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Local, spatial state-action features can be used to effectively train linear policies from self-
play in a wide variety of board games. Such policies can play games directly, or be used to
bias tree search agents. However, the resulting feature sets can be large, with a significant
amount of overlap and redundancies between features. This is a problem for two reasons.
Firstly, large feature sets can be computationally expensive, which reduces the playing
strength of agents based on them. Secondly, redundancies and correlations between fea-
tures impair the ability for humans to analyse, interpret, or understand tactics learned
by the policies. We look towards decision trees for their ability to perform feature selection,
and serve as interpretable models. Previous work on distilling policies into decision trees
uses states as inputs, and distributions over the complete action space as outputs. In con-
trast, we propose and evaluate a variety of decision tree types, which take state-action
pairs as inputs, and provide various different types of outputs on a per-action basis. An
empirical evaluation over 43 different board games is presented, and two of those games
are used as case studies where we attempt to interpret the discovered features.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine learning techniques have been shown to be capable of producing superhuman game playing agents for a variety
of games, but identifying the key, basic tactics in an explicit white-box format for general games remains a challenge. State-
of-the-art results in terms of game playing strength [1,2] are, in recent years, essentially always obtained using Deep Neural
Networks (DNNs) [3] as function approximators for policies and/or value functions [4]. Such approaches based on deep
learning require significant computational resources [5,6] even for just a single game, which makes their use prohibitive
for research projects that require scaling up to orders of 1000 or more different games [7,8]. Additionally, despite numerous
efforts, the interpretability of DNNs remains a concern [9]. Explaining game playing agents is crucial if one is interested in
using these agents as teaching aids, rather than black-box adversaries.

As a less computationally intensive alternative, simple linear functions of state-action features have been proposed [10].
Fig. 1 provides some intuition for what such state-action features look like and what they may encode. This approach gen-
erally does not lead to state-of-the-art or superhuman playing strength, but can allow for meaningful policies to be trained in
a wide variety of games in relatively short amounts of time—for example, by using only 100 or 200 games of self-play [11,12],
in contrast to the many millions typically used for deep learning.
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Fig. 1. Three examples of local state-action features that may be useful in various games. A small square indicates a position that must be empty. Uncovered
sites are drawn for ease of interpretation, but play no role in the feature; they may be empty or non-empty or even not exist at all. (a) This feature matches
actions that either complete or break a ‘‘bridge” of white pieces, depending on which player is the player to move. (b) This feature matches actions that
either complete or break a line of five black pieces. (c) This feature matches actions that move the bottom-left white pawn in such a way that the black pawn
becomes flanked by two white pawns.
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The set of features discovered and used by these training processes [11] often contain many strongly correlated or other-
wise redundant features, leading to two issues. Firstly, this can negatively affect the playing strength of the resulting agents
[11], because greater numbers of features are associated with greater computational costs, which reduces the space explored
by search algorithms such as Monte-Carlo tree search (MCTS) [13]. Secondly, strong correlations between features, and pres-
ence of redundant features, can hamper explainability and interpretability. This is the case in particular when directly
inspecting the trained weights of a linear model without accounting for such correlations [14,15], but also when using more
advanced methods, such as permute-and-predict methods, for estimating feature importance [16]. Because our set of fea-
tures grows dynamically during the training process (as discussed in SubSection 2.4), and training from self-play inherently
leads to a non-stationary data stream, correlations and dependencies between features can change over time. Some features
may not be redundant initially, but become redundant later on in a training process, or vice versa. This reduces the likelihood
that online approaches such as ‘1 regularisation [17] can effectively identify and ignore redundant features.

This paper explores how to address these two issues and extract meaningful, understandable, and explainable tactics
after training such linear models via self-play, by distilling them into a variety of decision or regression trees. Such trees will
ideally select a relatively small number of key features to represent relevant tactics for any game under consideration. We
find that previous decision tree models for policies are problematic in domains with large and variable action spaces. There-
fore, the primary focus of this paper is on proposing and evaluating different ways in which the outputs of decision trees can
be represented. Note that, in terms of explainability, the primary interest is in providing useful but basic tactics for begin-
ners, which could, for instance, be included in automatically-generated manuals for new (possibly procedurally-generated)
or otherwise unknown games [18]. Automatically generating insights into basic tactics for games may also be interesting to
aid game designers, and can also be used to gain a deeper, more explicit understanding of what our algorithms manage (or
fail) to learn.

The remainder of this paper is structured as follows. Section 2 provides background information on work that this paper
directly builds on, as well as other related work. A discussion of various ways in which different features can have strong
correlations or other dependencies is provided in Section 3. Several different types of decision trees, with state-action fea-
tures as inputs and various different output representations, are proposed and discussed in Section 4. Section 5 describes an
evaluation of the proposed techniques, and Section 6 finally concludes the paper.

2. Background

This section discusses related work on explainability in reinforcement learning in games, and it provides background
information on the considered problem setting and the training processes used to generate the initial sets of features and
policies. These policies are the ones that are subsequently distilled into smaller, more interpretable policies with smaller sets
of features in the remainder of the paper.

2.1. Related work on explainability in reinforcement learning and games

In related work on explainability in games, and reinforcement learning (RL) more generally, there is often a focus on (1)
local explanations, which are explanations on a per-state basis, (2) explaining value functions, and/or (3) explaining policies
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in domains with fixed, and relatively small, avatar-centric action spaces. For example, Lin et al. [19] focus on generating con-
trastive explanations for a model’s preference for one action over another for specific states. Baier and Kaisers [20,21] con-
sider the problem of explaining individual decisions made by tree search algorithms such as MCTS, and Silva et al. [22]
generate counterfactual justifications for decisions made by an adversarial tree search for Curling. Pálsson and Björnsson
[23] generate visualisations of the most important parts of the state representation for the predictions made by a value func-
tion on a per-state basis in the game of Breakthrough, and Hilton et al. [24] similarly visualise important parts of the state for
policies and value functions in the CoinRun environment. In contrast, the aim in this paper is to extract general, simple tac-
tics that can be explained to humans for general use throughout an entire game (or substantial portions thereof).

Coppens et al. [25,26] and Deproost [27] distil trained policies into various forms of decision trees and rules, which can
lead to local (state-specific) as well as global (game-wide) explanations of policies. These were evaluated in environments
such as the Mario AI benchmark, Ms. Pacman, and Enduro. Other commonly-used environments in work on explainable
RL are CoinRun [24], Lunar Lander, Cart Pole, and Mountain Car [28,19]. These are all environments with fixed and relatively
small action spaces, where actions can easily be labelled and understood when used as outputs for a classifier. These are
often actions such as ‘‘left,” ‘‘right,” and ‘‘jump,” which are typically used to control a single avatar. In contrast, this paper
considers (board) games with significantly larger action spaces, where the subsets of the action space that are legal can also
vary from state to state. Previous approaches, where all possibly unique actions are enumerated as potential target classes
for a classifier, quickly lead to decision trees or rules that become difficult to understand when they have to distinguish
between hundreds or thousands of distinct target classes.

McGrath et al. [29] describe an extensive analysis of the state-of-the-art Chess engine of AlphaZero, attempting to gain
insight into which concepts it learns, and when it does so throughout its training process. The majority of this analysis
assumes that deep, expert human knowledge is already explicitly available (to actively probe the network during training
for such concepts), and relies on massive amounts of self-play data for a single game. Neither of these are assumed to be
available in this paper. Interestingly, their analysis suggests that AlphaZero tends to learn tactical skills before it learns posi-
tional skills. This may be an artefact of how the training process (based on the use of tree search in self-play) works, or it may
be an indication that learning local tactics is inherently easier than, or a prerequisite for, learning global strategies. This intu-
ition is one of the reasons that, given the assumed computational constraints and requirements for extremely short training
runs in this paper, the focus is placed on learning policies based on local patterns, rather than functions such as state-value
functions, which operate on a more global level.
2.2. Markov decision processes

This paper uses the standard formalism of Markov decision processes (MDPs), as commonly used in RL [4] to formalise the
problem setting. An MDP is defined by a set of states S, a set of actions A, an initial state s0 2 S, and dynamics P such that
Pðs0; rjs; aÞ denotes the probability of transitioning into a successor state s0 2 S and obtaining a real-valued reward r, when
selecting an action a 2 A from a current state s 2 S. The set of legal actions may be restricted depending on the current
state, and AðsÞ#A is used to denote the actions that are legal in a state s. The behaviour of an agent is described as a policy
p, such that 0 6 pðs; aÞ 6 1 denotes the probability that the agent selects an action a 2 A when it is in a state s, andP

a2AðsÞpðs; aÞ ¼ 1.
Note that the standard MDP formalism applies to a single agent, but the games considered in this paper are actually envi-

ronments with multiple (typically 2) agents, who often have opposing objectives. This is important to take into account
when designing self-play training algorithms to train policies p, but in this paper it is assumed that such policies have
already been trained [11]. Given this assumption, it is safe to use the standard MDP formalism throughout this paper, implic-
itly assuming that any influence of other agents has already been absorbed into the dynamics P.
2.3. Spatial state-action features

In previous work [10], we proposed a formalisation for spatial state-action features that allows for applicability to a wide
variety of (board) games. Essentially any game that involves 2-dimensional, discrete areas, with spatial semantics having
some degree of relevance to gameplay, is supported. For any given state-action pair ðs; aÞ, where s denotes a game state
and a an action that is legal in s, such a feature tests whether a certain pattern (or configuration) of requirements in the local
area around the action amatches in the state s. For example, a feature can test whether the destination of a move is next to a
friendly or enemy piece, whether it moves away from a position next to the edge of the board, or any other combination of
one or more such conditions for one or more positions specified relative to positions affected by a. Several examples are
depicted in Fig. 1.
2.4. Feature discovery and policy training

In previous work on the use of patterns in games such as Go, it is relatively common to exhaustively enumerate all pat-
terns of a given size (e.g., all 3 � 3 patterns centred on the intersection under consideration) [30–34]. When considering
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games with arbitrary board geometries [35] or significantly greater numbers of types of distinct pieces than in Go (e.g.,
twelve in Chess versus two in Go), it is no longer feasible to exhaustively generate all such patterns even for a small size.

For this reason, an approach is used where the discovery of new features and the training of policies using those features
are intertwined in a self-play training process [11]. This starts with a smaller set of simple atomic features, and new features
are iteratively constructed by combining existing features (or rotated or reflected instances of them) into more complex,
compound patterns [11]. This process is depicted in Fig. 2. The atomic features that the process starts with are features that
only have a single requirement for the game state data, in addition to any requirements they may have for action data. For
example, an atomic feature may require a single site (relative to some reference point) to be occupied by a white stone.

Given a (dynamically growing) set of features, a parameterised policy ph is trained from self-play by learning a vector of
parameters h ¼ h0; h1; . . . ; hn�1½ �. Such a vector contains one parameter (or weight) hi for every feature /i in a set of n features.
Whenever new features are discovered and added to the set during a training process, new parameters—initialised to a value
of 0—are appended to the parameter vector. Features /i : S�AðsÞ ! f0;1g are binary features that take values of either
/iðs; aÞ ¼ 0 or /iðs; aÞ ¼ 1 for any input state-action pair ðs; aÞ. A boldface /ðs; aÞ ¼ /0ðs; aÞ;/1ðs; aÞ; . . . ;/n�1ðs; aÞ½ � is used
to denote a vector of such feature values for a state-action pair ðs; aÞ. The dot product between a feature vector and a trained
parameter vector produces a logit zhðs; aÞ ¼ h>/ðs; aÞ. For any given state s, the probabilities phðs; aÞ of all the legal actions
a 2 AðsÞ of the policy are then computed by a softmax over the logits, as in Eq. 1:
phðs; aÞ ¼ exp zhðs; aÞð ÞX
a02AðsÞ

exp zhðs; a0Þð Þ ð1Þ
The policies considered in this paper—which are to be distilled into decision trees—were trained in a similar way as the
policies in AlphaZero [2], which means that they were trained using a cross-entropy loss to mimic the behaviour of a search-
based agent. This may be viewed as a form of multinomial logistic regression, albeit with a non-stationary target distribu-
tion, the performance of which is meant to improve in terms of playing strength as training progresses. For further details on
the setup of the self-play training processes used to train initial policies for the experiments in this paper, we refer to our
earlier work [10].
3. Feature dependencies

Sets of features constructed and used as described in SubSection 2.4 frequently contain many subsets of features with
strong correlations or dependencies between each other. This can be considered problematic for two reasons. Firstly, if there
are many redundancies in the set of features, computing policies may be slower than necessary, which harms the playing
strength of tree search algorithms guided by such a policy [11]. Secondly, understanding, interpreting, or analysing the
importance of features based on their trained weights becomes error-prone when features are not mutually independent
[14–16]. In this section, three different ways in which (strong) dependencies between features may exist are distinguished.
3.1. Game-agnostic dependencies

For some pairs of features /i and /j; i – j, we have that one of them being (in) active by definition—regardless of which
game is being played—implies the other also being (in) active, i.e. ð/iðs; aÞ ¼ 0Þ ) ð/jðs; aÞ ¼ 0Þ or
ð/iðs; aÞ ¼ 1Þ ) ð/jðs; aÞ ¼ 1Þ. Consider, for example, the different features depicted in Fig. 2. By definition, whenever a fea-
ture that was constructed by combining a pair of other features is active, its constituents must also be active. Conversely,
whenever a simpler feature is not active, any compound feature with the simpler feature as a constituent also cannot be
active. Note that these are just examples: there may also be similar implications between features that are not each other’s
constituents. For example, if a feature that requires at least one friendly adjacent piece is active, this automatically implies
that another feature that requires at least one non-empty adjacent position must also be active.
3.2. Emergent dependencies from game rules

Some pairs of features /i and /j; i– j, may have strong correlations or implications between each other only in certain
games, as a result of such a game’s rules. For example, in the game of Chess, pawns are only allowed to move diagonally
if that results in the capture of an opposing piece. Hence, in this game, a feature that matches diagonal pawn moves corre-
lates perfectly with a feature that matches diagonal pawnmoves towards an enemy piece. This is depicted in Fig. 3. Different
games may also allow pawns to move diagonally towards empty positions, and in such games these two features would no
longer be equivalent. Breakthrough is an example of such a game. These features would still have a strong dependency as
described in the previous subsection, but may not correlate perfectly in all games.

A related issue is that some features have extremely low or high marginal probabilities of being active, and are therefore
uninformative, as a result of a game’s rules. For example, in the game of Tic-Tac-Toe, features that require the destination of
an action to be empty are always active, because this is also a requirement for moves to be legal in this game. Similarly, a
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Fig. 2. Example of how new features are generated by combining instances of existing features. On the left-hand side, we start with three instances of
atomic features. The top and middle instances are first combined into a new feature that matches actions that place a stone in between two white stones.
This more complex feature is subsequently combined again with another feature, finally resulting in a feature that matches actions that complete or break a
line of four white stones.

Fig. 3. Two example features that may or may not be equivalent depending on the game they are used in. Both encode, for grids of square cells, a diagonal
move by a white pawn, but (b) has the additional restriction that the destination must be occupied by a black piece (of any type, indicated by a circle).
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feature that requires the destination of an action to be within two steps of an edge of the board is always active, because this
game is played on a grid of 3 � 3 cells.
3.3. Emergent dependencies from policies

Finally, there can be dependencies between features that are not necessarily due to the particular game being played, but
rather due to the policies used to play them. By design, the self-play approaches used to generate experience for feature dis-
covery and weight training [1,11] have some degree of exploration—for diversity in generated experience—but also a clear
bias towards selecting actions that are considered to be strong by the agent used in self-play. This causes the distribution of
states that are experienced—and therefore also legal actions that are observed—to be highly non-uniform. This can result in
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certain pairs of features very frequently or very rarely co-occurring in practice, even if perhaps they would not when observ-
ing gameplay from different agents.

Consider, for example, the game of Tic-Tac-Toe, in which players take turns placing pieces on a 3�3 grid, and the first
player to complete a line of three wins. MCTS-based players almost always open the game by playing in the centre of the
board.1 This causes certain features (see Fig. 4) to have very high or low marginal probabilities of matching any legal actions
in the first turn of the second player, which could be different if other openings were observed more frequently. These high
or low marginal probabilities also lead to high or low co-occurrences with other features that may be less affected by the dif-
ferent openings.
3.4. Discussion

The three previous subsections described various types of dependencies between features. Each of these can lead to sit-
uations where the probabilities of being (in) active for some features can be predicted with high (sometimes perfect) accu-
racy based on the activity of other features. This can lead to redundancies in sets of features, where some are ‘‘unnecessary”
in the presence of others. In terms of computational costs, this is not a major issue in the case of game-agnostic dependencies
(SubSection 3.1), because pattern matching is performed using the highly efficient ‘‘SPatterNet” approach [10], which already
leverages such relations to speed up pattern matching. More specifically, this is a technique that aims to optimise the order
in which propositions are evaluated for pattern matching with a larger set of features, and in this process it can automatically
account for the game-agnostic relations as listed in Table 1. However, the other types of dependencies cannot be accounted
for without domain knowledge of the particular game being played or the agents that are playing, which means that redun-
dancies due to these other types are harmful in terms of computational efficiency.

In terms of understanding or explaining policies, it is also important to keep these dependencies in mind. The single
weight of an individual feature, without accounting for features that are likely to co-occur or likely not to co-occur, does
not necessarily give a good idea of the strength of actions for which that feature matches. Furthermore, especially in the case
of perfect correlations, there can be different features that provide equally valid explanations in theory, but where some may
be subjectively viewed as more representative than others. For example, the two features depicted in Fig. 3 could form
equally valid explanations for the idea that using a pawn to capture an enemy is a strong (or weak) move in Chess, but
we imagine that humans may prefer the rightmost feature since it more explicitly also visualises the enemy piece.
4. Decision trees of state-action features

Since decision trees are generally considered to be inherently interpretable models [15,9], and can also be used to select
the most important features [36], we look towards them for feature selection (with the ultimate goal of reducing computa-
tional overhead whilst preserving strong policies) as well as the extraction of explainable tactics.
4.1. Decision tree structures

When using function approximators for policy training in games or RL, it is customary for these functions (often neural
networks) to take a representation of a state s as input, and produce one logit zðs; aÞ as output for every action a that may
possibly be legal in any state s [4]. Resulting vectors of logits are transformed into discrete probability distributions over the
actions by applying a softmax (plus invalid action masking [37] in games where some actions are sometimes illegal). When
such policies are subsequently distilled into decision trees or rules for explainability, these are typically trained as classifiers
that again use representations of states s as input (splitting on features of states), and produce probability distributions over
all actions (which must all be explicitly enumerated as potential target classes) as outputs [25–27]. An example of what such
a decision tree could look like is depicted in Fig. 5. In the example case of Tic-Tac-Toe, every leaf node outputs a probability
distribution over nine possible actions (some of which may be illegal depending on the input game state s). In more complex
games such as Chess or Shogi, the output distributions would have to be defined for thousands of different elements [2].

The input and output structures for the original (linear) policies considered in this paper are different, since they take a
representation of a state-action pair ðs; aÞ as input, and produce only a single logit for that same ðs; aÞ pair as output. Hence,
the most straightforward way to distil such a policy into a decision tree would be to build a regression tree that takes rep-
resentations of state-action pairs as input (splitting on state-action features), and produces individual logits as outputs. An
example of such a tree is depicted in Fig. 6. This approach, as well as three other proposed variants of decision trees (mul-
ticlass state-action classification trees, best-action classification trees, and imbalanced best-action classification trees), are dis-
cussed next.
1 Players based on algorithms such as ab-search are more likely to also open in one of the corners, but MCTS tends to have a preference for the centre of the
board because this has a greater probability of leading to wins against random players.
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Fig. 4. MCTS-based players have a strong tendency to open games of Tic-Tac-Toe in the centre of the board. Therefore, it is highly likely for every action
available in the first turn of the second player to match either the feature depicted in (a) or the one in (b). If the first player opens in a corner, the second
player also has legal moves in their first turn that match the feature depicted in (c), but this is rarely observed in self-play between MCTS agents.

Table 1
Game-agnostic relations between propositions in features that the SPatterNet
approach [10] for pattern matching can automatically account for. Propositions a in
the left column, when true, always imply the matching propositions in the right
column. In every proposition, x denotes a site (i.e., a cell or an intersection of a game
board). Redundancies in feature sets due to these relations are therefore not harmful in
terms of computational efficiency. Table reproduced from [10].

Proposition a Propositions proven by a

x is empty x is empty
x is not owned by p (for any p > 0)
x is not piece i (for any i > 0)

x is not empty x is not empty
x is owned by p x is owned by p

x is not piece i (for any i not owned by p)
x is piece i (if i is the sole type owned by p)
x is not empty

x is not owned by p x is not owned by p
x is not piece i (for any i owned by p)

x is piece i x is piece i
x is not empty
x is not piece j (for any j– i)
x is owned by p (where p is the owner of i)
x is not owned by p (for any p that does not own i)

x is not piece i x is not piece i
x is not owned by p (if i is the sole type owned by p)
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4.1.1. Logit regression trees
In terms of raw playing strength, regression trees that output logits—exactly as our original policies do—may be expected

to have the highest potential performance. Such a logit regression tree is at least as expressive as a linear policy is, and—in
contrast to some of the other structures described below—does not involve any additional approximations or simplifications.
In fact, such a tree could even bemore expressive than a linear policy, because decision trees are non-linear functions of their
input features.

In terms of explainability, we argue that single-logit outputs could be problematic. Every individual feature used in
branching points, as well as the entire path from root to leaf node, could be considered interpretable, but the logit output
itself would be difficult to understand. In isolation, a logit value zðs; aÞ does not have any meaning. A logit zðs; aÞ only gains
some meaning when it is compared to another logit zðs; a0Þ for a different action a0 – a that is legal in the same state s, and
even then the exact relationship is somewhat difficult to understand. The exact relationship is that the ratio of probabilities
assigned to two actions by a policy p is given by the ratio of the exponentials of their logits:
pðs; aÞ
pðs; a0Þ ¼

expðzðs; aÞÞX
b2AðsÞ

exp zðs; bÞð Þ �

X
b2AðsÞ

exp zðs; bÞð Þ

expðzðs; a0ÞÞ ¼ expðzðs; aÞÞ
expðzðs; a0ÞÞ ð2Þ
283



Fig. 5. Example of a handcrafted policy for Tic-Tac-Toe, modelled as a decision tree that takes states as inputs and produces probability distributions over
all possible actions as outputs. This decision tree can recognise two particular cases of winning actions for the white player, but otherwise recommends a
uniform distribution over all actions.
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This relationship is arguably not nearly as easy to interpret as the direct probabilities assigned to all actions at once by
classifier trees that take states as inputs and enumerate all actions (in domains with small and fixed action spaces) as poten-
tial target classes.
4.1.2. Multiclass state-action classification trees
While the logit outputs zðs; aÞ for state-action pairs ðs; aÞ discussed above can be informative for a software agent, they

may be difficult for humans to interpret. If the goal is to help humans easily recognise actions that are likely to be weak
or strong in general based on local patterns around such actions, it may be more helpful for a decision tree to be trained
to explicitly provide outputs that can be directly interpreted as such qualitative estimates of action quality. Following this
intuition, we propose to train a decision tree that takes state-action pairs ðs; aÞ as input, and as output classifies that action in
that state as belonging to one out of a small selection of classes, each of which provides a qualitative judgement of action
quality. More specifically, the following three classes are used in the implementation and experiments discussed in this
paper, but different partitions would also be possible:

1. Bottom 25%: label assigned to actions a that are predicted to be among the worst 25% of legal actions AðsÞ in the state s.
2. IQR: label assigned to actions a that are predicted to be in the interquartile range (better than bottom 25%, but worse than

top 25%) of legal actions AðsÞ in the state s.
3. Top 25%: label assigned to actions a that are predicted to be among the best 25% of legal actions AðsÞ in the state s.

Fig. 7 depicts an example of such a tree.
In comparison to logit regression trees, multiclass state-action classification trees involve an additional level of approx-

imation in the sense that larger collections of inputs that would have distinct outputs in a logit regression tree are grouped
284



Fig. 6. Example logit regression tree for a handcrafted policy for Tic-Tac-Toe, modelled as a regression tree that takes state-action pairs ðs; aÞ as inputs and
produces a single logit for such a pair as output. This regression tree can detect actions that complete any (assuming local rotations and reflections of
features are used, which we do) orthogonal or diagonal line by placing the third stone in the middle of such a line, and assigns logit values of 3:0 to such
actions. Any other action is assigned a logit value of 0:0. These outputs are meaningless on their own, but in combination with logits for other legal actions
can easily be transformed into probabilities by a computer program.

Fig. 7. Example multiclass classification tree for a handcrafted policy for Tic-Tac-Toe, modelled as a decision tree that takes state-action pairs ðs; aÞ as inputs
and produces a single classification for such a pair as output. This tree can recognise some winning actions (assuming this is a policy for the white player),
classifying those actions as being likely top-25% actions. It can also recognise some cases where winning actions are possible but not picked (actions placing
next to an empty cell in between two white pieces), and classifies those as being likely bottom-25% actions. Any other cases are classified as being equally
likely to belong to any of the three possible classes.
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together and assigned identical target labels for this type of classification tree. This may be expected to lead to a lower level
of playing strength when used to control a policy, but the output representation is arguably easier to interpret.

4.1.3. Best-action classification trees
One potential issue with multiclass state-action classification trees as described above is that there is a natural ordering of

the output classes (i.e., Top 25% > IQR > Bottom 25%), but neither the model nor the decision tree induction algorithm
account for this in any way. For example, it is possible for a tree to predict equal probabilities of 0:5 for the Bottom 25%
and Top 25% classes for a given input pair ðs; aÞ, with a probability of 0:0 for the IQR class. This is not strictly wrong: it is
very well possible that certain patterns correlate strongly with both weak and strong actions, whilst not correlating strongly
with ‘‘average” actions. However, it may be considered undesirable for the purpose of generating explanations of tactics,
since such an output distribution does not give any clear, actionable recommendations. There are techniques to account
for ordinal classes, but they work by transforming a single k-class classification problem into k� 1 separate binary classifi-
cation problems [38]. This would result in a collection of multiple different decision trees, which would also hamper
interpretability.

To avoid the potential for confusion discussed above, we propose to further simplify the output space by training a clas-
sifier that outputs a single probability estimate for any given ðs; aÞ input pair. This can be viewed as a binary classification
problem, with ‘‘positive” and ‘‘negative” classes. The first two types of target labels that were considered, but found to be
problematic, are:

1. Best-action indicator, i.e. a target class of 1 if and only if pðs; aÞ ¼ maxa0pðs; a0Þ, and 0 otherwise. The core issue with this is
that the trained policies p are expected to be imperfect, and these target labels punish actions a0 with probabilities pðs; a0Þ
close to (but not equal to) the maximum too harshly: they are treated as being equal to the worst actions.

2. Probability of playing, i.e. a ‘‘soft” target class simply equal to pðs; aÞ. The core issue with this target label is that it is
highly sensitive to the number of legal actions in a state s: the best action in a state with many legal actions may have
a lower value pðs; aÞ than a weak action in a different state with few legal actions.

Finally, as a target label that does not suffer from either of the issues described above, we propose to use pðs;aÞ
maxa0pðs;a0 Þ as the

target label for an input pair ðs; aÞ. The outputs of such a model may intuitively be interpreted as estimators of the (unnor-
malised, since they need not add up to 1) probabilities of actions to be the best action in their state. This is somewhat similar
to the logit regression tree outputs, but the main difference is that these outputs are on a linear scale, rather than the expo-
nential scale on which logits should be interpreted. Fig. 8 depicts a handcrafted example of this type of tree.

4.1.4. Imbalanced best-action classification trees
As a final type of decision tree, we consider one that uses the same target labels as described in 4.1.3, but where every

branch for cases where a feature evaluates to true is forced to immediately lead to a leaf node. Only branches followed when
tested features evaluate to false can lead to new decision nodes. This special structure means that the decision tree may be
read as a chain of if-then-else-if rules. These are arguably even easier to interpret than more balanced decision trees, because
a human can forget about previous features when navigating down the tree (or list of rules) to ‘‘simulate” the decision tree’s
process; as soon as one feature evaluates to true, it is guaranteed to immediately produce an output for that input. The exam-
ple decision tree depicted in Fig. 8 would have qualified as this type of tree if the ‘‘True” branch from the root node directly
led to a single leaf.

4.2. Training classification and regression trees

Classification and regression trees are trained using the customary top-down tree induction strategy which, at each
branching point, greedily selects whichever feature maximises some notion of information gain when used to split on
[39]. The self-play training process used to train our initial policies [10] collects game states s encountered during self-
play between MCTS-based players in an experience buffer. These game states, extracted from the experience buffer at the
end of the training process, as well as the fully trained (linear) policy ph, are used to construct the training data set for
the decision trees.

Let D denote a dataset of all state-action pairs ðs; aÞ that can reach a node in a decision tree. For example, in the case of a
root node, this would simply be the set of all possible ðs; aÞ pairs such that a 2 AðsÞ is a legal action in s, and s is one of the
game states extracted from the experience buffer. In the case of a node deeper than the root node, this set would be reduced
to only contain those ðs; aÞ pairs that would lead to the node under consideration, based on the feature vectors /ðs; aÞ and the
tests performed in earlier nodes of the decision tree. Let /i be a candidate feature under consideration to be split on for a new
split in the tree. Let DT

/i
#D denote the subset of data that would follow the branch for /iðs; aÞ ¼ 1, and DF

/i
#D the remain-

ing subset for the case where /iðs; aÞ ¼ 0. The following subsections describe the splitting criteria used for the various types
of decision trees proposed in this paper. For all types of decision trees, splits that result in either one of the branches rep-
resenting k 6 5 state-action pairs are prohibited, and splits that do not provide any improvement whatsoever with respect
to the splitting criterion in comparison to the current (unsplit) node are also prohibited.
286



Fig. 8. Example best-action classification tree for a handcrafted Tic-Tac-Toe policy, modelled as a binary classification tree that takes state-action pairs ðs; aÞ
as inputs, and produces probability estimates of a being a ‘‘best action” in s as outputs.
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4.2.1. Training logit regression trees
The splitting criterion used for logit regression trees is to select features that lead to a minimal sum of squared errors

between the target logits zðs; aÞ ¼ h>/ðs; aÞ and the logits predicted by the regression tree. It is assumed that a leaf node
of a logit regression tree simply predicts the mean of the target logits zðs; aÞ for all ðs; aÞ pairs in the dataset that leads to that
leaf. With some abuse of notation, let �zðDÞ denote the mean of all the zðs; aÞ values for all ðs; aÞ pairs in a dataset D. The sum
of squared errors resulting from a split on a candidate feature /i is given by Eq. 3:
SSEðD;/iÞ ¼
X

ðs;aÞ2DT
/i

zðs; aÞ � �zðDT
/i
Þ

� �2
þ

X
ðs;aÞ2DF

/i

zðs; aÞ � �zðDF
/i
Þ

� �2
ð3Þ
4.2.2. Training multiclass state-action classification trees
As described in SubsubSection 4.1.2, every state-action pair ðs; aÞ is assigned one class cðs; aÞ 2 C as target label, where in

this paper a set of three possible classes C ¼ fBottom25%; IQR; Top25%g is used. Let 0 6 Pðc0 jDÞ 6 1 denote the proportion of
state-action pairs ðs; aÞ in a dataset D such that cðs; aÞ ¼ c0. Let j D j denote the cardinality of a dataset D, i.e. the number of
state-action pairs it contains. Let HðDÞ ¼ �P

c02CPðc0;DÞlog2 Pðc0;DÞð Þ denote the entropy of a dataset D. The feature /i used
for splitting is the one that maximises information gain, which is computed as in Eq. 4:
IGðD;/iÞ ¼ HðDÞ � jDT
/i
j

jDj HðDT
/i
Þ � jDF

/i
j

jDj HðDF
/i
Þ ð4Þ
4.2.3. Training best-action classification trees

As described in SubsubSection 4.1.3, smooth target labels pðs;aÞ
maxa0pðs;a0 Þ are used, rather than discrete (binary) class labels for

the best-action classification trees. This means that, even though we may intuitively think of them as classifiers—due to the
outputs being interpretable as estimates of the probability of belonging to a best-action class—they technically function more
like regression trees. Therefore, a splitting criterion similar to Eq. 3 is used, with pðs;aÞ

maxa0pðs;a0 Þ rather than logits as target labels.

The key distinction with logit regression trees is that these outputs are on a linear scale, and bounded in the ½0;1� range,
whereas the logit outputs are on an exponential scale, with an unbounded range.
4.2.4. Training imbalanced best-action classification trees
The primary distinction between the imbalanced and the regular best-action classification trees is that, in the imbalanced

version, further splits are never created after at least one feature has evaluated to true. Two variants of this idea are
considered.
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The first variant, referred to as the asymmetric variant, only takes into consideration the sum of squared errors over the
subset of data DT

/i
in the ‘‘true” branch of a potential split on a feature /i. The rationale behind this is that, if we read such an

imbalanced tree as a chain of if-then-else-if rules, purity in the subset of data that a rule applies to may be valued more highly
than purity in the other subset of data (which the rule does not apply to). If a rule applies, the model gives a direct recom-
mendation, which we can be more confident in if the dataset it applies to is pure. In contrast, if a rule does not apply, we
simply drop down to subsequent rules (if any exist), rather than giving a direct recommendation.

The second variant, referred to as the symmetric variant, adds up the sums of squared errors for both subsets of data
resulting from a split, as per the usual splitting criterion. Note that ‘‘asymmetric” and ‘‘symmetric” refer to (a) symmetry
in which subsets of data play a role in splitting criteria, whereas ‘‘imbalanced” is used to describe the shape of the tree.
4.3. Policy training objective

All of the splitting criteria discussed previously for the various types of decision trees depend on the parameters h of a
fully trained policy ph—either through the logits zðs; aÞ it computes for state-action pairs ðs; aÞ, or the action probabilities
phðs; aÞ computed by such a policy. A common training objective for training such a policy from self-play, following Expert
Iteration [40] and AlphaGo Zero [1], is to minimise the cross-entropy (CE) between the policy p and an expert policy pM ,
where pM is typically derived from the distribution of visit counts of a tree search process by MCTS.

Soemers et al. [41] remarked that MCTS (by design) allocates a part of its search budget on exploration, and that this
means that a policy p trained to mimic the behaviour of MCTS through such a CE-based objective is also explicitly trained
to have some degree of exploratory behaviour. While this is desirable when such a policy is subsequently used to guide
future tree searches (which should again have some degree of exploration), it may be less desirable for extracting explainable
tactics or a small set of key features. In comparison to CE, an alternative training objective referred to as Tree-Search Policy
Gradients (TSPG) [41] was shown to (i) produce policies that are stronger in terms of standalone playing strength (without
tree search), (ii) have a more precise focus with larger weights distributed over a smaller set of features, and (iii) have less
entropy in the resulting probability distributions over actions. Due to these aspects, the TSPG objective was hypothesised to
be more suitable than CE for goals such as the ones considered in this paper. To further evaluate this, decision trees trained
on policies optimised for TSPG as well as the standard CE objective are included in the following experiments.
5. Evaluation

For a quantitative empirical evaluation, we focus on comparing the playing strength of the various types of decision trees
proposed in this paper to that of the full policies (using all discovered features). This is comparable to the experiments used
in other work on explainable RL based on various types of decision trees and rules [28,25–27], and can also give an indication
of whether or not the trees successfully select and focus on the most important features. The following types of trained
agents are considered:

� Logit (Obj; d): logit regression tree (see 4.1.1) with a maximum depth of d, trained to mimic the full policy with objective
Obj (either CE or TSPG).

� Multiclass (Obj; d): multiclass state-action classification tree (see 4.1.2) with a maximum depth of d, trained to predict
between three classes (bottom 25%, IQR, top 25%), based on the full policy with objective Obj (either CE or TSPG).

� Best-Action (Obj; d): best-action classification tree (see 4.1.3) with a maximum depth of d, trained for binary classifica-
tion (output probability of being best action), based on the full policy with objective Obj (either CE or TSPG).

� Asymm. Imb. Best-Action (Obj; d): imbalanced best-action classification tree (see 4.1.4) with a maximum depth of d,
with imbalanced tree structure and asymmetric splitting criterion (see 4.2.4), based on the full policy with objective
Obj (either CE or TSPG).

� Symm. Imb. Best-Action (Obj; d): imbalanced best-action classification tree (see 4.1.4) with a maximum depth of d, with
imbalanced tree structure and symmetric splitting criterion (see 4.2.4), based on the full policy with objective Obj (either
CE or TSPG).

� Full Policy (CE): the full (linear) policy trained for the standard Cross-Entropy (CE) objective, using all discovered
features.

� Full Policy (TSPG): the full (linear) policy trained for the Tree-Search Policy Gradients (TSPG) objective [41], using all dis-
covered features.

Unless specified otherwise, these agents select actions as follows. The agents based on logit regression trees sample
actions according to a softmax over the output logits from their trees. The agents based on multiclass classification trees
sample actions proportionally to PðTop25%Þ � ð1� PðBottom25%ÞÞ. The agents based on any of the best-action classification
trees sample actions proportionally to their outputs. The full (linear) policies sample actions according to a softmax over the
logits predicted by their dot products. Additionally, two types of agents that do not involve any training are included:
288



Dennis J.N.J. Soemers, S. Samothrakis, É. Piette et al. Information Sciences 624 (2023) 277–298
� Random: an agent that selects actions uniformly at random.
� UCT: a standard UCT agent [13], using 1 s of thinking time per move (note that all other agents play significantly faster
than this, because they do not run any tree search).

All agents, training code, games, and experiments are implemented in the Ludii general game system [42].2

5.1. Results in small games

First, results are presented from experiments in a set of 13 ‘‘small games.” These are sequential, deterministic, 2-player
games played on relatively small boards—each having at most 11 playable sites. In all of these, basic tree search algorithms
such as UCT, and potentially even trained policies based on simple features, may be expected to be capable of strong or even
optimal play. The games included in this set are Akidada, Alquerque de Tres, Haretavl, Hat Diviyan Keliya, Ho-Bag Gonu, Jeu
Militaire, Kaooa, Madelinette, Mu Torere (with the Complete (Observed) ruleset), Mu Torere (with the Simple (Suggested) rule-
set), Pong Hau K’i, Three Men’s Morris, and Tic-Tac-Toe.

For each of these games, every type of decision tree is trained with maximum depths of d 2 f1;2;3;4;5;10g. This means
that we ultimately end up with ð5� 2� 6Þ þ 4 ¼ 64 distinct agents: 5 types of decision trees, each trained for 2 objectives
(CE and TSPG), each with 6 different depth limits, plus the 2 full policies (CE and TSPG), the random agent, and the UCT agent.
Each of these agents is evaluated in every game by playing 50 matches (25 as first and 25 as second player) against each of
the 63 other agents, for a total of 50� 63 ¼ 3150 matches per game, per agent. Win percentages averaged over all possible
opponents in a game are used as the primary measure of playing strength. Draws are counted as half wins for each player. If a
match did not end after 250 moves, it is declared a draw.

Fig. 9 depicts the average win percentages of all of these agents, for all 13 small games, on the y-axes. The maximum
depth d for agents based on decision trees is varied along the x-axes. The four agents that are not based on decision trees
are simply plotted as horizontal lines. Policies optimised for CE (as well as Random) are drawn as dotted lines, and policies
optimised for TSPG (as well as UCT) are drawn as solid lines.

To summarise the results across all 13 small games in a single plot, performance profiles [43] are provided for all types of
agents (only displaying decision tree agents with d ¼ 5) in Fig. 10. The x-axis shows average UCT-normalised scores, which
are scores (win percentages) that have been linearly rescaled on a per-game, per-opponent basis, such that 1:0 corresponds
to the performance of UCT in that game against that opponent. The y-axis shows the fraction of runs for which an agent
obtained a score greater than any given UCT-normalised score s. Shaded areas indicate 95% bootstrap confidence intervals
based on 10,000 bootstrap replicates, sampling from the runs against different opponents. Note that this means that the
intervals indicate uncertainty due to variability in performance with respect to different opponents, rather than variability
due to randomness in any training or evaluation processes.

5.2. Results in other games

Where the results described above were for a set of 13 small games, in this section we look towards a different set of 30
other games: Alquerque, Amazons, Ard Ri, Arimaa, Ataxx, Bao Ki Arabu (Zanzibar 1), Bizingo, Breakthrough, Chess, English
Draughts, Fanorona, Fox and Geese, Go, Gomoku, Gonnect, Havannah, Hex, Knightthrough, Konane, Lines of Action, Omega, Pen-
talath, Pretwa, Reversi, Royal Game of Ur, Shobu, Surakarta, Tablut, XII Scripta, and Yavalath. All of these are sequential, 2-player
games, with most of them being deterministic, but some stochastic. In contrast to the small games, plain UCT agents or
trained policies using only simple patterns cannot be expected to play (close to) optimally in these games, but meaningful
(better than random) play may still be expected.

The overall setup of experiments in these games is similar to the setup described above for small games, with two pri-
mary differences. Firstly, UCT is no longer included in the evaluations in order to avoid the large amount of computation time
required by this agent for evaluations against a large number of possible opponents (63 other agents) in such a large set of
games, including many relatively large and complex games. Secondly, matches are allowed to continue for up to 1000 moves
rather than 250 before declaring them a draw, since the limit of 250, which is appropriate for the small games, may be too
low for many of these larger games.

Fig. 11 summarises the results for all 63 agents by reporting the median, interquartile mean, and mean win rate for every
agent against all other agents, across all 30 games. The 95% bootstrap confidence intervals represent variability in perfor-
mance across different games and different opponents, rather than variability due to stochasticity in training or evaluation
processes. Fig. 12 depicts performance profiles for the same experiment, restricted to only depth limits of d ¼ 5 for agents
based on decision trees for visual clarity.

5.3. Biasing MCTS with trained features

While previous work has already demonstrated that full sets of features (without subsequent selection of a smaller sub-
set) can improve the playing strength of MCTS by biasing it in many games, it was also found that they can reduce the play-
2 Source code is available at https://github.com/Ludeme/Ludii/.
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Fig. 9. Win percentages, averaged over all other agents as opponents, for various types of agents in 13 small games. Data plotted for maximum decision tree
depths d 2 f1;2;3;4;5;10g along x-axis.
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ing strength in some games [11,12]. Such reductions in playing strength are likely due to the computational overhead
incurred by using features, which may be mitigated by using only smaller subsets of features. Therefore, the performance
of biased versions of MCTS—biased by full policies as well as decision trees—is evaluated against the standard UCT baseline,
on the complete set of 30 games also used in the previous subsection. Every agent uses one second of search time per move.
For every game and every matchup, 150 evaluation matches were run (with every agent playing each side of the matchup 75
times).

Because policies trained for the TSPG objective were previously found not to provide additional value to MCTS [41], we
focus only on policies trained for the CE objective. This experiment is repeated with the Logit trees (because their output
representation is the same as that of the full policies), and Multiclass trees (because Multiclass (CE; 5) appears to outper-
form Logit (CE; 5) in Fig. 12).

Table 2 lists the median, interquartile mean (IQM), and mean win rates of MCTS agents biased by various different policies
against UCT, aggregated over the 30 games. Fig. 13 additionally depicts performance profiles for MCTS agents biased byMul-
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Fig. 10. Performance profiles [43] for several agents, summarising performance across all 13 small games. Performance is measured by UCT-normalised
scores s, which are win percentages that have been linearly rescaled on a per-game, per-opponent basis, with the performance of UCT always being equal to
1:0.
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ticlass trees (as well as the full policy) against UCT. Performance profiles for agents biased by Logit trees are omitted to save
space (these results were similar to those for the Multiclass trees).

5.4. Discussion

The plots in Fig. 9 show that, generally, the playing strength tends to increase (or eventually stabilise) as the depth limits
of decision trees increase in the small games. As expected, deeper decision trees can express more powerful policies. The
imbalanced trees tend to perform worse than the (larger) balanced trees, and trees (as well as non-tree policies) trained
for the TSPG objective tend to outperform policies trained for the CE objective. These plots do not provide a clear ranking
among the other types of decision trees (Logit, Multiclass, and Best-Action), which differs from game to game.

Three of the 13 small games appear to be exceptions, in that most types of policies have similar levels of playing strength,
and these remain constant regardless of depth limits. This may be an indication that these games have a low strategic (or
tactical) depth [44], but it may also simply indicate that the training algorithms fail to learn relevant tactics. For the first
of these three games, Alquerque de Tres, an ab-search of less than a second easily finds that optimal play leads to a draw after
six moves, which indeed points to a game with relatively little strategic depth. The second game, Ho-Bag Gonu, keeps going
on infinitely under perfect play, and requires a chain of multiple unforced errors before an optimal player can capitalise and
obtain a victory. The third game, Mu Torere; Simple (Suggested Ruleset) uses a flawed (as a result of a mistranslation) ruleset
[7] in which the first player can win in a single move. This is in contrast toMu Torere; Complete (Observed Ruleset), which uses
the ruleset based on the correct translation, for which a greater variety in performance levels between the policies is
observed. For all three of these games, we find that sufficiently deep trees can learn to play optimally against UCT, but they
fail to learn how to exploit mistakes by suboptimal players. In the case of Mu Torere, no features or trees are learnt for the
second player at all, because all the experience collected from self-play by MCTS-based agents consists of the first player
winning in a single move. These issues could potentially be improved by introducing additional exploration in the self-
play process.

The performance profiles depicted in Fig. 10 suggest that, on average, Logit outperforms Multiclass (for the TSPG objec-
tive), and Multiclass outperforms Best-Action, followed by the Symmetric and Asymmetric variants of the Imbalanced Best-
Action classification trees. This ordering corresponds to the number of simplifications and approximations made for the sake
of arguable improvements with respect to interpretability. The output type of Logit trees is equal to the output type of the
original policies, but difficult to interpret. The Multiclass classification tree simplifies the output representation to a three-
class problem, and the Best-Action classification tree further simplifies this to a binary classification problem. The Symmetric
Imbalanced Best-Action tree imposes additional constraints on the shape of the tree (also causing it to use fewer features),
and the Asymmetric variant furthermore adjusts the splitting criterion. However, these differences in performance tend to be
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Fig. 11. Aggregate metrics for the performance levels of all 63 agents in the set of 30 games. The median, interquartile mean (IQM), and mean of the win
rates are computed over runs in all games against all possible opponents. Coloured bars represent 95% bootstrap confidence intervals, estimated from
10;000 bootstrap replicates using the rliable library [43].
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relatively small, in particular among the top three decision tree types. One exception is that, when training for the cross-
entropy objective, Multiclass trees appear to outperform Logit trees.

For the set of larger games, Figs. 11 and 12 paint a similar overall picture in terms of ranking decision tree types by play-
ing strength, albeit with more pronounced differences between the types. Policies trained for the TSPG objective also have a
clearer advantage over policies trained for CE, with Fig. 11 even showing that some TSPG trees limited to a depth of d ¼ 1
perform at a similar level to CE trees limited to a depth of d ¼ 10. Again, Multiclass trees trained for the CE objective out-
perform Logit trees for this objective. We hypothesise that using the less fine-grained output representation of the Multiclass
trees may implement a helpful form of regularisation.

Table 3 provides upper bounds on the number of distinct features that various types of policies may use. The full policy
always has up to 400 new features generated from self-play (but possibly fewer if the training process takes too long). The
number of (atomic) features that are used to initiate a training process can vary greatly depending on the game. We focused
on displaying and discussing results for the trees limited to d ¼ 5, since these are guaranteed to use substantially fewer fea-
tures than the full policy. In contrast, the larger trees (limited to d ¼ 10) might use the full feature set, which makes eval-
uating them less interesting with respect to the potential use of decision trees for feature selection.
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Fig. 12. Performance profiles summarising the performance of several agents (only displaying results for decision trees with depth limits of d ¼ 5) across 30
different games. Performance is measured by the win rate averaged over all possible opponents (all other agents, including trees with depth limits d – 5).

Table 2
Median, interquartile mean (IQM), and mean win rates (across 30 games)
of MCTS agents biased by various trained policies against UCT.

Win rate against UCT

Agent Median IQM Mean

MCTS with Logit (CE; d) trees
d ¼ 1 0.61 0.66 0.64
d ¼ 2 0.72 0.70 0.68
d ¼ 3 0.69 0.71 0.70
d ¼ 4 0.70 0.70 0.69
d ¼ 5 0.63 0.66 0.66
d ¼ 10 0.67 0.62 0.59

MCTS with Multiclass (CE; d) trees
d ¼ 1 0.66 0.62 0.60
d ¼ 2 0.66 0.67 0.66
d ¼ 3 0.73 0.72 0.67
d ¼ 4 0.72 0.72 0.68
d ¼ 5 0.67 0.71 0.66
d ¼ 10 0.63 0.60 0.56

MCTS with Full Policy (CE) 0.69 0.64 0.58

Dennis J.N.J. Soemers, S. Samothrakis, É. Piette et al. Information Sciences 624 (2023) 277–298
The results in Table 2 show that, according to all of the three different aggregate statistics (median, IQM, and mean), MCTS
agents biased by any of the trained policies tend to outperform UCT over the set of 30 games. Note that there may of course
be individual games where this is not the case. In general, it appears that the best results tend to be obtained by using trees
limited to depths of 3 or 4. The observation that such policies tend to outperform the larger trees and the full policies sug-
gests that feature selection can indeed improve playing strength, likely due to a reduction in computational overhead.

The performance profiles in Fig. 13 tend to intersect many times. This suggests that there is no clear single restriction on
the size of trained policies that consistently works best for biasing MCTS in all games. Only the full policies and the largest
trees, with a depth limit of d ¼ 10, somewhat stand out as likely being the worst performers. In the top-left section of the
plot, the smallest tree restricted to d ¼ 1 has the best performance level; this policy (with the lowest computational over-
head) has the lowest number of cases with an extremely poor performance level. In the bottom-right section of the plot, the
trees with depth limits of 4 and 5 have the best performance levels; these policies have the greatest likelihood of delivering
extremely strong levels of performance (win rates exceeding 0:8).
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Fig. 13. Performance profiles summarising the performance of MCTS agents biased by several different policies against UCT, across 30 different games.

Table 3
Upper bounds on the number of distinct features that various policies may use.

Number of Distinct Features

Policy Initial Feature Set From Training Total

Balanced Decision Trees
d ¼ 1 1
d ¼ 2 6 3
d ¼ 3 6 7
d ¼ 4 6 15
d ¼ 5 6 31
d ¼ 10 6 1023

Imbalanced Decision Trees
d ¼ 1 1
d ¼ 2 6 2
d ¼ 3 6 3
d ¼ 4 6 4
d ¼ 5 6 5
d ¼ 10 6 10

Full Policy 72–452 6 400 6472–852
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5.5. Case studies

In addition to the quantitative results focused on playing strength, we manually inspect several decision trees and the
features they use for two different games. This gives an impression of the ways in which we can learn about the games’ tac-
tics as well as the AI training process.
5.5.1. Tic-Tac-Toe
Fig. 14 depicts two trees, each restricted to a maximum depth of d ¼ 1, that were learnt for Player 1 (the white player) for

the game of Tic-Tac-Toe. The tree in Fig. 14a is a Logit regression tree, and the one in Fig. 14b is a Best-Action classification
tree. Due to the depth limit of d ¼ 1, each tree is limited to only a single feature.

Both trees have selected sensible features that are clearly relevant to the game, but different ones. The Logit regres-
sion tree has selected a feature that strongly recommends playing below a consecutive line of two crosses, which pre-
vents the opponent from making a winning move in the next turn. Note that, due to rotations and reflections, this
feature can also apply to moves that block orthogonal lines by placing a circle to their left, right, or above them. How-
ever, blocking lines by placing a stone in between two opposing pieces, or blocking diagonal lines, would require addi-
tional features. It should be remarked that this feature also has a redundant constraint: it requires a hypothetical site
diagonally below the recommended action to be off the board. Because the game is played on a 3 � 3 grid of square
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Fig. 14. Two trees with depth limits of d ¼ 1 that were built for the game of Tic-Tac-Toe. A shaded square indicates that position must be an ‘‘off-board”
position (i.e., not exist as a part of the board). A small white square indicates a position that must be empty.
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cells, the constraint is already implied by the rest of the feature. Hence, an equivalent feature (which would likely be
preferable from the point of view of interpretability) could simply omit this constraint. This equivalence is emergent
from the game’s rules, as discussed in 3.2.

The feature used by the Best-Action classification tree is one that recommends playing in a position that has two opposite
diagonal connections to empty cells. On the 3 � 3 grid of Tic-Tac-Toe, the only cell that can ever satisfy this condition is the
centre cell. This feature no longer recommends playing in the centre if at least two corners on the same side of the board are
already occupied, so in theory it is different from a pure centre-detector. However, in practice, it is almost equivalent due to
the strong preference of many agents—such as MCTS agents, but also the policy of this decision tree itself—to immediately
play in the centre in the very first move of the game. This is an example of a dependency between features that emerges from
the policies used to play, as discussed in 3.3.
5.5.2. Hex
Hex is a 2-player connection game, played on a (by default 11�11) rhombus of hexagonal cells, where each player has the

objective of creating a connection between two opposite sides of the board with pieces of their colour. For this game, there is
extensive documentation available of patterns, tactics, and strategies that work well for humans [45] as well as AI players
[46,47]. Fig. 15 depicts four features for this game.

The feature in Fig. 15a is selected as the first feature by Logit (TSPG; d) trees. In the case of such a tree restricted to d ¼ 1,
it predicts a logit of 4:16 for actions that match the feature, and 25:86 otherwise, which means that it strongly discourages
such moves. We are not aware of this having any particular strategic or tactical relevance, and suspect it is simply an artefact
resulting from the limited playing strength of the MCTS agents used in self-play training.

The feature in Fig. 15b is selected as the first feature by Multiclass (TSPG; d) trees. The tree restricted to d ¼ 1 predicts
fPðBottom25%Þ ¼ 3:7� 10�4; PðIQRÞ ¼ 0:98; PðTop25%Þ ¼ 0:02g for actions that match the feature, and fPðBottom25%Þ ¼
0:07; PðIQRÞ ¼ 0:93; PðTop25%Þ ¼ 4:1� 10�4g for actions that do not match the feature. This means that the feature is used
to slightly discourage playing in either of the opponent’s goal regions, which may indeed be a useful basic strategy for AI.
However, the fact that actions are classified as being overwhelmingly likely to belong to the IQR class regardless of whether
or not the feature matches, with probabilities of 0:98 and 0:93, respectively, arguably makes for questionable advice to
humans.

The feature in Fig. 15c is selected as the first feature by Best-Action (TSPG; d) trees. The tree restricted to d ¼ 1 predicts a
probability of 0:22 of being the best action for actions that match the feature, versus a probability of 0:01 for actions that do
not match the feature. The action encouraged by this feature prevents what could otherwise become a future connection
between the two opposing (black) pieces. It could be viewed as a longer-range, less ‘‘urgent” variant of the feature depicted
by Fig. 15d, which in turn closely relates to the well-known concepts of virtual connections and bridges in Hex [45]. Patterns
related to this strategy have also previously been used to improve the playing strength of UCT in several connection games,
including Hex [46]. The feature depicted in Fig. 15c is also used by the other types of decision trees at deeper levels; at depth
d ¼ 3 for the Logit regression tree, and depth d ¼ 2 for the Multiclass classification tree. Note that the formation of the two
black pieces in Fig. 15c would, in the absence of other pieces, have formed a loose connection, which Browne [45] describes as
an intermediate Hex strategy. Hence, this feature could also be viewed as the final step of an attack against such a loose con-
nection by the white player.
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Fig. 15. Four features for the first player (white) in the game of Hex. (a) The first feature selected by Logit (TSPG; d) trees. It matches any move in the second
ring of cells from the edge of the board. (b) The first feature selected byMulticlass (TSPG; d) trees. It matches any move that has an adjacent position which
is closer to the region with index 1 (which, in Ludii, is the set of all cells along the black edges, which the black player aims to connect) than the position of
the move. In practice, this feature applies to any move except for moves along the black board edges. (c) The first feature selected by Best-Action (TSPG; d)
trees, including imbalanced variants. Note that the undecorated cells are unrestricted; they need not be empty. (d) A bridge intrusion feature, which is a
well-known tactic for Hex to stop the two black stones from connecting.
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6. Conclusion

We have explored the problem of distilling linear policies for game playing—in this case based on local patterns that are
matched to the game state in the spatial area around actions—into various forms of decision trees, for a wide variety of board
games. Decision trees inherently perform feature selection, meaning that they can be used to identify key features from a
substantially larger set of features used in the original policies. Furthermore, decision trees are generally considered to be
highly interpretable models, making them a popular choice for explaining policies in RL. Many of the games considered
in this paper have substantially larger action spaces than environments used in previous work on explaining policies. There-
fore, we proposed and evaluated a variety of different output representations for decision trees that take state-action pairs,
rather than just states, as inputs. These provide per-action advice in a variety of forms, with some hypothesised to be more
readily interpretable than others.

Empirical evaluations in a set of 13 small games, and an additional set of 30 larger games, show that the performance (in
terms of playing strength) of different types of decision trees tends to decrease as the output representations are simplified
for the sake of (hypothesised) improvements in interpretability, but this differs from game to game. The Logit regression
trees in particular tend to perform close to the level of the full policies, with significantly lower total feature counts (for
depth limits up to and including d ¼ 5) and lower feature counts along any single path from root to leaf. Decision trees
trained for the Tree-Search Policy Gradients objective [41] convincingly outperform those with equal feature counts and
depth limits trained for the standard cross-entropy objective. Full policies, as well as all sizes of decision trees, are found
to be capable of improving the playing strength of MCTS agents on average over 30 different games. Mid-sized trees (for
the Multiclass type and CE objective), with depth limits of about 3 or 4, appear to provide the most stable improvements.
This suggests that using these decision trees for feature selection can improve the playing strength of biased MCTS agents.
Taking two games (Tic-Tac-Toe and Hex) as case studies in which we manually inspect the learnt trees and the features they
focus on, we find primarily features that are easily recognised as relevant to the games’ strategies and tactics, with a small
number of features for which their importance or relevance is not immediately clear to us.
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In this work, feature selection (by building decision trees) was performed as a separate step after fully training a policy.
During that original policy training process, the set of features only ever grows. A core reason for not already removing any
features during that process is that ‘‘irrelevant” features may still be useful for building compound features, and therefore
there is a risk that removing features too early hampers the ability to construct valuable new features too much. An inter-
esting avenue for future research would be to interleave feature removal in that process in a manner that accounts for such a
risk. Given the ability to obtain small sets of key features, another interesting direction for future work would be to use such
small sets of features in move hash codes for various enhancements of tree search algorithms, such as FAST [48], PPAF [49],
or move groups [50].
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