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Abstract— The complexity of brain activity involved in
the generation of the experience of pain makes it hard to
identify neural markers able to predict pain states. The
within and between subjects variability of pain hinders the
predictive potential of machine learning models trained across
participants. This challenge can be tackled by implementing
deep learning classifiers based on convolutional neural
networks (CNNs). We targeted phase-based connectivity in
the alpha band recorded with electroencephalography (EEG)
during resting states and sensory conditions (eyes open [O]
and closed [C] as resting states, and warm [W] and hot
[H] water as sensory conditions). Connectivity features were
extracted and re-organized as square matrices, because CNNs
are effective in detecting the patterns from 2D data. To assess
the classifier performance we implemented two complementary
approaches: we 1) trained and tested the classifier with data
from all participants, and 2) using a leave-one-out approach,
that is excluding one participant at a time during training
while using their data as a test set. The accuracy of binary
classification between pain condition (H) and eyes open resting
state (O) was 94.16% with the first approach, and 61.01%
with the leave-one-out approach.

Clinical relevance— Further validation of the CNN classifier
may help caregivers track the rehabilitation of chronic pain pa-
tients and dynamically modify the therapy. Further refinement
of the model may allow its application in critical care setting
with unresponsive patients to identify pain-like states otherwise
incommunicable to medical personnel.

I. INTRODUCTION

Pain has become a global health concern. Around 40%

of adults are affected by chronic pain in Europe [1]. There

is an unmet need for technological advancement to help

caregivers detect and monitor patients’ pain in both clinical

and non-clinical setting [2]. This advance will be beneficial

to unresponsive patients such as those with disorders of con-

sciousness, who cannot voluntarily report pain. To achieve

the objective of detecting and monitoring pain, scientists are

utilising neurophysiological signals, and particularly brain

signals recorded through electroencephalography (EEG) [3].

Here, we aimed to develop an EEG-based model for pain

prediction rooted in the recent progresses in the field.

The first step in building a machine learning model is

to investigate the optimal feature to be used as input. The
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quest for a specific EEG signature of pain has been mostly

unsuccessful over the years because most of the brain re-

sponses are similar across sensory modalities and affective

states [4] However, recent research indicates the peak of

alpha (8-12 Hz) frequency (PAF) as a predictive index of pain

sensitivity [5], [6]. Similarly, functional brain connectivity,

the representation of integration among brain regions, has

also been proposed as a metric of pain intensity in the

brain [7]. According to these findings, alpha oscillations and

functional connectivity seem to qualify as ideal candidates

to validate a brain index for pain detection and monitoring.

By combining this evidence, our previous work demonstrated

that alpha-phase connectivity behaves as a promising neural

marker for pain prediction, thus the machine learning model

developed in the current study utilised phase connectivity in

the alpha frequency range as classification feature [8].

Recent studies reported high classification accuracy for

pain states with convolutional neural network (CNN) models,

even above 95% [9]. However, it is currently unknown

whether the CNN algorithms previously reported, while

effective within the individual participant, can generalise

to new individuals. This gap in CNN technology reduces

its potential applications in the clinical setting. To address

such limitation, we sat out to develop a model able to both

predict pain states across individuals and generalise to new

individuals. Due to the technical specificity of CNN models

whereby one can extract the spatial patterns from 2D data,

we organized alpha-phase connectivity as a 2D matrix and

inputted it to a CNN pain classifier.

Hence, our model aims to overcome current limitations

in the field with a twofold approach for responsive and

unresponsive patients, respectively: 1) train (and test) the

model on the data obtained from all participants; 2) train

the model with a leave-one-out approach, that is excluding

one participant at a time from training while using their data

as a test set. We submit that by means of the leave-one-out

approach we can validate the generalisability of the model

to unresponsive patients (who cannot provide labelled data

for training).

II. METHODS

A. Participants and Experimental Paradigm

This study was approved by the ethics committee of the

University of Essex. Forty-three healthy individuals partici-

pated in the experiment (22 females, mean age 25.36 years,

range 20-56). Data from seven participants were removed,
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Fig. 1: The mean matrices of ISPCs across all time epochs

recorded in the H condition.

because of procedural or technical issues, leaving a final

sample of 36 participants.

The study entailed four experimental conditions for clas-

sification. Two thermal conditions, hot (H) and warm (W),

eliciting pain and innocuous somatosensory sensations re-

spectively, and two resting-state conditions, eyes-open (O)

and eyes-closed (C). The thermal stimuli were induced by a

prolonged immersion of the participants’ left hand in a 30-

litre tank (RW-3025P, Medline Scientific). Each condition

lasted five minutes. The average temperature of H condition

was 44.5 °C, and the temperature of W was 6 lower, the

temperature was adjusted according to the individual’s un-

pleasantness ratings delivered through visual-analogue scale

(VAS). For more details about the methodology and proce-

dure see [6].

We recorded the EEG with a 62 Ag/AgCl electrodes cap

(Easycap, BrainProducts GmbH, Gliching, Germany). Ac-

cording to our previous work, we selected 32 representative

electrodes to analyse connectivity (FP2, AF3, AF8, F6, F7,

FC4, FC5, C2, C3, C6, Cz, CP1, CP2, CP3, CP4, CP5, CP6,

TABLE I: Architecture of the CNN model: Three basic

structures (layers 1-9) were applied, in which the activation

function of each convolutional hidden layer was a rectified

linear unit (ReLU) function. The 2D sizes in brackets in-

volved in ’Size/Parameter’ represent the kernel size of the

corresponding layer, and the parameter multiplied with the

kernel size in each hidden layer is the number of filters.

No. Layer Size/Parameter Output

1 2D Convolution 1 (7×7)×128 (32×32)×128
2 2D Max-pooling 1 (3×3) (10×10)×128
3 Batch Normalization 1 - (10×10)×128
4 2D Convolution 2 (5×5)×64 (10×10)×64
5 2D Max-pooling 2 (3×3) (3×3)×64
6 Batch Normalization 2 - (3×3)×64
7 2D Convolution 3 (3×3)×32 (3×3)×32
8 2D Max-pooling 3 (3×3) (1×1)×32
9 Batch Normalization 3 - (1×1)×32
10 2D Dropout 0.2 (1×1)×32
11 Flatten 1 - 32
12 Fully Connected 1 100 100
13 Activation (ReLU) - 100
14 Flatten 2 - 100
15 Activation (sigmoid) - 100
16 Fully Connected 2 2 2
17 Softmax - 2

FT7, T8, P3, P5, P6, P7, P8, FC5, PO5, PO6, PO7, PO8, O1,

Oz, O2) [8].

B. Data Pre-processing

The EEG signal was down-sampled to 500 Hz from 1000

Hz, then independent component analysis (ICA) was applied

and artefactual components were removed. Artefact-reduced

data were then transformed into current source density (CSD)

to reduce the effects associated with volume conduction [10],

[11]. A Butterworth filter was applied to filter the signals

into the alpha band from 8 to 12 Hz. After filtering the data,

they were segmented into 5-second epochs with 50% overlap

between neighbouring epochs.

C. Feature Extraction

We extracted alpha inter-site phase clustering (ISPC) as

connectivity feature for classification [12]. The features were

extracted from all pairs of the selected channels of each

epoch with the formula:

ISPCC1,C2 = |
1

n

n

∑
t=1

ei(φC1(t)−φC2(t))| (1)

in which C1 and C2 represent two channels, φC1 is the

phase series produced by Hilbert transform from the signals

recorded in channel C1 during the corresponding epoch. The

range of each ISPC value is between 0 and 1.

Consequently, a 32×32 square matrix could be generated

with these ISPCs, in which each element represents the

functional connectivity between two channels in the alpha

range within one time epoch, Fig. 1 shows the mean ISPC

matrices across all epochs in the H condition as an example.

D. Classification

1) CNN model: Table I shows the architecture of the CNN

classifier. The ISPC matrix was used as input to the CNN-

based classifier. Due to its 2D nature and the fixed value

range between 0 and 1, the ISPC matrix is a perfect input

to a CNN model. Consequently, no further processing was

necessary. At last, the softmax layer produced the prediction

of each epoch.

We utilised Gradient-weighted Class Activation Mapping

(Grad-CAM) to identify the activated regions within the con-

nectivity graph and differentiate the conditions [13]. We fed

the classifier with the mean ISPC matrix from each condition

to detect the corresponding 2D pattern generated by the last

hidden convolutional layer (layer 7 in Table I), then we

resized the pattern to fit the original size of the input, thus the

target connectivity can be indicated by the activation in the

generated pattern. Finally, we computed the absolute values

of arithmetic differences between the activated patterns from

all pairs of conditions to expose the cogent connectivity

in the corresponding binary classification. The difference

matrices are represented in Fig. 2.
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Fig. 2: The absolute values of arithmetic differences among the activated patterns out of layer 7 in Table I between each

pair of conditions. These differences can show the cogent regions reflecting the connectivity able to significantly classify

the corresponding conditions: Hot [H], Warm [W], Eyes-open [O], and Eyes-closed [C].

(a) Decision tree 1

(b) Decision tree 2

Fig. 3: Two types of decision trees in pain prediction: (a)

classifying if thermal stimulus was induced before distin-

guishing the intensity of the thermal stimulus, (b) targeting

at recognizing the pain, then classifying the non-pain condi-

tions, respectively.

2) Training and testing: The primary aim in pain pre-

diction is to distinguish pain from non-pain conditions. We

investigated binary classifiers with the aim to ultimately

combine them into binary decision trees. Once accurate

prediction is obtained, one can attempt to classify the pain in-

tensity. We propose two approaches to designing the decision

trees: 1) distinguish resting states from thermal states (both

pain and non-pain) (see Fig. 3a); 2) distinguish pain from

non-pain states (both resting states and non-painful thermal

stimuli) (see Fig. 3b). Based on this reasoning, we trained

and tested the binary classification for the class combinations

presented in Table II.

For each binary classification test, we drew training data

from 75% of all of the participants’ data and tested on

remaining 25%. For the leave-one-out tests, all the data from

the excluded participant composed the test set, while the data

from the remaining participants were the training data.

For each training set, 7500 epochs per each class were

randomly selected from the training data to balance the

training set in the binary classification. If one binary class

contained the mixture of several conditions, e.g. in pain (H)

vs. non-pain (mixture of W, O and C), an equal number of

epochs was selected for each class (i.e. 2500 epochs). For

all training runs, we applied 10-fold cross-validation, and the

accuracy of each classification output was used as the metric

of model performance.

III. RESULTS AND DISCUSSION

A. Performance of CNN model

Table II shows the performance of the CNN model for

each binary classification. When using data of all partici-

pants the classifier delivered a satisfactory accuracy (mean

accuracy: 96.26%, accuracy between pain (H) and eyes

open resting state (O): 94.16%), which was better than

the performance delivered by the within-subject support-

vector machine model proposed in our previous work (mean

accuracy: 71.67%) [8]. Nevertheless, the classifier achieved a

less satisfactory performance with the leave-one-out training

mode (mean accuracy: 63.69%, accuracy between pain (H)

and resting state (O): 61.01%), thus suggesting this approach

is not currently reliable enough for detecting and monitoring

pain in unresponsive patients.

3544

Authorized licensed use limited to: Yiyuan Han. Downloaded on September 10,2022 at 18:41:40 UTC from IEEE Xplore.  Restrictions apply. 



These results suggest that when all participants are in-

volved in training the classifier, the model is able to differ-

entiate between pain and resting states, and between pain and

innocuous sensation within each single individual. However,

the model does not optimally predict pain states of a novel

participant not involved in model training, possibly due to

high individual variability. Such a limitation currently pre-

vents us from applying the model to unresponsive patients.

Although Furman et al. proposed that PAF is sensitive

enough to account for individual variability [5], current data

do not seem to support the generalisability of the CNN

classifier in the context of the leave-one-out training mode,

thus implying this approach may not be currently extended to

unresponsive patients. Future work will have to address this

bottleneck and investigate the specificity of pain detection

using other sensory conditions bearing comparable emo-

tional effect with tonic experimental pain (e.g. unpleasant

prolonged auditory experience).

TABLE II: Performance of binary classification with CNN

model: (1) ’All’: the accuracies of the models trained and

tested with all participants. (2) ’LOO’: In each test, one

participant was excluded from training and used in testing,

the mean accuracies produced by predicting the conditions

of the excluded participants are shown here.

Binary classification All LOO

Pain (H) vs Non-pain (W+O+C) 94.37% 61.55%
Thermal stimulus (H+W) vs Resting states (O+C) 96.32% 63.28%

Pain (H) vs Resting states H vs O 94.16% 61.01%
H vs C 98.85% 77.20%

H vs RS (O+C) 96.85% 63.87%
Warm (W) vs Resting states W vs O 98.35% 57.64%

W vs C 97.76% 72.54%
W vs RS (O+C) 95.25% 63.94%

H vs W 94.43% 52.21%

B. Activated patterns from hidden convolutional layers

Fig. 2 displays the differences between activated patterns

from all experimental conditions. The analysis aimed to

determine the features used for recognizing the H condition

(shown in the first column). The activated patterns in the

H condition distribute over the central-parietal region of the

scalp. This finding is compatible with the neurophysiology

of somatosensation and somatic pain because the parietal

region is assumed to primarily reflect the somatosensory and

insular cortices encoding of thermal pain[14], [15]. Though

the central-central, frontal-parietal and parietal-parietal con-

nectivity can provide some evidence about the differences

between W and O (See ’W vs O’ in Fig. 2), they were

significantly weaker than the pain-related connectivity, and

the patterns to classify them separately with C condition (See

’O vs C’ and ’W vs C’ in Fig. 2) can also support this trend.

IV. CONCLUSIONS

The satisfactory performance of the proposed CNN clas-

sifier with training data selected from all participants sug-

gests the proposed model can generalise across participants.

However, the sensitivity to individual differences depended

on having data of each participant in the training set, thus

casting a shadow on the ability of the model to generalise to

novel unknown individuals.
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