
Revista Brasileira de Recursos Hídricos
Brazilian Journal of Water Resources
Versão On-line ISSN 2318-0331
RBRH, Porto Alegre, v. 27, e32, 2022
Scientific/Technical Article

https://doi.org/10.1590/2318-0331.272220220077

1/14

This is an Open Access article distributed under the terms of  the Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited.

Water storage variability across Brazil

Variabilidade do armazenamento de água no Brasil

Rafael Barbedo1 , Ayan Santos Fleischmann2 , Vinícius Siqueira1 , João Paulo Brêda1 , Gabriel Matte1, 
Leonardo Laipelt1 , Alexandre Amorim3 , Alexandre Abdalla Araújo3 , Marcus Fuckner3 , Adalberto Meller3, 

Fernando Mainardi Fan1 , Walter Collischonn1 , Anderson Ruhoff1  & Rodrigo Cauduro Dias de Paiva1 

1Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil 
2Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brasil 
3Agência Nacional de Águas e Saneamento Básico, Brasília, DF, Brasil

E-mails: rbarbedofontana@gmail.com (RB), ayan.fleischmann@gmail.com (ASF), vinisiquera@gmail.com (VS), joaopaulolfb@gmail.com 
(JPB), riosmatte@hotmail.com (GM), leolaipelt@hotmail.com (LL), alexandre.amorim@ana.gov.br (AA), alexandre.araujo@ana.gov.br (AAA), 

marcus.fuckner@ana.gov.br (MF), adalberto.meller@ana.gov.br (AM), fernando.fan@ufrgs.br (FMF), waltercollischonn@gmail.com (WC), 
andersonruhoff@gmail.com (AR), rodrigocdpaiva@gmail.com (RCDP)

Received: July 31, 2022 – Revised: October 19, 2022 – Accepted: October 19, 2022

ABSTRACT

Brazil hosts a large amount of  freshwater. Knowing how this stored water is partitioned in space and time between surface and 
subsurface components is a crucial step towards a more correct depiction of  the country’s water cycle, which has major implications 
for decision making related to water resources management. Here, we extracted monthly water storage (WS) variability, from 2003 
to 2020, based on multiple state-of-the-art datasets representing different WS components – groundwater (GW), soil moisture (SM), 
surface waters (SW), and artificial reservoirs (RS) – in all Brazilian Hydrographic Regions (BHRs), and computed each component’s 
contribution to the total variability. Most of  the variability can be attributed to SM (40-68%), followed by GW (18-40%). SW has 
great influence in the north-western BHRs (humid monsoon influenced) with 18-40% and the southern BHRs (subtropical system 
influenced) with 5-10%. RS has important contributions in the Paraná with 12.1%, São Francisco with 3.5%, and Tocantins-Araguaia 
with 2.1%. In terms of  long-term variability, water storages have been generally decreasing in the eastern and increasing in north-
western and southern BHRs, with GW and RS being the most affected, although it can also be observed in SW peaks. Comparisons 
made with previous studies show that the approach and datasets used can have a considerable impact in the results. Such analysis can 
have broad implications in identifying the nature of  amplitude and phase variability across regions in order to better characterize them 
and to obtain better evaluations of  hydrological trends under a changing environment.

Keywords: Water storage partitioning; Brazilian hydrographic regions.

RESUMO

O Brasil abriga uma grande quantidade de água doce. Saber como essa água armazenada é repartida no espaço e no tempo entre os componentes 
superficiais e subsuperficiais é crucial para uma representação mais correta do ciclo hídrico do país, o que tem grandes implicações para a tomada 
de decisões relacionadas à gestão dos recursos hídricos. Neste estudo, extraímos a variabilidade mensal do armazenamento de água, de 2003 
a 2020, com base em diferentes fontes que representam o estado da arte da informação sobre diferentes componentes de armazenamento - 
águas subterrâneas, umidade do solo, águas superficiais, e reservatórios artificiais – em todas as regiões hidrográficas brasileiras, e computamos 
a contribuição de cada componente em relação a variabilidade total. A maior parte da variabilidade pode ser atribuída a umidade do solo (40-
68%), seguida por águas subterrâneas (18-40%). Águas superficiais tem grande influência nas regiões hidrográficas do noroeste (influência de 
sistemas de monção) com 18-40% e nas BHRs do sul (influência de sistemas subtropicais) com 5-10%. O estoque em reservatórios artificiais 
tem contribuições importantes nas regiões do Paraná com 12,1%, do São Francisco com 3,5% e do Tocantins-Araguaia com 2,1%. Em 
termos de variabilidade de longo prazo, os estoques de água têm geralmente diminuído nas regiões leste e aumentado no noroeste e no sul, 
sendo os estoques de águas subterrâneas e reservatórios os mais afetados, embora essa tendência também possa ser observada nos picos de 
água superficial. Comparações feitas com estudos anteriores mostram que a abordagem e os conjuntos de dados utilizados podem ter um 
impacto considerável nos resultados. Tal análise pode ter amplas implicações na identificação da natureza da variabilidade de amplitude e fase 
entre as regiões, a fim de melhor caracterizá-las e obter melhores avaliações das tendências hidrológicas.

Palavras-chave: Compartimentação de armazenamento de água; Regiões hidrográficas brasileiras.
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INTRODUCTION

Brazil hosts the largest amount of  freshwater on the planet 
(Food and Agriculture Organization of  the United Nations, 2003). 
Because of  its great water resources availability, it is fundamental 
to have an integrated framework that links water resources to the 
economic system. Although there are some global approaches to 
make this link (United Nations, 2012) with applications in Brazil 
(Agência Nacional de Águas e Saneamento Básico, 2018), the 
methodology is still very broad given the amount of  data necessary 
to meet the frameworks, as datasets covering different aspects of  
the water cycle can be very difficult to obtain. A meaningful of  
the methodology is to obtain accurate estimates on the stored 
water within different components (soil, rivers, reservoirs, etc), for 
which the use of  regional/global available datasets, especially those 
based on remote sensing and hydrological modelling techniques, 
is feasible for very large areas.

Still, knowing how water storage variability is distributed 
among the storage components is still a challenge, with only 
a few attempts being made in this regard (e.g. Getirana et al., 
2017; Hu et al., 2017; Pokhrel et al., 2013). A quantitative 
analysis covering the entire Brazilian territory, using state-
of-the-art remote sensing and model-based datasets, is still 
lacking in the scientific literature. Such analysis could have 
broad implications for water accounting frameworks and water 
resources management, for instance by fostering a more correct 
depiction of  the Brazilian water cycle in land surface models 
and global hydrological models.

Since 2002, monthly changes of  Terrestrial Water 
Storage (TWS) have been monitored at regional and continental 
scales (104 to 106 km2) by the Gravity Recovery and Climate 
Experience (GRACE) and the GRACE Follow-on (GRACE-
FO) missions (Landerer et al., 2020; Tapley et al., 2004). These 
data have been extensively used in hydrological studies of  large 
basins, as they provide reliable information with relatively low 
uncertainty (Scanlon et al., 2016; Wiese et al., 2016). However, 
TWS integrates all continental water stored on and beneath the 
land surface, and for the partitioning of  TWS variability into 
other components, additional data sources are needed. In recent 
years, several products based on Earth observations (both in situ 
and remote sensing), modelling, and/or reanalysis have been 
made available for water estimations in terms of  both fluxes and 
storage variability, oftentimes covering large continental areas 
and even the whole globe (Rodell et al., 2004; Siqueira et al., 
2018). Using storage estimations from these regional or global 
products, alongside with GRACE, is a good alternative for water 
accounting frameworks.

Therefore, TWS from GRACE can be used either to validate 
model storage outputs (e.g. Getirana et al., 2017; Paiva et al., 
2013; Pokhrel et al., 2013; Siqueira et al., 2018) or combined with 
soil moisture (SM) and surface water (SW) storages to estimate 
groundwater storage changes as a residual from water balance 
equations (e.g. Hu et al., 2017; Melati et al., 2019). Although 
previous studies have found significant SW contributions to water 
storage variability in the Amazon (Getirana et al., 2017; Hu et al., 
2017; Paiva et al., 2013; Pokhrel et al., 2013), other regions in the 
country may have been misrepresented, as there are large SW 
systems besides the Amazon – e.g. in Pantanal and in Bananal 

Island. Moreover, the contribution of  large hydropower reservoirs 
(RS) can be significant in some regions – e.g. in the Paraná and 
São Francisco river basins.

In this context, the aim of  this study is to quantify TWS 
contributions from each of  the storage components (GW, SM, SW, 
and RS), in terms of  monthly averages and time series analyses, 
at all Brazilian Hydrographic Regions (BHRs). To achieve that, 
we used data from multiple sources, which we consider the most 
reliable estimates available at the moment. This analysis can help 
future decision-makers in quantifying water storage contributions 
across large regions.

MATERIAL AND METHODS

Study area: Brazilian hydrographic regions

All analyses were performed considering the 12 Brazilian 
Hydrographic Regions (BHRs), presented in Figure 1 alongside 
with the official Brazilian open water dataset from ANA (Agência 
Nacional de Águas e Saneamento Básico, 2021b). These are official 
hydrological divisions from the Brazilian National Water and 
Sanitation Agency (ANA), with areas ranging from 1.7×105 to 
38×105 km2 (Table 1). As Brazil hosts large river networks with a 
wide variety of  characteristics, the division of  the country into these 
units is suited to applications involving water resources planning 
and management, and provides a reasonable way to characterize 
WS partitioning. Most regions are drained by the main rivers 
that cover the country’s territory (Amazon, Tocantins-Araguaia, 
Parnaíba, São Francisco, Paraná, Uruguay, and Paraguay), while 
others are formed by grouping smaller and/or coastal basins 
(Western Northeast Atlantic, Eastern Northeast Atlantic, East 
Atlantic, Southeast Atlantic, and South Atlantic).

Figure 1. Brazilian Hydrographic Regions (BHRs) according to 
ANA, with their respective identification numbers.
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Data acquisition and processing

We collected data from multiple sources, including TWS 
from GRACE, soil moisture from GLDAS, surface water storage 
from a hydrological-hydrodynamic model (MGB-SA), and reservoir 
storage from the ANA Reservoir Monitoring System database 
(SAR). These data were used to compute groundwater storage 
changes by using a water balance approach. Because of  the coarser 
spatial (0.5º) and temporal (monthly) resolution of  GRACE 
among the datasets, we resampled all data to match GRACE 
resolutions. In addition, GRACE only provides TWS variability, 
thus we normalized values from all datasets by subtracting the 
2003-2020 means. Additional details about the datasets are provided 
in the next subsections and in Table 2.

Total water storage

The GRACE mission was launched in 2002, providing 
monthly spatial information on the Earth’s gravitational field 
until 2017 (Tapley et al., 2004). Its successor, the GRACE Follow-
On (GRACE-FO) mission, was launched in May 2018 and still 
orbits the atmosphere (Landerer et al., 2020), continuing the data 
collection from the first mission. The data presents some gaps 
in specific months, as well as in the period between the first and 

the second mission (from July 2017 to May 2018) – more details 
at Jet Propulsion Laboratory (2022a).

Temporal variations on the Earth’s gravitational field 
can be mostly attributed to changes on terrestrial water storage 
(Sheffield et al., 2009), which has great potential for use in 
hydrological studies. To process GRACE gravitational data into 
water storage variability, several solutions have been developed 
by different research centres. They are grouped by the usage 
of  Spherical Harmonics (SH) (Landerer & Swenson, 2012) or 
Mass Concentration Blocks (mascons) (Watkins et al., 2015). 
For hydrological analyses, the mascons solution presents several 
advantages in relation to the SH (Scanlon et al., 2016), and for 
that reason it is the one used here. Data were obtained from 
the JPL RL06M v.2 product, which is available at Jet Propulsion 
Laboratory (2022b).

In this product, raw information from the GRACE(-FO) 
twin satellites is processed at 3-degree mascons, which are used 
to filter out noise from initial observations. Later, a Coastline 
Resolution Improvement (CRI) filter is applied to separate land 
and ocean portions. Finally, a set of  gain factors (obtained by a 
hydrological model) are used to resample the data to a 0.5-degree 
spatial resolution. One can choose to use data with (0.5-degree) 
or without (3-degrees) gain factors. Here, we decided to use gain 
factors as it provides finer spatial resolution, which allows a better 
spatial visualization and interpretation without compromising the 
information obtained across large regions (> 104 km2). We also 
chose to use a baseline average comprising the whole period 
(2003-2020), instead of  the commonly used 2004-2009, because 
it is better to visualise long-term means and does not affect the 
computations of  components’ contributions.

Reservoir storage

According to official reports from the National Water 
Agency, around 93% of  the storage capacity is destined to 
hydropower purposes (Agência Nacional de Águas e Saneamento 
Básico, 2021a), from which 98% are stored in large power plants 
associated to the Brazilian National Interconnected System (SIN). 
Although there are 3,661 reservoirs in SIN, 90% of  the active (i.e. 
variable) storage is represented by 159 of  them (Agência Nacional 
de Águas e Saneamento Básico, 2021a), which correspond to 

Table 1. IDs and areas of  the Brazilian Hydrographic Regions (BHRs).
ID Hydrographic Region Area (km2)
1 Amazon 3,800,000
2 Tocantins-Araguaia 967,000
3 Western Northeast Atlantic 254,000
4 Parnaíba 344,000
5 Eastern Northeast Atlantic 287,000
6 São Francisco 640,000
7 East Atlantic 374,000
8 Southeast Atlantic 230,000
9 South Atlantic 186,000
10 Uruguay 174,000
11 Paraná 880,000
12 Paraguay 363,000

Table 2. Datasets used in this study.
Product Description Spatial Resolution Period

Total Water Storage (TWS)
GRACE Gravitational anomalies relative to a baseline 0.5º 2003 to 2020

Soil Moisture (SM)
GLDAS Land surface modelling and data assimilation of  

satellite and ground-based observational data
0.25º 2000 to 2020

Surface Water (SW)
MGB-SA Hydrological-hydrodynamic modelling of  

South America region
Vector-based 

(rivers with Δx= 15 km)
1990 to 2020

Reservoir Storage (RS)
SAR-ANA Brazilian National Water and Sanitation Agency 

Reservoir Monitoring System
- 2000 to 2020
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the ones used in this work. We obtained time series of  active 
volume, inflow and outflow for the SIN reservoirs through the 
SAR-ANA platform (Agência Nacional de Águas e Saneamento 
Básico, 2022), and the georeferenced reservoir polygons from the 
Brazilian open water dataset. First, monthly storage values for each 
reservoir were computed by considering the active volumes on the 
first day of  each month, from 2003 to 2020. Next, the storage at 
reservoir locations was matched to the GRACE resolution grid 
(0.5º) according to the following steps:

• The SIN reservoir polygons are converted into a regular 
90m resolution grid. The high-resolution pixels (90 m) 
within the reservoirs are defined here as “open water pixels”;

• For a given reservoir i, the summed area of  all open water 
pixels inside each coarse resolution cell j (Aowi,j) associated 
to that reservoir is computed;

• Assuming that the total storage of  a reservoir i (VRStoti) 
is distributed proportionally to the fraction of  total open 
water pixels, the storage in a given cell j linked to the 
reservoir i (VRSi,j) is estimated as:

i, j
i, j i

i

Aow
VRS VRStot

A
 

= ×  
 

 (1)

Where Ai is the area of  reservoir i.

Surface water storage

Estimates of  surface water storage were obtained from the 
continental-scale MGB model (acronym for Modelo de Grandes Bacias, 
in Portuguese), which was developed for the entire South America 
(MGB-SA) (Siqueira et al., 2018). MGB–SA is a semi-distributed, 
hydrologic-hydrodynamic model that uses conceptual and physically-
based equations to simulate vertical water and energy budget, and 
flow propagation along river networks. The model is discretized 
into 33,749 unit-catchments with approximate 300 km2 of  area, 
and further into Hydrological Response Units based on land cover 
and soil classes, and each unit-catchment is associated to a single 
15 km-long river segment. Water is routed through river networks 
using the local inertial approximation of  shallow water equations 
proposed by Bates et al. (2010), enabling the calculation of  surface 
water stored in river channels and floodplains. The floodplain is 
treated as a simple storage model, i.e., there is no floodplain flow 
parallel to the river direction. We chose the MGB–SA because 
it covers all Brazilian hydrographic regions and was extensively 
validated for South American basins using both in situ gauges 
and remote sensing datasets (Siqueira et al., 2018).

MGB–SA was formerly calibrated for 1990-2010 using the 
Multi-Source Weighted Ensemble Precipitation (MSWEP) v1.1 daily 
dataset (Beck et al., 2017) and monthly means of  other climatic 
variables (surface air temperature, relative humidity, wind speed, 
sunlight hours, atmospheric pressure) as model forcing. However, 
as MSWEP v.1.1 data are not available from 2015 onwards (only 
for more recent versions of  this dataset), we used data from the 
Global Precipitation Measurement mission (GPM) to extend the 
MGB–SA simulations until 2020. Daily precipitation data from 

the Integrated Multi-Satellite Retrievals for GPM (IMERG) final 
run (Skofronick-Jackson et al., 2017) were obtained at 0.1º spatial 
resolution and interpolated to the MGB–SA unit-catchments. 
In addition, IMERG data were bias corrected to MSWEP by 
adjusting gamma distributions for both datasets in the period 
2000–2014 and applying the quantile-quantile mapping method 
(Teutschbein & Seibert, 2012) to IMERG precipitation from 
2015 to 2020.

Monthly averages of  surface water volume for a given 
unit-catchment, which include the volume stored in the main 
river and adjacent floodplain, as well as the remaining surface 
water that has not yet reached the channel, were divided by its 
corresponding unit-catchment area to obtain storage in mm. Next, 
surface water estimates at the unit-catchment level were spatially 
aggregated into 0.5º cells by using a weighted average approach:

( )
N

n nn 1
j N

nn 1

A V
VSW

A

=

=

×
=
∑
∑

 (2)

Where: VSWj is the volume of  surface water for cell j (mm), n 
and N are the unit-catchment index and the total number of  unit-
catchments with centroid located inside the cell j, An and Vn are 
the area (km2) and volume of  surface water (mm) related to the 
unit-catchment n, respectively.

Soil moisture storage

We used the root zone soil moisture product of  the 
Global Land Data Assimilation System (GLDAS). It consists 
of  an ingestion of  satellite and ground-based observational data 
across the globe, which uses land surface modelling with data 
assimilation techniques (Rodell et al., 2004). The model was 
forced with atmospheric data from the National Oceanic and 
Atmospheric Administration (NOAA), precipitation data from 
the Climatology Project (GPCP) and solar radiation data from 
the Agricultural Meteorological Modelling System (AGRMET).

GLDAS soil moisture data have been largely used by 
regional and global analyses of  water budget, presenting satisfactory 
estimations (e.g. Bi et al., 2016; Rzepecka & Birylo, 2020; Sazib et al., 
2018; Spennemann et al., 2015). Also, it covers the longest period 
of  data availability among the soil moisture products available on 
the Google Earth Engine (GEE) database. As GEE offers a free 
cloud-based platform that allows computations on large datasets 
(Gorelick et al., 2017), we used it to preprocess the GLDAS root 
zone soil moisture data, converting it from 3-hourly to monthly 
temporal resolution, and resampling from 0.25 to 0.5 degrees spatial 
resolution to match TWS from GRACE. It was not necessary to 
perform a reprojection to align the grids, as both datasets used 
the same datum (WGS84).

Groundwater storage

With all previous data processed at monthly time step, 
0.5º grid resolution, and normalised by the mean value of  2003-
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2020 period, GW was computed as a residual of  the water balance 
by subtracting the other storages from TWS at every pixel i and 
time step t, following Equation 3:

i, t i,t i, t i,t i,tGW TWS SM SW RS= − − −  (3)

Where GW is groundwater storage variability, TWS is total water 
storage variability, SM is soil moisture storage variability, SW is 
surface water storage variability, and RS is reservoir storage variability.

Computing the contributions of  each WS 
component

To estimate the contribution of  each component on TWS 
variability, we used the impact index (I) proposed by Getirana et al. 
(2017). The impact index measures the contribution of  a given 
hydrological compartment as the ratio between its mean annual 
amplitude – expressed by the sum of  the absolute monthly 
climatological anomaly values – and the sum of  mean annual 
amplitudes from all hydrological compartments. The greater the 
monthly anomaly relative to the other components, the closer I 
is to 1, and the sum of  I of  all components equals 1. The index 
is preferable to the ratio of  amplitudes (i.e. the difference 
between monthly climatological maximum and minimum) due 
to occasional lags between the different WS components, which 

may result in unrealistic values. The index is calculated following 
Equations 4-5:

j
j nc

jj 1

C
I

C
=

=

∑  (4)

12

j j,m j
m 1

C S S
=

= −∑  (5)

Where j represents each WS component, m represents the 
climatological month, S is the mean climatological storage for 
month m, in mm, jS  is the long-term mean storage, in mm, nc is 
the number of  components (in this case, 4), and C is the sum 
of  all absolute monthly climatological anomalies of  the storage 
component (S).

RESULTS

Contribution of  each WS component

The spatial distribution of  contributions among the 
water storage components (GW, SM, SW and RS) is presented 
in Figure 2. It is possible to observe some sudden breaks in GW 

Figure 2. Spatially distributed contributions I (at 0.5º spatial resolution) of  each WS component on TWS variability, based on the 
Impact Index.
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and SM, which occur due to the use of  gain factors in GRACE 
data for downscaling from the 3-degrees mascons to 0.5-degree 
pixels. These breaks are not observed in SW and RS because their 
contributions are more localised and usually smaller. Overall, the 
subsurface components (GW + SM) have the greatest contribution 
across the country. Exceptions are observed along extensive 
floodplain systems, where SW play an important role, such as 
in the Amazon, Tocantins-Araguaia, São Francisco, Paraná and 
Paraguay basins, and along some isolated spots where RS has 
important contribution on TWS, like in the Paraná, Uruguay, 
lower São Francisco, and Tocantins-Araguaia basins.

Figure 3 shows the contribution of  these components on 
TWS variability after pixels are spatially aggregated for each BHR. 
The contribution in terms of  percentages is presented in Table 3 and 

in terms of  monthly means in Figure 4. SW contribution is the 
highest in the Amazon region (~40%) and particularly high in the 
Northern and Western BHRs (Tocantins-Araguaia, WNA, and 
Paraguay with ~18-20%), where more humid conditions occur 
and floodplain systems are highly present. The contribution of  
SW to TWS changes is moderate (5-10%) in the southern portion 
of  the country (Southwest Atlantic, South Atlantic, and Uruguay). 
Reservoir storage has mild contributions on TWS variability (1-4%) 
along most BHRs (Tocantins-Araguaia, Parnaíba, São Francisco, 
Southeast Atlantic, South Atlantic, and Uruguay), and a substantial 
contribution (~12%) can be observed in the Paraná basin. Subsurface 
water has the highest contribution (GW + SM) on TWS variability 
in all BHRs, with values ranging from 60-80% in the Northwestern 
regions (Amazon, Tocantins-Araguaia, WNA, and Paraguay) to 
>80% in the remaining regions. From these, SM dominates the 
contribution in all BHRs (from 40% to 68%) with exception of  
the Paraná basin, where the contribution of  GW is slightly higher 
than that of  SM (43.6% against 40.9%). The contribution of  GW 
ranges from less than 20% in the Amazon to up ~40% in São 
Francisco, Southeast Atlantic and Paraná regions.

Temporal variability

Figure 5 and Figure 6 present time series of  monthly water 
storage variability in subsurface (GW + SM) and surface (SW + 
RS) components, respectively. In recent years (2013 to 2020), GW 
shows an increase in the Amazon, South Atlantic, Uruguay, and 
Paraguay regions, whereas a decrease is observed in the Tocantins-
Araguaia basin and in the east portion of  the country (Parnaíba, 
Eastern Northeast Atlantic, São Francisco, East Atlantic, and 
Southeast Atlantic regions). In the Paraná basin, GW presents 
wetter conditions in the periods of  2010-2013 and 2016-2017, 
and a drier condition in the 2014-2015 period. Temporal variability 
of  SM does not show clear positive or negative trends in most 
BHRs, even though it is the main contributor on TWS variability. 
Regarding SW, low values conditions are nearly constant, with 
exceptions at Uruguay and Paraguay regions, and peak values are 
highly variable, with 2009 presenting the highest peaks in most 
BHRs. As for RS, only in São Francisco and Paraná this component 
has notable contribution on TWS variability. In these regions, a 

Table 3. Contributions (in %) of  each water storage component on each Brazilian Hydrographic Region.
ID Hydrographic Region GW SM SW RS
1 Amazon 17.4 43.2 39.5 0.0
2 Tocantins-Araguaia 30.1 48.3 19.5 2.1
3 Western Northeast Atlantic 24.5 56.2 18.7 0.7
4 Parnaíba 43.5 53.8 1.7 1.0
5 Eastern Northeast Atlantic 34.9 63.6 1.4 0.0
6 São Francisco 39.1 53.6 3.8 3.5
7 East Atlantic 31.5 65.7 2.8 0.0
8 Southeast Atlantic 42.0 51.6 5.3 1.0
9 South Atlantic 23.3 64.4 11.1 1.2
10 Uruguay 26.6 66.7 5.2 1.5
11 Paraná 44.0 40.6 3.4 12.0
12 Paraguay 35.4 46.5 18.2 0.0

Figure 3. Pie charts representing the contributions of  each water 
storage component on the Brazilian Hydrographic Regions (BHRs), 
indicated by their respective identification numbers (referred in 
Figure 1). Pie size proportional to total water storage variability.
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sudden overall reduction in RS volume can be seen, indicating 
the recent low precipitation averages that have taken place over 
central and east Brazil (Getirana, 2016).

DISCUSSION

Nature of  the observed variability in WS 
components

Overall, the magnitudes of  storage variability are greater 
in north-western BHRs (Amazon, Tocantins-Araguaia, Western 
Northeast Atlantic), which are subject to strong seasonal variability 
due to the influence of  the South American monsoon system 
(Marengo et al., 2012), and are smaller in south-eastern BHRs (East 

Atlantic, South Atlantic, and Uruguay) due to a less pronounced 
rainfall seasonality. GW usually peaks after SM, which can be 
attributed to a delayed response of  the GW systems, related to 
SM water infiltrating into deeper soil layers. In the Amazon and 
Paraguay regions SW has a clear slower response than SM, possibly 
due to the large floodplain systems that attenuate flooding peaks 
in these regions (Paiva et al., 2013). Other BHRs with high SW 
contribution on TWS, such as Tocantins-Araguaia and Western 
Northeast Atlantic, seem to be less affected by these phenomena, 
as SM and SW are in phase with each other. In the eastern and 
southern BHRs (Eastern Northeast Atlantic, East Atlantic, South 
Atlantic, and Uruguay) GW and SM are opposite in phase. That 
may be partially explained by the water interchange between these 
compartments, as well as cycles of  drought and surface temperature 
changes. The southern region is more influenced by the changes 

Figure 4. Monthly climatological anomalies of  WS components (in mm) over BHRs.
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in temperature (SM peaks in the winter and sudden drop at the 
end of  spring), whereas the eastern and central regions are more 
influenced by drought cycles (SM peaks at the end of  the wet 
season and slowly reduces until the beginning of  the wet season).

Regarding inter-annual changes, storage variability can be 
observed only by looking at GW and RS (decreases in storage 
variability in central and eastern Brazil). SM does not present 
long-term differences over the years likely due to a less sensitive 
response to changes in precipitation. One reason could be that 
the root-zone layer has upper and lower limit capacities of  storing 
water; therefore, an increase in precipitation would result in more 
overland flow and not in more water in SM, and when precipitation 
decreases, water from GW would be brought to the root-zone 
layer (SM) via capillary rise or flow to the adjacent river systems 
(SW) via baseflow. Moreover, during consecutive years of  lower 
precipitation, water coming to the root zone (SM) would be first 
available to vegetation, decreasing GW recharge. In SW, long-term 
differences are observed mostly for peak values, even in regions 
that experienced several shortages in TWS in recent years, such 
as all eastern BHRs (Parnaíba, São Francisco, Eastern Northeast 
Atlantic, East Atlantic, Southeast Atlantic) and the Paraná (Getirana, 
2016; Melo et al., 2016).

Comparison with previous analyses regarding 
decomposition of  TWS

The scientific literature already recognises the contribution 
of  surface waters (SW + RS) on storage variability in Brazil. Similar 
to this study, Hu et al. (2017) used TWS from GRACE subtracting 
other storages, but with the objective of  estimating groundwater 
recharge across geological sub-regions in Brazil. They used a global 
hydrological model for SM and SW and satellite altimetry data 
for the largest lakes and reservoirs. Contrary to our findings, they 
found surface waters being only significant in the Amazon; lakes 
and reservoirs were negligible in terms of  water storage variability. 
Here, we identified a substantial contribution of  SW on TWS, not 
just in the Amazon, but in the whole north-western portion of  
the country (Tocantins-Araguaia, Western Northeast Atlantic, and 
Paraguay), as well as in the South Atlantic region; and a significant 
contribution of  RS in the Paraná basin, which is a clear example 
of  considerable human intervention in hydrological functioning 
throughout a vast spatial domain. The notable difference of  our 
findings can be explained by the data sources we used here to 
compute SW – instead of  using a global hydrological model, we 

Figure 5. Time series of  monthly groundwater and soil moisture storage variability (in mm) at the BHRs.



RBRH, Porto Alegre, v. 27, e32, 2022

Barbedo et al.

9/14

used a hydrological model coupled to a hydrodynamic routing 
scheme (MGB) built to deal with the complex floodplain systems 
encountered in the South America region – and RS – instead of  
using satellite altimetry data, we used in situ observations from the 
main reservoirs that comprise the hydropower system of  Brazil.

Regarding TWS partitioning, Getirana et al. (2017), 
Pokhrel et al. (2013) and Paiva et al. (2013) did similar analyses to 
the one performed here (i.e. separation of  the storage components 
and evaluation of  their contributions). The first was performed 
globally, and the other two were conducted over the Amazon 
basin. However, such studies used a different approach, by first 
comparing GRACE and modelled TWS as a validation step, and 
then using only the storages simulated by the model to assess 
their contributions on TWS.

In the Amazon region, Pokhrel et al. (2013) proposed that 
SM and GW are opposites in phase, which would be explained by 
the interactions between the floodplain systems, the vadose zone 
and the deep soil layers. In the other two studies, differently, GW 
and SM were in phase in the Amazon. Our results indicated that 
SM and GW in the Amazon are not in phase, yet they are not 
opposites either, with GW having a delay of  about three months, 

as discussed in the previous subsection. An important distinction 
is that the findings of  the mentioned studies were attributed to the 
whole Amazon basin, while we analysed only the portion limited 
by the Brazilian borders (52% of  the basin area).

As for WS variability partitioning, Paiva et al. (2013) suggested 
that 63% of  Amazon’s TWS amplitude comes from SW, Pokhrel et al. 
(2013) accounted for 29%, and Getirana et al. (2017) for 27%. Here, 
we found that SW is responsible for 39% of  TWS variability in 
the Brazilian part of  the Amazon. An important distinction is that 
Paiva et al. (2013) and Pokhrel et al. (2013) computed contributions 
using the ratio of  amplitudes considering the whole time series, 
whereas Getirana et al. (2017) and the study presented herein used the 
impact index, which considers only seasonal variability. Differences 
between these two approaches can rise as one region’s sensibility to 
dry-wet extremes can be more prominent than seasonal variability.

In the Paraná-Paraguay region, Getirana et al. (2017) found 
slightly more contribution of  SW (20%) than what we obtained 
(3% in Paraná and 18% in Paraguay). Both in the Amazon and 
Paraná-Paraguay, TWS estimated by their model had lower amplitude 
than GRACE TWS. Other regions in Brazil were not analysed in 
detail by the authors, giving no means for comparison.

Figure 6. Time series of  monthly surface water and reservoir storage variability (in mm) at the BHRs.
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Limitations and recommendations

It is important to note that our analysis is limited both spatially 
and temporally, as we provided insights only in large domains at 
monthly time-step. The spatial variability of  environmental factors 
– such as climate, geology and soils – within a determined BHR 
can be quite significantly, which can attenuate or compensate some 
variability effects, misrepresenting local behaviours that cannot 
be seen when several distinct basins are aggregated. Moreover, a 
monthly time step can hide the detection of  smaller changes within 
a month, which could have affected the compartments’ response 
timings, such as the GW delay in relation to SM.

As discussed in the comparisons with other studies, the 
chosen approach can produce very different results in computing 
water storage contributions. While using results from a single 
model offers some practical advantages, as each WS component 
interact with the others, using TWS data from GRACE directly 
(e.g. for estimating GW variability) can improve the quality of  
the analysis, once it helps to capture hydrological processes and 
anthropogenic effects that models may not have the ability to 
simulate properly. Ideally, all variables used in large-scale studies 
evaluating water storage variability would come from Earth 
observations (both remote sensing and in situ measurements). 
However, we were able to obtain observed estimates only for TWS 
and the main human-made reservoirs in Brazil (RS).

Regarding TWS from GRACE, analyses like the one 
provided here are limited to large extents because of  scale issues. 
As a general recommendation, regions larger than 100,000 km2 (as 
the ones adopted in our study) will have more accurate measures of  
TWS variability, and regions smaller than that should be analysed 
carefully (Scanlon et al., 2016). In this way, modelling results that 
use GRACE for validation could have an advantage if  used for 
downscaling purposes.

For RS estimation, we only accounted for the hydropower 
reservoirs that are part of  the Brazilian National Interconnected 
System (SIN). A possible way to increase the accuracy of  the 
analysis would be to include other reservoirs besides the ones 
existing in the SIN database. Particularly in the Brazilian semi-
arid region, where lots of  small dams are present (Mamede et al., 
2012; Ribeiro Neto et al., 2022), the contribution of  those volumes 
combined may be significant.

As for SW, using continental-scale hydrologic-hydrodynamic 
models such as MGB-SA is likely the best alternative available for 
the Brazilian domain. Even so, we have to consider that there is 
substantial uncertainty in the estimated surface water volumes 
and their variability. For instance, in addition to the shortcomings 
in representation of  hydrological processes, the model has been 
calibrated with a limited number of  gauge stations by using 
global precipitation data that is associated with large errors 
(Beck et al., 2017) and global river geometries that largely affect 
channel-floodplain water exchanges. Regarding uncertainties in 
the hydrodynamic modelling processes (e.g., associated with model 
parameterization or insufficient hydraulic processes representation 
of  flood processes), there are several studies that have addressed 
this topic in the literature, even for the MGB model (Fan et al., 
2021; Fleischmann et al., 2019, 2018, 2020; Paiva et al., 2013)

Furthermore, A cross-validation between MGB-SA flood 
extents and several other remote sensing-based datasets has been 
conducted for the Amazon basin (Fleischmann et al., 2022), albeit 
a more in-depth validation of  simulated flooded areas over other 
important South American wetlands has not been performed 
so far. Representing inundation dynamics in the large Pantanal 
wetland (Paraguay basin) may require more complex flood routing 
methods than those used in MGB-SA (Bravo et al., 2012; Paz et al., 
2011), and therefore we recognize that the contribution of  SW on 
TWS may be underestimated in these areas. Ways to improve SW 
estimations lie on the better depiction of  hydrological processes 
within the model, better parameterization, and the use of  data 
assimilation techniques (e.g. Wongchuig et al., 2019). In the 
forthcoming years, we may even have access to data on water level 
variability with the SWOT mission (Biancamaria et al., 2016) that 
could be used to estimate water volumes directly or coupled with 
hydrological models.

The biggest challenge remains in estimating SM, as 
locally measured data are hard to be spatially extrapolated, and 
remote sensing data still require a lot of  post-processing efforts, 
especially for deeper soil layers. Furthermore, SM data from 
remote sensing does not currently provide a clear advantage over 
GLDAS (Hu et al., 2022; Kędzior & Zawadzki, 2016; Zawadzki 
& Kędzior, 2016). Our best alternative to assess SM data and its 
relying uncertainty is to keep improving land surface models by 
better representations of  water fluxes in the vadose zone, as well 
as modern data assimilation techniques.

CONCLUSION

The present study proposed to quantify the contributions 
of  each water storage (WS) component on the total water storage 
variability across the Brazilian Hydrological Regions (BHRs). 
We achieved that goal by using combined information from 
multiple data sources that, to our best knowledge, reflect the best 
estimates available at large to continental scales. We resampled all 
data to the same spatial and temporal resolutions (0.5-degree and 
monthly, respectively), and computed the contribution of  each 
WS component using the impact index. We also analysed data 
from time series, further discussing the nature of  the variabilities 
observed and providing comparisons with previous studies.

From our results, we identified that subsurface components 
– soil moisture (SM) and groundwater (GW) – drive most of  the 
water storage variability in all BHRs, with contributions varying 
from 40 to 68% and 17 to 40%, respectively. Still, a substantial 
contribution of  surface water (SW) was found in north-western 
BHRs (humid monsoon influenced), varying from 18 to 40%, 
whereas mild contributions were identified in southern BHRs 
(subtropical system influenced), with values reaching 5 to 10%. 
Reservoir storage (RS) is an important contributor in the Paraná 
(12.1%), the São Francisco (3.5%), and the Tocantins-Araguaia 
(2.1%) basins. SM seems to have faster responses than GW in 
most BHRs, as well as SW in regions with large floodplain systems. 
In regions with extended dry seasons or with seasonal land surface 
temperatures, SM and GW seem to be opposites in phase during 
the annual cycle.
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In terms of  long-term variability, water storages have been 
generally decreasing in the eastern and increasing in north-western 
and southern BHRs. GW and RS seem to be the most affected 
by these trends, yet it can also be observed in SW peaks. The fact 
that SM is not decreasing nor increasing can be attributed to the 
lower and upper limit capacities of  the root-zone, although it can 
also be due to uncertainties in the data, as it is very difficult to 
obtain accurate spatially distributed estimations of  this variable. 
Future investigations are required to obtain definitive conclusions 
on this matter.

Moreover, this analysis has some limitations. First, aggregating 
data to large hydrographic regions at monthly time steps can hide 
smaller spatial and temporal variabilities. Second, the approach used 
to obtain the estimations and to compute the contributions can 
induce to different results, as there is no consolidated methodology 
for such analysis so far. Lastly, the uncertainties related to each 
dataset can have major implications in the results, as there is still 
a need for more accurate estimations of  WS variables.

Finally, we stress that investigating water partitioning is 
fundamental to foster water resources management in Brazil. 
The inclusion of  this type of  analysis, and the incorporation 
of  state-of-the-art modelling and remote sensing, large-scale 
datasets, in water-accounting frameworks is highly beneficial to 
guide decision-makers. It could help to identify the nature of  
amplitude and phase variability across regions in order to better 
characterize them. Also, by looking at inter-annual variability, it 
could assist the identification of  long-term hydrological trends.
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