
1

Secured Data Transmission over Insecure Networks-on-Chip
by Modulating Inter-packet Delays

Jiaen Xu, Xiaohang Wang, Member, IEEE, Yingtao Jiang, Member, IEEE, Amit Kumar Singh, Member, IEEE,
Chongyan Gu, Letian Huang, Member, IEEE, Mei Yang, Member, IEEE, and Shunbin Li

Abstract—As the network-on-chip (NoC) integrated into an
SoC design can come from an untrusted third party, there is a
growing risk that data integrity and security get compromised
when supposedly sensitive data flows through such an untrusted
NoC. We thus introduce a new method that can ensure secure and
secret data transmission over such an untrusted NoC. Essentially,
the proposed scheme relies on encoding binary data as delays
between packets travelling across the source and destination pair.
The maximum data transmission rate of this inter-packet-delay
(IPD) based communication channel can be determined from the
analytical model developed in this paper. To further improve the
undetectability and robustness of the proposed data transmission
scheme, a new block coding method and communication protocol
are also proposed. Experimental results show that the proposed
IPD-based method can achieve a packet error rate (PER) of
as low as 0.3% and an effective throughput of 2.3 × 105 bps,
outperforming the methods of thermal covert channel, cache
covert channel, and circuit-based encryption, and thus is suitable
for secure data transmission in unsecure systems.

Index Terms—NoC, secure channel, inter-packet delay, block
coding.

Manuscript received April 07, 2022; revised June 11, 2022; accepted
July 05, 2022. This work was supported in part by the National Natural
Science Foundation of China under Grant 61971200, in part by Zhejiang Lab
under Grants 2021LE0AB01 and 2021PC0AC01, in part by Major Scientific
Research Project of Zhejiang Lab under Grant 2021LE0AC01, in part by the
Open Research Grant of State Key Laboratory of Computer Architecture In-
stitute of Computing Technology, Chinese Academy of Sciences under Grant
CARCH201916, in part by the Key Technologies R&D Program of Jiangsu
(Prospective and Key Technologies for Industry) under Grant BE2021003, in
part by the Key Laboratory of Big Data and Intelligent Robot (South China
University of Technology), Ministry of Education, and in part by the National
Key Research and Development Program of China under Grant 2019QY0705.
This article was presented in the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES) 2022 and
appears as part of the ESWEEK-TCAD special issue. (Corresponding author:
Xianghang Wang.)

Jiaen Xu is with the School of Software Engineering, South China Univer-
sity of Technology, China (e-mail: jiaen xu@mail.scut.edu.cn).

Xiaohang Wang is with the School of Software Engineering, South China
University of Technology, and also with Zhejiang Laboratory and State Key
Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, China (e-mail: xiaohangwang@scut.edu.cn).

Yingtao Jiang and Mei Yang are with the Department of Electrical and
Computer Engineering, University of Nevada at Las Vegas, Las Vegas, USA
(e-mail: yingtao.jiang@unlv.edu; mei.yang@unlv.edu).

Amit Kumar Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, U.K. (e-mail: a.k.singh@essex.ac.uk).

Chongyan Gu is with the School of Electronics, Electrical Engineer-
ing and Computer Science at Queen’s University Belfast, U.K. (email:
C.Gu@qub.ac.uk).

Letian Huang is with the School of Electronic Science and Engineering,
University of Electronic Science and Technology of China, China (e-mail:
huanglt@uestc.edu.cn).

Shunbin Li is with Zhejiang Laboratory, China (e-mail: lishun-
bin@zhejianglab.com).

I. INTRODUCTION

PROTECTING data privacy and maintaining confidential-
ity during data transfer in a many-core chip are vital

to ensure a system’s overall security. Unfortunately, a many-
core chip’s network-on-chip (NoC) is perceived to be one
of the most vulnerable spots in the security chain [25]. To
reduce the time to market, a chip’s NoC is often adopted
from a third party vendor and there has been a great concern
that it might have been compromised by hardware Trojans
(HTs) [14], [49]. Unfortunately, completely removing all these
hardware Trojans, particularly those conditionally triggered
and switched on for a short duration of time, cannot be
guaranteed at offline circuit testing stage. With the assistance
of the HTs, highly sensitive information (e.g., encryption
key or password) can be compromised or leaked when it
gets transferred between two cores across the NoC. In or-
der to securely deliver data over an untrusted NoC, several
approaches have been considered, noticeably authenticated
encryption [1], [2] and network secure/covert channel [3], [4].
Of these two approaches, a secure/covert channel tends to
preserve confidentiality better and incurs a lower information
processing overhead. Essentially, a secure/covert channel is
able to secretly transmit data on top of existing network
traffic, rather than directly exposing data to adversaries as an
encryption scheme does.

A secure channel can be built on vastly different media [20]
and it has many transmission methods to choose from. Among
these many diversified secure channels, timing covert channel
[12], [13] has recently caught a great deal of attention. Over
an NoC’s timing covert channel, information can be encoded
by varying packet order [5] or manipulating inter-packet delay
(IPD). Defined as the time interval between two consecutive
packets, IPD is one of the classic parameters determining
covert transmission efficiency of data packets. In an IPD-based
secure channel, the transmitter encodes bit ‘1’ (bit ‘0’) as a
long (short) inter-packet delay. As shown in Fig. 1, the gap
between packet 1 and packet 2 is 100 cycles (a long inter-
packet delay), which corresponds to bit ‘1’, and there is a
gap of only 10 cycles (a short inter-packet delay) between

bit 1 bit 0 bit 1

…… ……

Send

packets

Time

100 cycles
10

cycles

100 cycles

Packet 1 Packet 2 Packet 3 Packet 4

Fig. 1. An example showing how the time intervals between packet trans-
missions can be manipulated to embed binaries.

2

packet 2 and packet 3, which gives a bit ‘0’. The receiver
recovers embedded binary data by comparing the IPDs against
a predefined threshold.

Actually, IPD-based timing channels have been explored in
wireless sensor networks or Internet as the cases in [6]–[8].
However, the network architecture, traffic pattern, and noise
(data traffic created/transmitted by other applications/cores) of
NoC are substantially different from those in wireless sensor
network or Internet.

In this paper, an IPD-based channel is designed to transmit
sensitive information in untrusted NoCs. Such an IPD-based
channel, however, can be severely congested and thus blocked,
if a malicious node in the NoC is capable to inject a large
volume of useless traffic. To combat this problem, a block
coding scheme is subsequently proposed in this paper that
makes the packet delays of the IPD channel appear to be
the result of the network traffic fluctuation. As a result, the
malicious node will not be able to identify the existence of the
IPD-based channel, and the data can still be safely transmitted.

The contributions of the paper are twofold. (1) To improve
the stealthiness, we propose to adopt the nBmT block coding
to smooth out the delay distribution. Compared to codes seen
in the IPD channels of the mobile wireless networks, the
proposed nBmT block coding is easy to implement with
low cost and has a better channel capacity. (2) To obtain the
optimal decision threshold on the receiver side, a novel BER
model is presented.

The rest of the paper is organized as follows. Section II
reviews the related work of the IPD-based secure channel.
Sections III and IV introduce the IPD-based secure channel
and the block coding scheme. In Section V, the performance
of the IPD channel in NoC is evaluated and the paper is
concluded in Section VI.

II. RELATED WORK AND PRELIMINARY

A. Coding in IPD-based Secure Channels
IPD-based secure channels have been perceived to hide

sensitive information in different network settings, such as
in mobile network (e.g., VoLTE [12]) and Internet [7], [11].
The first IPD-based covert/secure timing channel, presented in
[11], uses different IPDs to represent different codes. However,
this approach is sensitive to network jitter and has a high
error rate when the network is congested. To address this
problem, a variety of coding schemes have been developed.
For instance, Liu et al. [15] adopted spreading code in the
encoding process to reduce the impact of noise, but it has
low transmission rate. In [13], the transferred data is coded
using Huffman coding, which is found to improve both the
channel capacity and its covertness. Houmansadr et al. [7]
proposed CoCo which adjusts four different coding algorithms
to encode the covert message bits. Liu et al. [17] reported a
model-based covert channel using analog fountain code, and
the model can be dynamically changed between the transmitter
and the receiver. One drawback of using the fountain code is
its increased complexity at both coding and decoding ends.
B. Transmission and Decoding in IPD-based Secure Channels

When an IPD packet leaves the transmitter and enters the
network, it may be queued at the intermediate nodes, incurring

extra routing and processing delays. When the delay caused
by network congestion is much shorter than the IPD [11], the
IPD will undergo a small deviation, which makes reliable data
transmission over the IPD channel possible.

When receiving the encoded IPD sequence, in [10], a binary
code is determined by checking whether a normal packet is
received or not within a certain time interval. The receiver
in [7], [15]–[17] adopts a thresholding method that compares
IPDs with the threshold to determine the encoded message.
This approach, however, suffers from degraded performance
whenever there is network congestion or there is a packet loss.

C. Information Leakage Attacks and Countermeatures in NoC

A related but completely different work is the timing side
channel. Both covert channel and side channel use media to
establish channels for information transmission, but they are
completely different. In side channel attacks, a spy infers the
victim program execution trace by tracking power consump-
tion or timing to infer the program’s execution or password.
Reinbrecht et al. [46] reported the Prime+Probe attack in NoC
by measuring the throughput change to infer whether a cache
access traffic traverses that sensitive path. If so, the adversary
can infer the password with prior knowledge.

In the literature, insecure and unreliable NoCs were found
to enable sinkhole/blackhole and data tampering HT attacks
[50], and there are generally two methods to ensure secure
computation/transmissions over an insecure SoC/NoC: 1) data
encryption-based protection [45] that encrypts sensitive infor-
mation directly based on AES or other encryption algorithms,
and 2) information hiding-based computing [48], where sensi-
tive information is hidden in the data packets or other media.

Alternatively, secure data transmission over an NoC can
follow the method detailed in the next section.

III. IPD CHANNEL IN NOC

Secure data communication can be established between two
cores in NoC through an IPD channel. The packets transmitted
in NoC are referred as normal data packets. A covert (secure)
packet is composed of multiple covert (secure) bits, which are
represented by the time intervals between normal data packets.
In this context, a transmitter is a program that is responsible
for assembling and sending out data packets, and it also has
an ability to set the time interval between two consecutive
packets. The receiver, at the other end of the transmission,
is a program that can figure out the time intervals between
the normal packets received, from which it can recover the
original covert data to be transmitted.

A. Threat Model

The proposed channel runs in an NoC designed for real
time applications or mixed critical systems that a core can
initiate direct packet communication with another core, as the
case in Intel Singlechip Cloud Computer (SCC) [22], systems
with scratchpad memory (SPM) [24], and Tilera TILE64 [23],
etc. Each normal packet generated by the transmitter in the
network is routed through a series of intermediate nodes before
reaching the receiver. However, some of these intermediate
nodes may be embedded with hardware Trojans (HTs), which

3

Bitstream b

L covert bits

Information

hiding

IPD

generation

l0, l1

IPD sequence

d
 s Sending L+1

packets at t
 s

Fig. 2. The flow of an IPD channel at the transmitter.

can keep a local copy of any packet [14], or use hardware-
supported debugging, such as the trace buffer [9], to export
traffic traces to an unintended external analyzer. Either way
there is a great danger of information leakage.

For each packet passing through the malicious node, the
core or the external analyzer connected to its detector records
the arrival time of each arriving packet, from which the
detector determines the packet delay information. Once an
IPD channel is detected, the detector injects useless packets
or drops a few passing packets to disturb the network delays
of the current transmission flow. In this case, the information
transmitted in terms of IPD shall no longer be accurately
extracted. However, if the malicious node constantly floods the
network with packets, it might lead to network congestion and
consequently performance degradation, which can be sensed
by the user. To deal with this potential problem, a malicious
node can be conditionally triggered [44] such that it cannot
be easily detected and thus poses a great threat to the system
security.

B. The Transmitter and Receiver Pair in NoC

As illustrated in Fig. 2, there are L covert bits, denoted as
b = {b1, b2, ..., bL}, that need to be transmitted over the IPD
channel. The data transmission goes through two steps.

Step 1. An IPD sequence of length L, denoted as ds =
{ds1, ds2, ..., dsL}, is generated from b, and dsi ∈ ds is defined
as:

dsi =

{
l0 bi = 0
l1 bi = 1

1 ≤ i ≤ L (1)

where l0(l1) is the duration of IPD needed for the transmission
of one single covert bit of ‘0’ (bit ‘1’).

Step 2. To transmit the IPD sequence ds, (L + 1) normal
data packets need to be sent. The i-th bit of the covert message
to be transmitted, bi, is sent out at the time instance of tsi ∈
ts = {ts1, ts2, ..., tsL+1}, and it is determined as

tsi = tsi−1 + dsi−1 2 ≤ i ≤ L+ 1 (2)

where tsi−1 is the time instance to send the previous bit bi−1.
As illustrated in Fig. 3, the receiver decodes the IPDs to

obtain the original bit stream with three steps.
Step 1. The receiver receives a stream of normal data

packets at different time instances, and records the arrival time
of each packet, denoted as tR = {tR1 , tR2 , ..., tRL+1}.

Received L+1

packets at t
 R

Decoding
IPD

extraction

Threshold T

Bitstream b’
L covert bits

IPD sequence

d
 R

Fig. 3. Recovering the covert bits transmitted over an IPD channel in an NoC
at the receiver.

Time/cyclet s1

d S1 d R1

packet 1

packet 2

t R1t s2

packet 1

packet 2

t R2

covert bit 1

(a)

dataheader

address tag

1-bitp-bits

flag bits

(b)
Fig. 4. (a) Illustration of a complete data transmission session: from the first
covert bit that leaves the transmitter to the last covert bit that is received by
the receiver, and (b) the data packet format that includes the flag bits.

Step 2. The received IPD sequence dR = {dR1 , dR2 , ..., dRL}
is obtained by computing the intervals between the arrival
times of two consecutive packets:

dRi = tRi+1 − tRi 1 ≤ i ≤ L (3)

For instance, if the data packets are received at time instances
of {40, 50, 106, 171, 178}, the corresponding IPD’s will be
{10, 56, 65, 7}.

Step 3. The received covert binaries, b′ = {b′1, b′2, ..., b′L},
are determined by comparing the IPD’s against a threshold T0.
That is,

b′i =

{
0 dRi < T0

1 dRi ≥ T0
1 ≤ i ≤ L (4)

For example, if the predefined threshold is 55 cycles, the covert
bit stream decoded from an IPD sequence {10, 56, 65, 7} is
{0110}. Network congestion might add additional delay to the
data transmission, causing a discrepancy between ds at the
transmitter and dR observed by the receiver. Selection of the
threshold must take into account of the extra delays induced
by network congestion and buffering at various places of the
NoC.

Fig. 4(a) shows a complete data transmission session. The
transmitter sets the time interval ds1 between the two normal
data packets, packet 1 and packet 2, and it is determined by
the logic value of the first covert bit needs to be transmitted,
and the receiver is responsible for parsing the received IPD
dR1 . In order to notify the receiver that it needs to check IPDs
for a secret message, the transmitter sets a fixed number of
flag bits in a number of packets. As shown in Fig. 4(b), flag
bits can be decomposed in two parts: the tag and the address.
A one-bit tag determines if the normal packet carries secure
information. If it is set to be ‘1’, it means that the arrival time
of the normal data packet should be parsed by the receiver.
The remaining p flag bits indicate the transmitter’s address,
with p = log2(network size). For example, if the transmitter
is the second node in an 8×8 network, the p flag bits for
address are set to be ‘00010’.

The size of a covert packet shall be chosen by taking
the decoding overhead into account. There are two cases to
consider.

• When the decoding overhead is greater than l0 and l1,
decoding covert packets may not keep pace with the

4

arrival of the normal data packets. To minimize the
negative impact of decoding overhead, Sl covert bits
should be sent together. These Sl covert bits will be
broken down to Sp covert packets and each covert packet
consists of Sn covert bits.

• On the other hand, when the decoding overhead is much
lower than l0 and l1, information can be transmitted
directly in the form of covert bits.

Multiplexed streams (that is, multiple IPD channels between
different pairs of transmitter and receiver share the same phys-
ical channels/paths) can be sent in a similar manner, which are
distinguished by the transmitters’ addresses embedded in the
normal data packets. Suppose node A sends two covert packets
to nodes B and C. The times to send the covert bits (normal
data packets) to both nodes will be governed by (2).

C. Modeling the IPD Channel

The effective throughput of an IPD-based channel, denoted
as R, is given as

R = (1− Pe)×H (5)
where H is the number of covert bits received per second,
and Pe is bit error rate (BER). H can be taken as the average
transmission rate over ta time for a total of L bits, that is,

ta =

L∑
i=1

dRi (6)

H =
L

ta
(7)

A closer inspection of (6) to (7) reveals that the smaller
values l0 and l1 can take, the less amount of time it takes to
send the same number of bits, which is translated to a greater
value of H , and correspondingly, a higher effective throughput.

The optimal threshold T ∗ corresponding to the maximium
effective throughput is computed as follows. The derivative of
(5) with respect to T , is given in (8). Since H is independent
of T , it is treated as a constant in the derivation.

∂R

∂T
=

∂(1− Pe)H

∂T
= −H

∂Pe

∂T
(8)

Let P (1) be the prior probability of the transmitter sending
bit ‘1’ and P (0) be the prior probability of sending bit ‘0’.
Due to the existence of channel noise (e.g., traffics generated
by other applications), IPD encountered at the receiver end
is likely to be different from that at the transmitter end. Let
P (0/1) be the probability of receiving bit ‘0’ when bit ‘1’
was actually sent, and P (1/0) be the probability of receiving
bit ‘1’ while bit ‘0’ was sent. Correspondingly, Pe in (5) can
be calculated as:

Pe = P (1)P (0/1) + P (0)P (1/0) (9)

Let d0(T)(d1(T)) be the probability distribution function
of packet delays observed by the receiver when sending a bit
‘0’ (bit ‘1’). As shown in Fig. 5, when T ′

0 is chosen as the
threshold, P (0/1) and P (1/0) can be expressed as:

P (0/1) = 1−
∫ T ′

0

−∞
d0(T)dT (10)

T* T

d0(T) d1(T)

Fig. 5. Distributions of d0(T) and d1(T)

P (1/0) = 1−
∫ +∞

T ′
0

d1(T)dT (11)

Substituting (10)(11) into (9), we can obtain Pe, and Pe

achieves its minimum by setting its derivative with respect
to the threshold equal to zero:

∂Pe

∂T
= P (1)d1(T) + P (0)d0(T) (12)

P (1)

P (0)
= −d0(T)

d1(T)
(13)

Through extensive experiments, d0(T) and d1(T) are fitted
as Gaussian distribution, and their expectations are l0 and l1.
When P (0) = P (1), the optimal threshold T ∗ at the receiver
side is at the intersection of d0(T) and d1(T). T ∗ = l0+l1

2 as
given in [16].

D. Packetization in the IPD Channel

Many things can go wrong in transmitting data over an IPD
channel. One big concern is related to packet loss that actually
may occur in any network. As in the case of untrusted NoCs,
an HT-infected node can intentionally drop packets passing
the node. In this paper, we propose a communication protocol
that supports reliable transmission over a secure channel. The
protocol is depicted in Fig. 6 and works as follows.

1) The transmitter first needs to send a request packet
(REQ) to inform the receiver to start a communication
session and next waits for the receiver’s reply. Once
the receiver receives the REQ packet, it replies an
acknowledgement (ACK) back to the transmitter. The
transmitter does not send covert packets until it receives
the ACK packet. After all the covert packets embedded
into the time intervals of normal data packets are sent,
the transmitter sends a terminate packet (TER) to the
receiver to terminate the transmission.

2) The transmitter gathers the bits to be transmitted over
the secure channel and then groups them into multiple

Transmitter Receiver

Sending packets

Acknowledgment

Start the

timer

Packet loss

t R1

t R2

Resending packets
t s1

t s2

t s3

t R1

t R2

t R3

t s1

t s2

t s3
Timer out

(packet loss

detected)

Fig. 6. The communication protocol to handle packet loss.

5

packets designated to the receiver. All covert packets
have the same fixed size and each packet is assigned
with a lifetime. The transmitter needs to keep track of
each packet’s lifetime, which can be achieved by setting
a timer. Once the timer is expired, the packet will be
discarded.

3) Before sending out a covert packet, the transmitter
evaluates the congestion level of the network by sending
probe packets and evaluating the roundtrip delays. If
the network is found not congested, the transmitter is
allowed to send packets. Since there might be a lot of
noise in the network, the IPD channel communication
may suffer packet error or loss. The receiver sends a
NACK if an error is detected in the received covert
packet. The transmitter, upon receiving a NACK or
receiving no packet for a certain amount of time, will
retransmit the packets since the last NACK. If the
network is congested for a long time, the IPD channel
can still work by increasing the decision threshold at the
receiver.

4) Each covert packet is sent in the same way as any other
normal data packets. For each covert packet, if no packet
loss occurs during the transmission, the delays of all
the received normal data packets shall be shorter than a
packet’s lifetime. On the other hand, the covert packet
transmission fails if any packet gets lost. As shown in
Fig. 6, the first three normal data packets constitute a
covert packet. When the transmitter does not receive an
acknowledgment within the lifetime of the covert packet,
it is considered that a covert packet is lost, and the lost
packet gets retransmitted.

5) After receiving all normal data packets that can form a
covert packet, the receiver sends back an acknowledge-
ment. The transmitter holds off its transmission of the
next covert packet until it receives the acknowledgement
coming from the receiver. In this case, the receiver will
not reply to every single covert bit received. Instead,
the transmitter sends a group of covert bits, and it will
stop and wait for the acknowledgement from the receiver
before it can send another group of covert bits.

E. Detection Scheme

A malicious node sitting in the path that links the transmitter
to the receiver obtains the IPD distribution. As a packet passes
through the malicious node, its arrival time gets recorded and
analyzed along with other packets’ arrival times, from which
the packet delay distribution will be determined. Data traffics
generated from running normal applications in the PARSEC
and SPLASH-2 benchmark suits can be viewed as the noise
to the IPD channel, and the delay distribution of such noise is

Fig. 7. The distribution of IPD in an 8×8 NoC, where l1 = 100 cycles, l0
= 10 cycles.

found to follow a uniform-like distribution, as shown in Fig. 7.
Since the time intervals of data packets in the IPD channel are
used to encode bit ‘0’ and bit ‘1’, the probability distribution of
IPD corresponding to bit ‘0’ and bit ‘1’ is drastically different
from that of noise (two peaks corresponding to bits ‘0’ and ‘1’
as shown Fig. 7). The detector can draw a conclusion that there
exist an IPD channel if there are big differences between the
packet delay distribution of one port and that of other ports.

Given that the packet delay of the IPD-based channel
has two peaks, it can be detected by a statistical test, like
the Kullback-Leibler (KL) Divergence test [17]. Here the
difference between the IPD distribution of noise N(t) and
that of the IPD channel I(t), DKL(N ||I), is given as:

DKL(N ||I) =
∑
t

N(t) log
N(t)

I(t)
(14)

To detect an IPD-based channel signal in a malicious node,
the following steps are performed.

Step 1. N(t) is computed by checking the data traffic
generated by various applications.

Step 2. For each transmission stream, all packets are
recorded and then I(t) is computed. If there is a significant
difference between N(t) and I(t), i.e., DKL(N ||I) is greater
than a threshold DT , the existence of an IPD channel is
confirmed.

Once the detector (a malicious node) finds an ongoing
secure transmission, it floods the network channel with useless
packets to alter the latencies of IPD traffic or selectively drops
packets, which essentially makes data recovery from the IPD
data impossible.

IV. BLOCK CODING BASED IPD CHANNEL

In order to make IPDs less likely detectable, the IPD
distribution of the secure channel signals should appear to
be similar to noise, which can be achieved by the use of
the nBmT based channel coding [21]. The advantage of the
nBmT code is that it increases the diversity of packet intervals
such that the IPD distribution is “smoothed” out. Since this
coding scheme guarantees the minimum Hamming distance,
it tends to have a low overhead and produce high effective
throughput.

The receiver needs multiple thresholds to make decisions on
the received bit stream. However, using multiple thresholds
may actually result in higher BER. To keep the BER at a
reasonably low level, the codes should have ingenuous error
resilience. As long as the minimum Hamming distance dM of
code groups meets the requirement of dM ≥ 2e + 1 [19], it
is guaranteed that up to e-bit errors in a block code can be
corrected.
A. Mapping Binaries to nBmT Codes

For an nBmT code, it transforms n-bit binary symbols
into m-bit ternary symbols for a total of C(nm) possibilities.
It is important to find the optimal mapping in terms of the
minimum Hamming distance, and the distributions of ternary
values ‘0’, ‘1’, and ‘2’, denoted as p0, p1, and p2, are ideally
to be equal. As shown in (15), we use the variance, denoted
as var(p0, p1, p2), to measure the actual differences among
p0, p1, p2. The variance needs to be minimized so that p0, p1,

6

Ternary code

00

01

02

10

11

12

20

21

22

Binary code

0

1

Binary code

0

1

Ternary

code

20

01

Code-book

Fig. 8. Using 1B2T to generate a code-book.

and p2 are poised to be as close to each other as possible.
That is,

min{var(p0, p1, p2)} = min{
∑2

i=0(pi − µ)

3
}

s.t. p0 + p1 + p2 = 1

hd ≥ min hd

(15)

where µ is the average of p0, p1, p2, and min hd is the
expected minimum Hamming distance.

Solving (15) requires all the possibilities are exhaustively
checked, which is done beforehand. Since one ternary digit
(a.k.a., a trit) encodes three values, and 2 trits in 1B2T in
Fig. 8 are equivalent to nine binary symbols, two of them
are selected to represent the codes for a single binary bit.
In this case, any 1-bit error code can be corrected and the
minimum variance is 0.013. Before a data transmission session
is established, the code-book has to be shared between the
transmitter and the receiver.

The transmitter and receiver that use nBmT coding are
introduced as follows.

B. The Transmitter

As shown in Fig. 9, the transmitter first needs to divide L
bits into L/n n-bit codes, denoted as ps = {ps1, ps2, ..., psL/n}.
Zeroes are padded if the bit length is not divisible by n. Each
code in ps is mapped to an m-bit ternary code. Let tss be
the ternary stream, tssi ∈ tss, where 0 ≤ i ≤ L × m/n.
The IPD generation module creates an IPD sequence pds =
{pds1, pds2, ..., pdsL×m/n} from tss. For pdsi ∈ pds, we have

pdsi =

 l′0 tssi = 0
l′1 tssi = 1
l′2 tssi = 2

1 ≤ i ≤ L×m/n (16)

where l′0, l
′
1, and l′2 correspond to the three levels of IPD

duration between two normal data packets. Next, all the
normal data packets with the intervals stipulated as pds are
injected into the network, following a flow similar to what

Bitstream

b

Code

mapping
IPD

generation

l’0 , l’1 , l’2

Block

encoding

Shared code-book

IPD sequence

pd
 s Sending

packets

 Decoding
IPD

extraction

T1, T2

Block

decoding

Shared code-book

IPD sequence

pd
 Rts

 R

Received

packets

Bitstream

b’

Transmitter

Receiver

Fig. 9. The transmitter and receiver of a secure channel with signals in
nBmT block codes

is described in Section III-B. Given the mapping between
the binary code and the ternary code shown in Fig. 8, a
binary bit string of {010} can be converted into 2-digit
ternary codes of {20,01,20}. The IPD sequence will then be
{l′2, l′0, l′0, l′1, l′2, l′0}.

C. The Receiver

The receiver extracts the IPD sequence pdR =
{pdR1 , pdR2 , ..., pdRL×m/n} from its received packets. Two pre-
set thresholds T1 and T2 are used to determine the ternary
value of tsRi ∈ tsR:

tsRi =

 0 pdRi < T1

1 T1 ≤ pdRi < T2

2 T2 ≤ pdRi

1 ≤ i ≤ L×m/n (17)

As shown in Fig. 9, the block decoding module divides
tsR into L/n m-bit codes qR = {qR1 , qR2 , ..., qRL/n}. The next
step is to look up the code-book and find the corresponding
binary code of qR. As discussed above, the ternary codes in
the code-book have error correction capability. The last step is
to extract the binary codes to recreate the original bit stream.
On the receiver side, for a received IPD sequence of {10, 56,
105, 7} and with the predefined thresholds T1 and T2 set to
be 32 and 78 cycles, respectively, the parsed ternary stream is
{0120}, which is divided into two 2-digit ternary codes, and
the ternary codes are mapped to the original two binary 1-bit
codes {1,0} according to the code-book shown in Fig. 8.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments are performed on a cycle accurate NoC
simulator [18] with all the configurations listed in Table I.
The traffic traces are obtained from randomly generated traffic
mixed with uniform, shuffle, butterfly, transpose, and hotspot
patterns [29] as well as real traffic traces, which altogether
pose as the noise to the IPD channels. Part of real traffic is
generated by running gpgpu-sim [34] with the ispass bench-
marks; the NoC configuration of gpgpu-sim is the same as
the one used in [18] and reproduced in Table I. The other
part of real traffic is extracted from an 8×8 NoC-based many-
core simulator [28] running the PARSEC [27] and SPLASH-
2 benchmarks, and the NoC configuration for this simulator
is also the same as the one used in [18] and reported in
Table I. Each node has a core, a router, an L1 D-cache, an
L1 I-cache, an L2 cache bank, and a network interface. Two
cores are picked as the transmitter and the receiver, and the
malicious detector is a node sitting in the path that connects
the transmitter and the receiver.

We evaluate the performance of the baseline scheme and
the block coding scheme with noises, that is, traffics from
both randomly generated benchmarks and real benchmarks.
Instead of BER, we use packet error rate (PER) as the figure
of merit to measure the error rate of covert data packets. PER
is the ratio of the number of packets not successfully received
to the number of packets transmitted. That is,

PER =
Ne

Nall
× 100% (18)

7

TABLE I
PARAMETERS OF THE EXPERIMENTAL PLATFORMS

Configuration of the NoC simulator
Baseline topology 8×8 mesh

Flit size 256 bits
Packet size (number of flits) 5

NoC latency router: 2 cycles; link: 1 cycle
Number of virtual channels 4

Input buffer size (number of flits) 4
Routing algorithm XY routing

Number of covert bits per packet 8
Number of covert packets 1000

Random traffic patterns uniform, shuffle, butterfly,
transpose, hotspot

Packet injection rate 0.002-0.1 packets/cycle/router
Network sizes 4×4 / 8×8 / 12×12 / 16×16

Configuration of gpgpu-sim for extracting traffic traces
Core / cluster 16

Warp size 32
Shared memory / core 48KB

L1 D-cache size 16KB
L1 I-cache size 2KB

Texture cache size 8KB
Constant cache size 12KB

Bandwidth / memory module 8 bytes / cycle
Benchmarks RAY, STO, WP, LIB, LPS

Configuration of the many-core simulator for extracting traffic traces
Core architecture 64-bit Alpha 21264
Core frequency 3GHz

Fetch / decode / commit size 4 / 4 / 4
ROB size 64

L1 D cache (private) size 16KB
L1 I cache (private) size 32KB
L2 cache (shared) size 64KB

Main memory size 2GB

Benchmarks
barnes, blackscholes, canneal,

dedup, ferret, freqmine, raytrace,
swaptions

where Ne is the number of error packets received, and Nall

is the total number of packets sent from the transmitter. The
effective throughput defined in (5) is also used to evaluate
performance of the IPD channels. The detection accuracy is
used to evaluate the undetectability of the IPD channels. As-
sume that every time an IPD channel transmits information, the
malicious node detects the existence of the IPD channel. Let
fr be the number of times the IPD channels are transmitting
information, and fd be the number of times the malicious node
successfully detects the IPD channels, which is obtained by
the method introduced in Section III-D. A successful detection
of the malicious node means that an IPD channel is detected
when transmitting information, and this number is counted.
The detection accuracy Pacc is defined as:

Pacc =
fd
fr

× 100% (19)

Here we set fr to be 1000 experimentally.

B. Selection of Parameters

1) Parameters for the baseline IPD channel: Selection of
the threshold T0 and short/long IPDs (l0, l1) is essential to tune
the performance of the baseline IPD channel. From Fig. 10(a)
and 10(b), one can see that PER decreases as the difference
between l0 and l1 becomes larger. As such, in our simulation,
we set l0 and l1 to be 10 and 50 cycles. Fig. 10(c) measures
the PER with different values of T0. One can see that when

(a) (b)

(c)
Fig. 10. The PERs of the baseline IPD channel by varying (a) l0, (b) l1, and
(c) T0. In (a), T0=20, in (b), T0=25, and in (c) l1=50.

T0 is l0+l1
2 , PER reaches its minimum, which validates what

is presented in Section III-C. So we set T0 to be 30 cycles
experimentally. In the following experiments, l0, l1, and T0 are
thus so set.

2) Parameters for the block coding based IPD channel:
Compared with the baseline scheme, the channel based on
block coding needs to determine values of a few additional
parameters, including l′0, l

′
1, l

′
2, and two thresholds T1 and T2.

In order to make the throughput of the block coding scheme
closer to that of the baseline, we choose l′0 and l′2 to be 10
and 50 cycles, respectively. Yet we still need to determine the
value of l′1. From Fig. 11(a), one can see that when l′0 and l′2
are fixed, PER reaches its minimum with l′1 set to be l′0 + l′2

2 .
As such, in our simulation, we set l′0, l

′
1, and l′2 to be 10, 30,

and 50 cycles respectively. PER increases as T1 and T2 are
close to l′1, as shown in Fig. 11(b) and 11(c). Similar to the
setting of T0 in the baseline IPD channel, we set T1 and T2 to
be l′0 + l′1

2 and l′1 + l′2
2 ; that is, T1 = 20 and T2 = 40 cycles.

(a) (b)

(c)
Fig. 11. The PERs of the block coding based IPD channel by varying (a)
l′1, (b) T1, and (c) T2. In (a), l′0=10, T1=15, T2=30, in (b) and (c), l′0=10,
l′1=30, l′2=50.

C. Performance Comparison

8

(a) (b)

(c) (d)
Fig. 12. (a) PER and (b) effective throughput with different network sizes,
and (c)(d) detection accuracy against the two IPD channels by varying (c) PIR
of other traffics (noise) and (d) network size. PIR is defined as the number of
packets sent per cycle per router. The malicious node only detects but does
not flood useless packets.

1) Experiments with random benchmarks: Fig. 12(a) shows
the PERs obtained by the baseline and block coding based
secure channels for different network sizes without flooding
noise (i.e., the malicious node detects but does not flood
useless packets). For the small sized network (e.g., 8×8), the
block coding scheme reduces PER by 8% compared to that of
the baseline method. As the network size gets larger, the effect
of block coding scheme on reducing PER is more significant.
This is particularly true when the system size is 16×16. In this
case, thanks to the use of block coding, PER is reduced by
20%. With the increase of network size, there are more data
packets transferred per cycle, which leads to the queuing of
packets and increased network delay. As shown in Fig. 12(b),
the block coding scheme has much lower PER and thus the
effective throughput of the block coding scheme is 40% higher
than the baseline with a network size of 16×16. The reason
is that the error resilience of the block coding scheme plays
an important role when the network is congested. When the
network size is small (e.g., 4×4), the block coding scheme

(a) (b)

(c)
Fig. 13. (a) PER and (b) effective throughput with different network sizes.
The malicious node floods useless packets. (c) PER of the block coding based
method with malicious nodes that can increase IPD delays.

contributes to less than 10% reduction in PER, but it takes
1.5× more packets to transmit the same amount of data. In
this case, the effective throughput of the block coding scheme
tends to be lower.

Fig. 12(c) shows the detection accuracy of the malicious
nodes against the block coding scheme on average is half of
the baseline scheme. From Fig. 12(d), one can see that when
the network size is 16×16, the detection accuracy against the
block coding based IPD channel decreases by 22% over the
baseline. The reason is that both high packet injection rate
(PIR) and large network size can increase the network delay
and PER, resulting in irregular time intervals after network
transmission.

Once the detector in the malicious node finds the existence
of an IPD channel, it injects useless packets into the network.
From Fig. 13(a), one can see that when the network size is
16×16, the PER of the block coding scheme is 30% lower
than that of the baseline scheme due to the error resilience,
and the effective throughput is 33% higher than that of the
baseline as shown in Fig. 13(b). To increase the risk posed
by malicious nodes, in another experiment, malicious nodes
can add randomized delays while forwarding packets from
the output port of the router. As shown in Fig. 13(c), these
malicious nodes have little impact on the transmission of
the IPD channel, since delayed forwarding mostly adds extra
delays to the packets, and has little impact on the time intervals
between packets. These results have confirmed the robustness
of the block coding scheme even with the presence of the
malicious node.

(a) (b)
Fig. 14. The PER with different (a) buffer sizes and (b) virtual channel
numbers of the two methods.

We measure the impacts of the network parameters (input
buffer size and virtual channel number) on the performance of
the baseline IPD secure channel and the block coding scheme.
Fig. 14(a) shows that when the buffer size is 2, the PER of the
block coding scheme is almost half of that of the baseline IPD
channel. When the buffer size continues to increase to 4, 8, 16,
the PER of the two methods stays flat. Similar to Fig. 14(a),
Fig. 14(b) shows that when the number of virtual channels
exceeds 3, the PER of the two methods is almost unchanged.
A smaller number of input buffers and virtual channels leads
to network congestions more easily, causing deviations from
the set time intervals, thereby increasing the PER.

2) Experiments with real benchmarks: In this set of exper-
iments, we take the traces generated from the real applications
as the noise to evaluate the PER and the detection accuracy.
The malicious node only detects but does not flood useless
packets. Fig. 15(a) and 15(b) show the results with the
benchmarks’ traces collected from gpgpu-sim as the noise.

9

(a) (b)

(c) (d)
Fig. 15. (a) and (c) are PERs with different noises (real applications from
the ispass and PARSEC benchmarks), (b) and (d) are detection accuracy
comparison of the two methods.

Fig. 15(a) shows that, compared with the baseline scheme, the
block coding scheme reduces average PER by 15%. Fig. 15(b)
shows that the detection accuracy of the malicious node against
the block coding scheme is reduced by 20% on average. Fig.
15(c) and 15(d) show the results with the benchmark traces
collected from the many-core simulator taken as the noise. Fig.
15(c) shows there is a minor difference between the PER of
the baseline scheme and that of the block coding scheme, but
the average detection accuracy against the block coding drops
by nearly 50%, as shown in Fig.15(d), and the low detection
accuracy of the malicious node indicates that most sensitive
information is successfully transmitted. The reason is that the
packet injection rate of most cases of PARSEC is lower than
0.01 packets per cycle per router, resulting in a very low PER.
Putting things together, one can see that the proposed method
is applicable to most traffic scenarios.

To find the worst case of the proposed block coding based
secure channel, Fig. 16 shows the PER of the channel with
respect to the noise traffics’ PIR. The PER of the block coding
scheme increases with the increase in PIR. When the PIR
is 0.1 packets per cycle per router, the PER of the block
coding scheme is close to 100%, whereas the average latency
of the network is over 1000 cycles. In this case, it is safe
to say that the network is already congested, which indicates
that the proposed method does not work under this extremely
congested network workload. As described in Section III-D,
to tackle such scenarios, we need to wait until the network
becomes less congested to handle reasonable amount of data
traffic flow.

To demonstrate the scalability of the IPD channel, we
further performed experiments on a chiplet-based system [41].

Fig. 16. The PER of the block coding scheme by varying PIR of other traffics
(noise).

TABLE II
MULTI-CHIPLET NETWORK CONFIGURATION

Configurations of the inter- and intra-chiplet networks
Intra-chiplet network topology 2×2 mesh
Inter-chiplet network topology 8×8 mesh

Intra-chiplet latency router 2 cycle, link 1 cycle

Inter-chiplet latency link latency model [43], PHY
latency model [42]

Virtual channel number 4
Input/output buffer size 4

Routing algorithm XY routing for inter- and
intra-chiplet networks

Traffic pattern uniform

...

...

...

...

.
.
.

.
.
.

...

...

...

.
.
.

.
.
.

.
.
.

...

...

...

...

...

...

...

...

...

...

...

...

Connection

Node

Fig. 17. The network topology of the chiplet-based architecture.

The chiplet-based system features an inter-chiplet topology
shown in Fig. 17, and its inter-chiplet network is a 2×2 mesh.
The network configurations are listed in Table II. Both the
intra- and inter-chiplet networks use XY routing, whereas, in
the inter-chiplet network, each chiplet is treated as a meta-node
in routing. The upper left node in each chiplet connects to the
neighboring chiplets and the PHY latency is 2 ns as reported
in [42], and the interposer wire delay model is adopted from
[43]. The floorplanning and size of each node in the chiplets
are adopted from [47]. Fig. 18 shows that when PIR is higher
than 0.004 packets per cycle per router, the PER of the block
coding scheme decreases by about 16% compared to that of the
baseline scheme. The effective throughput of the block coding
scheme on average is 24% higher than that of the baseline
scheme.

(a) (b)
Fig. 18. (a) PER and (b) effective throughput by varying PIR of other traffics
(noise) in the chiplet-based system.
D. Overhead of the Proposed Method

The transmitter and receiver are programs running in differ-
ent cores. If there is no normal data packet to be transmitted
to the receiver, the transmitter needs to send dummy packets
to hide information. To reduce unnecessary overhead, the
proposed method is more applicable to scenes with moderate
or heavy traffic. For the baseline scheme, the IPD coding
overhead of the transmitter and decoding overhead of the
receiver are about 11 and 9 cycles per covert bit, respectively.

10

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ENCODINGS

Method PER Effective throughput
(×105bps)

Huffman code 44.6% 1.91
Golay code 5.8% 1.26

The proposed
method 7.1% 2.38

There is additional overhead associated with coding and
decoding the nBmT block codes. This overhead is fairly
modest. In our experiments, it takes 29 cycles, which is broken
down to 16 cycles of the code-book checkup time and 13
cycles for code conversion.

The energy consumptions of sending and receiving 1000
bits are 1.92 mJ and 1.67 mJ, respectively, as reported by the
GPUWattch [26] power simulator. Compared to running the
benchmark applications, e.g., the 32×32 matrix multiplication,
the energy overhead is as small as only 0.16%.

E. Comparison with Other Encoding Algorithms

We have included a few experiments comparing the pro-
posed method with two more encoding methods, Huffman
code [13] and Golay code [7]. The ternary Golay code (11, 6)
is used, and each code contains 6 information bits. As shown in
Table. III, the PER of the IPD channel encoded by Huffman
code is 37% higher that of the proposed method. Although
Huffman code reduces the number of bits in the code group, its
length varies and it does not have error correction mechanism.
The PER of Golay code is almost equal to that of the proposed
method, but 5 check bits have to be added to each code group,
which effectively cuts the actual throughput by half.

F. Comparison with Other Secured Transmission Methods

In this set of experiments, the proposed block coding based
IPD channel is compared against several methods for secure
data transmission, including (1) thermal covert channel (TCC)
[20], [35]–[37], (2) cache covert channel [30]–[32], and (3)
hardware-based encryption [33].

Experiments of TCC were performed on the many-core
simulator and Hotspot version 6.0 [40], which is used as
the temperature simulator, and the configurations are listed
in Table IV. TCC works by heat transfer, therefore, in our
experimental setting, it only works within 2 hops. That is, the
distance between the transmitter and the receiver of the TCC
should be within 2 hops. The core and cache parameters are
set to be the same as the many-core simulator configuration
in Table I. As shown in Fig. 19(a), the PER of the TCC is 1.5
times higher than the proposed IPD channel on average when
the PIR is 0.06 packets per cycle per router. Fig. 19(b) shows

TABLE IV
TCC PARAMETERS

Configurations of TCC
Chip thickness 0.00015m

Specific heat capacity 1.75× 106J/(m3 ·K)
Silicon thermal conductivity 100 W/(m ·K)

Temperature threshold for DTM 373.15K
Heat sink side 0.06m

Heat sink thickness 0.0069m
Heat sink thermal conductivity 400 W/(m ·K)

Specific heat capacity of heat sink 3.55×106J/(m3 ·K)
Thermal sensor resolution 0.1°C

(a) (b)
Fig. 19. (a) PERs and (b) effective throughputs of TCC and the proposed
block coding based IPD channel with respect to the distance between the
transmitter and the receiver. TCC works within 2 hops.

that the effective throughput of the TCC is 0.006% of the
proposed IPD channel. Therefore, the proposed IPD channel
has a lower error rate and higher transmission throughput than
the TCC.

The cache covert channel [31] transmits sensitive informa-
tion by encoding the bits with the latencies of accessing last
level cache (LLC), i.e., the latency difference in cache miss
and hit, which is implemented in our many-core simulator.
The configurations of the simulator are detailed in Table I.
Note that due to the NoC transmission delay, the throughput
and PER of the cache covert channel in the many-core system
are no longer the same as reported in [31] which has no NoC
transmission delay. Fig. 20 shows that with different network
sizes, the PER of the cache covert channel on average is 1.43
times higher than the proposed IPD channel, and the effective
throughput of the proposed IPD channel is on average 78%
higher than that of the cache covert channel.

(a) (b)
Fig. 20. (a) PERs and (b) effective throughputs of the cache covert channel
and the proposed block coding based IPD channel with different network
sizes.

Compared with the proposed block coding based IPD
channel, the hardware-based encryption scheme (e.g., AES)
encrypts data before secure transmission, which can achieve a
PER of 0.03% [51], but it requires additional hardware circuit
for AES coding and decoding. As reported from [33], the AES
encoder circuit using 28nm TSMC technology has an area of
0.0028 mm2 and consumes 48 mJ when encrypting 1000 bits.
As a comparison, the block coding based IPD channel requires
no additional circuit, and its energy consumption is only 7.5%
of the encryption scheme.

G. Evaluation of the IPD Channel on an FPGA-based Multi-
core System

We evaluated the block coding based IPD channel on a
4×4 multi-core system on Xilinx vcu113p FPGA. The multi-
core system uses PULPino [39] as the processor cores, and
OpenPiton [38] as the uncore (NoC and memory etc.). The
configurations of OpenPiton are detailed in Table V. We

11

TABLE V
OPENPITON’S PARAMETERS

Number of cores 16
L1 D-cache 8KB
L1 I-cache 16KB
L1.5 cache 8KB

TLBs (number of entries) 16
Bootloading SD/SDHC Card, UART, JTAG

On-chip network 4×4 mesh
Input buffer size 4

Routing algorithm XY routing

inject random traffics as noise. Extensive experiments on this
platform revealed that the PER of the block coding based IPD
channel is 1.38% and the effective throughput of the block
coding based IPD channel reaches 1.44×105 bps on average.

VI. CONCLUSION

In this paper, an IPD-based channel was proposed for
secure transmission over an untrusted NoC. Essentially, the
bits of sensitive information are represented by different time
intervals between successive packets. In addition, to enhance
confidentiality and reduce PER, the block coding scheme was
also proposed to achieve PER as low as 0.3% and effective
throughput of 2.3 × 105 bps. Experimental results showed
that the application of block coding reduces the PER by as
much as 30%, and it is less detectable than the baseline
IPD channel, particularly true when the network size is large.
The proposed IPD channel has lower PER and overhead, and
higher throughput than competing thermal covert channel,
cache covert channel, and circuit-based encryption scheme,
making it suitable for secure data transmission over unsecured
NoC-based systems.

REFERENCES

[1] Sajeesh K, Kapoor H K, “An authenticated encryption based security
framework for NoC architectures,” in Proc. Int’l Symp. Electronic System
Design, 2011, pp.134-139.

[2] Kapoor H K, Rao G B, Arshi S, et al., “A security framework for NoC
using authenticated encryption and session keys,” Circuits, Systems, and
Signal Processing, vol. 32, no. 6, 2013, pp. 2605-2622.

[3] Wang Y, Suh G E, “Efficient timing channel protection for on-chip
networks,” in Proc. IEEE/ACM Int’l Symp. Networks-on-Chip, 2012, pp.
142-151.

[4] Boraten T, DiTomaso D, Kodi A K, “Secure model checkers for network-
on-chip (NoC) architectures,” in Proc. Int’l Great Lakes Symp. VLSI,
2016, pp. 45-50.

[5] Biswas A K, Ghosal D, Nagaraja S, “A survey of timing channels and
countermeasures,” ACM Computing Surveys, vol. 50, no. 1, 2017, pp.
1-39.

[6] Berk V, Giani A, Cybenko G, “Detection of covert channel encoding in
network packet delays,” Technical Report. TR2005-536, 2005.

[7] Houmansadr A, Borisov N, “CoCo: coding-based covert timing channels
for network flows,” in Proc. Int’l Workshop on Information Hiding, 2011,
pp. 314-328.

[8] Sun Y, Guan X, Liu T, et al., “An identity authentication mechanism based
on timing covert channel,” in Proc. IEEE Int’l Conf. Trust, Security and
Privacy in Computing and Communications, 2012, pp. 832-836.

[9] Rout S S, Basu K, Deb S, “Efficient post-silicon validation of network-
on-chip using wireless links,” in Proc. Int’l Conf. VLSI Design and Int’l
Conf. Embedded Systems, 2019, pp: 371-376.

[10] Cabuk S, Brodley C E, Shields C, “IP covert timing channels: design and
detection,” in Proc. ACM Conf. Computer and Communications Security,
2004, pp. 178-187.

[11] Sellke S H, Wang C C, Bagchi S, et al., “TCP/IP timing channels: theory
to implementation,” in Proc. Int’l Conf. Computer Communications, 2009,
pp. 2204-2212.

[12] Zhang X, Tan Y A, Liang C, et al., “A covert channel over VoLTE via
adjusting silence periods,” IEEE Access, vol. 6, 2018, pp. 9292-9302.

[13] Wu J, Wang Y, Ding L, et al., “Improving performance of network covert
timing channel through Huffman coding,” Mathematical and Computer
Modelling, vol. 55, no. 1-2, 2012, pp. 69-79.

[14] Weber I, Marchezan G, Caimi L, et al., “Open-source NoC-based many-
core for evaluating hardware trojan detection methods,” in Proc. IEEE
Int’l Symp. Circuits and Systems, 2020, pp. 1-5.

[15] Liu Y, Ghosal D, Armknecht F, et al., “Robust and undetectable stegano-
graphic timing channels for iid traffic,” Int’l Workshop on Information
Hiding, 2010, pp. 193-207.

[16] Ziemer R E, Tranter W H. “Principles of communications,” John Wiley
& Sons, 2014.

[17] Liu W, Liu G, Zhai J, et al., “Designing analog fountain timing
channels: undetectability, robustness, and model-adaptation,” IEEE Trans.
Information Forensics and Security, vol. 11, no. 4, 2016, pp. 677-690.

[18] Popnet, 2015. [Online].
Available: https://github.com/karellincoln/popnet.git

[19] Mazda, Fraidoon, “Telecommunications engineer’s reference book,”
Butterworth-Heinemann, 1993.

[20] Tian S, Szefer J, “Temporal thermal covert channels in cloud FPGAs,” in
Proc. Int’l Symp. Field-Programmable Gate Arrays, 2019, pp. 298-303.

[21] Osman O, Uçan O N. “Contemporary coding techniques and applications
for mobile communications,” CRC Press, 2009.

[22] Intel. Intel single-chip cloud computer product overview. Available:
http://techresearch.intel.com/spaw2/uploads/files/SCC-Overview.pdf.

[23] Wentzlaff D, Griffin P, Hoffmann H, et al., “On-chip interconnection
architecture of the tile processor,” IEEE micro, vol. 27, no. 5, 2007, pp.
15-31.

[24] Banakar R, Steinke S, Lee B S, et al., “Scratchpad memory: a design
alternative for cache on-chip memory in embedded systems,” in Proc.
Int’l Symp. Hardware/Software Codesign, 2002, pp. 73-78.

[25] Diguet J P, Evain S, Vaslin R, et al., “NoC-centric security of reconfig-
urable SoC,” in Proc Int’l Symp. Networks-on-Chip, 2007, pp. 223-232.

[26] Leng J, Hetherington T, ElTantawy A, et al., “GPUWattch: enabling
energy optimizations in GPGPUs”, in Int’l Symp. Computer Architecture,
2013, pp. 487-498.

[27] Bagrodia R, Meyer R, Takai M, et al. “PARSEC: a parallel simulation
environment for complex systems,” Computer, vol. 31, no. 10, 1998, pp.
77-85.

[28] Wang X, Yang M, Jiang Y, et al. “On self-tuning networks-on-chip for
dynamic network-flow dominance adaptation,” ACM Trans. Embedded
Computing Systems, 2014, vol. 13, pp. 1-21.

[29] Duato J, Yalamanchili S, Ni L. “Interconnect networks: an engineering
approach,” IEEE Comp. Soc. Press, 1998.

[30] Maurice C, Neumann C, Heen O, et al. “C5: cross-cores cache covert
channel,” in Int’l Conf. Detection of Intrusions and Malware, and
Vulnerability Assessment, 2015, pp. 46-64.

[31] Saileshwar G, Fletcher C W, Qureshi M. “Streamline: a fast, flushless
cache covert-channel attack by enabling asynchronous collusion,” in
Proc. Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 1077-1090.

[32] Xu Y, Bailey M, Jahanian F, et al. “An exploration of L2 cache covert
channels in virtualized environments,” in Proc. ACM Workshop on Cloud
Computing Security Workshop, 2011, pp. 29-40.

[33] Lu M, Fan A, Xu J, et al. “A compact, lightweight and low-cost 8-
bit datapath AES circuit for IoT applications in 28nm CMOS,” in Int’l
Conf. Trust, Security and Privacy in Computing and Communications/
Int’l Conf. Big Data Science and Engineering, 2018, pp. 1464-1469.

[34] Bakhoda A, Yuan G L, Fung W L, et al. “Analyzing CUDA workloads
using a detailed GPU simulator,” in Proc. Int’l Symp. Performance
Analysis of Systems and Software, 2009, pp. 163-174.

[35] Masti R J, Rai D, Ranganathan A, et al. “Thermal covert channels on
multi-core platforms,” in USENIX Security Symp., 2015, pp. 865-880.

[36] Bartolini D B, Miedl P, Thiele L. “On the capacity of thermal covert
channels in multicores,” in Proc. Conf. Computer Systems, 2016, pp. 1-16.

[37] Iakymchuk T, Nikodem M, Kepa K. “Temperature-based covert channel
in FPGA systems,” in Int’l Workshop on Reconfigurable Communication-
centric Systems-on-Chip, 2011, pp. 1-7.

[38] Balkind J, McKeown M, Fu Y, et al. “OpenPiton: an open source
manycore research framework,” ACM SIGPLAN Notices, vol. 51, no. 4,
2016, pp. 217-232.
Available: https://github.com/PrincetonUniversity/openpiton

[39] Traber A, Zaruba F, Stucki S, et al. “PULPino: a small single-core
RISC-V SoC,” in RISCV Workshop, 2016.
Available: https://github.com/pulp-platform/pulpino

[40] Huang W, Ghosh S, Velusamy S, et al. “HotSpot: a compact thermal
modeling methodology for early-stage VLSI design,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 14, no. 5, 2006, pp. 501-513.

12

[41] Bharadwaj S, Yin J, Beckmann B, et al. “Kite: a family of heterogeneous
interposer topologies enabled via accurate interconnect modeling,” in
Proc. ACM/IEEE Design Automation Conf., 2020, pp. 1-6.

[42] Universal chiplet interconnect express (UCIe),
Available: https://www.uciexpress.org/general-8

[43] Kabir M D A, Peng Y. “Chiplet-package co-design for 2.5 D systems
using standard ASIC CAD tools,” in Proc. Asia and South Pacific Design
Automation Conf., 2020, pp. 351-356.

[44] Bhunia S, Hsiao M S, Banga M, et al. “Hardware Trojan attacks: threat
analysis and countermeasures,” in Proc. IEEE, 2014, vol. 102, no. 8, pp.
1229-1247.

[45] Oliveira B, Reusch R, Medina H, et al. “Evaluating the cost to cipher the
NoC communication,” in Proc. Latin American Symp. Circuits & Systems,
2018, pp. 1-4.

[46] Reinbrecht C, Susin A, Bossuet L, et al. “Side channel attack on NoC-
based MPSoCs are practical: NoC Prime+ Probe attack,” in Proc. Symp.
Integrated Circuits and Systems Design, 2016, pp. 1-6.

[47] Wang X H, Liu P, Yang M, et al. “Energy efficient run-time incremental
mapping for 3-D networks-on-chip,” J. Computer Science and Technol-
ogy, vol. 28, no. 1, 2013, pp. 54-71.

[48] Wang Y, Xu Q, Qu G, et al. “Information hiding behind approximate
computation,” in Proc. Great Lakes Symp. VLSI, 2019, pp. 405-410.

[49] Rajendran J, Dhandayuthapany A M, Vedula V, et al. “Formal security
verification of third party intellectual property cores for information
leakage,” in Proc. Int’l VLSI Design and Int’l Conf. Embedded Systems,
2016, pp. 547-552.

[50] Zhang L, Wang X, Jiang Y, et al. “Effectiveness of HT-assisted sinkhole
and blackhole denial of service attacks targeting mesh networks-on-chip,”
J. Systems Architecture, 2018, vol. 89, pp. 84-94.

[51] Jeon S, Choi J P. “CFB-AES-turbo: joint encryption and channel coding
for secure satellite data transmission,” in Proc. Int’l Conf. Communica-
tions, 2019, pp. 1-7.

Jiaen Xu received the bachelor’s degree in Hunan
Normal University, China. She is working toward
the master’s degree in the school of software en-
gineering, South China University of Technology.
Her research interests include hardware security, and
covert channel.

Xiaohang Wang received the B. Eng. and Ph. D.
degree in communication and electronic engineering
from Zhejiang University, in 2006 and 2011, respec-
tively. He is currently a Professor at South China
University of Technology. He was the receipt of PDP
2015 and VLSI-SoC 2014 Best Paper Awards. He
was the special session organizer of NoCS 2018,
steering committee member of NoCArc 2014-2018,
and TPC chair of ICCS 2021. He also served as
the guest editor of the Mathematics, Integration, the
VLSI Journal, Microelectronics Journal, and Com-

puters and Electrical Engineering. His research interests include many-core
architecture, power efficient architectures, optimal control, and NoC-based
systems.

Yingtao Jiang received his Ph. D. in Computer
Science from the University of Texas at Dallas in
2001, and joined the Department of Electrical and
Computer Engineering (ECE), University of Nevada,
Las Vegas (UNLV) as an assistant professor in the
same year. He was promoted to the rank of full
professor at the same department in 2013. He served
as the ECE department chair between 2015 and
2018, and he is currently associate dean of UNLVs
college of engineering. Besides STEM education,
his research interests span a wide array of areas,

including VLSI integrated circuit design, computer architectures, wireless
networks, machine learning, cloud computing, biomedical engineering, and
nanotechnologies.

Amit Kumar Singh is an Associate Professor at
University of Essex, UK. He received the B.Tech.
degree in Electronics Engineering from Indian Insti-
tute of Technology (Indian School of Mines), Dhan-
bad, India, in 2006, and the Ph.D. degree from the
School of Computer Engineering, Nanyang Tech-
nological University (NTU), Singapore, in 2013.
He has published over 110 papers in reputed jour-
nals/conferences, and received several best paper
awards, e.g., IEEE TC February 2018 Featured Pa-
per, ICCES 2017, ISORC 2016, PDP 2015, HiPEAC

2013 and GLSVLSI 2014 runner up. He is associate editor of IEEE Embedded
Systems Letters, Design Automation for Embedded Systems, Journal of Low
Power Electronics and Applications, and Frontiers in Neuroscience. He also
edited a book for JLPEA journal and currently editing a special issue for
JLPEA. He served as the publication chair of ESWeek-2021, Publicity co-
chair of CF-2021, Local Co-chair of NASA/ESA Conference on Adaptive
Hardware and Systems 2019, organized a special session at ESWeek-2021
and a tutorial at ESWeek-2018. He has served on the TPC of IEEE/ACM
conferences like DAC, DATE, ICCAD, CASES and CODES+ISSS.

Chongyan Gu received the Ph.D. degree from
Queen’s University Belfast, Belfast, U.K., in 2016.
She is currently a Lecturer in the School of EEECS
at Queen’s University Belfast, and a member of Cen-
ter for Secure Information Technologies (CSIT) with
in the Institute of Electronics Communications and
Information Technologies (ECIT). She was invited to
give tutorial/talks to international conferences, such
as, IEEE ASP-DAC 2020 on the topic of practical
PUF design on FPGA. Her current research interests
include PUFs, security in/for approximate comput-

ing, true random number generator (TRNGs), hardware Trojan detection and
machine learning attacks.

Letian Huang received the MS and Ph. D. degrees
in communication and information system from the
University of Electronic Science and Technology
of China (UESTC), Chengdu, China in 2009 and
2016, respectively. He is an associate professor with
UESTC. His scientific work contains more than 40
publications including book chapters, journal articles
and conference papers. His research interests include
heterogeneous multi-core system-on-chips, network-
on-chips, and mixed signal IC design.

Mei Yang received her Ph. D. in Computer Science
from the University of Texas at Dallas in Aug.
2003. In Aug. 2004, she joined in the Department
of Electrical and Computer Engineering, University
of Nevada, Las Vegas, where she was promoted to
full professor in 2016. Her research interests include
computer architectures, interconnection networks,
machine learning, and embedded systems.

Shunbin Li received the PhD degree in information
and communication engineering from Zhejiang Uni-
versity, Hangzhou, China, in 2018. He is currently
working as an associate research fellow in Zhejiang
laboratory. His research interests include VLSI cir-
cuits, security, and reconfigurable computing.

Amit
Comment on Text
120

Amit
Comment on Text
2020-22

