (Φ)
H

vec (ζn) vec (ζn)
H

vec (Φq)

−λmax (L) vec (Φ)
H

vec (Φq)
)

= Re

(
4N−1∑
n=0

αnTr(ζnΦq)Tr(Φζn)−λmax(L)Tr(ΦΦq)

)
.

(29)

Since Φ, Φq , ζn and L are conjugate symmetric matrices,
the real part function Re (·) can be omitted and Tr (ζnΦq) =
Tr (Φqζn). Thus, (28) can be rewritten as

min
Φ=XXH

4N−1∑
n=0

αn Tr (Φqζn) Tr (Φζn)− λmax (L) Tr (ΦΦq)

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(30)

Noting that XH
(
anaH

n + βn

2Nαn
I
)

X = Tr(Φζn), we have
4N−1∑
n=0

αn Tr (Φqζn) Tr (Φζn)− λmax (L) Tr (ΦΦq)

=

4N−1∑
n=0

αnTr
(

XqX
H
q

(
anaH

n +
βn

2Nαn
I

))
Tr

(
XXH

(
anaH

n +
βn

2Nαn
I

))
− λmax (L) Tr

(
XXHXqX

H
q

)
=

4N−1∑
n=0

αnXH
q

(
anaH

n +
βn

2Nαn
I

)
XqX

H
(

anaH
n +

βn
2Nαn

I

)
X− λmax (L) XHXqX

H
qX

=

4N−1∑
n=0

αn

(∣∣aH
nXq

∣∣2 +
βn

2αn

)(
XHanaH

nX +
βn

2αn

)
− λmax (L) XHXqX

H
qX

=

4N−1∑
n=0

αn

(∣∣aH
nXq

∣∣2 +
βn

2αn

)
XHanaH

nX− λmax (L) XHXqX
H
qX +

4N−1∑
n=0

βn
2

(∣∣aH
nXq

∣∣2 +
βn

2αn

)

=
1

2
XH

(
2

4N−1∑
n=0

anαn
∣∣aH
nXq

∣∣2aH
n +

4N−1∑
n=0

anβnaH
n − 2λmax (L) XqX

H
q

)
X +

4N−1∑
n=0

βn
2

(∣∣aH
nXq

∣∣2 +
βn

2αn

)
.

(31)

Furthermore, ignoring the constant term in (31), we have

XH

(
2

4N−1∑
n=0

anαn
∣∣aH
nXq

∣∣2aH
n+

4N−1∑
n=0

anβnaH
n−2λmax(L)XqX

H
q

)
X

=XH(2AHdiag(α)diag(p)A+AHdiag(β)A−2λmax(L)XqX
H
q

)
X

=XH(AH(2diag(α)diag(p)+diag(β))A−2λmax(L)XqX
H
q

)
X,

(32)
where α = [α0, α1, . . . , α4N−1]

T ∈ C4N , β =
[β0, β1, . . . , β4N−1]

T ∈ C4N , A = [a0,a1, . . . ,a4N−1]
H ∈

C4N×N denotes the four-times oversampling IDFT matrix, and
p = |AXq|2 ∈ R4N . Therefore, the problem in (30) can be
rewritten as

min
X

XH(AH(2diag(α)diag(p)+diag(β))A−2λmax(L)XqX
H
q

)
X

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(33)

Let

Γ=AH(2 diag(α)diag(p)+diag(β))A−2λmax(L)XqX
H
q (34)

and

M = γAHA ≥AH (2 diag(α) diag(p) + diag(β)) A

− 2λmax (L) XqX
H
q ,

(35)

where Γ,M ∈ CN×N and γ = max
n
{2αnpn + βn}, n =

0, 1, . . . , 4N − 1. Therefore, the problem in (33) can be
majorized by

u2(X,Xq)=γXHAHAX+2Re
(
XH(Γ−M) Xq

)
+XH

q (M−Γ)Xq.
(36)

Note that (Γ−M) is a Hermitian matrix. Ignoring the
constant terms of (36), the optimization function can be
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translated to

min
X

XH (Γ−M) Xq

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(37)

The quadratic problem in (28) has been simplified to a linear
one in (37) by adopting Lemma 1.

According to the orthogonality theorem, it is easy to get

‖X−Y∆‖2 = (X−Y∆)
H

(X−Y∆)

=
(
XH −YH

∆

)
(X−Y∆)

= XHX−
(
YH

∆X + XHY∆

)
+ YH

∆Y∆

= ‖X‖2 + ‖Y∆‖2 + 2 Re
(
XH (−Y∆)

)
= ‖X‖2+‖Y∆‖2+2Re

(
XH(Γ−M)Xq

)
,

(38)

where Y∆ = − (Γ−M) Xq . Omitting the constant terms
in (38), i.e., ‖X‖2 and ‖Y∆‖2, the problem in (37) can be
rewritten as

min
X
‖X−Y∆‖

s.t. |Xk| = 1, k ∈ Ωd and Xk = Ck, k ∈ Ωc.
(39)

Since 2λmax(L)XqX
H
qXq=2Nλmax(L)Xq=

N
2λmax(L)AHAXq ,

we have

Y∆ = − (Γ−M) Xq

=−
(
AH(2diag(α)diag(p)+diag(β)−γI)A−2λmax(L)XqX

H
q

)
Xq

=−AH
(

2diag(α)diag(p)+diag(β)−γI−N
2
λmax(L)I

)
AXq.

(40)
Since N

2 λmax (L) I is sufficiently smaller than
2 diag(α) diag(p) + diag(β) − γI, N

2 λmax (L) I can be
omitted in (40). The above equation can be rewritten as

Y∆ =−AH (2 diag(α) diag(p) + diag(β)− γI) AXq. (41)

Assuming that Yk, k = 0, 1, . . . , N −1 denotes the element of
Y∆, the proposed algorithm based on l-norm is summarized
in Table I.

Under the same waveform structure, the waveform PAPR
can also be optimized by a traditional GS method [19],
[25], [26] and a typical MM Method [14], which are
referred to in this paper as the partially-reserved GS (PRGS)
algorithm and the partially-reserved MM (PRMM) algorithm,
respectively. The partially-reserved OFDM (PROFDM), which
uses the communication bands for data transmission while
power normalized random symbols4 are transmitted in the
optimization bands, is also considered for comparison.
The complementary cumulative distribution function (CCDF)
PAPR performances of the four-times oversampled PROFDM,
PRGS, PRMM and LNCA waveforms are compared in Fig.
5 with randomly distributed communication subcarriers. It
is observed that the PAPR of each waveform grows as w
increases. For a given w, the best PAPR performance is
always obtained by the proposed LNCA waveform, followed
by the PRMM and PRGS waveforms. In particular, when
CCDF = 0.01% and w = 0.2, our proposed LNCA waveform

4A random symbol in this paper is defined as a complex symbol where its
real part and imaginary part obey the standard normal distribution.

TABLE I: Proposed LNCA Algorithm

Step 0: Consider l and q = 0. Store transmit data C : Ck, k ∈ Ωc,
generate an initial optimization vector D(q) : D

(q)
k = ejθk , k ∈ Ωd,

where θk is randomly selected in [0, 2π]. Then, generate an initial
RadCom symbol vector in discrete-frequency domain Xq = C + D(q).
Step 1: For fixed Xq , compute Xt = AXq , p = |Xt|2 and t = ‖p‖l.
Step 2: For fixed p and t, compute

αn =
tl − pln − lp

l−1
n (t− pn)

(t− pn)2
,

βn = lpl−1
n − 2αnpn,

γ = max
n
{2αnpn + βn} ,

where n = 0, 1, . . . , 4N − 1.
Step 3: For fixed αn, βn and γ, update

Y∆ = −AH (2 diag(α) diag(p) + diag(β)− γI) AXq .

Step 4: For fixed Y∆, update

D
(q+1)
k = exp (j arg(Yk)) , k ∈ Ωd.

Then Xq+1 = C + D(q+1) and q = q + 1.
Iteration: Repeat Step 1 to Step 4, until a stopping criteria is met, e.g.,
q ≥ 50.

achieves a PAPR of at most 3 dB, which is 9 dB lower
than that of the PROFDM waveform. One can see that the
PAPR of RadCom waveforms can be effectively reduced
by the proposed LNCA algorithm with randomly distributed
communication subcarriers. As will be shown in the next
section, this can effectively reduce the nonlinear distortion
of HPAs and hence greatly improve the power transmission
efficiency.

V. PERFORMANCE EVALUATION FOR OFDM-BASED
RADCOM SYSTEMS

To evaluate performance of both wireless communication
and radar detection/sensing with the proposed LNCA
waveform, we first present a set of 24 GHz ISM
band-based RadCom system parameters in this section.
Taking randomly distributed communication subcarriers, the
solid-state power amplifier (SSPA) and input-back-off (IBO)
into consideration, we then evaluate the OFDM-based
RadCom system performances, where the bit error rate (BER)
performance is for wireless communication and the target
detection performances, including the ambiguity function, the
radar image and the detection probability are for radar.

A. Parameters for OFDM-based RadCom Systems

In the case of the radar application with relative velocity
v between radar transceiver and targets, the Doppler shift of
echoes at the receiver is [27]

fD,rad =
2v

λ
=

2vfc

c
, (42)

where c denotes the speed of light, λ the wavelength and
fc the carrier frequency. It is noted that a communication
signal goes through a one-way propagation whereas a radar
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Fig. 5: CCDF comparison for the PAPRs of different four-times oversampled waveforms with randomly distributed
communication subcarriers.

TABLE II: Parameters of OFDM-based RadCom systems with
randomly distributed communication subcarriers

Symbol Parameter Value
fc Carrier frequency 24 GHz
N Number of subcarriers 4096
∆f Subcarrier spacing 60 kHz
T OFDM symbol duration 16.67 µs
TCP Cyclic prefix duration 1.33 µs
Tsym Total OFDM symbol duration 18 µs
B Signal bandwidth 245.76 MHz

∆R Radar range resolution 0.61 m
Rmax Maximum range, limited by TCP 200 m
∆v Radar velocity resolution 1.36 m/s
vmax Maximum relative velocity, limited by ∆f 75 m/s
Nf Number of evaluated symbols 256
w Data bandwidth ratio 0.2

transmission undergoes a two-way propagation. The Doppler
shift of transmit signals at the communication receiver is [28]

fD,com =
v

λ
=
vfc

c
. (43)

Hence, the Doppler shift experienced by the communication
module is half of that of radar, i.e. fD,com = fD,rad/2.

In Table II, a complete set of 24 GHz ISM band-based
parameters for OFDM-based RadCom systems which may be
deployed in both IoV and 5G NR. According to 3GPP TS
38.104, 50 MHz is the narrowest band and 60 kHz is smallest
subcarrier spacing in standard mmWave frequency bands of
5G NR [24]. With regard to this, ∆f is set to be 60 kHz and
T = 1/∆f ≈ 16.67 µs.

For reliable information exchange in OFDM systems, it is
desired that the maximum Doppler shift fD,com,max should be
smaller than 0.1∆f in order to combat with the intercarrier
interference [1], i.e. fD,com,max = 0.5fD,rad,max < 0.1∆f . To
satisfy requirements of classical traffic scenario, a relative
velocity of up to 200 km/h and a range of maximum 200
m are considered. Since ∆f = 60 kHz, fD,com,max = 6 kHz
and fD,rad,max = 12 kHz, the maximum relative velocity is
vmax = 75 m/s (i.e., 270 km/h) according to (42). TCP is set
to 1.33 µs to meet the ideal maximum range of 200 m, i.e.,
Rmax = 200 m, and the maximum multipath delay of 400 m.
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Fig. 6: BER comparison of OFDM-based RadCom systems
in AWGN channel by SSPA. w = 0.2 with randomly
distributed communication subcarriers.

Hence, Tsym = T + TCP = 18 µs. N is set to 4096, which
results in the signal bandwidth B = 245.76 MHz and radar
range resolution ∆R = 0.61 m. Nf is set to 256 that leads
to radar velocity resolution ∆v = 1.36 m/s. Moreover, w is
set to 0.2 and the communication subcarriers are distributed
randomly.

In the Rapp model of SSPA, the input signal is sin =
Aine

jϕin , where Ain and ϕin denote amplitude and phase,
respectively. The output signal is sout = G (Ain) ej[ϕin+Φ(Ain)],
where G (·) and Φ (·) denote the AM/AM conversion and
AM/PM conversion of SSPA, respectively. According to [29],
we have 

G (Ain) =
g0Ain[

1 + (Ain/Asat )
2p
]1/2p ,

Φ (Ain) = 0,

(44)

where g0 stands for the amplifier gain, Asat the saturation
level of SSPA and the index p the smoothness parameter
on the transition smoothness from the linear region to the
saturated region. To reduce the signal nonlinear distortion at
the RadCom transmitter, the IBO operation, which reduces the
power of input signals, is applied. Here, the IBO is defined as
[29]

IBO =
A2

sat

Pin
, (45)

where Pin is the input average power of SSPA. Roughly
speaking, an IBO value equal to the waveform PAPR
guarantees the transmit signal is linearly amplified in SSPA
without nonlinear distortion [30]. In this paper, we assume
g0 = 1, Asat = 1 and p = 2.

B. Performance Evaluation of Communication Performances
in RadCom

Since quadrature PSK (QPSK) symbols are transmitted
in communication band, their signal processing is the
same as that for traditional OFDM systems. Therefore, in
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Fig. 7: BER comparison of OFDM-based RadCom systems
in Rayleigh channel by SSPA. w = 0.2 with randomly
distributed communication subcarriers.

additive white gaussian noise (AWGN) channel, the BER
of OFDM-based RadCom systems with the proposed LNCA
waveform can be expressed as [31]

BERAWGN≈2

( √
M − 1√

M log2

√
M

)
Q

(√
3log2M

M − 1

εb

N0

)
, (46)

where εb = wA2T/(N log2M) denotes the energy per bit
of received signals, A the signal amplitude, M the PSK
modulation order and N0 the power spectral density (PSD)
of AWGN. In Rayleigh channel, the BER performance of
an OFDM-based RadCom system with the proposed LNCA
waveform is expressed as [32]

BERRay ≈
c1
2

(
1−

√
c22εb/N0

2 + c22εb/N0

)
, (47)

where c1=2
(√
M−1

)
/
(√
M log2

√
M
)

, c2=
√

3log2M/(M−1) .
For w = 0.2 with randomly distributed communication

subcarriers, Fig. 6 compares the BER performance of
OFDM-based RadCom with the proposed LNCA and
PROFDM waveforms when the transmit waveforms are
amplified by SSPA. With a minimum mean-squared error
(MMSE) equalizer [25], the BER performances of such an
OFDM based RadCom system in Rayleigh channel are shown
in Fig. 7. In AWGN channel, the BER of the proposed
waveforms (called “LNCA waveforms”) at IBO = 2 dB is
similar to that of PROFDM at IBO = 8 dB, both of which are
close to the ideal BER performance. In Rayleigh channel, the
BER of the LNCA waveforms at IBO = 0 dB is close to the
ideal performance in which PROFDM requires IBO = 8 dB.

C. Performance Evaluation of Target Detection in RadCom

The ambiguity function of a transmit waveform in
continuous-time domain, i.e. x (t) , t ∈ (−∞,∞), is defined
as [11]

χ (τ, fD,rad) =

∫ ∞
−∞

x (t)x∗ (t− τ) ej2πfD,radtdt. (48)
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Fig. 8: Ambiguity function of one proposed LNCA waveform.

Fig. 8(a) and Fig. 8(b) show the ambiguity function of one
LNCA waveform from the planform and the 3D perspectives,
respectively. Targets may be distinguished if the relative
range/velocity between targets is larger than the range/velocity
ambiguity, which depends on the width of the main peak. In
Fig. 8(c), the range ambiguity is about 0.6 m and the PSL ratio
(PSLR) is −54.1 dB, where the former is consistent with ∆R
in Table II and the latter helps prevent the masking effect.
In Fig. 8(d), the detection with one LNCA waveform suffers
a velocity ambiguity of about 370 m/s PSLR of −13.2 dB.
Due to the undesired velocity ambiguity of a single LNCA
waveform, 256 symbols are required to make ∆v approach to
1.36 m/s in Table II.

Due to the two-way propagation for radar transmission, the
power of reflected echoes is denoted as follows [1]:

PRx =
PTxGTxGRxσRCSλ

2

(4π)
3
R4

, (49)

where PTx denotes the power of transmit waveforms, GTx
the transmitter gain, GRx the receiver gain, σRCS the radar
cross section of target and R the distance between target

TABLE III: Typical Radar Parameters of a Practical
Implementation [1]

Symbol Value Parameter
fc 24 GHz Carrier frequency

PTxGTx 12.73 dBm 24 GHz ISM limit 12.73 dBm EIRP [33]
PN −90 dBm Thermal noise for 250 MHz
NFig 6 dB System noise figure

σRCS,min −10 dBm2 Worst case RCS
GRx 20 dBi HPBW 45◦ AZ, 9◦ EL

SNRimage,min 10 dB Worst radar image SNR
GP 60.2 dB NNf, OFDM processing gain

and radar receiver. In an OFDM-based RadCom system, the
gain provided by radar processing is equal to the number
of correlated samples [1]. In the case of processing over
Nf symbols each consisting of N subcarriers, this unique
processing results in a total processing gain of

GP = NNf. (50)

The signal-to-noise ratio (SNR) of radar image can be obtained
when thermal noise power, PN, and receiver noise figure, NFig,
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Fig. 9: Radar images for four targets with w = 0.2 and
arbitrarily distributed communication subcarriers. Normalized
to σRCS = 0 dBm2 and R = 10 m.

are taken into account [1]

SNRimage =
PRxGP

PNNFig
. (51)

Taking additionally into account (49), we have

SNRimage =
PTxGTxNNfGRxσRCSλ

2

PNNFig(4π)
3
R4

. (52)

From (52) and radar parameters in Table III, the maximum
range for radar application can be calculated to be 140.5 m.

The plots of the radar images with the proposed LNCA
and PROFDM waveforms are depicted in Fig. 9 according to
the four point scatterers and parameters in Table IV. These
radar images are obtained on the condition of GTx = 20 dB,
GRx = 20 dBi, σRCS = 24 dBm2, w = 0.2, QPSK modulation
and SNRimage = 60.2 dB. And these images are normalized
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Fig. 10: Detection probability by the proposed LNCA and
PROFDM waveforms with Pfa = 10−4. Detection for single
target with R = 30 m and v ∈ (−vmax,+vmax).

to σRCS = 0 dBm2 and R = 10 m. It is clear that these four
targets can be distinguished in Fig. 9(a) and Fig. 9(b) whilst
the LNCA waveform leads to a gain of at least 5.3 dB in every
target peak comparing to the PROFDM waveform.

TABLE IV: Range and Relative Velocity of Four Targets

Target Range (m) Relative Velocity (m/s)
1 33 10
2 30 10
3 30 15
4 27 15

In order to further evaluate the detection performance
of the RadCom system with the LNCA waveforms, a
two-dimensional constant false alarm rate (CFAR) detector is
used in Fig. 10 on the basis of the Neyman-Pearson criterion
and the parameters in Table III. The detection probability
and false alarm probability are defined as Pd and Pfa,
respectively. For detecting single target with R = 30 m and
v ∈ (−vmax,+vmax), Fig. 10 displays detection probabilities
associated to the LNCA waveforms with IBO = 0 dB and
the PROFDM waveform with IBO = 8 dB when Pfa = 10−4.
The Pd of the LNCA waveforms increases with SNRimage

in 3-18 dB when that of the PROFDM waveform increases
with SNRimage in 14-30 dB. Compared to PROFDM with
IBO = 8 dB, the required SNRimage of the LNCA waveform
with IBO = 0 dB leads a gain of 12 dB to obtain the same
Pd by CFAR. This gain is achieved due to the low PAPR
properties of the LNCA waveforms, which lead to enhanced
radar detection probability performance.

VI. CONCLUSIONS

In this paper, we have introduced a new waveform design
algorithm, i.e. LNCA, to reduce PAPR of OFDM-based
RadCom waveforms by considering a flexible and generic
RadCom waveform structure. Our proposed LNCA algorithm
benefits from a key observation that the waveform PAPR
optimization problem can be transformed into an ∞-norm
one whose simplified expression implies that a low-PAPR
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waveform is possible provided that a special cyclic phase
transform in optimization band gives rise to a low PAPR. With
the aid of MM method, we further show that the ∞-norm
problem can be simplified as an linear function optimization
problem. Thanks to the obtained low-PAPR and perfect PAC
properties, our numerical simulations show that the proposed
LNCA waveforms give rise to enhanced HPA efficiency
and detection probability in OFDM-based RadCom systems.
Two interesting future directions are 1) to design optimal
beam patterns in OFDM-MIMO based RadCom systems [3]
and 2) to improve our proposed algorithm with a one step
majorization and by taking into account of some coding or
nonlinear signal processing techniques.
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