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Event Classification and Intensity Discrimination
for Forest Fire Inference With IoT

Vishal K. Singh , Chhaya Singh, and Haider Raza , Senior Member, IEEE

Abstract—Simultaneously occurring random events are
often reported by multiple nodes. However, the accuracy of
the event detection at every node is dependent on the node’s
relative position from the event, and hence, not reliable. More-
over, the factors influencing the event inference are so many,
that the accuracy of such an event detection is compromised.
Targeting the problem of accurate event inference in the
detection of priority events, such as forest fire, a fuzzy rule-
based method is proposed. Four parameters are identified for
which fuzzyfied values are obtained by a membership function
for every variable. A set of 256 rules are used to generate
different permutations of the fire index with respect to the
identified variables. Extensive analysis of the results proves
the efficacy of the proposed scheme with a significantly reduced error rate of 2.01% for humidity and an error rate of 1.94%
for temperature.

Index Terms— Data gathering, energy efficiency, event classification, inference, intensity discrimination, IoT, knowledge
extraction.

I. INTRODUCTION

APPLICATIONS such as event detection [1], forest fire
detection [2], surveillance systems [3], [4], localization

of oil leakages [5] etc. with multimedia wireless sensor net-
works (WSNs) and/or Internet of Things (IoT), are primarily
driven by accurate event inference. However, accuracy in such
a scenario is difficult to achieve, because of the following two
reasons:

A. Data Redundancy
In practical scenarios, multiple events happen simultane-

ously, which result in a huge volume of data at the reporting
node. This huge volume of data contains event from different
sources that need to be processed and classified before any
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inference can be made. To understand clearly, consider the case
where sensor nodes are tasked with reporting the sounds of
different animals in an identified area of a forest region. At any
moment of time, every node might report multiple events,
however, the nodes fail to discriminate the sound generated
by different animals. As a result, the reported signal might
contain samples from multiple animals and some noise as
well but is reported as a single sound signal. This problem
of event classification in WSN and IoT networks is known as
the problem of mixed sound event verification and is addressed
as the first part of the problem statement of this work.

B. Unreliable Inference
The second and less researched reason is that the accuracy

of the event detection at every node is dependent on the
node’s relative position from the event, and hence, not reliable.
Considering a different example i.e. of a fire in a forest,
where the intensity of the event (in this case forest fire) is
different for different sensor nodes and is dependent on the
location of the node itself. Intuitively, the nodes closer to the
event have the best observation, while the nodes placed far
away from the event monitor the event with reduced intensity.
Understandably, if the sensing range (RS) of the nodes is
30 meters (m) and the distance of two nodes from the same
event is 2 m and 25 m respectively. Then, all the nodes, for
which the event is within the sensing range, can sense and
report. However, the node at 2 m distance from the event
might report the probability of forest fire to be x and the node
at 25 m distance from the event might report the same event
with a probability of as y such that x �= y.
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Therefore, the veracity of the event reporting, in such cases,
is compromised and results in capricious inference from the
observed data. Considering that many practical applications of
WSN and IoT, are driven by multimodal signals, i.e. audio,
video, images etc. the research in the area of multimodal
event detection and inference has led to some very interesting
findings and algorithms. To refer to a prominent work, the
authors in [6], aims at tracking the speakers, in a closed,
crowded and covered environment with the help of audio and
visual signals. Yet another work in [7] uses multimodal sensor
data for behaviour recognition in human beings. The authors
use images, acceleration and sound signals as a means to
reach the desired objective. In many of the similar works,
such as [8]–[10] and many more, multimodal data was used
for detection of incidents in assisted living facilities, traffic
management and monitoring and reporting of elderly people
at home, respectively. Some other considerable works are
those presented in [11], [12] where sound sensors are used
to facilitate hearing-impaired persons. In addition to these,
a motivated research survey, [13] presents a cogent analysis
of the works done in multimodal event discrimination and
inference. A careful review of the literature shows that the
recent advances in event detection have favourably considered
the problem of event discrimination. For instance, the blind
source separation (BSS) technique, has been widely used and
perfected by optimization over the years [14], [15]. Com-
paring three topologies of WSNs, the authors in [16], [17],
were able to provide some significant insights on the BSS
algorithms.

Interestingly, recent years have seen the domination of
methods developed by the amulgmation of various technolo-
gies such as machine learning (ML), Fuzzy Logic and others.
For example, the authors in [18] successfully attempted to
train a multiple-metric algorithm a distinct set of metrics,
not necessarily homogeneous or heterogeneous, with the aim
of accurate classification of events. Another interesting work
based on ML is proposed in [19], where the collaborative
computing framework and multimodal data fusion are used
in body area networks for monitoring human emotion. The
studies proposed and discussed in [20], [21] and [22] are
some of the major additions to the applications, where ML
algorithms have been proved useful in analyzing multimodal
sensor data. An interesting approach towards, improving the
performance of sensor-based multiresident activity recognition
is proposed in [23] using a hybrid fuzzy c-means method
(FCM). The idea is to obtain a combination of FCM and
change point detection (CPD) for improving the overall per-
formance of classification and segmentation process. Another,
recently proposed, fuzzy based approach to address the issue
of event classification is the approach proposed in [24] where
the event evaluation and actor selection is defined by a fuzzy
rule based systems. The scheme, addresses an issue very
similar to the one proposed in this work. Therefore, taking a
hint from the recently proposed fuzzy methods, this work aims
to address the issue of intensity discrimination and accurate
event detection by proposing a fuzzy rule based method. The
novel contributions of the proposed work are summarized as
follows:

1) A fuzzy event classification algorithm.
2) A method to accurately discriminate the event intensities

on the basis of relative node positions and the actual
event.

3) A mathematical formulation to prove the efficacy of the
proposed method.

4) A mathematical formulation to standardize the event
intensity vs distance relationship.

The organization of the paper is as follows: in the section II,
the problem is defined followed by the system prerequisites in
the section III. The section IV presents the proposed solution
and the metrics for evaluating the performance of the proposed
methodology is given in section V. The results are shown the
section VI with the concluding comments in section VII.

II. PROBLEM DESCRIPTION

Multiple simultaneously occurring events, impose severe
restrictions on the accuracy of the detection process, as the
reported data must be precisely processed and accurately
classified for the inference process to be accurate. Failing
accurate classification, the reported signal might contain sam-
ples from multiple sources and some noise as well but is
reported as a single sound signal. This problem of event
classification in WSN and IoT networks is popularly termed as
a “mixed sound event verification problem” and is addressed
in this work. Additionally, it is important to note that the
accuracy of the event detection at every node is dependent
on the node’s relative position from the event, and hence, not
reliable. Intuitively, the nodes closer to the event have the best
observation, while the nodes placed far away from the event
monitor the event with reduced intensity.

Considering the special case of forest fires, the problem
of event intensity discrimination is considered in this work.
As explained above, the event (in this case ‘forest fire’)
is sensed and reported by a randomly deployed network.
However, depending upon the nodes relative position from
the event, the intensity of the same event, may be reported
differently by different nodes.

Mathematically, the thermal radiation of the fire flames,
can be modelled using the point source radiation model [25],
which considers a point source to be present at the center of
the flame and its distance from the target (in this case ‘nodes’).
The relation, as considered by the point source model, is given
by:

Rh f = χβ

4πd2 (1)

where, the radiant heat flux in kW/m2, is represented by
Rh f , the χ gives the percentage of total radiated energy, β
represents the rate of heat release in kW and the distance,
in (m), between the point source and the target is given by d .
It must be noted that ‘χβ’ together represent the fire strength.

An alternate approach to model the fire intensity is driven by
the solid flame model [26], which works on the fundamental
assumption that a simple geometrical shame may be used to
represent the fire and that the radiation is only emitted from
the fire’s surface.
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III. SYSTEM PREREQUISITES

A. Event Description and Multimodal Data
The nodes are deployed to detect fire in a forest region. Con-

sidering the rough terrain, four parameters were considered in
this work: Temperature, Smoke (C O2, N O2), Wind Speed and
Humidity which have been widely used for early fire detection
in outdoor environment. Although, several other factors such
as wind direction, fuel content in leaves etc, contribute to the
detection of forest fires, but, as suggested in the literature [27],
the chosen parameters have been found sufficient to accurately
predict and classify the forest fires. All the other reported
parameters were considered as noise and were discarded.
A microphone array, mounted on the top of each sensor node,
is used for communicating the mixed signals to the base station
and consequently to the sink where the events are classified
and discriminated against based on the reported intensity. The
simulation and experimental data are designed/processed with
the idea that in case of a single event i.e. one of the four
events is reported, the component corresponding to the event
is reported as 1 while the remaining components are marked
0. Similarly, if multiple events are reported, corresponding
components are marked 1 and 0 otherwise. The proposed
model takes y as the input signal which has four components
such that every component corresponds to a type of event
which such as Temperature, Smoke (C O2, N O2), Wind Speed
and Humidity in a forest region, respectively. Thus, the data
(xi , yi ) can be explained as following: xi being the i th sensor
reading from the event when the i th fragment is chosen, yi is
the corresponding data label vector and i ranges from 1 to the
total number of fragments.

B. Network Assumptions
The study, in the proposed work, assumes the network to

be densely deployed with the following:
• ‘n’ randomly deployed nodes in a forest area of ‘S’ m2.
• The relation between the communication range (RC) and

the sensing range (RS) of the deployed nodes is given by
RC = 2RS and is considered to be constant for the entire
experiment.

• It is assumed that the nodes within the communication
range are able to communicate.

• All the nodes are aware of their neighbors and sensing
area.

• Owing to the special case of forest fires, a significantly
harsh terrain (limited sensing range, frequent node and
link loss, limited line of sight, noise due to animal
presence etc.) is considered for the experimental and
simulation study.

The network assumptions depict a straightforward randomly
deployed sensor-based IoT network in an outdoor setting and
is fully realizable.

IV. PROPOSED SOLUTION

Environmental parameters such as temperature, smoke den-
sity, wind speed and humidity level are the fundamental units
of the proposed model. The model is developed with the aim
of accurately detecting the forest fire (preferably in its earliest

stage). The idea is to enhance the accuracy of such a system by
event intensity discrimination thereby improving the inference.
To realize the aim, a fuzzy event intensity discrimination
based forest fire detection method is proposed which provides
the probability of occurrence of forest fire (based on the
environmental conditions) and also the probability that a
forest fire has already erupted in the area. The environmental
parameters, driving the prediction of fire, might be many. For
instance, a combination of high temperature, low humidity and
high wind speed may result in a high probability of a possible
fire. Similarly, the detection of an already erupted fire may be
obtained by a combination of high temperature, high smoke
density and high wind speed.

The network is setup in the region of interest. Considering
that the detection of fire, at initial stage, is difficult because
of the limited sensing range of the sensor nodes, the event
intensity mechanism is proposed to determine the relative
parameter values of locations where sensor nodes are not
present.

Various combinations of parameters, are used to generate
fuzzy sets resulting in outcomes in terms of ‘low’, ‘medium’,
‘high’ and ‘extreme’. Specifically, temperature, smoke density,
wind speed and humidity level are considered for determining
the fuzzy rules. The fuzzyfied values are considered as an input
for the proposed detection and prediction model.

A. Event Intensity Discrimination
In this section, intensity of parameters are computed at

different area of the interest where sensor nodes are deployed.
In this four parameters are considered that are temperature,
smoke, wind speed and humidity level. The intensity of the
parameters are calculated on the basis of the values that are
measured by the sensor node.

1) Temperature: Temperature intensity at distance d is com-
puted using solid flame radiation model [26]. As per the
aforementioned model, a simple geometrical shape may be
used to represent the solid body and it is assumed that the
surface emits thermal radiation. The model also assumes that
the radiation from non-visible gases, is minimum. The volume
of the fire has an important consideration as there might be
case when the entire volume of the flame is not in direct line of
sight of the target. Mathematically, it is important to note that
radiation intensity, as observed from the fire pool, to elements
lying outside the envelope of the flame such that the wind
intensity is extremely low and hence considered “no wind”,
has the following relation [26]:

R f = ε × σ × T 4 × C f (2)

where R f is the incident radiative heat flux (kW/m2),
the flame emissivity is given by ε and σ represents the
Stefan-Boltzmann constant whose standard value is 5.67 ×
10(−11)(kW/m2 K 4). The temperature of the fire (T ) in K and
C f is used as the the view factor and ranges between 0 and 1.

It is empirical to mention that the equation 2 is calcu-
lated assuming the no component of the emitted radiation
is absorbed by the air (water vapour, carbon dioxide etc.).
This assumption allows the calculations suited for worst case
analysis of the radiation intensity.
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To clarify, the view factor, is the amount of radiation
emitted from one surface that impacts another surface directly.
Consider a hemispherical surface which is visible from the
hemisphere, the view factor as such is the portion of this
hemispherical surface as seen by one of the many differential
elements, such that the angle of view is considered from a
different element also present in the same hemisphere. The
view factor, thus obtained, is a mathematical function derived
from the location of the target, height of the fire flame, and
the width of the fire. It thus becomes quite straightforward
to interpret that the values tends to reach 1 as the distance
between the target and the flame is minimised. Additionally,
the width of the fire alternatively termed as the flame diameter,
is given by D and that the height of the flame is given by
Fh . In case, when the fire pool has a length-to-width ratio
of 1, a source, with an equivalent circular area, is considered
for obtaining the flame length and may be obtained by the
following relation [28]:

Fh = 0.235 × H
2
5

rr − 1.02 × D (3)

such that Fh is in m, rate of heat release is measured in kW
and is given by Hrr . The width of the burning region is given
by D and is measured in m. The Hrr may be obtained on a
case to case basis based on the experimental setting. For the
purpose of this study in the absence of experimental data, the
maximum HRR for the fire.

Several factors contribute to the values of radiation
exchange which happens between the original fire source and
the receiving element outside the fire flame. These factors
include the Fh , D, Hrr and the specific properties of the
receiving element [26]. The practical implementation of the
system requires that a vertical cylindrical structure to be used
to approximate a turbulent diffusion given that the environment
is wind free. Depending upon the position of the target (on
ground or at elevated level equivalent to fire flame), a single
geometrical structure is sufficient to approximate the flame
structure. However, in cases where the target element is at
elevated level, more than one cylindrical structures may be
required for accurate approximation. Fig. 1 represents such a
case, where the flame height below the target element height
is approximated by one cylinder, while the other cylinder is
used to approximate the height of the flame for an elevated
target. Depending upon the wind conditions, the two possible
cases are shown the in Fig. 2 and 3.

In a no wind condition, the configuration/view factor may
be obtained using the following mathematical relation [26]:

C f,1 = 1

π J
tan−1

�
k1√

J 2 − 1

�
− h1

π J
tan−1

�
(J − 1)

(J + 1)

+ V1k1

π J
�

V 2
1 − 1

tan−1

�
(V1 + 1)(J − 1)

(V1 − 1)(J + 1)
(4)

C f,2 = 1

π J
tan−1

�
k2√

J 2 − 1

�
− h2

π J
tan−1

�
(J − 1)

(J + 1)

Fig. 1. View factor (Flame) for vertical and horizontal targets (wind
absent and target at elevated level.

Fig. 2. Heat transmission model (wind free and target at elevated level).

+ V2k2

π J
�

V 2
2 − 1

tan−1

�
(V2 + 1)(J − 1)

(V2 − 1)(J + 1)
(5)

where J = 2d
D ,k1 = 2Fh1

D , V1 = k2
1+J 2+1

2J , k2 = 2Fh2
D , V2 =

k2
2+J 2+1

2J and d represents the actual distance present between
the flame’s centre and the target (m), Fh represents the flame’s
(cylinder) height (m) and the corresponding diameter in (m)
is given by D.

As such, for a given point, the view/configuration factor,
can be obtained by calculating the vectorial summation of the
two factors as given by:

C f,no−wind = C f,1 + C f,2 (6)

On the other hand, while considering significant wind in
the environment, the fire flame is evidently curved and is
considered to be tilted at an angle such that the deflection
angle is mapped to the curved flame. As shown in the
Fig. 3, the flame height, width and other configurations are
depicted while considering a windy environment such that the
wind velocity is given by (ws) and the target is considered
to be at an elevated level. In such conditions, in order to
obtain the configuration/view factor (given by C f,with−wind ),
the following mathematical expressions hold [26]:

C fw,1 = g1 cos θ

h − g1 sin θ
× g2

1 + (h + 1)2 − 2h(1 + g1 sin θ)√
G1 H1
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× tan−1

�
G1

H1

�
(h − 1)

(h + 1)

+cos θ√
N

×
�

tan−1 g1h − (h2 − 1) sin θ√
h2 − 1

√
N

+ tan−1 (h2 − 1) sin θ√
h2 − 1

√
N

�

− g1 cos θ

(h − g1 sin θ)
× tan−1

�
(h − 1)

(h + 1)
(7)

C fw,2 = g2 cos θ

h − g2 sin θ
× g2

2 + (h + 1)2 − 2h(1 + g2 sin θ)√
G2 H2

× tan−1

�
G2

H2

�
(h − 1)

(h + 1)

+cos θ√
N

×
�

tan−1 g2h − (h2 − 1) sin θ√
h2 − 1

√
N
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h2 − 1

√
N

�

− g2 cos θ
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× tan−1

�
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(8)

where

g1 = 2Fh1

r
,

g2 = 2Fh2

r
= 2(Fh − Fh1)

r
,

h = d

r
G1 = g2

1 + (h + 1)2 − 2 g1 (h + 1) sin θ

G2 = g2
2 + (h + 1)2 − 2 g2 (h + 1) sin θ

H1 = g2
1 + (h − 1)2 − 2 g1 (h − 1) sin θ

H2 = g2
2 + (h − 1)2 − 2 g2 (h − 1) sin θ

N = 1 + (h2 − 1) cos2 θ

and Fh1 = elevation level of target measured from the
ground level (m), Fh = the length, in (m), of the fire flame
(cylindrical flame). r = D

2 = the radius of the fire flame
measured in (m), d = actual distance between the target and
the fire pool (centre) measured in (m). θ = angle of deviation
measured in (radians).

The windy environment results in a change in the mathe-
matical expression and may be given as follows [29]:

Fh = 55D

�
Mb

ρa
�

Ag D

�0.67

W−0.21
v (9)

where: D = diameter or the total width of the fire pool mea-
sured in (m) Mb = fuel burning rate measured in (kg/m2/s),
ρa = air density measured in (kg/m3), Ag = acceleration due
to gravity measured in (m/s2), Wv = non-dimensional wind
velocity which is given by the following:

Wv = ws�
Ag Mb D

ρa

�1/3 (10)

where: ws = speed of the wind measured in (m/s)

Fig. 3. Heat transmission model (wind present and target at elevated
level).

The mathematical formulation to calculate the angle of
deviation of the fire flame is given by (θ), and as per the
American Gas Association (AGA) data, it is given by the
following:

cos θ =
⎧⎨
⎩

1, for Wv ≤ 1
1√
Wv

, for Wv > 1
(11)

As explained earlier, for a given point, the
view/configuration factor, can be obtained by calculating the
vectorial summation of the two factors as given by:

C f,with−wind = C fw,1 + C fw,2 (12)

Using (2) and (6) (if wind speed is not significant) or (12) (if
wind speed is significant), the temperature of fire is calculated
by:

T = 4

�
R f

ε × σ × C f
(13)

2) Humidity: To calculate the humidity of the location, two
parameters are required. These parameters are temperature (T )
and dew point (Dp). The temperature of the location can
be calculated using the equation (13). The dew point can
be assessed using the nearest weather station website of the
particular location. The relative humidity (Rh) is calculated
using the following:

Rh = Avp

Svp
× 100 (14)

where Avp is the actual vapor pressure, and Svp standard
vapor pressure. The actual vapor pressure and standard vapor
pressure are calculated as [30]:

Avp = 6.11 × 10 × (
7.5 × Dp

237.3 + Dp
) (15)

Svp = 6.11 × 10 × (
7.5 × T

237.3 + T
) (16)

B. Fuzzification
The process of fuzzy inference is best defined as the process

of inferring knowledge by making use of the fuzzy rules
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and logic, defined on the basis of prevalent knowledge. The
mapping, thus obtained, to match a given input of a model to
the output generated by the model, is the building block of the
fuzzy rules based on which, decisions are made. The proposed
solution is based on the logic that human interpretation of data
might result in inaccurate estimation. Hence, a fuzzy inference
model is proposed to develop a fuzzy index for measuring the
forest fire indexes and deals with the uncertainty present in
the data. The initial steps involve, defining the parameters
to be used for input and output. The input variables are
defined through a membership function which is further used
to generate the outputs of the model. The proposed model is
based on four distinguished parameters, specifically the area
temperature, the relative humidity, the measured wind speed
and the measured smoke density in the area is considered while
defining the rules. Depending upon the requirements of the
model, i.e. to predict the possibility of future fire outbreak or
to predict the existing fire outbreak, different combinations of
the said rules are used for the inference process. The parameter
and or rule selection is based on the correlation structure
of the environmental behaviour. The observed values of the
parameters are fuzzified into a membership function corre-
sponding to the respective parameter. These membership func-
tions define the meteorological variables under observation
in the current study. Thus, for all the values of temperature,
relative humidity, wind speed and smoke density, the proposed
model delivers an observation that can be placed under ‘low’,
‘medium’, ‘high’, or ‘extreme’. To have an accurate estimation
of the parameters, the rule of thirty [27], which considers that
a value of temperature and wind speed above the value of
30 ◦C and 30 km/h, respectively, combined together with a
value of relative humidity value below 30 % would result in
a favourable environmental condition for a forest fire.

1) Input Fuzzification: The membership functions, thus
obtained by fuzzifying the observed values of the respective
parameters, have a membership value level equivalent to the
i th fuzzy set, such that the set is proposed for the variable V
which has the values equal to “very low“, “low”, etc. Such
values for all the measured parameters are summed to reach
the final percentage of 100. The fuzzification involves the use
of a trapezoidal function used as the membership function and
is represented as follows:

μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x < a or x > r
x − a

b − a
, if a ≤ x ≤ b

1, if b ≤ x ≤ c
r − x

r − c
, if c ≤ x ≤ r

(17)

The lower limit of the parameters is given by a and that of
the upper limit is given by r with the support limits for the
two cases respectively given by b and c such that the following
relation holds:

a < b < c < r (18)

Considering the last measured value of each of the measured
parameters for fuzzification, along with the last calculated risk
value associated with every parameter, an average value is

calculated and used to obtain the membership function for all
the linguistic variables such that the average values may be
expressed in the form of ranges for instance, ‘low’, ‘medium’,
‘high’ and ‘extreme’. As explained above the membership
value is obtained from the meteorological variables under
consideration, and that the changes in the environmental
conditions are random and frequent, the average value thus
calculated might vary slightly.

2) Inference-Rule Evaluation: The proposed fuzzy model
takes its inspiration from the model proposed in [31] and [32],
popularly known as the TSK model. The set of fuzzy rules is
given by {R} such that R1, . . . , R|R| ∈ R. The rules are driven
by premise and consequences, such that the consequences
may be obtained by obtaining a linear summation of the
input variables, thereby representing a hyperplane that may be
mapped in the input-output plane. The pre-condition/premise
of the proposed fuzzy rule, given by Rr , 1 ≤ r ≤ |R| may
be obtained by obtaining the conjunction of nr fuzzy clauses
such that the clauses are of the form ui j r is Fjr . To put it
in simple terms, the input variables, given by nr , given in
the index Ir , are considered. Considering the completeness of
a fuzzy rule is mandatory, the use of the index set is quite
justified since all the variables in u j , J = 1, . . . , N , need not
be considered. The preconditions, as such, are responsible for
defining a subspace of the given input space.

Thus, the fuzzy rule to start with i.e. R1 is satisfied with
Ir �= φ if ui1r is F1r and . . . and uinr r is Fnr r then fr =
p0r + p1r · u1 + · · · + pNr · ur

with fr representing the reverberation value of the rule. The
reverberation or the consequence is given by its parameters
p0r , . . . , pNr , p jr ∈ R.

The proposed approach uses a trapezoidal membership
functions in order to represent the precondition’s fuzzy sets
Fjr , such that they may be defined for r = 1, . . . , R and
m = 1, . . . , M and ∀ j ∈ Ir ; u jm ∈ R as given in (17).

The rth rule‘s strength wr for the input vector um with
m = 1, . . . , M; um ∈ U1 × · · · × UN ; Ul ⊂ R is given by

wr (um) =
�
j∈Ir

Fjr (u jm) (19)

For r = 1, . . . , R; ∀ ∈ U1 × · · · × UN defines the strength
(normalized) vr (u) as

vr (u) := wr (u)�R
i=1 wi (u)

(20)

where
�r

k=1 vk(u) = 1.
The proposed fuzzy model thus performs a mapping ŷ :

U1 × · · · × UN 	→ Y with U j ⊂ R and y ∈ R.
In order to calculate the crisp output of the model, the

product inference may be used as the fuzzy inference along
with the weighted average for obtaining the defuzzification
value, and is given as:

ŷ(u) =
�R

i=1 wr (u) · fr (u)�R
i=1 wr (u)

(21)

3) Learning Model: Learning may also be understood as
re-calibrating the parameters of a model with respect to a
training dataset. In the proposed method, the entire set of
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parameters were optimized with respect to the premise and
consequences of the rules. Thus, breaking the general problem
into a set of two distinct problems, one being the premise
parameter optimization problem and the other being conse-
quence parameter optimization problem. The former being a
nonlinear problem of optimization while the latter may be
reduced to a linear problem of optimization [31], [33]. The
task of parameter optimization is achieved by minimizing the
global modelling error, such that

�ε�2 = 

 y − ŷ


2

(22)

where ŷ := (ŷ1, . . . , ŷM )T for m = 1, . . . , M
In the proposed work, a well known and powerful technique

of optimization, RPROP, is used for optimizing the premise
parameters as the technique is relatively faster and easier than
its challengers for instance simple gradient descent methods.
As for the other half of the optimization, singular value
decomposition (SVD) is used to generate stable solutions [34].

Let there be a matrix A of the order M × (R + 1) · R
and is defined as the collection of linear equations. With vr as
in (20) and the vector of the consequence parameter, given by,
p := (p01 p11 . . . pN1 . . . p0R p1R . . . pN R), the model output
ŷ, may be given as:

ŷ = A · p (23)

The minimal error, is dependent upon the parameters pk ,
and is given by:

∂ �ε�2

∂pk
= 0 (24)

such that the error is represented by �ε�2.
Considering the Euclidean norm L2 for �·� for k =

1, . . . , (N + 1) · R:

∂ �ε�2

∂pk
=

M�
m=1

2

�
yq −

(N+1)·r�
j=1

amj p j

�
(−amk) = 0 (25)

Using (23) and (25) we obtained

p = ((AT A)−1 AT )y (26)

The SVD is thus used for the regression equations (linear),
as above, to calculate U, D and V such that A = U DV T ,
where U T U = E, D is diagonal, and V is orthogonal.
Consequently,

p = V D−1U T y (27)

The use of SVD is limited to initial linear fuzzy models
only and RPROP is used for iteratively adopting all the other
parameters in a simultaneous fashion.

V. METRICS FOR EVALUATION

Fire index is considered as the measure of probability
of fire in the forest region. Four meteorological variables
namely Temperature, Humidity, Wind Speed and Smoke, are
considered as the factors affecting the occurrence and accurate
detection of fire in the forest. For all the four meteorolog-
ical variables, the degree of membership is considered in

Algorithm 1 EIDAER
1: Initialization: Sensor nodes gather environmental parame-

ters {t-temperature, h-humidity, w-wind speed, s-smoke}.
2: procedure INTENSITY–DISCRIMINATION

3: Compute view factor (C f ) using 6 (very low wind) or 12
(with wind)

4: Compute temperature T = 4
�

R f
ε×σ×C f

5: Compute relative humidity Rh = Avp
Svp

× 100
6: end procedure
7: procedure FUZZIFICATION

8: Fuzzify environmental parameters using (17)
9: Compute crisp values using μA(x) and ŷ(u) =�R

i=1 wr (u)· fr (u)�R
i=1 wr (u)

10: end procedure
11: procedure LEARNING MODEL

12: ŷ = A · p
13: p = ((AT A)−1 AT )y
14: Compute learning parameters p = V D−1U T y
15: end procedure
16: Fire Probability Output:={low, medium, high, extreme}

four categories which are Low, Medium, High and Extreme.
A total of 256 fuzzy rules were generated to obtain the effect
of {Temperature, Humidity}, {Temperature, Wind Speed},
{Temperature, Smoke}, {Humidity, Smoke}, {Humidity, Wind
Speed}, {Smoke, Wind Speed} on fire index.

The effect of event classification and intensity discrim-
ination on the accuracy of event detection and inference
is measured by a comparative analysis made on a set of
20, 000 events.

VI. RESULTS AND DISCUSSION

A. Experimental Setup
An accidental fire site was used for the experimental setup

shown in Fig. 4 which is a partial view of the experimen-
tal testbed. Scientech 6205L IoT builder module, Scientech
6205N Sensor node, Digital temperature and humidity sensor,
multichannel gas sensor and Scientech 6205G gateway module
for connectivity were used for gathering the experimental
data. The Scientech 6205L is an IoT builder that can be
programmed in C and python [35]. It supports real-time
program writing, high-performance switching power supply
with three low power sleep modes, peer-to-peer networking,
automatically arbitrating wireless contention, flash memory
for data and indoor vs. outdoor antenna options. The RC ,
RS and other parameters of the nodes were considered as
per the hardware specification sheet. The readings were taken
from a safe distance and the actual recorded temperature
was 48◦C with a humidity value of 30%. The values were
recorded for about 20 minutes with 10 samples per second.
Owing to the special case of forest fires, a significantly harsh
terrain with factors such as limited sensing range, frequent
node and link loss, limited line of sight, noise due to animal
presence etc. is also considered for the experimental data
gathering.



8876 IEEE SENSORS JOURNAL, VOL. 22, NO. 9, MAY 1, 2022

Fig. 4. Experimental setup.

TABLE I
SIMULATION PARAMETERS

B. Simulation Setup
A randomly deployed network of five hundred sensor nodes

was simulated to replicate a forest environment. The nodes
were deployed to report four different but simultaneously
occurring meteorological variables in an area of 300m×300m.
The reported meteorological variables were based on the
recorded observations and analysis of four variables, namely
Temperature, Humidity, Wind Speed and Smoke. With a total
of 1024 sampling points, the events were stored in a column
vector with an appropriate class label for training and testing.
Each sampling signal was subjected to 10 different kinds
of white Gaussian noise resulting in 20, 000 fragments. The
remaining parameters for the simulation study are given in
Table I.

C. Results
1) Membership Functions of Meteorological Variables: The

proposed fuzzy system is driven by four meteorological vari-
ables, namely Temperature, Humidity, Wind Speed and Smoke,
which are considered to be the prime factors and/or indicators
of the forest fire. The values of these four meteorological
variables, as sensed and reported by the deployed network, are
fed to the proposed fuzzy model as the input. The fuzzified

TABLE II
NOTATION DESCRIPTION

TABLE III
FUZZY SET AND DOMAIN FOR VARIABLES

values of the variables are obtained by a membership function,
proposed for every meteorological variable (shown in the
Fig. 5), such that the degree of membership for each of the
observed input fed to the system with the four fuzzy sets
(SetT p , SetHd , SetW d and SetSk), is given on the ‘Y’ axis.
Correspondingly, the domain of the meteorological variables
is represented on the ‘X’ axis. The proposed fuzzy system is
aimed at obtaining ‘low’, ‘medium’, ‘high’, or ‘extreme’ for
every fuzzified value.

The fuzzy sets, as described above, are defined by the
rule of thirty [27]. The proposed fuzzy rules also consider
the significance of smoke as a prime indicator for forest fire
detection. The sets thus obtained, represents the reporting of
significant and/or unusual change in the natural habitat. The
rule is significant in highlighting the fact that an unusual
activity, if and when detected, represents a high probability
of forest fire in the region.

Therefore, for a given z, the value of ζz ranges between the
defined domain limits {x,y} of Dz . The respective membership
functions are responsible for fuzzifying this value to calculate
the ξSzi

ζz (refer Table II). To obtain the final value, the degree
of membership for all the sets is summed i.e.

∀z ∈ (T, Rh, Wd, Sk)∃ζz

∈ [x, y]|
4�

i=4

ξSzi
ζz (28)

2) Rules: The If-Then rules, for the proposed fuzzy logic
method, are defined on various permutations of the pro-
posed membership functions. It is observed that there is an
exponential growth in the rule base as the dimension and
complexity of a system increases. A total of 256 fuzzy rules
(as shown in Fig. 6 were generated to obtain the effect
of {Temperature, Humidity}, {Temperature, Wind Speed},
{Temperature, Smoke}, {Humidity, Smoke}, {Humidity, Wind
Speed}, {Smoke, Wind Speed} on fire index.

3) Temperature: Fig. 7a shows a three dimensional (3D)
view of the Fire-index with respect to Humidity and Tem-
perature. On the other hand, Fig. 7b and Fig. 7c, reflect the
Fire-index with respect to Wind Speed and Temperature
and Fire-index with respect to Smoke and Temperature. The
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Fig. 5. Membership functions of meteorological variables.

Fig. 6. An instance of fuzzy rules generator (temperature in ◦C, humidity in �, wind speed in km/h and smoke in ppm).

recorded observations, as reflected in the 3D view, shows that
at higher temperature values, the value of the fire index tends
to reach higher. The high value of the fire index is further
fuelled to reach the extreme values when the humidity value
is low and the wind speed is high. The temperature plays
a more direct role in the forest fire as the generated heat
fulfils the ignition requirement and propels the combustion
and its continuation. The earth’s surface is heated by the sun’s
heat (radiation), and this in turn increases the temperature of
the region close to the surface. The radiation, reflected from
the earth’s surface, is absorbed by water molecules present
in the air thereby increasing the air temperature. One of the
other factor which propels the rate of fire combustion and
propagation is the forest fuel temperature. Although the loss in

temperature follows the standard adiabatic lapse rate, the sun’s
radiation affects the forest fuels directly, and thus the amount
of heat required for ignition, in such a scenario, is significantly
reduced. A warmer and drier forest fuel requires significantly
less energy to reach the ignition threshold. As a result, forest
fires are often ignited and propelled in the afternoon, when the
sun is at its peak, forest fuels are warmer and relative humidity
is low. The effect is clearly seen in Fig. 7a where the effect
of high temperature and low humidity is reflected in terms
of high fire index. A silent reason, apart from temperature,
is the surface. In a forest region, the trees absorb most of the
heat reflected from the surface and directly from the sun as
well. However, the combined effect of temperature, friction,
humidity and wind, ignites the fire in the drier parts of the
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Fig. 7. Fire index w.r.t four meteorological variables (i.e. Temperature, Humidity, Wind Speed, and Smoke.

Fig. 8. Temperature.

vegetation. A clear indicator and probably the most accurate
inference provider of high fire index is the smoke intensity
in the region (Fig. 7c). A high temperature, combined with a
high smoke density, is bound to have a high fire index and
the same may be observed from the high peaks as reflected in
Fig. 7c.

4) Humidity: The relative humidity is defined as the ratio
of “actual water vapour in the atmosphere compared to the
amount of water vapour that would saturate the atmosphere at
that temperature”. This in turn reflects the impact the water
vapour in the atmosphere can have on the ignition, combustion,
intensity and propagation of forest fire. To put in simple terms,
and as clearly shown in Fig. 7a, 7d, and 7e, the low humidity

Fig. 9. Humidity.

can make the forest fire uncontrollable when combined with
high temperature, wind and smoke. A low humidity value with
low wind speed and a low temperature has a low impact on the
fire index (Fig. 7d and 7a). However, even if the humidity is
low but a high smoke density is a clear indicator of forest fire
and has a high fire index value (Fig. 7e). It is evident from the
mentioned 3D plots, that a lower humidity value propels the
ignition of fire at a significantly higher rate and also propagates
at a much higher rate. It is also to be noted that the relative
humidity present in the air has a direct effect on the moisture
content in the forest fuels. The direct reason for this being that
the heat in the fuel is absorbed by the moisture and prevents
the intensity of the fire to grow uncontrollably. The fuel’s
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moisture is evaporated quickly in case of low humidity, how-
ever, a highly humid environment prevents quick evaporation
of fuel’s moisture, thereby preventing high intensity and rapid
spread of fire. A close analysis of the diurnal cycle proves that
the fluctuation in relative humidity is significant. The duration
in the early morning witnesses a highly humid atmosphere
whereas degrades as the day progresses until it is at its peak
in the noon reflecting that as the temperature increases, relative
humidity is inversely affected and goes down.

An important aspect of relative humidity is rainfall, which
affects the content of the moisture in the air and in forest fuels,
immediately. A direct effect of rainfall and/or snowfall results
in a reduction in temperature along with dampened ground,
dampened forest fuels calmer wind, increased moisture level
in the atmosphere and reduced fire index value. Therefore,
for a fair analysis of the fire index value, it is important
that the pattern of rainfall in the region must be considered.
A general pattern highlights the duration between February
and April as the peak season for forest fires as there is little
or no rainfall. The dry leaves after the spring season act as a
quick propagator and the dry air, high temperature and natural
friction are powerful catalysts for a wildfire to start. In most
of the cases, such a fire becomes uncontrollable and the same
may be seen in the 3D plots (Fig. 7b and 7d where high fire
index is reported for high temperature and wind speed is given
that the humidity is low.

5) Wind Speed: Dry weather, coupled with high temperature
with powerful wind conditions, is the perfect environment
for an uncontrollable forest fire. The 3D plot shown in the
Fig. 7b, 7d and 7f. As evident from the 3D plots, wind plays
a vital role in determining the fire index value. Not only
the direction of the wind dictates the propagation path of
the fire, but it also drives the intensity of the fire as well.
The unpredictability in the wind direction and speed makes
it one of the most significant factors while monitoring and
controlling forest fire. Not only an increased oxygen supply
is facilitated by the wind, but it is also responsible for the
drying of the fuel moisture thereby intensifying the growth of
the fire. High-intensity wind, in dry weather (Fig. 7d), may
cause the forest fuel to heat rather quickly, by pushing the
flame towards the fuel. This may in turn cause the head of the
fire to propagate rapidly and wildly. In windy weather, the fire
sparks are propagated rapidly in every direction disabling the
preventive measures to be undertaken. As evident from Fig. 7f,
high-density smoke, propagated by high-speed wind results in
a high fire index value, on the other hand, low wind speed
integrated with high humidity and low temperature, is hardly
a fire indicator (Fig. 7b and 7d).

6) Event Intensity Analysis: The results shown in Fig. 8
and Fig. 9 represent variation of temperature and humidity,
respectively, for an average of twenty thousand reported obser-
vations. Both the figures have three distinct readings which
are the Actual Value, Measured Value and the Calculated
Value. As seen in Fig. 8 and Fig. 9, the actual temperature
and humidity respectively, at the source, remains constant for
a set of observations. However, the measured values and the
calculated values vary as the distance is increased, which is
quite understandable, considering the increased distance from

the source. It must be noted that the variation in calculated
values and the measured value in comparison to the actual
temperature value is significant. Thus, to clarify and prove
the efficacy of the proposed intensity inference, in case of an
event, the measured temperature value at any node is repre-
sented by the measured value and is the only value available
at the node. A mathematical formulation, as proposed, was
designed to infer, the actual temperature or an approximate
measure of the actual value, in order to reduce the error rate
and improve the detection and discrimination intensity. The
calculated temperature, represents the value reported by every
node observing the event (as obtained in the proposed method)
which shows a clear decrease in the error rate which can be
clearly seen as 1.94% in the worst case. A similar observation
of Fig. 9, shows the error rate to be of a nominal value of
2.01% proving the efficiency of the proposed approach in the
terms of intensity discrimination and event inference.

VII. CONCLUSION

This paper presents an effective fuzzy rule-based accurate
event detection mechanism for preventing forest fires. The
proposed scheme was tested to determine the classification and
intensity discrimination for accurate inference of forest fire in
terms of fire index. A comprehensive analysis on four vari-
ables, namely Temperature, Humidity, Wind Speed and Smoke,
and comparative analysis of the inference accuracy proves that
the proposed fuzzy logic-based method classifier can infer the
forest fire with about 98.7% accuracy. The analysis and results
confirm that different permutations of Temperature, Humidity,
Wind Speed and Smoke can be accurately used to infer and
prevent forest fires. However, it must also be noted that the
factors such as atmospheric stability, cloud development and
surface are some of the many factors that may be considered
in future in addition to the variables used in this study.
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