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Introduction
• High-temperature metallic materials suffer from creep due

to mechanical stresses
• Prolonged creep condition causes material deformation

and component failure (Fig. 1)
• Formation of creep voids in material structure is a prime

indication of creep phenomenon
• Timely & accurate detection of creep voids helps in better

life cycle management of valuable products
• Semantic image segmentation reduces human errors and

speeds up the analysis process

Semantic image segmentation
• Assigning a class or label to every pixel of the image
• Information about the location, size, and shape of objects
• Several applications including medical imaging, object

detection, and recognition tasks
• Segmentation models generally consist of an encoder

network followed by a decoder network
• Encoder is usually a pre-trained classification network,

such as VGG or ResNet
• Decoder projects the discriminative features learned by

the encoder into the pixel space, performing classification

Model performance
• Training time about 17 minutes (wall time) for 200 epochs
• Testing IoU score of 0.994 and dice loss of 0.003
• Good agreement between model prediction and ground

truth (Fig. 2)
• Information about area fraction (Fig. 3) and number of

creep voids in an image (Fig. 4).

Case study – creep voids in copper samples
• SEM images of oxygen-free phosphorous-doped copper

sample surfaces
• Our task is to distinguish creep voids (white pixels) from

the normal surface (black pixels) (Fig. 2)
• DeepLab-v3+ [2] model built on top of CNN architecture

with ResNet encoder pre-trained on ImageNet dataset
• Model training 251 (70%), validation 54 (15%), and

testing 55 (15%) images
• PyTorch-based Segmentation Models [1] library and the

Google Colab environment for model implementation

Conclusion
• Timely and reliable detection of creep voids is vital

for better life cycle management of valuable assets
• Knowledge of publicly available pre-trained encoders

can be utilized to build new models with few images
• Semantic segmentation model accurately segments

creep voids in SEM images
• Information about the density and area fraction of

creep voids is obtained within a few seconds
• Further work on segmentation of various types of

creep voids and generalization of the trained model
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Fig. 1. Creep voids in materials and different stages of creep behavior
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Fig. 3. Area fraction of creep voids, ground truth vs. predicted
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Fig. 4. Number of creep voids in an image, ground truth vs. predicted

Fig. 2. Comparison between ground truth and predicted masks


