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ABSTRACT OF DISSERTATION

OPTIMAL WEEKLY RELEASES FROM A MULTIRESERVOIR HYDROPOWER SYSTEM

The operation of a multi-unit electric energy generating system is 

studied under certain and uncertain future inflow conditions. The 

generating units include thermoplants, hydroplants with regulating 

reservoir and run-of-river hydroplants. The objective is to minimize 

the expected cost of the operation of the system while meeting a 

previously defined energy demand. A case study is formulated based on 

the electric energy generating system of the South of Brazil. The 

system is composed of 6 hydroplants with regulating reservoirs, 2 

run-of-river hydroplants, and 8 thermoplants.

In order to obtain a better insight into the nature and 

peculiarities of the system's operation it is initially studied 

considering the future to be deterministic. An aggregation

optimization-disaggregation procedure is proposed to identify a near 

optimal solution while reducing substantially the computational effort. 

This consists of the development of an aggregated representation of the 

system composed of a hypothetical and unique reservoir with overall 

energy inflows and releases. Optimal operation of the aggregated system 

is determined by a new and efficient optimization technique specifically 

developed for this problem. A disaggregation procedure defines the 

operation of each system's unit given the operation of the aggregated 

system. The procedure is based on a heuristic approach that has as a 

main objective to minimize water spills.

An aggregated representation of the system is again adopted for the 

definition of optimal strategy of operation when the future inflows are 

uncertain. The characteristics of operation of each reservoir are 

iii



introduced into the aggregated formulation utilizing the peculiarities 

of the optimal deterministic operation. A modification of Massé's Chain 

of Marginal Expectations is used in the computations.

The resultant strategy of operation can be presented as a function 

of aggregated values of energy storage and inflow. The strategy expli

citly considers the autocorrelation of aggregated energy inflows. The 

strategy also implicitly accounts for the cross-correlations among the 

energy storages and inflows to each reservoir. Finally, a substantial 

part of the autocorrelation of the energy inflows and storages in each 

reservoir is indirectly considered in the strategy. Theoretical sig

nificance of the strategy is obtained without burdensome computational 

effort.

Antonio Eduardo Lanna
Civil Engineering Department
Colorado State University 
Fort Collins, Colorado 80523
Summer, 1980
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Chapter 1

INTRODUCTION

Energy consumption is a significant indicator of economic activity 

in modern economies. Exhaustion of cheap, non renewable supplies of oil 

has significantly increased the demand for electric energy as an alter

native. In Brazil 28 percent of the energy consumed in 1973 was elec

tricity. By 1985 the estimated percentage is 35 (Ministério das Minas e 

Energia, 1976). The figures in the USA are 26 percent in 1973 and 42 

percent by the year 2000 (U.S. Army Engineer Institute for Water 

Resources, 1975).

Increasing consumption of electricity causes the increase in number 

of units in electric energy generating systems. With the introduction 

of Extra High Voltage lines that allow transmission of electricity to 

large distances, the trend is toward interconnection of the expanded 

systems.

The operation of electric energy generating system becomes more 

complex when the system increases in number of units. The operational 

complexity is particularly notable when a large number of water reserves 

is used to regulate the water supply to hydroelectric power plants.

Mathematical Optimization techniques to define the optimal 

operation of water resources systems have been widely utilized since the 

beginning of the 70's. However, when the number of water reserves, 

users, and study time increases, the exponential increment in computa

tion time severely limits the uses of such techniques. As a conse

quence, a great deal of simplification has been used in formulating 

these problems. This decreases the computation time but also reduces 

the significance of results.
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Presumably the first researcher to address a general theory of 

reservoir operation was Massé (1946a and b) . He presented an analytical 

approach to the problem based on the Calculus of Variations. In his 

work the optimal conditions of operation of a single reservoir are 

derived for the cases where the future inflows are either deterministic 

or uncertain. The formulation under uncertainty of the future inflows 

defined Massé’s Theory of the Marginal Expectations which was the first 

explicit recognition of the Principle of Optimality in multistage deci

sion processes (Arrow, 1957, p. 525; Sobel, 1975, p. 770; Morel-Seytoux, 

1976, p. 9-33). Some years later Bellman (1953) noticed the generality 

of the principle and derived what he called the Theory of Dynamic Pro

gramming .

In it's original formulation Dynamic Programming is an analytical 

approach from which the Theory of Marginal Expectations is a particular

ization. Bellman also presented a numerical approach for Dynamic 

Programming under the name of Discrete Dynamic Programming. The ap

proach is based on substitution of the analytical formulation of the 

problem's functions by their discrete formulations.

Some pioneer applications of Dynamic Programming to the optimal 

operation of reservoirs were performed by Little (1955), Gessford (1959) 

and Fukao et al. (1959). Little derived the optimal operating strategy 

for a single reservoir with uncertain future inflows. As expected, his 

formulation is identical to Massé's. The solution procedure however was 

based on Discrete Dynamic Programming. This approach was later referred 

to as Explicit Stochastic Dynamic Programming (Roefs, 1968, p. 66). 

Gessford presented an analytical solution for the same kind of problem 

at the expense of a very simplified formulation. Apparently the first 
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application of Dynamic Programming to the deterministic operation of a 

multireservoir system was accomplished by Fukao and his co-workers. 

Fukao noticed the computational difficulties caused by the dimension

ality of the problem and presented some artifices to decrease the 

computational requirements. They are now known as the Successive 

Approximation and the State Increment artifices of Dynamic Programming 

(Larson, 1968).

The associated computational difficulties of the Explicit 

Stochastic Dynamic Programming when serial correlation is present in the 

inflow led Hall and Howell (1963) to suggest the identification of the 

optimal operation strategy through samples of numeric values of 

releases. The samples were obtained by computation of the optimal 

operation under several inflow series using Discrete Dynamic 

Programming. Identification of the optimal operation strategy through 

regression analysis was proposed by Young (1967). This approach was 

later called the Implicit Stochastic Approach of Dynamic Programming 

(Roefs, 1968, p. 66).

The Dynamic Programming procedure in its explicit or implicit 

stochastic approaches was the basis of a majority of the recent 

contributions to the state-of-the-art of optimal reservoir operation 

studies. It was observed however that the implicit stochastic approach 

tended to produce unreasonable results in extreme and hence rare hydro

logic situations (Butcher, 1968; McKerchar, 1973, p. 219). To improve 

the results an extensive number of generated hydrologic series is 

required to increase the occurrence of rare events in the samples upon 

which the regression analysis is applied. This considerably increases 

the computational requirements of the approach. When the number of 
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reservoirs considered in the problem increases not only the 

computational requirements become overwhelming but the operating 

strategies defined by regression analysis were reported to be unable to 

prescribe "reliable and acceptable overall operation... over an extended 

time horizon" (Divi et al., 1978, p. 14).

Application of most reliable explicit stochastic approaches 

includes vast computational requirements that tend to increase exponen

tially with the number of reservoirs in the system. This necessitates 

utilizing the approach under simplified assumptions and/or following 

extensive iterative procedures. The solutions are generally derived 

with no guarantee the results will be applicable to the real system 

(Schweig and Cole, 1968; Takeuchi and Moreau, 1974; Sen et al., 1977; 

Houcks and Cleland, 1977).

Sigvaldson (1976, p. 343) summarizing the state-of-the-art of 

multireservoir operating studies correctly stated: "For larger (reser

voir) systems... say, more than about five or six reservoirs... the most 

successful modeling strategy still seems to be with the use of simula

tion models."

Some research effort developed parallel with the previous works has 

exploited the use of aggregated formulations of the multireservoir 

systems (Smith, 1979). The aggregated formulation represents the multi

reservoir system by a unique equivalent reservoir which is supposed to 

capture all relevant characteristics of the real system. Difficulty of 

application of such an artifice is related to the derivation of aggre

gated objective function and restrictions. Thus, applications are 

restricted to problems in which the sequence of the temporal overall 

releases is more important than the spatial distribution of the releases 
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among reservoirs. This requirement restricted the application of 

aggregated formulation basically to hydropower systems (Morlat, 1951; 

Stage and Larsson, 1961; Lindqvist, 1962; Ahmed, 1967; Arvanitidis and 

Rosing, 1970 a and b; Hall, 1971; Sen et al., 1978 and Turgeon, 1979). 

Aggregated formulations were used with explicit stochastic approaches to 

define the operation of hydropower systems in Sweden, Brazil, Canada and 

Colombia (Millan and Mejia, 1979).

The apparent trend in the development of the state-of-the-art of 

multireservoir operational studies has been the use of increasingly 

sophisticated techniques of Mathematical Optimization (El-Hawary and 

Christensen, 1972, 1973, 1977; Delebecque and Quadrat, 1978 and Murray 

and Yakowitz, 1979). Not enough attention has been directed to the 

characteristics of the optimal operation and their exploitation in 

search of optimal strategies. In this aspect the Theory of Marginal 

Expectations is one of the few approaches where the primary objective is 

the analysis of optimality conditions of the operation as the first step 

in the procedure for its definition.

Only recently this approach was recognized as a particularly useful 

alternative to reservoir operation studies (Morel-Seytoux, 1976). It 

was successfully applied to define the optimal operation for a single 

seasonal reservoir under deterministic and uncertain future inflows 

(Laufer, 1977; Laufer and Morel-Seytoux, 1979).

The following study of multireservoir hydropower system operation 

has its methodological orientation based on the study of the character

istics of the optimal operation. The main source of inspiration is 

Massé's contributions to the theory of the optimal management of 

reserves of which the operation of water reservoirs is a particular 
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aspect. Under the basic assumption that no problem in management is 

general, a system of 6 reservoirs and 8 hydropower plants is studied and 

methods of optimization of its operation under deterministic and un

certain future inflows are developed. These methods are tested and 

their results analyzed from theoretical consistency and computational 

efficiency aspects.



Chapter 2

THE RESERVES AND THEIR OPTIMAL OPERATION

In the following general discussion a complex problem that includes 

the design, management and operation of reserves is analyzed according 

to operational aspects. The analysis stresses the kind of decisions 

involved in the operation, their optimality conditions, the objectives 

to be sought and some particularities of the real world decision 

processes.

2.1 Objectives in Operation of Reserves

Two alternative problems may occur in the operation of reserves 

(Massé, 1953, p. 120). The first problem referred to as the output 

optimization problem occurs in cases in which the output derived from 

the operation of the reserves must be computed to maximize the resultant 

net benefit. The price factors that define the operating cost and 

revenues are known. In an electrical energy generating system this 

problem occurs when the level of energy output along a given time period 

is computed to maximize the net benefit derived from energy production, 

distribution and sale. In this case, the cost of operation refers to 

the cost of resources and labor needed to achieve a given level of 

energy output in the system. The revenue from the operation is obtained 

from the sale of the energy output.

A second type of problem occurs when the level of output derived 

from operation of the reserves is pre-defined. The price factors which 

compose the cost of operation are known. The objective is the defini

tion of the output production process in order to minimize the resultant 

operating cost. This problem will occur in an electric energy generat

ing system when the energy output is established by contracts, for 
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instance. The operating cost derives from the cost of the energy 

generation and distribution. The optimal solution is obtained by 

selecting a given level of energy generation in each unit of the system 

such that the contracted level of energy production is achieved at the 

minimum cost. This problem is referred to as the process optimization 

problem.

2.2 Strategic and Tactical Decisions

In the task of operation of reserves two kinds of decisions may be 

identified: the strategic and the tactical decision. The strategic 

decisions refer to the decisions concerning the operation of the system 

in order to optimize some measure of satisfaction in an expanded time 

horizon and consequently under uncertain future. The tactical decisions 

refer to the short term decisions required to secure the strategic 

goals. The future in tactical decisions is known or assumed known with 

an acceptable degree of accuracy. In this study any set of decisions 

made under complete knowledge of the future is considered to be of the 

tactical type.

A basic distinction and a paradox exist between tactical and 

strategic decisions:

"In the world of certainty we can (and we must) make our 
present and our future decisions today. In the world of 
uncertainty we are apparently faced with an unsurmountable 
dilemma. We can not today make our present and future 
decisions at once because the progressive influence of change 
upon the known factors will give us valuable information in 
making our future decisions. But we cannot take our present 
decisions today either, (if we) let our future decisions fall 
where they may because we could not make long-term optimum 
calculations" (Massé, 1963, p. 249).

The implications of this paradox are that inherent to any strategy 

there will be forecastings of the alternative futures that must be 
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updated as long as new information about the future is known. This 

attitude of postponing the decisions for the sake of better forecastings 

is the main difference between tactical and strategic decisions.

In a strategic decision the present optimal decision is made taking 

into account what may occur in the future if this decision is made and 

then what the optimal decision would be. A tree of decisions may be 

abstractly defined with each node representing a possible state of the 

system in the future. State of the system in this case is defined as 

the collection of all relevant information available to define the 

instantaneous condition of the system and to forecast possible future 

conditions. It eventually includes among other informations quantifica

tion of the reserves and past inflows. Branches linking two nodes 

represent decisions made and the consequent transition between system's 

states. The optimization of the operation is performed by selecting in 

each node (or state) the best decision to be made for the best overall 

results.

Strategy definition can be overpowering when several decisions, 

alternative futures and informations about the system's state exist. A 

simplification used in order to decrease the computational effort is to 

consider only a limited set of states or decisions of the system. 

Sometimes this task is performed through the discretization of the 

continuous variables of the problem. Other simplification restricts the 

amount of information used in the definition of the system's states. 

Empirism to define the strategy is also used for simplification.

These kinds of simplifications define an incomplete strategy. In 

the first two examples, an incomplete definition is presented because 
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not all states of the system or decisions are considered. In the last 

case an incomplete conceptualization of the tree of decisions is used.

It is clear that an incomplete strategy can be optimal only as an 

approximation. However, in the presence of a considerable body of 

information the definition of complete strategies quickly becomes 

impractical (Arrow, 1957, p. 529).

Hence, there are two hinderances to optimal operation of reserves 

that are increasing the cost one has to pay for the uncertainty. One, 

inherent to the uncertainty itself, is the insufficient knowledge of 

reality. This causes delays in decision making until part of the 

"uncertainty becomes known" (Massé, 1946a, p. 27), or until better 

predictions can be obtained. The second barrier is formed by the 

limitations in processing considerable amounts of information concerning 

the future in the strategy definition.

2.3 Optimal Operation of Reserves

The fundamental decision (tactical or strategic) in operation of 

reserves is to decide the quantity of goods to consume now and the 

amount of goods to leave in reserve for future usage. The reserve acts 

as a device through which the goods are transferred from present to 

future. This temporal allocation involves a well defined complexity.

"The same good available in two different times must be 
considered as representative of two different, goods from the 
economic point of view" (Massé. 1946a, p. 41).

If the good had the same worth (or implied same satisfaction) 

whether used now or in the future no problem of operation would exist. 

Any allocation would be optimal since it would imply the same overall 

satisfaction.
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Suppose the revenue (or satisfaction) derived from the 

instantaneous usage of the goods in reserve is known and depends unique

ly on the level of usage of the goods at each instant. Suppose also the 

revenue (or satisfaction) obtained from maintaining the goods in reserve 

for optimal use in the future is known. An optimal decision relating 

the quantity of goods to be used now and those to be maintained in 

reserve may be made through the following reasoning. Consider a given 

level of instantaneous usage of the goods. Suppose an additional in

finitesimal quantity of goods is allotted to be used at the present 

instant, decreasing the remaining quantity of goods in storage. Suppose 

also it will increase the instantaneous revenues and decrease the reve

nues obtained with the future usage of the remaining goods in reserve. 

If the increase in the instantaneous revenue is greater than the de

crease in the future revenue of the remaining storage, the new level of 

allocation of goods defines an improved solution. In this case, improv

ed solutions may be further obtained by increasing the instantaneous 

usage of goods. Otherwise, if the increase in the instantaneous revenue 

is less than the decrease in the future revenue, the initial level of 

allocation of goods is better than the new level. In this case, im

provement may be further attained by .increasing the reserves. A situa

tion may occur where the increase in the instantaneous revenue is equal 

to the decrease in the future revenue when an infinitesimal increase in 

the instantaneous usage of the goods is made. In this case no improve

ments will result by increasing infinitesimally the usage or the re

serves of the goods at the given instant. In an optimal allocation this 

situation obviously occurs.
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In mathematical terminology this necessary condition for the 

optimal decision may be stated as: the optimal decision occurs when the 

marginal value of revenues derived from instantaneous usage of goods 

equals the marginal value of revenues derived from future usage of the 

remaining goods in reserve. Hence, the problem of operation of reserves 

is solved through the definition of the functions of revenues from 

instantaneous and future usage of goods. The values of instantaneous 

usage of goods and the resultant remaining reserves are optimally 

obtained when the marginal values of the respective functions of revenue 

are equal.

The revenues derived from the use of goods at each instant of 

operation are generally known. Difficulties may exist in relation to 

the definition of revenues of future usage of goods in storage. When 

the future is deterministic, all information is available for 

computation. In Chapter 5 a method is proposed to accomplish this task 

in a particular problem of operation of reserves. When the future is 

uncertain however, some complexities are introduced. The reserves 

depend on the decisions made in the past. Reciprocally, the decisions 

made in the past must take into account the future revenue of the 

reserves. However, since the future is uncertain so is the optimal 

decision and the future revenue. In this case one is compelled to 

compare an instantaneous and certain revenue derived from the instan

taneous usage of the goods with a future and uncertain revenue derived 

from the future usage of the remaining goods in reserve. In some cir

cumstances the uncertain future revenue of the reserves may be con

sidered through its mathematical expectation. It occurs in cases where 

the actuarial risk situation prevails (Laufer, 1977, p. 200). This 
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situation arises whenever many decisions are concurrently made and are 

similar and independent of each other. Moreover, one is interested in 

the overall consequences of the decisions and not in their isolated 

consequences. In this case, the optimal decision is obtained when the 

marginal value of revenues from instantaneous usage of goods equals the 

expected marginal value of revenues from future usage of remaining goods 

in reserve.

In both problems it is implicitly assumed that the function of 

revenues from the instantaneous use of the goods is readily available. 

The problem may become more complex when the instantaneous revenues also 

depend on the future. This situation occurs when the instantaneous 

worth of the goods depends on its future availability. For instance, if 

the commodity is water and the usage is crop irrigation some future 

temporal pattern of water supply has to be available in order to estab

lish the instantaneous worth of the water. For example, a given volume 

of water used for irrigation in the beginning of the crop season will 

have no value if the crop is lost later due to inadequate water supply. 

In this case, a guarantee of future water supply must exist for the 

water to be benefitially used in the present.

In some circumstances the instantaneous revenue function may be 

considered independent of the future availability of goods. In electric 

energy generating systems this may occur in the two basic optimization 

problems. In the first problem, output optimization, the guarantee or 

dependability of the energy supply does not affect the selling price in 

cases when the demand market is large compared with production capabil

ity of the system and several alternate systems can supply the energy. 

In the process optimization problem the independence comes naturally 

when the generating units are always able to provide the energy demand.
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2.4 Elementary Time Interval of Operation

Decisions must be made anticipating the time interval of 

implementation. This permits the groups involved in the production 

(suppliers) and usage (users) of the goods to take the adequate measures 

to make the decision effective. For instance, suppose the decision 

refers to the quantification of the water release from a reservoir. 

Some anticipation may be needed to transmit the decision to the reser

voir's operator and allow him enough time to set the proper gate open

ing. Some anticipation is also required to allow the users of the water 

to perform the necessary steps to receive and use the released water.

Generally a program of operation valid for an elementary time 

interval is also established. The objective is to prevent suppliers and 

users to continually adapt to a changing condition of operation. Taking 

the same example given before, releases from the reservoir are estab

lished for an elementary time interval equal to, say, one day, one week 

or one month.

The length of this elementary time interval defines two basic 

schemes of operation of water reserves (Massé, 1946b, p. 131-133). In 

the first scheme the water inflow during the elementary time interval 

can be accurately forecast when the decision is made. Therefore no 

problem exists in the determination of the remaining storage at the end 

of the elementary time interval. The decision about the optimal water 

release may be taken in order to enforce the necessary condition of 

optimality, the equality between the marginal revenue of the instan

taneous release and the marginal expected future revenue of the remain

ing storage.
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In the second scheme of operation the forecast of the water inflow 

during the elementary time interval is subject to some degree of 

uncertainty. Therefore, at the time of the decision, one cannot know 

for sure what will be the remaining storage of the reservoir at the end 

of the elementary time interval. In such a situation the necessary 

condition for the optimal operation cannot be enforced. Another source 

of uncertainty, the uncertainty in following the optimal strategy of 

operation, is then introduced into the problem.

Therefore in the choice of the elementary time interval two 

opposing considerations are present. It must be short enough to avoid 

inaccurate forecasts and risks involved in not following the optimal 

strategy. It must also have enough length to allow the suppliers and 

the users to take the necessary measures to adequately implement the 

decision.

A third consideration has been widely used in reservoir operation 

studies to define elementary time intervals. An increase of the elemen

tary time interval is adopted as an artifice to decrease the computa

tional effort in derivation of the optimal strategy. This artifice 

generally determines the utilization of the second scheme of operation.

2.5 The Water Reserves in Electric Energy Generating Systems

Electric energy presents some particularities that regulate 

production, transmission, and usage. It may feasibly be transformed 

into almost any kind of work; it is relatively easy to be transported 

large distances without time delay; but the large scale storage of 

electric energy is economically infeasible. As a consequence, the 

production of electric energy follows the demand fluctuation although 

the generating units may be located far from the users.
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In the production of electric energy the most common primary energy 

supply used in the process is the kinectic or potential energy of the 

water or the thermal energy from fuel burning or nuclear fission. An 

important characteristic of the generating units is related to the 

availability and cost of this primary energy supply. In the case of the 

kinetic or potential energy of water the availability depends on the 

water inflow which is random in natural water streams. In the case of 

fuel burning or nuclear fission it may be considered deterministic. The 

variable operating cost of a single purpose, hydropower unit is practi

cally null. In the other units it is directly related to the quantities 

of fuel required for the electrical generation. Thus, the generating 

units may be conveniently classified as hydroelectric or thermoelectric 

units.

In a hydroelectric generating unit without water reserves the water 

supply cannot be stored. If this unit is part of a hydrothermal system 

it is logical to use prioritarily all water supply to produce electri

city. The remaining demand would then be supplied by the thermal 

units. If the primary energy supply to the thermal units is assumed 

unlimited no problem of allocation between present and future exists. 

In such a situation the operational problem is essentially tactical 

since the future is not relevant for the present decision. The decision 

will be defined by the best combination of production from each thermal 

unit to provide the remaining electricity demand at minimum production 

cost. If electricity output is fixed as in the process optimization 

problem (section 2.1), the solution is determined simply by first using 

the less expensive units until all demand is provided. Otherwise, in 

the output optimization problem, the optimal level of electric produc

tion is such that the marginal benefit of the electric supply equals the 
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marginal cost at the most expensive thermal unit or the thermal units 

that are generating at the full capacity.

Introduction of water reserves in the system initiates the 

trade-off with the future. The breakdown between hydro and thermoenergy 

production is only part of the whole solution procedure. This part 

defines the variable cost of electricity production under several alter

native repartitions of the production between hydro and thermal units. 

As the variable cost of hydrogenerating is null the variable cost of 

electricity production is determined by the thermogeneration.

In the output optimization problem the concern is with the net 

benefit of the electricity output. The decisions in each time interval 

are 1) the total electricity production and 2) the breakdown between hy

dro and thermoenergy productions. Focusing attention on to one time in

terval only the best breakdown is obtained by using all hydroelectricity 

available since its cost is null. After that, thermoelectricity will be 

generated until thermal units are producing energy at their maximum 

capacities or the marginal cost of energy production equals the marginal 

benefit. However, when the trade-off with the future is introduced this 

solution usually becomes non optimal due to the limited and random 

supply of water. Even then a characteristic of the optimal unique time 

interval operation continues to be present. The marginal benefit of 

electricity supply has to be equal to marginal cost of the production. 

As a consequence, if the optimal level of hydroelectric energy produc

tion is known the optimal thermoelectric production may be defined 

trivially at the equality of the marginal values of cost and benefit. 

The definition of the optimal level of hydrogeneration may then be 

determined independently of thermogeneration.
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When the future is deterministic the optimal instantaneous 

hydrogeneration is such that its marginal benefit is equal to the mar

ginal benefit derived from optimal usage of the remaining water storage. 

Suppose mathematical expectations can be utilized when the future is 

uncertain. Then the optimal instantaneous hydrogeneration will be 

defined when its marginal benefit is equal to the marginal expected 

future benefit derived from optimal operation of remaining water stor

age. Consequently, the optimal trade-off with the future is in both 

cases accomplished in terms of hydrogeneration only. This conclusion is 

not surprising since no trade-off with the future is required for 

thermogeneration because its related primary energy supply is considered 

unlimited.

The process optimization problem is easier to analyze. In this 

problem electric output is previously defined and the objective is to 

minimize the cost of operation. The thermogeneration will be trivial

ly defined as the remaining energy output to be achieved after the 

optimal hydrogeneration was determined. The cost of operation and more 

important, its marginal value is derived from the thermogeneration since 

the cost of hydrogeneration may be considered null. Consequently the 

objective is to minimize the cost of thermogeneration. The resultant 

optimal instantaneous level of hydrogeneration is such that the marginal 

instantaneous operating cost equals the marginal expected future operat

ing costs with the optimal operation of remaining water reserves.

In conclusion, problems of output and process optimization in 

hydrothermal electric energy generating systems will be solved essen

tially by the same procedure of trade-off with the future. In both 

trade-offs attention is focused on the optimal operation of the hydro

electric units only.
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A final consideration related to the definition of an elementary 

time interval of operation is needed. As previously stated, electric 

energy cannot be economically stored on a large scale. As a consequence 

the electricity is produced, transported and distributed according to 

the instantaneous demand. The use of elementary time interval of opera

tion results in the consideration of average values of the variables in 

the time interval. This situation normally does not cause difficulties 

in water supply systems as long as secondary regulations are available 

to provide the demand according to its occurrence pattern inside the 

elementary time interval. However, electric energy systems have no 

secondary regulations. The problem of provision of the energy demand 

inside the elementary time interval must be considered in the operation. 

This problem is usually called dispatching.



Chapter 3

PROBLEM FORMULATION

A hypothetical hydrothermal electric energy generating system is 

defined in this chapter. It is based on a hydrothermal system in south

ern Brazil; the projected completion date is 1983. When available, real 

figures were adopted in the formulation of the problem; however, assump

tions were used when they appeared to be sound or when information was 

not available.

3.1 Formulation

The configuration of the system is presented in Figure 1. The 

region includes three Brazilian states: Parana, Santa Catarina and Rio 

Grande do Sul. The forecasted weekly energy demand for the region by 

the year 1983 is presented in Table 1. The energy unit adopted is the 

Equivalent Megawatt (Eq. MW) which is equal to the average power demand 

during a given time period. The conversion to Megawatt-hours (MWh) is 

made by multiplying Eq. MW by the number of hours in the period.

The hydroelectric generating system is composed of 8 hydropower 

plants with a total capacity of 6,588 MW when installed. The water re

serves are formed by 6 reservoirs located on 4 rivers with a total 

storage capacity of 13,449 hm3 . Two sets of hydroplants with 3 units 

each are formed by serially linked hydroplants. The set at the Jacuí 

River is regulated by one reservoir only. The other set is located at 

the Iguaçu River and has one reservoir at each plant. A transbasin 

diversion is located at the Capivari - Cachoeira hydropower development. 

On the Capivari river a reservoir with a small regulating capacity was
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Figure 1. Hydropower Development in the Region

Salto Osorio (SO)

Salto Santiago (SS)

Foz do Areia ( FA)

Passo Fundo (PF)

Passo Real (PR) 
Jacuí (JC)
Itauba (IT)

Capivari-Cachoeira (CC)
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Table 1. Weekly energy demand. 
(Eq. MW)

Week Demand Week Demand Week Demand

1 2746 19 2811 37 2883

2 2758 20 2826 38 2890

3 2778 21 2839 39 2899

4 2806 22 2850 40 2909

5 2833 23 2859 41 2920

6 2855 24 2866 42 2928

7 2869 25 2865 43 2933

8 2862 26 2863 44 2939

9 2849 27 2859 45 2946

10 2831 28 2856 46 2956

11 2812 29 2856 47 2978

12 2797 30 2862 48 3002

13 2784 31 2868 49 3026

14 2775 32 2874 50 3051

15 2768 33 2879 51 3070

16 2769 34 2880 52 3087

17 2779 35 2880

18 2795 36 2881

Source: GCOI-SUL, 1978.
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built and its water is diverted through a 13 km tunnel to the hydroplant 

located at the Cachoeira River. Table 2 presents the characteristics of 

each hydroplant.

The overall hydroplant efficiencies and hydraulic losses are 

considered constant in each hydroplant. The net hydraulic head is 

computed by considering the variation in the reservoir levels; the tail

water elevation is assumed constant. The transmission losses due to 

the electricity transportation are included in the overall efficiency.

Some small hydropower developments scattered through the region are 

considered as a block contribution to electric production in the system. 

Their contribution has been evaluated based on the report of GCOI-Sul 

(1978, Annex 6 and 9). Their maximum weekly contribution is 172 Eq. MW.

Two transfers of energy from the electric generating system in 

southeast Brazil are available with a constant total of 460 Eq. MW 

(Table 3).

The thermoelectric generating system is composed of 8 units with a 

total installed capacity of 963 MW. The characteristics of each one are 

presented in Table 3.

A source of pre-fixed energy generation is the minimum required 

generation of each thermoplant (GCOI-Sul, 1979, p. 11 and Annex 10). 

The minimum value of generation in thermoplants is adopted to avoid 

delay from starting a unit in an idle state and to bringing it up to the 

required production rate. It also eliminates the consideration of the 

cost to start up the unit. The minimum thermogeneration is equal to 

562 Eq. MW during a week of maximum contribution.

Table 4 presents the minimum and maximum energy production provided 

by thermoplants, small hydroplants and energy transfers for the year 

1983, including maintenance considerations. The minimum energy



Table 2. Characteristics of the hydroplants.

Source: ELETROSUL, 1979.

hydraulic heads efficiency load
turbine max min rated rated flow and losses factor capacity

Site type (m) (m3/s) (%) - (m) (%) (MW)

Site

Maximum Storage 
(hm3)

Minimum Storage 
(hm3)

Minimum Release
(m3/s)
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Table 3. Characteristics of the thermoplants and energy 
transfers.

Plant

electricity production

fuel
maximum 
(Eq.MW)

minimum 
(Eq.MW)

average cost 
($/MWh)

369-425 208-241 12.5 coal

#2 178-357 134-268 25.8 coal

# 3 46-61 14-29 28.7 coal

16-24 5-5 31.5 coal

# 5 9-14 0-0 34.4 coal

# 6 300-300 0-0 40.0 transfer I

# 7 28-56 16-16 45.0 oil

if 8 8-16 0-0 80.0 oil

#9 10-10 0-0 87.0 oil

if 10 160-160 0-0 100.0 transfer II

Notes: 1) the variation of the maximum and minimum production values 
refers to the planned outages through the year,

2) transfer refers to hydroelectricity brough from outside of 
the region.

Sources: 1) maximum and minimum production from GCOI-Sul, 1978, 
2) average costs are assumed based in personnal 

communications (ELETROSUL, 1979).
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Table 4. Maximum and minimum energy production provided by 
thermoplants, small hydroplants and energy transfers.

(Eq. MW)

Source: GCOI-Sul, 1978.

week min max week min max week min max

1 600 1416 19 603 1417 36 733 1579

2 600 1408 20 603 1417 37 733 1579

3 600 1408 21 603 1417 38 733 1579

4 600 1416 22 603 1432 39 733 1579

5 604 1408 23 609 1404 40 702 1540

6 604 1408 24 609 1405 41 702 1540

7 604 1408 25 609 1405 42 702 1532

8 604 1408 26 609 1405 43 702 1540

9 618 1432 27 612 1442 44 737 1597

10 618 1432 28 612 1442 45 737 1589

11 618 1432 29 612 1442 46 737 1589

12 618 1432 30 612 1442 47 737 1590

13 618 1432 31 682 1503 48 737 1598

14 590 1393 32 682 1503 49 693 1531

15 590 1389 33 682 1503 50 693 1531

16 590 1390 34 682 1503 51 693 1531

17 590 1394 35 733 1554 52 693 1531

18 603 1417
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production will be subtracted from the total energy demand giving the 

net demand for energy.

Table 5 presents some statistical parameters of the inflows to each 

hydroplant during selected weeks of the year. In serially-linked hydro

plants the value of the inflows refers solely to that part of the total 

observed inflow which originated after the section where the upstream 

hydroplant is located. For instance, the values of the series of the 

inflows in Salto Osorio are given by the observed inflows in Salto 

Osorio discounted by the observed inflows in Salto Santiago for each 

time interval. The evaporation in each reservoir is assumed to be 

equivalent to rainfall and secondary water inflows to the reservoir; 

hence, it is not accounted.

The travel times of the water between serially linked hydroplants 

are considered constant. Table 6 presents the distance between the 

hydroplants and the assumed travel times in number of weeks. The dis

tances are always short enough to have travel times shorter than one 

week. In other words, the water being released from a hydroplant will 

reach the downstream hydroplant during the same time interval. To 

increase the generality of the case study the travel time between the 

hydroplants of Foz do Areia and Salto Santiago was considered 1 week. 

In this case, the release from Foz do Areia will reach Salto Santiago 

during the following week.

The operational objective of the system is to provide the electric 

energy demanded at minimum cost. Hence, the problem discussed here is 

one of the process optimization (see section 2.1). Estimate of the 

energy demand is assumed to have a sufficient order of accuracy to be 

considered deterministically as compared with the other sources of 

uncertainty in the problem.



Site Weeks: 1st 6 th 11th 16th 21th 26th 31th 36th 41th 46th 50th

aver. 131.4 102.7 87.8 129.4 191.7 215.4 214.4 281.7 307.8 166.0 147.9

corr. 0.94 0.98 0.91 0.96 0.97 0.98 0.97 0.99 0.99 0.97 0.99
aver. 53.1 39.9 38.9 53.2 76.8 81.2 92.4 114.6 116.0 65.1 57.7

corr. 0.93 0.98 0.94 0.96 0.98 0.98 0.96 0.98 0.99 0.97 0.99
aver. 433.9 512.4 547.0 400.5 453.6 535.2 489.2 547.0 712.6 586.0 489.8

corr. 0.92 0.99 0.98 0.94 0.97 0.98 0.97 0.99 0.98 0.97 0.99
aver. 298.6 344.7 294.6 269.4 330.4 377.8 331.0 358.4 561.8 424.3 329.3

corr. 0.95 0.99 0.96 0.91 0.97 0.98 0.95 0.98 0.99 0.96 0.99
aver. 43.3 59.0 39.9 35.5 41.5 49.6 46.0 62.5 77.7 55.5 44.2

corr. 0.96 0.99 0.94 0.94 0.97 0.98 0.93 0.99 0.96 0.96 0.95
aver. 35.3 28.6 26.3 31.7 47.2 54.1 57.7 73.7 78.3 52.3 40.9

corr. 0.92 0.97 0.97 0.98 0.96 0.98 0.95 0.99 0.98 0.97 0.99
aver. 20.1 24.4 22.3 16.5 14.9 13.9 12.3 14.0 17.9 18.2 18.9

corr. 0.91 0.99 0.98 0.95 0.93 0.96 0.98 0.98 0.98 0.98 0.98

Table 5. Statistical parameters of the inflows. 
(m3/s)
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Table 6. Distances and travel times between serially-linked plants.

Plant sites distance travel time
upstream - downstream km weeks

P. Real - Jacuí 6 0

Jacuí - Itaúba 35 0

F. Areia - S. Santiago 185 1

S. Santiago - S. Osório 72 0

The elementary time interval of operation is considered to be one 

week. The following reasons support this choice. A week is long enough 

to permit adequate forethought so that effective decisions can be made. 

It is short enough to allow accurate forecasts of the water entering in 

the system during the interval. Finally it has the amplitude of one of 

the fundamental cycles of the demand variation.

The average cost of thermoenergy production or transfers is 

presented in Table 3. These values were computed based on information 

from ELETROSUL (1979) or were assumed considering information about the 

economic efficiency of operations in each unit presented in GCOI-Sul 

(1978, Annex 11).

The water resources developments are single purpose developments. 

Their objective is solely the production of electric energy. The vari

able costs of their operation are considered null. Minimum release 

values allow for other possible uses of water. However, these are 

assumed to be secondary objectives met on the basis of water availabil

ity, except in the hydropower development of Capivari-Cachoeira.
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The operating costs of the system are derived from the operating 

costs of its thermoplants. Energy shortages may eventually occur in the 

operation. Nevertheless, their magnitude is not considered a disaster

level occurrence. Therefore, the shortage is approached through a cost 

function according the practice adopted in the operation of the actual 

system (GCOI-Sul, 1978). This cost function reflects the cost of the 

mitigating measures used in case of shortage occurrences. It may in

clude the purchase of energy from other regions, the adoption of energy 

conservation programs, etc. Eventually, the cost of the shortage may 

reflect the actual damages to the users. The report GCOI-Sul (1978, p. 

17) does not mention the basis upon what such a cost function has been 

defined.

Figure 2 presents a typical function for the marginal cost of the 

thermoenergy generation plus shortages. The function was defined by 

ordering the thermoplants according to their average cost of generation. 

The marginal cost of shortages is attached to the portion of the energy 

demand which eventually will not be provided. Each bar in the histogram 

presented in Figure 2 represents a thermoplant. The abscissa shows the 

variable energy generation and the ordinate stands for the average cost 

of generation of each thermoplant. The maximum variable energy genera

tion is the maximum value of energy generation less the minimum fixed 

energy generation of each unit (see Table 3). As the maximum and mini

mum generation vary along the year, a cost function is defined for each 

week.

The marginal cost of the shortages was defined based on the data 

presented in the report of GCOI-Sul (1978, p. 17). After a sudden 

linear increase in the marginal cost of the most expensive thermoplant



Figure 2. Marginal Cost of Energy Production
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to $500 per MWh, the marginal cost of shortages varies linearly up to 

the value $700 per MWh. A piecewise linear function was also used to 

represent the marginal cost of the thermoenergy generation. It was 

adjusted following the trend represented by the histogram of the average 

costs of thermogeneration (Figure 2).

Figure 2 also depicts the way the system is operated. The energy 

demand, which has a total value of 3000 Eq. MW in the figure, will 

initially be discounted by the fixed energy production. The fixed 

energy production is defined by the minimum thermal energy generation 

plus the firm energy generation of the small hydroplants in the system 

(see Table 4). The net energy demand, about 2250 Eq. MW, will be sup

plied by thermo and hydroenergy. Initially, the hydroenergy will be 

used to avoid energy shortages. When no shortages occur, hydroenergy 

generation will substitute the most expensive thermal units. For in

stance, assume that hydroenergy is used to meet the demand except for a 

remaining demand of 1250 Eq. MW. This situation is shown by the point A 

in Figure 2. The remaining demand is represented by the value of the 

abscissa of A. It cannot be supplied entirely by thermoplants. Conse

quently, the thermoplants are generating at their maximum capacities. 

Moreover, a shortage, with a marginal cost of about $540 per MWh 

(ordinate of A), will occur. Another example is shown by the point B in 

Figure 2. In this case the hydroenergy is used to meet the demand 

except for a remaining demand of 600 Eq. MW. This remaining demand can 

be entirely provided by the thermoplants. In this case, the four cheap

est thermoplants are generating at their full capacities. The fifth 

thermoplant is loaded below its maximum capacity. The resultant mar

ginal cost of operation is about $40 per MWh. In both cases the cost of
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operation is given by the area below the marginal cost curve up to point 

A or B, respectively.

It has to be mentioned that despite the assumptions made in the 

definition of the marginal cost function, it has a very general shape. 

The related cost function obtained by integration would have a convex 

piecewise quadratic form which is well suited to almost any convex 

function. The marginal cost function is a non-decreasing function of 

the thermoenergy production. Therefore, the law of non-increasing 

marginal values applies to benefits from the substitution of thermo

energy by hydroenergy. It states that the most expensive sources of 

energy will be substituted first in the optimum operation.

3.2 Mathematical Modeling

The objective of the system’s operation is the minimization of the 

expected operating cost to provide the energy demand in 1983.

The mathematical formulation of this objective is.

where f [ •] is the marginal cost of operation of the system when 

hydroenergy generation is x(t) = x(t) (see Figure 2). The term D(t) - 

x(t) represents the net energy demand less the hydrogeneration during 

the t-th time interval; hence, it refers to the thermoenergy generation 

and eventual shortage. The integral computes the operating cost of the 

system if the hydroenergy generation is x(t). Its lower limit is given 

by the point where no thermoenergy is used or the hydro generation 

equals the net demand [x(t) = xl = D(t)]. The upper limit is defined 

by the point where the hydroenergy generation is x(t) = x2 = x(t).
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The symbols are defined as:

E{ •} is the mathematical expectation operator

t is the index of the t-th time interval of opera
tion (week)

D(t) is the net electric energy demand during the t-th
time interval, given by the total energy demand 
less the fixed energy production (Eq. MW)

x(t) is the hydroenergy generation (Eq. MW) during the
t-th time interval, which is given by

x(t) = Σ x(j,t) (3.2)
j

where x(j,t) is the energy generation at the hydroplant of 
index j during the t-th time interval

The computation of the energy production in each hydroplant is 

made by

x(j,t) = alpha(j,t) * w(j,t) (3.3)

where w(j,t) is the water released through the turbines of the 
hydroplant j during the t-th time interval (hm3)

alpha(j,t) is the energy conversion factor given by

alpha(j,t) = 9.81 * Eff(j) * {h[ j,s(j,t)] - Hloss(j)}/Transf (3.4)

where 9.81 is the gravitational acceleration (m/sec2)

Eff(j) is the efficiency for the hydroplant of index j

h[j,s(j,t)] is the average hydraulic head at the hydroplant 
of index j during the t-th time interval (m) 

s(j,t) is the average water storage in the reservoir of 
index j during the t-th time interval (hm3)

Hloss(j) is the hydraulic losses in the hydroplant of index 
j (m)

Transf is the constant factor of transformation to 
Equivalent Megawatts

The optimization is subject to the following constraints:
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1. Water Balance Equalities

s(j,t+l) = s(j,t) + q(j,t) + qu(j,t) - w(j,t) - spill(j,t) 
(3.5) 

for all j and t = 1,52

where s(j,t+l) is the water content in the reservoir of index j 
at the beginning of the (t+l)-th time interval 
(hm3)

s(j,t) is the water content in the reservoir of index j 
at the beginning of the t-th time interval (hm3)

q(j,t) is the natural water inflow to reservoir j dur
ing time interval t (hm3)

qu(j,t) is the inflow to reservoir j during time inter
val t caused by previous releases from the up
stream reservoir (hm3)

spill(j,t) is the water volume spilled from reservoir j 
during time interval t (hm3)

2. Maximum Reservoir Content Inequalities

s(j,t) ≤ Smax(j), for all j and t = 1,52 (3.6)

3. Minimum Reservoir Content Inequalities

s(j,t) ≥ Smin(j), for all j and t = 1,52 (3.7)

4. Maximum Release Inequalities

w(j,t) ≤ Wmax(j,t,s(j,t)), for all j and t = 1,52 (3.8)

5. Minimum Release Commitment

w(j,t) ≥ Wmin(j), for all j and t = 1,52 (3.9)

where Smax(j) is the maximum water content in reservoir j (hm3)

Smin(j) is the minimum water content in reservoir j (hm3)

Wmax(.) is the maximum feasible release through the 
turbines of reservoir j during time interval t, 
of which the derivation is presented in section 
3.3.3 (hm3)

Wmin(j) is the minimum water volume to be released from 
reservoir j during the t-th time interval when 
enough water is available. For the hydropower 
development of Capivari-Cachoeira the enforcement 
of such an inequality is always required (hm3).
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3.2.1 Hydraulic Head Function

The hydraulic head is given by the difference between the water 

elevation upstream of the plant and the water elevation in the tail

water. The upstream water elevation is given for the hydroplants with 

reservoirs by a polynomial function with the value of the water content 

in the reservoir. For run-of-river plants the hydraulic head is fixed.

The tailwater is assumed to have a constant elevation calculated as 

the average value of the variable elevation in each reservoir.

3.2.2 Maximum Release Computation

Two upper limits exist for the instantaneous release through a 

turbine-generator system; one is given by the turbine limitation, the 

other is given by the generator capacity (Pereira, 1976). For impulse 

and reaction turbines the limitation (xtur) is proportional to the 

square root of the quotient of the actual (h) and the rated head 

(hrated). The scale factor is the rated flow for the turbine 

(xrated)

xtur = (h/hrated)2 * xrated (3.10)

For propeller turbines the limitation is the rated flow itself 

xtur = xrated (3.11)

The instantaneous flow limitation for generators (xgen) is a 

function of the installed capacity (cap)

xgen = cap/alpha (3.12)

where alpha is the energy conversion factor defined in Equation (3.4).

The value of the maximum instantaneous release is given by the 

minimum of the two limitations

ximax = min(xtur,xgen) (3.13)
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The maximum instantaneous release cannot be operated continuously 

in a power plant (Pereira, 1976). Problems related with heating of the 

generator and equipment outages decrease the maximum continuous release 

while in operation. The equipment outages are generally calculated 

through a percentage outage factor representing the time percentage of 

outages (off). The heating limitation is calculated through a maximum 

capacity factor (Ifmax) i.e., a maximum quotient between the maximum 

capacity of the generator and the maximum feasible continuous load while 

in operation.

If the plant were in continuous operation with the maximum 

instantaneous release ximax, the maximum attainable capacity factor (cf) 

would be

cf = xgen/ximax (3.14)

If the generator is limiting the maximum instantaneous water 

release or ximax = xgen, cf will equal 1 and heating problems will 

occur as long lfmax < 1. Therefore the maximum continuous release will 

be such that cf = lfmax and considering the outage factor

xmax = (1 - off) * ximax/lfmax (3.15)

If the turbine limits the maximum instantaneous release, then cf < 

1. If cf is also less than lfmax no heating problems will occur and

xmax = (1 - off) * ximax (3.16)

If, however, lfmax < cf < 1 the maximum attainable capacity 

factor is still greater than the maximum feasible factor. The genera

tor, however, will never be at its full capacity and a practical ap

proximation for xmax is given by

xmax = (1 - off) * ximax/(lfmax/cf) (3.17)



38

3.2.3 Run-of-river Plants

The existence of two run-of-river plants downstream of a reservoir 

plant creates a singular situation. Since they are run-of-river plants 

no reservoir controls their releases. However, part of the water which 

flows to the run-of-river plants has originated from releases made at an 

upstream reservoir plant. Hence, the release of water by the reservoir 

plant must consider what the consequences will be when this release 

reaches the downstream run-of-river plants.

Travel time from the reservoir plant to the farthest downstream 

run-of-river plant is less than one week. This allows the vise of an 

aggregated conception for approaching the operation of these plants. 

The water release from the reservoir should be computed as being opera

tive immediately in all downstream plants. The maximum (continuous) 

release should be computed in order to avoid spill in any plant. 

However, if spill occurs at the reservoir plant the water passing into 

the river will be utilized as much as possible by the run-of-river 

plants.



Chapter 4

OPTIMALITY CONDITIONS FOR. DETERMINISTIC OPERATION

In this chapter the optimal operation of a multi-unit hydroelectric 

energy generating system is derived under deterministic future. An 

inductive approach is used; simpler situations are analyzed before the 

more complex ones. The assumption of a deterministic future is by 

itself a simplification of the real situation where the future is uncer

tain. Application of the results to the real situation of an uncertain 

future will be discussed later.

There are reasons for the study of the optimal operation conditions 

under deterministic future. One is the availability of theorems from 

Mathematical Programming for derivation of the optimality conditions. 

Hopefully, from the optimality conditions under deterministic future the 

optimality conditions for the operation when the future is uncertain may 

be extrapolated. Moreover, from the behavior of the system in its 

optimal deterministic operation some peculiarities that may be noted 

could be used in the study of the operation when the future is 

uncertain.

Initially, the operation of a single reservoir hydroplant with 

constant hydraulic head will be studied. Next, systems with multiple 

reservoir hydroplants will have their optimal operation studied. The 

assumption of invariant hydraulic head will then be relaxed.

4.1 Single Reservoir with Constant Hydraulic Head

The mathematical formulation is
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This integral defines the total cost of operation during each time 

interval t. The function f(.) represents the marginal cost of opera

tion. The expression D(t) - x(t) computes the value of the energy 

demand less the hydroenergy generated during the t-th time interval. 

Its value defines the total thermoenergy generation plus eventual 

shortages during the time interval t. The limits of integration are 

given by

x(t) = xl = D(t)

x(t) = x2 = x(t)

The limit xl represents the marginal cost curve at the origin 

(see Figure 2) when no thermogeneration is used and the demand is sup

plied by hydrogeneration alone. The limit x2 represents the marginal 

cost curve when the hydrogeneration is x(t).

The hydroenergy generation is given by

x(t) = alpha * w(t) (4.3)

where w(t) is the water release through the turbines of the hydro
plant during the time interval t and

alpha is the energy conversion factor, function of the fixed 
hydraulic head, losses and efficiency of the hydroplant's 
operation.

The constraints are:

1. Water Balance Equalities

s(t+l) = s(t) + q(t) - w(t) - spill(t), t = 1,52 (4.4)

where s(t+l) is the water content in the reservoir at the beginning of 
the (t+l)-th time interval (hm3)

s(t) is the water content in the reservoir at the beginning of 
the t-th time interval (hm3)

q(t) is the inflow to the reservoir during the t-th time 
interval (hm3)
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spill(t) is the water spilled from the reservoir during the t-th 
time interval (hm3)

2. Maximum Reservoir Content Inequalities

s(t) ≤ Smax, t = 1,52 (4.5)

where Smax is the maximum water content capacity of the reservoir 
(hm3)

3. Minimum Reservoir Content Inequalities

s(t) ≥ Smin, t = 1,52 (4.6)

where Smin is the minimum water content in the reservoir (hm3) 

4. Maximum Release Inequalities

w(t) ≤ Wmax, t = 1,52 (4.7)

where Wmax is the maximum release capacity of the reservoir during a 
time interval (hm3). Its computation is performed by the 
procedure presented in section 3.2.2

5. Minimum Release Inequalities

w(t) ≥ Wmin, t = 1,52 (4.8)

where Wmin is the minimum required release from the reservoir during 
a time interval (hm3)

The problem is deterministic in nature and thus an initial value 

for the reservoir content has to be defined. This initial value will be 

S1. The final reservoir content will be S53, defined as a strategic 

goal.

The water balance equation may be written as 

t
s(t+l) = S1 + Σ [q(k) - w(k) - spill (k)], t = 1,51 (4.9)

k=l

s(53) = S53 (4.10)

Substituting the above equations in the constraints 

t
Σ (q(k) - w(k) - spill(k)] + S1 - Smax ≤ 0, t = 1,51 (4.11) 

k=l



[q(k) - w(k) - spill(k)] - S1 + Smin ≤ 0, t = 1,51 (4.12)

w(t) - Wmax ≤ 0, t = 1,52 (4.13)

- w(t) + Wmin ≤ 0, t = 1,52 (4.14)

The final reservoir content value defines what may be called Gross Water 

Balance Equality given by

[q(t) - w(t) - spill(t)] + S1 - S53 = 0 (4.15)

4.1.1 Application of the Kuhn-Tucker Theorem

The total cost of operation is a convex function of the hydroenergy 

generation during a time interval and this is a linear function of the 

water release in the same time interval when the hydraulic head is con

stant (Equation 4.3). Hence the objective function is a convex non

linear function of the releases. The constraints are all linear, conse

quently the problem is a non-linear convex optimization problem. The 

necessary conditions for the optimum operation may be derived by appli

cation of the Kuhn-Tucker Theorem of Mathematical Programming.

Following the development presented by Morel-Seytoux (1972, 

lectures 19 and 20, p. 2) it comes 

A. Lagrangian

L[w(t),spill(t),α(t),β(t),γ(t),λ(t),θ] = 
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where α(t), β(t), γ(t), λ(t) and θ are the Lagrange multipliers 

related to the constraints (4.11) to (4.15), respectively.

B. Optimality Condition Equations

By derivation with respect to each variable the optimality 

conditions are obtained as 

1. Either
52 k k
Σ F [x(t)] - Σ α(t) + Σ β(t) + γ(k) - λ(k) - θ ≤ 0 
t=l t=l t=l

if w(k) =0 (4.17)
∂ 52 ) k k

or Σ Ft[x(t)] - Σ α(t) + Σ β(t) + γ(k) - λ(k) - θ = 0∂w(k) t=l t  t=l t=l

if w(k)≥0 (4.18)

for k = 1,51 

2. Either 

k k
Σ α(t) + Σ β(t) - θ ≤ 0 if spill(k) = 0 (4.19)
t=l t=l

k k
or Σ α(t) + Σ β(t) -θ=0 if spill(k) ≥ 0 (4.20)

t=l t=l

for k = 1,51

3. Either 

k 
Σ [q(t) - w(t) - spill(t)] + S1 - Smax ≤ 0 
t=l

if α(k) = 0 (4.21)

k 
or Σ [q(t) - w(t) - spill(t)] + S1 - Smax = 0

t=l

if α(k) ≥ 0 (4.22)

for k = 1,51
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4. Either

k
- Σ [q(t) - w(t) - spill(t)] - S1 + Smin ≤ 0 
t=l

if β(k) = 0 (4.23)

k
or -Σ [q(t) - w(t) - spill(t)] - S1 + Smin = 0

t=l

if β(k) ≥ 0 (4.24)

for k = 1,51

5. Either w(t) - Wmax ≤0 if γ(t) = 0 (4.25)

or w(t) - Wmax =0 if γ(t) ≥ 0 (4.26)

for k = 1,52

6. Either - w(t) + Wmin ≤0 if λ(t) = 0 (4.27)

or - w(t) + Wmin = 0 if λ(t) ≥ 0 (4.28)

for k = 1,52

7. 52
Σ [q(t) - w(t) - spill(t)] + S1 - S53 = 0 (4.29)
t=l

8. All variables but 9 are non negative. 

The equation (4.18) may be presented as 
∂ 52 k k

F [x(t)] = Σ α(t) - Σ β(t) - γ(k) + λ(k) + 6 (4.30) t=l t t=l t=l

Developing the derivative of the left-hand side 
∂ 52 52 x2

∂w(k) Ft[x(t)] = ∫f[t, D(t) - x(t)] dx =

∂ 52 x2
=  Σ ∫ f[t, D(t) - alpha * w(t)] * alpha * dw = ∂w(k) k=l xl

= - alpha * f[k, D(k) - alpha * w(k)]
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Therefore

- alpha * f[k, D(k) - alpha * w(k)] = 

k k
= Σ α(t) - Σ β(t) - γ(k) + λ(k) + θ (4.31)

t=l t=l

This condition states that in the optimum the marginal instanta

neous benefit of the release is equal to the summation of the past and 

instantaneous (t = k) values of the Lagrangian multipliers associated 

with the maximum reservoir content constraint

1. less the summation of the past and instantaneous values of 

the Lagrangian multipliers associated with the minimum reservoir content 

constraint

2. less the instantaneous value of the Lagrangian multiplier

associated with the maximum release constraint

3. plus the instantaneous value of the Lagrangian multiplier

associated with the minimum release constraint

4. plus the value of the Lagrangian multiplier associated with 

the gross water balance constraint.

Suppose the optimal operation in a given period has the following 

characteristics

1. the reservoir will never be maximum or minimum

2. the releases will never be maximum or minimum.

If these conditions occur Equation 4.21, 4.23, 4.25 and 4.27 state 

that the Lagrange multipliers α(t), β(t) , γ(t) and λ(t) are null for 

any time in the given period. Eliminating from Equation 4.31 the null 

variables, the optimality condition will be

- alpha * f[t, D(t) - alpha * w(t)] = (4.32) 
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where Ω stands for the summation of the Lagrange multipliers before 

the analyzed period.

Assume the reservoir reaches maximum storage at the beginning of 

time interval k within the given period. Equation 4.22 states that 

α(k) ≥ 0. The optimality condition will be

for t < k: - alpha * f[t, η(t) - alpha * w(t)] = Ω (4.33)

for t ≥ k: - alpha * f[k, D(k) - alpha * w(k)] = α(k) + Ω (4.34)

Therefore the marginal instantaneous benefit of the releases will still

be constant before and after the maximum reservoir content occurs.

After this instant, though, it will increase by α(k).

If the reservoir reaches the minimum content at the beginning of 

the time interval k, rather than the maximum the marginal instantaneous 

benefit of the releases will decrease by β(k) after k (see Equation 

4.24).

Suppose now the release is maximum during the time interval k. 

Equation 4.26 states that γ(k) ≥ 0. Equation 4.33 will continue to 

state the optimal condition of operation except during the interval k 

where the optimal operation is given by

- alpha * f[k, D(k) - alpha * w(k)] = - γ(k) + Ω (4.35)

or the marginal instantaneous benefit of the release will decrease by 

γ(k) during the time interval k. Otherwise if the release is minimum 

during interval k the marginal instantaneous benefit of the release 

will then increase by λ(k) (see Equation 4.28).

The conclusion is that any time one of the constraints is tightened 

(or active) the related Lagrange multiplier will assume a non-null 

value. This value will be present on the right-hand side of the opti

mality condition given by Equation 4.31 for any instant thereafter if 
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the constraint refers to an extreme value of the reservoir content 

(maximum or minimum).

The interpretation of the optimality condition formulated by the 

Equation 4.31 did not take into consideration the marginal economic 

meaning of the Lagrange multipliers. This marginal meaning states that 

in the optimum solution the Lagrange multiplier associated with a con

straint represents the rate improvement in the optimal value of the 

objective function when the constraint is infinitesimally relaxed. An 

analysis of each Lagrange multiplier under this scope shows

1.α(t) refers to the maximum reservoir content constraint. The 

relaxation of this constraint means Smax is being increased. When 

this happens the rate of improvement in the value of the optimal objec

tive function will be equal to α(t) for an infinitesimal increase in 

Smax. This improvement is derived from the possibility of additional 

water storage at the time of relaxation which will be released later.

2.β(t) refers to the minimum reservoir content constraint. 

Relaxation of this constraint means Smin will decrease. The rate of 

improvement of the objective function for an infinitesimal relaxation 

will be equal to β(t). This is derived from the possibility of releas

ing more water before the relaxation.

3.γ(t) refers to the maximum release constraint; A rate of 

improvement in the optimal value of the objective function equal to 

γ(t) will be derived from an infinitesimal relaxation of the referred 

constraint during the time interval t. This relaxation acts to in

crease Wmax. The improvement will be derived from the possibility of 

the release of more water during the time interval t.
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4.λ(t) refers to the minimum release constraint. A rate of 

improvement equal to λ(t) in the optimal value of the objective func

tion will be caused by an infinitesimal relaxation of the before- 

mentioned constraint during time interval t. Relaxation will now act 

to decrease Wmin. The improvement here is caused by the possibility of 

the release of less water during time interval t.

5. 0 refers to the gross hydrologic balance equality. One of 

the possible interpretations of 0 is that it represents the rate of 

improvement of the optimal value of the objective function derived by an 

infinitesimal decrease in the final water content in the reservoir. The 

improvement will be caused by the possibility of an increase in the 

releases in the operation.

The economic interpretation of the Lagrange multipliers allows them 

to be classified into two groups. The first group includes the Lagrange 

multipliers α(t), β(t) and θ. It refers to the rate of variation of 

the optimal value of the objective function which results from the in

finitesimal variation of storage somewhere in the optimal operation. 

Therefore, these Lagrange multipliers refer to the marginal benefit of 

storage in the optimal operation. The second group includes the 

Lagrange multipliers γ(t) and λ(t). These refer to the rate of 

variation of the optimal value of the objective function which results 

from the infinitesimal variation of the releases somewhere in the opti

mal operation. Hence, these Lagrange multipliers refer to the marginal 

benefit of the releases during a given time interval or to the marginal 

instantaneous benefit of the releases in the optimal operation.

In section 2.3 it was shown that the optimal decision in the 

operation of reserves occurs when the marginal instantaneous benefit of 
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the releases equals the marginal future benefit of the operation of the 

remaining storage. Equation 4.31 is the mathematical formulation of 

such a condition.

The terms which refer to the instantaneous benefit of the releases 

in Equation 4.31 are grouped at the left-hand side

- alpha * f[k, D(k) - alpha * w(k)] + γ(k) - λ(k) = 

k k
= Σ α(t) - Σ β(k) - θ (4.36) 

t=l t=l

Suppose during a given time interval k the optimal release is not 

limited by the maximum or the minimum release constraint. In this case, 

the Lagrange multipliers γ(k) and λ(k) are null. The left hand side 

of Equation 4.36 will be formed by the marginal instantaneous benefit of 

the release. The right hand side will represent the marginal future 

benefit of the remaining storage.

If the optimal release is limited by the maximum or minimum release 

constraint during the k-th time interval, γ(k) or λ(k) will be 

non-null. Nevertheless the marginal future benefit of the remaining 

storage does not change during the time interval k. The Lagrange 

multipliers γ(k) and λ(k) may be interpreted as a correction on the 

value of the marginal instantaneous benefit of the releases when the 

release is tightened by the maximum or minimum release constraint. The 

actual value of these Lagrange multipliers in the optimal operation have 

small significance. As long as they are null the optimal release is 

unconstrained by its maximum or minimum limitations. The corresponding 

value of the release will be defined for each time interval when the 

marginal instantaneous benefit of the release equals the marginal future 

benefit of the remaining storage. Otherwise, when γ(k) or λ(k) are 
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non-null the solution is trivial; the optimal release during the time 

interval k will be maximum or minimum, respectively (Equations 4.26 

and 4.28).

To summarize, the optimal operation of a single reservoir in a 

system with the characteristics of the case study has the following 

conditions:

Optimality Condition 1. In the optimal operation of a single 

reservoir the marginal instantaneous benefit of the releases is equal to 

the marginal future benefit of the remaining storage.

When the optimum release is constrained by the maximum and minimum 

releases a trivial solution occurs (Equations 4.26 and 4.28).

The values of the Lagrange multipliers α(t) and β(t) will be 

always null unless the maximum or minimum storage constraints tighten 

the optimal solution during the time interval t (Equations 4.21 and 

4.23). Or:

Optimality Condition 2. In the optimal operation of a single 

reservoir the marginal future benefit of its storage is constant as long 

as the optimal operation is not tightened by the extreme (maximum or 

minimum) storage constraints.

When the maximum storage constraint tightens the optimal operation 

at the beginning of a time interval the respective Lagrange multiplier 

α(t) is non-null (Equation 4.22). Or:

Optimality Condition 3. In the optimal operation of a single 

reservoir the marginal future benefit of its storage increases only when 

the maximum storage constraint is tightening the optimal operation.

When the minimum storage constraint tightens the optimal operation 

at the beginning of a time interval the correspondent Lagrange multi

plier β(t) is non-null (Equation 4.24). Or:
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Optimality Condition 4. In the optimal operation of a single 

reservoir the marginal future benefit of its storage decreases only when 

the minimum storage constraint is tightening the optimal operation.

The optimal occurrence of spills is stated by Equations 4.19 and 

4.20. The derivative of the objective function related to the spill is 

obviously null. A spill occurrence represents water being lost in the 

operation. Any release of this water through the turbines will improve 

the results of the operation. Consequently, spills may occur in the 

optimal operation only after the release reaches its maximum value. 

This maximum value is given by the minimum between the maximum release 

capacity (Wmax) and the water release which will generate the net 

energy demand during the time interval [D(t)].

Equations 4.19 and 4.20 state that the marginal future benefit of 

the remaining storage is non-negative. It will be null when a spill 

occurs during the time interval. But optimality condition 2 states that 

the marginal future benefit of the remaining storage will be constant as 

long as no maximum or minimum storage occurs. Therefore, when spill 

occurs in the optimal operation it will occur inside a sub-period of 

operation with null marginal future benefit of the remaining storage. 

This sub-period will start and end with maximum or minimum storage.

Assume a sub-period starts with the maximum storage. Optimality 

condition 3 states that the marginal future benefit of the remaining 

storage will increase. As the marginal future benefit of the remaining 

storage is null during the sub-period, it must have previously been 

negative. It violates the non-negativity condition for the marginal 

future benefit of the remaining storage stated by Equations 4.19 and 

4.20. If the sub-period starts with the reservoir empty the marginal 
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future benefit of the remaining storage will then decrease (optimality 

condition 4) and no violation will occur.

Assume now a sub-period with spilling occurrence ends with the 

reservoir empty. Optimality condition 4 states that the marginal future 

benefit of the remaining storage will decrease. If the marginal future 

benefit of the remaining storage is null within the sub-period, it 

should become negative after it; this cannot occur. If however the 

reservoir is full at the end of the sub-period the marginal future bene

fit of the remaining storage will increase and no violation will occur.

Concluding, the sub-period with spilling occurrences must start 

with minimum reservoir storage and must end with maximum reservoir 

storage.

Optimality condition 1 states that optimal releases will be made 

during this sub-period with the marginal instantaneous benefit equal to 

the marginal future benefit of the remaining storage, which is null. 

The marginal instantaneous benefit of the release is null when the net 

energy demand is being provided entirely by hydroenergy generation 

(section 2.1 and Figure 2). Eventually, the release will be tightened 

by the maximum release constraint. This situation results in the triv

ial solution which has a maximum release. Therefore, the optimal opera

tion within the sub-period with spilling occurrences is defined by what 

is here called the maximum release tactic. In this tactic, the release 

is equal to the minimum between the release which will provide the 

energy demanded and the maximum release capacity.

These considerations define the fifth optimality condition of 

operation of the system.
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Optimality Condition 5. In the optimal operation of a single 

reservoir spill may occur in a given period of operation only if the 

marginal future benefit of the storage is null during this period. In 

such a situation, the reservoir storage will be minimum at the beginning 

and maximum at the end of the period. The optimal releases in the 

period are given by the maximum release tactic.

4.1.2 An Alternative Approach

All optimality conditions derived by the application of the 

Kuhn-Tucker theorem may be derived through an alternative, non-mathe- 

matical approach. It is presented in this section since this permits 

more insight into the nature of the optimal operation of a reservoir.

A reserve is a device which allows the transfer of resources avail

able in the present to the future. In the case of water reserves the 

water may be stored when it arrives at the reservoir and kept there for 

future use as long as space is available. Consequently when the reser

voir is full no transfer of water for future use can be made. The water 

must be used as soon as it arrives or it is spilled.

The idea of "transfer to the past" can also be considered in 

optimization under deterministic future. With deterministic future the 

optimal sequence of releases is given by a tactic which is derived at 

the beginning of an operation. Assuming the optimal operation is ob

tained through iterations a transfer to the past occurs when given a 

solution for the operation an improved solution may be obtained by 

"transferring" releases in the future to be done in the past. The 

transfer to the past has also its limitations. One can not transfer 

more water before a given time than the total amount of water available 

at that time. This amount is given by the initial water in reserve plus 
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inflows and less spellings from the beginning of the operation up to 

the present time. At this limit the reservoir will be at its minimum 

content.

The concept of water transfer is very useful in the analysis of 

this problem. In the optimal operation water will always be transferred 

from time t1 to time t2 when the marginal instantaneous benefit of 

the release at t2 is greater than at tl. The optimum marginal in

stantaneous benefit of the releases is constant for all times if no 

limitation in transfer occurs. This is what optimality conditions 1 and 

2 state.

Consider now the case where the reservoir content achieves its 

maximum during a given time. Suppose also the releases before and after 

this time are made with constant marginal instantaneous benefits. If 

the marginal instantaneous benefit of releases decreases after the 

reservoir has its maximum content no limitation exists in the transfer 

of water to the past and the solution is not optimal. However, if the 

marginal instantaneous benefit of the releases increases after the 

maximum reservoir content no improvement can be obtained since transfer 

of releases to the future is infeasible; therefore, the operation is 

optimal. This is the optimality condition 3.

In the case where reservoir content is at a minimum at a given time 

an improved solution can always be achieved when the marginal instanta

neous benefit of releases increases after that time. If the marginal 

instantaneous benefit of the releases decreases the only way to improve 

the solution is by transferring water to the past which is then in

feasible. This is what the optimality condition 4 states.
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In the occurrence of spillings the optimal operation is obviously 

given by the maximum release tactic since it is more beneficial to 

release water than to let it be spilled. Spilling means there is a sur

plus of water during a period which cannot be used, stored or trans

ferred for other periods. This can only occur if the period of surplus 

starts with a minimum reservoir content and ends with maximum reservoir 

content, avoiding any transfers. This is the optimality condition 5.

4.2 Multiple Unlinked Reservoirs with Constant Hydraulic Heads

The mathematical formulation of the problem is

The integral computes the total cost of operation during the time 

inverval t given its marginal cost by the function f(.). D(t) is 

the energy demand during the t-th time interval and x(t) is the total 

energy generation by the hydroplants in the system during the same time 

interval. The limits of integration are given by

x(t) = xl = D(t) (4.38)

x(t) = x2 = x(t)

The limit xl represents the point where no thermogeneration is 

used and the energy demand is entirely supplied by the hydroplants. The 

limit x2 represents the situation where hydroenergy generation is 

x(t) .

Hydroenergy generation is given by

x(t) = Σ alpha(j) * w(j,t) (4.39)
j

where w(j,t) is the water released through the turbines of hydro
plant j during the time interval t (hm3)
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alpha(j) is the energy conversion factor for hydroplant j 
which is a function of the hydraulic head, hydraulic 
losses, and the efficiency at hydroplant j.

The constraints are

1. Water Balance Equalities

s(j,t+l) = s(j,t) + q(j,t) - w(j,t) - spill(j,t) (4.40)

for t = 1,52 and all j.

where s(j,t+l) is the water content in the reservoir j at the
beginning of the time interval t+1 (hm3)

s(j,t) is the water content in the reservoir j at the
beginning of the time interval t (hm3)

q(j,t) is the water inflow to the reservoir j during the
time interval t (hm3)

w(j,t) is the water release through the turbines of the
reservoir j during the time interval t (hm3)

spill(j,t) is the water spilled from the reservoir j during 
the time interval t (hm3).

2. Maximum Reservoir Content Inequalities

s(j,t) ≤ Smax(j) for t = 1,52 and all j (4.41)

where Smax(j) is the maximum storage capacity of the reservoir j.

3. Minimum Reservoir Content Inequalities

s(j,t) ≥ Smin(j) for t = 1,52 and all j (4.42)

where Smin(j) is the minimum storage in the reservoir j.

4. Maximum Release Inequalities

w(j,t) ≤ Wmax(j) for t = 1, 52 and all j (4.43)

where Wmax(j) is the maximum release capacity for the hydroplant 
j during a time interval. Its computation is made 
by the procedure described in section 3.2.2.

5. Minimum Release Inequalities

w(j,t) ≥ Wmin(j) (4.44)

where Wmin(j) is the minimum release in the reservoir j during 
a time interval.
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The maximum release capacity in each reservoir is invariant since 

the hydraulic head is invariant. The problem is deterministic, there

fore, an initial and a final reservoir content must be defined for each 

reservoir. These are defined as S1(j) and S53(j).

The water balance equalities may be written as 

t
s(j,t+l) = S1(j) + Σ [q(j,k) - w(j,k) - spill(j,k)] (4.45)

k=l

for t = 1, 51 and all j

and s(j ,53) = S53(j), for all j (4.46)

The substitution of the values of s(j,t) from Equation 4.45 in 

the constraints 2 to 5 defines for any j 

t
Σ [q(j,k) - w(j,k) - spill(j,k)] + S1(j) - Smax(j) < 0 (4.47)
k=1

for t = 1,51 

t
-Σ [q(j,k) - w(j,k) - spill(j,k)] - S1(j) + Smin(j) ≤ 0, (4.48)
k=1

for t = 1,51

w(j,t) - Wmax(j,t) ≤ 0, t = 1,52 (4.49)

- w(j,t) - Wmin(j,t) ≤ 0, t = 1,52 (4.50)

and the gross water balance equation

52
Σ [q(j,t) - w(j,t) - spill(j,t)] + Sl(j) - S53(j) = 0 (4.51)

t=l

The objective function is convex as in the single reservoir case. 

The application of the Kuhn-Tucker Theorem provides the following neces

sary and sufficient conditions for the optimum.

A. Lagrangian

L[w(j,t),spill(j,t),α(j,t),β(j,t),γ(j,t),λ(j,t),θ(j)] =
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52
Σ F (x(t)] + 

t=l

51 t
Σ Σ α(j,t) * [ Σ [q(j ,k) - w(j,k) - spill(j,k)) + Sl(j) - Smax(j)] + 
j t=l k=l

51 t
Σ Σ β(j,t) * [ Σ [q(j,k) - w(j,k) - spill(j,k)] - Sl(j) + Smin(j)] + 
j t=l k=l

52 52 
Σ γ(j,t) * [w(j,t) - Wmax(j)] + Σ Σ λ(j,t) * [-w(j,t) + Wmin(j)]} + 

j t=l j t=l 

 52 
Σ θ(j) * Σ [q(j,t) - w(j,t) - spill(j,t)] + Sl(j) - S53(j) (4.52)
j t=l 

where α(j,t), β(j,t), λ(j,t) and θ(j) are the Lagrange multi
pliers related to the constraints 4.47 to 4.51, respectively.

B. Optimality Conditions

1. Either

52 k k
∂w(j,k) Σ Ft [x(t)] - Σ α(j t) + Σ β(j,t) + γ(j,k)∂w(j,k) t=1 t t=1 t=1

- λ(j,k) - θ(j) ≤ o

if w(j,k) = 0 (4.53)

or 
∂ 52 k k

Σ Ft(x(k)] - Σ α(j,t) + Σ β(j,t) + γ(j,k) 
t= 1 t= 1 t=1

- λ(j ,k) - θ(j) = 0

if w(j,k) ≥ 0 (4.54)

for k = 1,51.

2. Either

k k
-Σ α(j,t) + Σ β(j,t) - θ(j) ≤ 0 if spill(j,k) = 0 (4.55)
t=l t=l
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or

k k
-Σ α(j ,t) + Σ β(j ,t) - θ(j) = 0 if spill (j,k) ≥ 0 (4.56)
t=l t=l

for k = 1,51 and all j.

3. Either

k
Σ [q(j,t) - w(j,t) - spill(j,t)] + Sl(j) - Smax(j) ≤ 0 

t=l

if α(j,k) = 0 (4.57)

or 

k
Σ [q(j,t) - w(j,t) - spill(j,t)l + Sl(j) - Smax(j) = 0 

t=l

if α(j,k) ≥ = 0 (4.58)

for k = 1,51 and all j.

4. Either

k
-Σ [q(j,t) - w(j,t) - spill(j,t)] - Sl(j) + Smin(j) ≤ 0 
t=l

if β(j,k)=O (4.59)

or 

k
-Σ [q(j,t) - w(j,t) - spill(j,t)] - S1(j) + Smin(j) = 0 
t=l

if β(j,k)≥0 (4.60)

for k = 1,51 and all j.

5. Either w(j,t) - Wmax(j) ≤ 0 if γ(j,t) = 0 (4.61)

or w(j,t) - Wmax(j) =0 if γ(j,t) ≥ 0 (4.62)

for k = 1,52 and all j.

6. Either - w(j,t) + Wmin(j) ≤ 0 if λ(j,t) = 0 (4.63)
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or - w(j,t) + Wmin(j) =0 if λ(j,t) ≥ 0 (4.64)

for k = 1,52 and all j.

7. 52
Σ [q(j,t) - w(j,t) - spill(j,t)] + Sl(j) - S53(j) = 0

t=l (4.65)

for all j. 

8. All variables but θ(j) are non negative.

If the derivative in condition 1 is developed such a condition can 

be presented as

-alpha(j) * f[k,D(t) - Σ alpha(j) * w(j,t)] + γ(j,t) - λ(j,t) = 
j

k k
= Σ α(j,k) - Σ β(j,k) + θ(j) (4.66)

t=l t=l

The resultant conditions for the optimal operation of each 

reservoir in a system with multiple unlinked reservoirs are identical to 

the conditions derived previously for the optimal operation of a single 

reservoir system. Equation 4.66 states (as Equation 4.36 did) that in 

the optimal operation of each reservoir the marginal instantaneous bene

fit of its releases equals the marginal future benefit of its remaining 

storage. When the maximum or minimum release constraints are tightening 

the optimal operation, the Lagrange multipliers γ(j,t) and λ(j,t) 

will be non-null. In this case, the solution will be easily obtained 

with the release in the reservoir equal to the maximum or minimum re

lease, respectively (Equations 4.62 and 4.64).

Equations 4.57 and 4.59 state that the marginal future benefit of 

the remaining storage in each reservoir will be constant along with the 

optimal operation as long as no extreme storage (maximum or minimum) 

occurs in the reservoir. Moreover, as in the single reservoir system, 

the marginal future benefit of the remaining storage in each reservoir 
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may increase only after maximum storage is reached in the referred 

reservoir (Equation 4.58). The marginal future benefit of the remaining 

storage in the reservoir may decrease only after minimum storage level 

has occurred (Equation 4.60).

Some additional characteristics related to the joint operation of 

the system can be derived through further reasoning. In the case study 

the objective function is related to the summation of the energy produc

ed in each hydroplant of the system. This means that benefits of hydro 

energy generation are independent on the hydroplant or hydroplants which 

provide this energy. Identically, the benefits derived from the addi

tional future energy generation are independent of which reservoir or 

reservoirs have provided the additional storage. The result is that it 

will always be feasible to store additional water for energy generation 

later in the operation as long as at least one reservoir has the ade

quate storage space. It will also be feasible to release an additional 

volume of water to generate energy during a given time interval as long 

as at least one reservoir has sufficient water stored. Therefore, the 

concept of temporal transfer of water developed for a single reservoir 

operation in section 4.1.2 is somewhat modified in the case of multiple 

unlinked reservoirs. Now the restrictions of water transfer to the 

future or to the past refer to a situation dictated simultaneously by 

all of the reservoirs in the system.

The marginal economic interpretation of the Lagrange multipliers 

must be adapted to the situation of joint operation. Suppose a reser

voir j reaches its maximum storage during a time interval t during a 

period without any spilling occurrences. If at least one reservoir in 

the system does not have its operation tightened by the maximum storage, 
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additional water can still be stored in the system during the t-th time 

interval. Therefore the optimal allocation of releases or storages 

before and after the t-th time interval is not tightened by any con

straint. If the maximum storage constraint in the reservoir j is 

infinitesimally relaxed no additional benefit will be obtained in the 

operation. This follows from the fact that this constraint is not 

actually tightening the optimal operation of the system as a whole. The 

result is that the Lagrange multiplier α(j , t), which refers to the 

maximum storage constraint in reservoir j during the t-th time inter

val, is null. Or, finally, the marginal future benefit of the remaining 

storage in reservoir j is identical before and after the t-th time 

interval.

The same reasoning can be applied to the case where a reservoir 

reaches its minimum storage at the beginning of a period without spills 

and there are still reservoirs in the system with storages above their 

minimums. In this case the marginal future benefit of the remaining 

storage in this reservoir will be identical before and after the time 

interval of minimum storage.

Finally, with the occurrence of spills in a reservoir the marginal 

future benefit of its remaining storage will be null (Equation 4.56). 

Together with the previous conditions, the marginal future benefit of 

the remaining storage will be null during a period which starts with the 

reservoir empty and ends with the reservoir full. This situation is 

implied by the non-negativity of the marginal future benefit of the re

maining storage stated by Equation 4.55. The optimal operation of the 

reservoir will then be defined by the maximum release tactic. As de

fined before, this tactic refers to a case where the releases are made 
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at the minimum between the reservoir's maximum release capacity and the 

release which will completely meet the energy demand.

Concluding, the optimal operation of a system of multiple unlinked 

reservoirs is defined by the following optimality conditions.

Optimality Condition 1. In the optimal operation of multiple 

unlinked reservoirs the marginal instantaneous benefit of the releases 

from each reservoir is equal to the marginal future benefit of its 

remaining storage.

Optimality Condition 2. In the optimal operation of multiple 

unlinked reservoirs the marginal future benefit of the storage in each 

reservoir is constant as long as the optimal operation of the system is 

not tightened by either extreme (maximum or minimum) storage constraint.

Optimality Condition 3. In the optimal operation of multiple 

unlinked reservoirs the marginal future benefit storage in each reser

voir increases only when the reservoir's maximum storage constraint is 

tightening the optimal operation of the system.

Optimality Condition 4. In the optimal operation of multiple 

unlinked reservoirs the marginal future benefit of storage in each 

reservoir decreases only when the reservoir's minimum storage constraint 

is tightening the optimal operation of the system.

The storage constraints will tighten the optimal operation of the 

system in two cases. The first case occurs when a given reservoir is 

operated during periods of surplus water. Minimum storage in the reser

voir at the beginning of this period precludes the possibility of addi

tional transfers of water to the past. Maximum storage in the reservoir 

at the end of the same period precludes the possibility of additional 

transfers of water to the future.
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The second case in which the storage constraints tighten the 

operation refers to the operating conditions of the system as a whole. 

It occurs when all reservoirs in the system simultaneously reach the 

maximum or minimum storage. As in the previous cases additional trans

fers of water to the future or to the past are restricted by the maximum 

and minimum storage constraints.

The occurrence of spills in the optimal operation of the system is 

considered in the following optimality condition.

Optimality Condition 5. In the optimal operation of multiple 

unlinked reservoirs spills can occur in a reservoir during a given 

period of operation when the marginal future benefit of its storage is 

null. In such a situation, its storage will be minimum at the beginning 

and maximum at the end of the period. The optimal releases from the 

reservoir during the period are given by maximum release tactic.

4.3 Multiple Serially Linked Reservoirs with Constant Hydraulic Heads

The mathematical formulation of the problem in this case is given

by

Minimize 
x(t)

52
Σ Ft [x(t)]

t=l

52
Σ

t=l

x2
∫ f[t,D(t) - x(t)] dx 
xl

(4.67)

t=l,52

The integral computes total cost of operation during the time 

interval t given the marginal cost of operation by the function f(.). 

D(t) is the total energy demand and x(t) refers to the total hydro 

energy generation during the time interval t. The limits of the inte

gration are given by

x(t) = xl = D(t) (4.68)
x(t) = x2 = x(t)



65

The limit xl refers to the marginal cost when energy demand is 

totally provided by hydro energy. The limit x2 stands for the hydro 

energy generation x(t).

The hydro energy generation is computed by

x(t) = alpha(j) * w(j,t) (4.69)

where w(j,t) is the water release through the turbines of the 
hydroplant j during the time interval t (hm3)

alpha(j) is the energy conversion factor for the hydroplant 
j. It is function of the invariant hydraulic head, 
hydraulic losses and efficiency of the hydroplant 
j .

The operation’s constraints are given by

1. Water Balance Equalities

s(j,t+l) = s(j,t) + q(j,t) + qu(j,t) - w(j,t) - spill(j,t) (4.70)

for t=l,52 and all j

where s(j,t+l) is the water content in the reservoir j at the 
beginning of the time interval t+1 (hm3)

s(j,t) is the water content in the reservoir j at the
beginning of the time interval t (hm3)

q(j,t) is the water inflow to the reservoir j during the
time interval t (hm3)

qu(j,t) is the water inflow to the reservoir j during the 
time interval t caused by releases from the up
stream reservoir (hm3)

if ju is the index of the reservoir upstream of the reservoir j and 

the travel time of the water from the reservoir ju to the reservoir j

is given by  time intervals, the value of qu is given by l ju 

qu(j,t) = w(ju,t-l ju) + spill(ju,t-lju ) (4.71)

where w(ju,t-lju) and spill (ju, t-lju) are respectively the release 

and spill from the reservoir ju occurred a travel time before the time

interval t.
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w(j,t) is the water release through the turbines of the 
hydroplant j during the time interval t (hm3)

spill(j,t) is the spill from the reservoir j during the 
time interval t (hm3).

2. Maximum Reservoir Content Inequalities

s(j , t) ≤ Smax(j) , for t = 1,52 and all j (4.72)

where Smax(j) is the maximum storage capacity of the reservoir j.

3. Minimum Reservoir Content Inequalities

s(j,t) ≥ Smin(j) for t = 1,52 and all j (4.73)

where Smin(j) is the minimum storage in the reservoir j.

4. Maximum Release Inequalities

w(j,t) ≤ Wmax(j), for t = 1,52 and all j (4.74)

where Wmax(j) is the maximum release capacity through the turbines 
of the hydroplant j during a time interval. The 
computation is made by the procedure presented in 
section 3.2.2.

5. Minimum Release Inequalities

w(j,t) ≥ Wmin(j) for t = 1,52 and all j (4.75)

where Wmin(j) is the minimum required release from the reservoir 
j during a time interval.

As the problem is deterministic initial reservoir contents are

defined as S1 (j). The final contents in the reservoirs are given by 

S53(j).

The water balance equation may be stated as

t
s(j,t+l) = Sl(j) + Σ [q(j,k) + w(ju,k-lju ) - w(j,k) + 

k=l 
spill(Ju,k-lju) - spill(j,k)] (4.76)

for t = 1,51 and all j

and s(53) = S53(j), for all j (4.77)
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The constraints become after substituting the value of s(j,t) 

t
I [q(j,k) + w(ju,k-lju ) - w(j,k) + spill(ju,k-lju ) - spill(j,k)] 

k=l  

+ Sl(j) - Smax(j) ≤ 0 (4.78)

t
-Σ [q(j,k) + w(ju,k-lju ) - w(j,k) + spill(ju,k-lju ) - spill(j,k)] 
k=l  

- Sl(j) + Smin(j) ≤ 0 (4.79)

for all j and t = 1,51

w(j,t) - Wmax(j) ≤ 0 (4.80)

- w(j,t) + Wmin(j) ≤ 0 (4.81)

for all j and t = 1,52

and the gross balance equation

52
Σ [q(j,t) + w(ju,t-lju ) - w(j,t) + spill(ju,t-lju ) - spill(j,t)] 

t=l  

+ Sl(j) - S53(j) = 0 (4.82)

The application of the Kuhn-Tucker theorem provides

A. Lagrangian

L[w(j,t),spill(j,t),α(j,t),β(j,t),γ(j,t),λ(j,t),θ(j)] =

52 51  t
= Σ F [x(t)] + Σ Σ α(j,t) * Σ [q(j,k) + w(ju,k-lju ) - w(j,k)

t=l j t=l k=l 

+ spill(ju,k-lju ) - spill(j,k)] + Sl(j) - Smax(j) +

51  t
Σ Σ β(j ,t) * -Σ [q(j,k) + w(ju,k-lju ) - w(j,k)
j t=1 k=1 

+ spill(ju,k-lju) - spill(j,k)] - Sl(j) + Smin(j) +

52 52
+Σ Σ γ(j,t) * [w(j,t) - Wmax(j)] +Σ Σ λ(j,t) *

j t=l j t=l

* [- w(j,t) + Wmin(j)] +
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52
Σ θ(j) [ Σ [q(j ,t) + w(ju,t-lju ) - w(j,t) + spill(ju, t-lju ) 
j t=l 

- spill(j,t)] + Sl(j) - S53(j)]  (4.83)

B. Optimality Conditions

1.Either
∂ 52  k k k

∂w(j,t) Σ Ft[x(t)] - Σ α(j,t) + Σ α(jd,t+l jd) + Σ β(j,t) -
 t=l t=l t=l  t=l

k
- Σ β(jd,t+ljd ) + γ(j,k) - λ(j,k) + θ(jd) - θ(j) ≤ 0 
t=l 

if w(j,t) = 0 (4.84)

or
∂  52

Σ F[x(t)] - Σ α(j,t) + Σ α(jd,t-ljd ) + Σ β( j, t) 
∂w (j,t) (t=l t=l  t=l

k
- Σ β(jd,t+ljd ) + γ(j,k) - λ(j , k) + θ(jd) - θ(j) = 0

t=l 

if w(j,t) ≥ 0 (4.85)

for k = 1,51 and all j

where jd and ljd are respectively the index of the reservoir immedi

ately downstream of the reservoir j and the travel time of the water 

between reservoirs j and jd.

2. Either

k k k k
- Σ α(j,t) + Σ α(jd,t+ljd ) + Σ β(j,t) - Σ β(jd,t+ljd ) 

t=l t=l  t=l t=l 

+ θ(jd) - θ(j) ≤ 0 if spill(j,k) = 0 (4.86)

or
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k k k k
- Σ  α(j,t) + Σ α(jd,t+ljd) + Σ β(j,t) - Σ β(jd,t+ljd)

t=l t=l  t=l t=l 

+ θ(jd) - θ(j) = 0 if spill(j,k)≥0 (4.87)

for k = 1,51 and all j

3. Either 

k 
Σ [q(j,t) + w(ju,t-lju ) - w(j,t) + spill(ju,t-l ju) -

t=l  

- spill(j,t)] + Sl(j) - Smax(j) ≤ 0 if α(j,k) = 0 (4.88)

or

k
Σ [q(j,t) + w(ju,t-lju ) - w(j,t) + spill(ju,t-lju ) - 

t=l  

- spill(j,t)] + Sl(j) - Smax(j) = 0 if α(j,k)≥ 0 (4.89)

for k = 1,51 and all j

4. Either 

k
- Σ (q(j,t) + w(ju,t-lju) - w(j,t) + spill(ju,t-lju ) - 

t=l  

- spill(j,t)] - Sl(j) + Smin(j) ≤0 if β(j,k) = 0 (4.90)

or

k
- Σ [q(j,t) + w(ju,t-lju ) - w(j,t) + spill(ju,t-lju ) - 

t=l  

- spill(j,t)] - Sl(j) + Smin(j) =0 if β(j,k) ≥ 0 (4.91)

for k = 1,51 and all j

5. Either w(j,t) - Wmax(j) ≤ 0 if γ(j ,t) = 0 (4.92.)

or w(j,t) - Wmax(j) = 0 if γ(j,t) ≥ 0 (4.93)

for k = 1,52 and all j
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6. Either -w(j,t) + Wmin(j) ≤0 if λ(j,t) = 0 (4.94)

or -w(j,t) + Wmin(j) = 0 if λ(j,t) ≥ 0 (4.95)

for k = 1,52 and all j

7. 52
Σ [q(j,t) + w(ju,t+lju ) - w(j,t) + spill(ju,t+lju ) - 

t=1   

- spill(j,t) + Sl(j) - S53(j) = 0 (4.96)

for all j

8. all variables but θ(j) are non negative.

Derivation of conditions 1 and 2 presents some complexities 

concerning releases from an upstream reservoir. If a release w(j,k) 

is made in reservoir j during time interval k, it is involved in the 

hydrologic balance of the reservoir j during the same time interval. 

After a period equal to the travel time between reservoir j and down

stream reservoir jd, the same release should be included in the hydro

logic balance of the downstream reservoir. This causes the Lagrange 

multipliers related to the maximum and minimum storage constraints of 

the downstream reservoir to be considered in the optimal operation con

ditions of the upstream reservoir.

When a serially linked reservoir releases water, the result is an 

instantaneous benefit from energy generation and a prospective benefit 

due to usage of the increased storage in the downstream reservoir. In 

this case it is still profitable to increase the releases from a reser

voir as long as additional benefits from the releases are greater than 

the resultant decrease in future benefits of the remaining storage. 

When the additional benefits of the releases are less than the decrease 

in the future benefit the optimal decision is inverse. The point of 

equilibrium which provides the optimal decision in the time interval is 

obtained when the equality of the two terms occurs.
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The identification of the Lagrange multipliers which refer to each 

kind of benefit may be obtained through analysis of their marginal 

economic meaning. Consider the equation 4.85 and the Lagrange 

multipliers.

The Lagrange multipliers γ(j,k) and λ(j,k) refer to the rate of 

improvements on the optimal value of the objective function when an in

finitesimal relaxation on the maximum or minimum release constraints is 

made in the reservoir j during the k-th time interval. The improve

ment is from the possibility of releasing more or less water from reser

voir j during the time interval k. Therefore, these Lagrange multi

pliers refer to the marginal instantaneous benefit of the releases from 

the reservoir j.

The Lagrange multipliers α(j,t) and β(j,t) refer to the rate of 

improvements on the optimal value of the objective function when an 

infinitesimal relaxation of the maximum or minimum storage constraint is 

made in the reservoir j at the beginning of the time interval t. The 

improvement is from the possibility of increasing or decreasing storage

quantities in reservoir j at the beginning of time interval t. 

Therefore, these Lagrange multipliers refer to the marginal future bene

fit of the remaining storage in j.

Finally, the Lagrange multipliers α(jd,t+ljd) and  β(jd,+tljd)

establish a linkage between operation of the upstream and downstream 

reservoir. They refer to the marginal future benefit of the variation 

of storage in the downstream reservoir caused by operation of the up

stream reservoir or in other words, the marginal future benefit of the 

water transferred from the upstream to the downstream reservoir.
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Developing the derivative and regrouping the terms of the equation

4.85 in order to gather the Lagrange multipliers related to the benefits

of the releases in the left-hand side it becomes

alpha(j) * f[k,D(k) - Σ alpha(j) * w(j,k)] + γ(j,k) - λ(j,k) + 

+
k

t=l
α(jd,t+ljd ) - Σ β(jd,t+ljd ) + θ(jd)

t=l 

k
Σ α(j,t) 

t=l

k

k
Σ β(j,t) + θ(j) 

t=i
(4.97)

where the terms in braces on the left-hand side refer respectively to 

the marginal instantaneous benefit of releases from reservoir j and to 

the marginal future benefit of water transferred from reservoir j into 

the immediately downstream reservoir, jd. The right-hand side term 

refers to the marginal future benefit of the remaining storage in reser

voir j. Optimal release per time interval is determined by the equal

ity of Equation 4.97. A trivial solution occurs when the Lagrange 

multipliers γ(j,t) or λ(j,t) are non-null. In this case the optimal 

release is respectively maximum and minimum.

Variation of marginal future benefit of the remaining storage is 

identical to the case of multiple unlinked reservoirs. Lagrange multi

pliers α(j,t) and β(j,t) which refer respectively to the maximum 

and minimum storage constraints will be null as long as such a con

straints are not tightening the optimal operation. Moreover the mar

ginal future benefit of remaining storage may increase in a reservoir 

only when the storage is maximum (relation 4.89). Otherwise, the mar

ginal future benefit of the remaining storage decreases only when the 

storage is minimum (relation 4.91).
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Relation 4.87 states the condition for spilling occurrences in the 

operation of a reservoir. Spill may occur in a reservoir when the mar

ginal future benefit of water transferred to the downstream reservoir 

equals the marginal future benefit of the remaining reservoir's storage. 

Water spill in the operation of the system means loss of water. In such 

an occurrence the water must be stored or released through the turbines 

of the reservoir's hydroplant rather than lose it. Increase in releases 

are limited by energy demand per time interval and by the reservoir's 

maximum release capacity. The optimal release during this period will 

then be defined by the minimum value of these limitations. When the 

release from the reservoir provides the entire energy demand, its mar

ginal instantaneous benefit is null. This is due to the fact that since 

the energy demand is satisfied any increment of release has null bene

fit. Therefore, the additional benefit of an increment of releases can 

only be derived from the water transferred to the downstream reservoir. 

Relation 4.87 states this exactly. Hence in serially-linked reservoirs, 

differently of single and multiple unlinked reservoirs, the marginal 

future benefit of the remaining storage may not be null in the optimal 

operation when spills occur. However, as in the other cases, the period 

when spill occurs must start with the reservoir empty and end with the 

reservoir full. This occurs as a consequence of the minimization of the 

spillings from the reservoir. If the period in consideration has a 

surplus of water to the degree it must be spilled the period of opera

tion immediately anterior to it will be operated in suõh a way to trans

fer no water to the future. The transition of the operation between 

periods is made with the reservoir empty. On the other hand, the tran

sition requires a maximum temporal transfer of water between the period 
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of spilling and the next period of operation. This maximum transfer 

will occur when the transition of the operation between both periods is 

made with the reservoir full.

The concept of temporal water transfer logically explains the 

optimal operation of a single reservoir without utilizing mathematical 

analysis. In serially-linked reservoirs the water may also be trans

ferred between reservoirs. In this case, extensions of the concept of 

temporal water transfer permits further identification of the character

istics of optimal operation of serially-linked reservoirs.

When the maximum storage constraint in a reservoir is tightening 

the optimal operation of the system, optimal transfer of water to the 

future is limited in this reservoir. In a system with multiple unlinked 

reservoirs this limitation occurs when all reservoirs simultaneously 

reach maximum storage. When serial linkages between reservoirs are 

present, another possibility of water transfer to the future may be 

exploited. Consider a system with two serially-linked reservoirs. 

Suppose the reservoirs reach maximal storage simultaneously at the 

beginning of time interval t and the travel time of the water between 

the reservoirs is lj . In other words, water released from the upstream 

reservoir will reach the downstream reservoir after £. time intervals.J
Hence, water stored in the upstream reservoir after the beginning of the 

time interval (t-lj ) will reach the downstream reservoir after the time 

interval t when transfer of water to the future is restricted by 

maximum storage constraints. This results in the upstream reservoir 

being full at the beginning of the time interval (t-lj) to optimize 

transfer of water to the future.
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The operation is tightened by the minimum storage constraints when 

all reservoirs are simultaneously empty. The limitation in this case 

prevents an increase of the releases before the time interval of simul

taneous minimum storage. Let it be the t-th time interval of operation. 

The travel time of water between the upstream and downstream reservoirs 

is still lj time intervals. If the upstream reservoir has the minimum 

storage at the beginning of the time interval (t-lj) all the stored 

water is transferred to the downstream reservoir to be released there 

prior to simultaneous minimum storage. Therefore, it promotes an opti

mal transfer of water.

Using the previous reasoning through optimal operation the upstream 

reservoir must reach the maximum or minimum storage before it will be 

again at this condition simultaneously with the downstream reservoir. 

The time between extreme storage occurrences equals the travel time of 

the water between the upstream and downstream reservoirs. The analysis 

may be extended to a system with any number of serially-linked reser

voirs. Assume such a system has J serially-linked reservoirs and the 

upstream reservoir is labeled reservoir Number 1 and the remaining

reservoirs are numbered in the downstream direction to Number J. The

travel time of the water between reservoirs Number j and k is ljk . For 

instance, the travel time between reservoirs 1 and 2 is ' l1,2 ; between

reservoirs J-l and J is lj-1,j .Suppose the system reaches an extreme 

(maximum or minimum) storage at the beginning of the t-th time interval 

of operation. The optimization of the water transfers during the opera

tion results in all reservoirs but the reservoir J being at the same 

extreme storage at the beginning of the time interval (t-lj-1,j). 

Again, all reservoirs except the reservoirs J-l and J will be at the
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This characteristic of the optimal operation of serially-linked 

reservoirs is referred to as the Chain of the Extreme Storages. The 

chain of the extreme storages presents a condition in which occurrence 

of maximum or minimum storages non-simultaneously in all reservoirs 

tightens the optimal operation of the system. Mathematics analyzing 

consider a system with two serially-linked reservoirs where the reser

voirs ju and jd are respectively the upstream and downstream reser

voirs. Suppose the travel time between the reservoirs is time

intervals and they reach the maximum storage simultaneously at the

beginning of the k-th time interval. The optimal transfer of water from

the upstream to the downstream reservoir will occur if the upstream

reservoir is full at the beginning of k-lj or the time interval that

occurs a travel time of water between the reservoirs prior to the simul

taneous maximum storage. The optimal operation of the reservoirs before 

the time interval (k-lj ) is given by

1. upstream reservoir (ju):

-alpha(ju) * f[t,D(t) - Σ alpha(j) * w(j,t)] + γ(ju,t) - λ(ju,t) + 

+ Ωt(jd) = Ωt(ju) (4.98)

2. downstream reservoir (jd):

-alpha(jd) * f[t,D(t) - Σ alpha(j) * w(j,t)] + γ(jd.t) - λ(jd,t) = 
j

= Ωt(jd) (4.99)

same extreme storage at the beginning of the time interval

The extreme storages will successively occur

backwards until only reservoir Number 1 is at the extreme storage at. the 

beginning of the time interval given by
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where t is an arbitrary time interval such that t < k - lj.

Ωt(j) is the marginal future benefit of the remaining storage
in the reservoir index j (j = ju or jd) at the begin

 ning of the time interval t. This value is given by 
the right-hand side of the Equation 4.97.

At the beginning of the time interval (k-lj) the upstream 

reservoir reaches maximum storage. At this point two non-null Lagrange 

multipliers enter in the equation that defines the optimal operation of 

the upstream reservoir. The Lagrange multiplier α(ju,k-lj) is related 

to the maximum storage in the upstream reservoir ju at the beginning 

of the time interval (k-lj) and the Lagrange multiplier α(jd,k) is 

related to the maximum storage that occurs in the downstream reservoir 

jd at the beginning of the time interval k. Equation 4.99 continues 

to define the optimal operation of the downstream reservoir since no 

constraint is tightening its operation. Therefore, in the period start

ing at the beginning of the time interval (k-lj) and ending at the 

beginning of the time interval k the optimal operation of the reser

voirs is given by

1. upstream reservoir (ju):

-alpha(ju) * f[t,D(t) - Σ alpha(j) * w(j,t)] + γ(ju,t) - λ(ju,t) + 

+ Ωt (jd) + α(jd,k) = Ωt (ju) + α(ju,k-lj) ) (4.100)  
2. downstream reservoir (jd):

-alpha(jd) * f[t,D(t) - Σ alpha(j) * w(j,t)] + γ(jd,t) - λ(jd,t) = 

=Ωt(jd) (4.101)

Finally, at the time interval k both reservoirs reach their 

maximum storage simultaneously. One non-null Lagrange multiplier is 

introduced into the operating equation of each reservoir. The Lagrange 

multiplier α(ju,k) is introduced into the upstream reservoir’s 
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equation and the Lagrange multiplier α(jd,k) in the downstream 

reservoir's equation. Their operation is given by 

1. upstream reservoir (ju):

-alpha(ju) * f[t,D(t) - Σ alpha(j) * w(j,t)] + γ(ju,t) - λ(ju,t) + 

+ Ωt(jd) + α(jd,k) = Ωt(ju) + α(ju,k-lj) + α(ju,k) (4.102)

2. downstream reservoir (jd):

-alpha(jd) * f[t,D(t) - Σ alpha(j) * w(j,t)J + γ(jd,t) - λ(jd,t) = 
j

= Ωt(jd) + α(jd,k) (4.103)

The marginal economic interpretation of some of the non-null 

Lagrange multipliers that enter the operating equations after the time 

interval k-lj are listed below J

α(jd,k) is the Lagrange multiplier that enters the equations related 

to the operation of both reservoirs. At the upstream reser

voir (Equations 4.100 and 4.102) it represents the rate of 

additional benefits of operation for an infinitesimal in

crease in the transfer of water to the downstream reservoir 

after the beginning of the (k-lj)-th time interval. At the 

downstream reservoir (Equation 4.103) it represents the rate 

of additional benefits of operation for an infinitesimal in

crease in the storage in the downstream reservoir at the be

ginning of the k-th time interval.

α(ju,k-lj) is the Lagrange multiplier that enters the equation related 

to the operation of the upstream reservoir only (Equations 

4.100 and 4.102). It represents the rate of additional 

benefits of operation for an infinitesimal increase in the 

storage of the upstream reservoir at the beginning of the
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time interval (k-lj). This additional benefit of operation 

is derived from the possibility of maintaining more water in 

the upstream reservoir to be optimally transferred to the 

downstream reservoir. In this case, optimal transfer occurs 

when the water reaches the downstream reservoir after the 

beginning of the time interval k when the downstream stor

age is maximum. Therefore, this Lagrange multiplier repre

sents the rate of additional benefit of operation for an 

infinitesimal increase on the water transfer from the up

stream to the downstream reservoir after the beginning of 

the (k-lj)-th time interval. Comparing this statement with 

the anterior interpretation of the Lagrange multiplier 

α(jd,k) in the operation of the upstream reservoir it 

follows

α(ju,k-lj ) = α(jd,k) (4.104)

This conclusion is significant in the operation of serially-linked 

reservoirs. When the upstream reservoir reaches the maximum storage at 

the beginning of the time interval (k-lj), the optimal operation 

changes from the condition stated in Equation 4.98 to the condition 

stated in Equation 4.100. However, the Lagrange multipliers that make 

this change are identically valued. Therefore, the marginal instan

taneous benefit of the releases from the upstream reservoir does not 

alter its optimal value. This is not surprising since the marginal 

instantaneous benefit of the releases in each reservoir is function of 

the overall energy production in the system weighted by the respective 

energy conversion factor. Therefore, any change in the marginal 

instantaneous benefit of the releases from the upstream reservoir will



80

necessarily be simultaneously followed by the change of the marginal 

instantaneous benefit of the releases from the downstream reservoir. 

But this change in the operation of the downstream reservoir cannot be 

justified by Equations 4.99 and 4.101 that define its operation before 

and after the isolated maximum storage in the upstream reservoir.

The previously presented reasoning can be extended to any number of 

serially-linked reservoirs and any case of extreme (maximum or minimum) 

storage occurrence. The general conclusion is that during the occur

rence of the chain of extreme (maximum or minimum) storages the marginal 

instantaneous benefit of the releases from each reservoir is invariant. 

The exception may occur only in the case of trivial solutions when the 

releases are maximum or minimum.

The resultant optimality conditions for the operation of 

serially-linked reservoirs are

Optimality Condition 1. In the optimal operation of serially-linked 

reservoirs the marginal instantaneous benefit of the releases from each 

reservoir plus the marginal benefit of its water transfer is equal to 

the marginal future benefit of its remaining storage.

Optimality Conditions 2. In the optimal operation of serially-linked 

reservoirs the marginal future benefit of the storage in each reservoir 

is constant as long as the optimal operation of the system is not 

tightened by extreme (maximum or minimum) storage constraints.

Optimality Condition 3. In the optimal operation of serially-linked 

reservoirs the marginal future benefit of storage in each reservoir in

creases only when the reservoir's maximum storage constraint is 

tightening the optimal operation of the system.
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Optimality Condition 4. In the optimal operation of serially-linked 

reservoirs the marginal future benefit of the storage in each reservoir 

decreases only when the reservoir’s minimum storage constraint is tight

ening the optimal operation of the system.

The storage constraints will tighten the optimal operation of 

serially-linked reservoirs in three cases. The first case refers to the 

condition of surplus of water occurring in the operation of one reser

voir. Minimum storage at the beginning of the period and maximum stor

age at its end prevents transfer of the excedent water to the past or to 

the future, respectively.

The second case occurs when all reservoirs of the system reach 

maximum or minimum storage simultaneously. Under these conditions addi

tional transfer of water to the future or past is prohibited by the 

maximum and minimum storage constraints of all reservoirs, respectively.

The third case occurs during the chain of extreme storages. Assum

ing reservoir is full during the occurrence of the chain of maximum 

storage, additional transfer of water to the downstream reservoir after 

the time when both reservoirs are simultaneously full is prohibited by 

the maximum storage constraint of the upstream reservoir. The opposite 

occurs if the reservoir is empty during the chain of minimum storages. 

In this case additional water can not be transferred to the downstream 

reservoir before the time interval when both reservoirs are empty.

The optimal occurrence of spills in serially-linked reservoirs is 

given by the following optimality condition.

Optimality Condition 5. In the optimal operation of serially-linked 

reservoirs spills can occur in a reservoir during a given period of 

operation when the marginal future benefit of its storage equals the 
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marginal benefit of transfer of water to the downstream reservoir. In 

such a situation, the reservoir's storage is minimum at the beginning 

and maximum at the end of the period. The optimal releases from the 

reservoir during the period are given by the maximum release tactic.

4.4 Mix Configuration with Constant Hydraulic Head

The mix configuration of a system with multiple reservoirs refers 

to the situation where unlinked and serially-linked reservoirs coexist. 

Multiple serial linkages may also be included when reservoirs are lo

cated in the main stream and in tributaries.

The unlinked reservoir system may be considered as a 

particularization of a system of serially-linked reservoirs in which no 

transfer of water occurs between reservoirs. In this case, the variable 

qu(j,t), the inflow to a downstream reservoir caused by releases from 

the upstream reservoir, is null. It may be observed that the optimality 

conditions derived for serially-linked reservoirs will then apply to the 

unlinked reservoirs as well. However, in this case, there is no need 

for the chain of extreme storages to be utilized as an instrument to 

optimize water transfers.

Assuming a reservoir index j has several upstream reservoirs 

serially-linked with it, the total inflow to the reservoir j includes 

the sum of releases from the upstream, serially-linked reservoirs. The 

contribution of releases from the immediately upstream reservoirs is 

introduced into the water balance of reservoir j. Therefore, in the 

optimal operation of the upstream reservoirs the optimal transfer of 

water to the downstream reservoir must be determined. Although the 

transfers are now multiple, the same characteristics of the operation 

derived for serially-linked reservoirs apply to systems with multiple 
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serial linkages. This may be demonstrated by following the same 

reasoning used in the study of serially-linked reservoirs. However, it 

is not presented here since this situations is outside the case study.

4.5 Systems with Variable Hydraulic Head

When the hydraulic head cannot be assumed invariant the problem of 

operation can not be assumed convex without further analysis. Conse

quently the optimality conditions may not be sufficient for the (global) 

optimum.

Problems related to the efficiency of energy generation restrict 

the variation of the hydraulic heads in hydropower developments to 30 to 

40 percent of the gross hydraulic head (Federal Power Commission, 1968, 

p. 7). In the analyzed system this does not exceed 30 percent and is 

generally about 15 percent. Therefore it is unlikely that in this case 

a local optimum too far from the global optimum will be computed.

The main complexity introduced by the variation of the hydraulic 

head will be the computation of the maximum release capacity in each 

reservoir. The procedure of computation can not apparently be formu

lated in terms of a formal optimization problem (section 3.2.2).

It suggests the use of an iterative procedure where the optimality 

conditions are enforced for an assumed hydraulic head variation in each 

reservoir. The marginal instantaneous benefit of the releases may now 

be given with the value of the energy conversion factor [alpha(j)] 

varying in each reservoir along the time. Nevertheless, the optimality 

conditions do not change. With the defined optimal operation in the 

first iteration a new set of values of the hydraulic heads is obtained. 

Optimal operation is updated for this new set. Iterations are repeated 

successively until the computed and assumed hydraulic heads are roughly 
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identical. For a single reservoir study, Laufer (1977, p. 166) reported 

that the convergence occurred during the second iteration using a sim

ilar approach. Although no proof of the convergence of the iterations 

is given it is expected that in a multireservoir problem it occurs in 

slightly more than two iterations.



Chapter 5

AN ALGORITHMIC APPROACH TO DETERMINISTIC OPERATION

A method of optimization of the reservoir system operation under 

study is presented in this chapter. It is based on the enforcement of 

optimality conditions of operation as derived by the Kuhn-Tucker Theorem 

of Mathematical Programming. Based on this characteristic it can be 

classified as an Indirect Method of Optimization (Wilde and Beightler, 

1967, p. 18). However direct solution of the equations related to 

optimality conditions will usually be cumbersome. Therefore the method 

relies on an iterative procedure based on starting with a totally 

relaxed solution (no constraints considered in storage) and then 

introducing the violated constraints in each iteration. This method is 

akin to the Constrained Calculus of the Variations (Massé, 1964a) and is 

a generalization of the method proposed by Laufer (1977) and Laufer and 

Morel-Seytoux (1979).

The presented method yields an exact solution for the formulated 

problem of operation of a single reservoir for a pre-defined level of 

accuracy. The solution for a multireservoir operation is obtained by an 

aggregation-optimization-disaggregation procedure. This procedure 

successfully avoided the problems of dimensionality in the multireser

voir system. Additionally, it handled the operational aspects of the 

problem which usually cannot be modeled by a standard mathematical 

programming formulation.

For hydropower systems the hydraulic head of each reservoir must be 

known in order to compute the energy generated. Hence in variable head 

power plants the iterative procedure described in the section 4.5 is 

applied. In the following section it is assumed that the hydraulic 



86

head variation with time of each reservoir is known or has been 

previously estimated.

An inductive approach is used in presenting this method. 

Derivation for the simpler problem of the operation of a single reser

voir is done first and later it is extended to the multireservoir 

problem.

5.1 Single Reservoir Operation Optimization

In this section two algorithms are developed for the optimization 

of a single reservoir operation. The first algorithm is referred to as 

the Cumulative Minimum Surplus Analysis. Its purpose is to identify the 

periods of operation where spills occur. During such periods the opti

mal tactic of release is trivial. The second algorithm is referred as 

Constrained Marginal Analysis. It computes the optimal operation of the 

reservoir in periods when spills do not occur. It is based on the 

characteristics of the curves of variation of reservoir storage when 

releases are made with constant marginal instantaneous benefit.

5.1.1 Cumulative Minimum Surplus Analysis

When the optimality conditions of operation were derived the 

theoretical possibility of the existence of operating periods where the 

maximum release tactic is optimal was realized. In this tactic of 

operation the optimal release is equal to the minimum between a release 

which will entirely meet the energy demand and the reservoir's maximum 

release capacity. This trivial solution results from a surplus water 

inflow which occurs in the period. A maximum transfer of surplus water 

within the period requires that storage at the beginning of the period 

be at a minimum and at a maximum at the end of the period.
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An observation about the period of surplus water inflow is that no 

optimization of its operation is needed. Its initial and final storage 

and its optimal releases have been previously established. The real 

problem refers to the identification of the periods of operation which 

have a surplus water inflow.

This identification can be accomplished through a procedure called 

the Cumulative Minimum Surplus Analysis. The minimum surplus of water 

is defined as the excess of water inflow into a reservoir after the 

maximum feasible release has been subtracted from it. If the minimum 

surpluses are computed and accumulated each time interval through the 

entire period of operation the cumulative minimum surplus curve is then 

defined. This curve has a shape like the one in Figure 3.

The sub-periods where the curve has positive tangents are 

sub-periods where the water surpluses are positive. There the reservoir 

will always be accumulating or spilling water since the release is 

already at a maximum during each time interval. The sub-periods where 

the tangents are negative are simply sub-periods where the maximum 

release tactic may only be adopted at the expense of the water reserves. 

The reserves, however, are limited by the reservoir capacity. Hence, a 

period of exclusively positive tangents in which the curve rises by more 

than the reservoir capacity value is a period when spill; will occur no 

mater what the initial reservoir storage was (segments 1-2, Figure 3). 

Otherwise, in a period of exclusively negative tangents, if the curve 

falls by more than the reservoir capacity the maximum release tactic are 

infeasible no matter what the initial storage is (segments 3-4, 

Figure 3).
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Figure 3. Cumulative Minimum Surplus Analysis
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Suppose a segment of curve has positive and negative tangents. If 

it rises by the capacity of the reservoir between its extremities with

out falling by more than this same value, the maximum release tactic is 

feasible in the related period regardless of the initial reservoir 

storage. Consequently this property defines a water surplus period 

(segments 4-5, Figure 3).

An algorithm adaptable to digital computers was derived to identify 

the periods of water surplus. Its application to a period of operation 

with 1872 weekly time intervals took less than 0.3 seconds of processing 

time on the Colorado State University Cyber 172.

With the identification of the periods of water surplus a kind of 

temporal decomposition of the problem is obtained. The remaining 

periods will start with the maximum reservoir storage (or with the 

initial storage) and will end with the minimum reservoir storage (or 

with the final storage). Additionally, they will be separated from each 

other by periods of water surplus where the operating tactic is known.

5.1.2 Constrained Marginal Analysis

This analysis is based on the exploitation of characteristics of 

reservoir storage variation under constant marginal instantaneous bene

fits of the releases. The optimality conditions derived in the last 

chapter stated that in the optimal operation of a single reservoir the 

optimal releases have constant marginal instantaneous benefit between 

the extremes (maximum or minimum) of storage (optimality conditions 1 

and 2). When the maximum storage constraint is tightening the optimal 

operation, the marginal instantaneous benefit of the releases will 

increase (optimality conditions 1 and 3). Otherwise, when the minimum 

storage constraint is tightening the optimal operation, the marginal 
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instantaneous benefit of the releases will decrease (optimality 

conditions 1 and 4). Consequently the optimal operation of a single 

reservoir may be defined by one or more curves which represent the 

reservoir's storage variation under constant marginal instantaneous 

benefit of the releases. The characteristics of these curves are 

presented before the development of the technique of optimization.

Figure 4 presents some curves of variation of the storage in a 

hypothetical reservoir without maximum or minimum storage constraints. 

They start with identical storages and have their releases made with 

constant marginal instantaneous benefit. If the law of decreasing 

marginal benefits applies in this case the value of the releases de

creases when the corresponding marginal instantaneous benefit increases. 

It implies that the resultant storage in the hypothetical reservoir in

creases when the marginal instantaneous benefit of the releases in

creases. Consequently, the bottom curve stands for the minimum marginal 

instantaneous benefit of the releases. In the reservoir system under 

observation this value is zero. In this case, the storage variation of 

the bottom curve refers to the operation with maximum release tactic. 

Let these curves of storage variation in the hypothetical reservoir be 

called trajectories.

The general equation for trajectories defined with initial 

reservoir storage equal to S1 is

(5.1)

where s(Ω,k) is the hypothetical reservoir's storage at the 
beginning of time interval k under marginal 
instantaneous benefit of the release equal to Ω.
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q(t) is the inflow during time interval t.

w(Ω,t) is the release during time interval t with
marginal benefit equal to Ω.

The minimum and maximum release constraints are considered in the 

definition of w(Ω,t). If the maximum and minimum releases during the 

time interval t are respectively equal to Wmax(t) and Wmin(t) the 

following expression computes the final value of w(Ω,t) in the 

trajectory's construction

w(Ω,t) = min{max [w(Ω, t) , Wmin(t)], Wmax(t)} (5.2)

The marginal instantaneous benefit is by definition a 

non-increasing function of the releases or

w(Ωa,t) ≥ w(Ωb,t) for any t and (5.3)

Therefore, the hypothetical reservoir’s storage is proportional to Ω

in trajectories with identical initial storage. Then

s(Ωa,k) ≤ s(Ωb,k) for any k and (5.4)

The trajectories with identical final storage also have theoretical 

interest. Figure 5 presents examples of such trajectories. The general 

equation for trajectories defined with identical final storage at the 

end of time interval n is 

k
s(Ω,k) = s(n+l) - Σ (q(t) - w(Ω,t)] (5.5)

t=n 

where s(n+l) is the storage at the end of the time interval n.

The releases are inversely proportional to their marginal 

instantaneous benefit (relation 5.3). Observing that the releases in 

Equation 5.5 will be added it follows that the hypothetical reservoir's 

storage is inversely proportional to the marginal instantaneous benefit 

of the releases in trajectories with identical final storage. Or
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s(Ωa.k) ≥ s(Ωb,k) for all. k and (5.6)

Suppose a trajectory with arbitrary initial and final storage has a 

local maximum at the beginning of the k-th time interval. A local 

maximum is defined by the following inequalities

s(Ω,k-1) < s(Ω,k) ≥ s(Ω,k+1) (5.7)

where Ω is an arbitrary value of the marginal instantaneous benefit of 

the releases.

Substituting the value of storage into the inequalities by their 

expressions given in Equation 5.1 and cancelling the common term S(l), 

it yields

(5.8)

Cancelling again common values of inflows and releases

q(k-l) > w(Ω,k-l) (5.9)

and q(k) ≤ w(Ω,k) (5.10)

It states that if a maximum occurs at the beginning of time 

interval k the inflow is greater than the release during time interval 

(k-1) and the inflow is less than (or equal to) the release during time 

interval k. The result is logical. The storage must increase before 

the maximum and must not increase after it. When the storage increases 

the inflow is necessarily greater than the release. Otherwise, when the 

storage decreases (or is maximum) the release is necessarily greater 

than (or equal to) the inflow. The inequalities 5.9 and 5.10 state 

these conclusions mathematically.

If at the beginning of time interval k an arbitrary trajectory 

with marginal instantaneous benefit of the releases equal to ft has a 

local minimum it occurs

s(Ω,k-l) > s(Ω,k) ≤ s(Ω,k+1) (5.11)
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Substituting the variables by their expressions given in Equation 

5.1, after eliminating common terms it yields

q(k-l) < w(Ω,k-l) (5.12)

and q(k) ≥ w(Ω,k) (5.13)

The results are again obvious. When the storage is minimum it must 

decrease before the minimum and must no decrease after it. In this 

case, the inflow will be less than (or equal to) the release before the 

minimum and greater than (or equal to) the release after it.

An important observation is that the occurrence of the maximum and 

minimum storages may be defined in terms of inflows and releases alone. 

It follows that the time of occurrence of maximum and minimum storages 

is independent of the initial or final storages in the reservoir. 

Equations 5.1 and 5.5 which define the trajectories with identical 

initial and final storages respectively, confirm this observation. The 

variation of the initial and final storage in each case will cause the 

vertical translation of the trajectory. Its form (or shape) will not be 

modified, though.

The continuity of the storage variable in reservoir operation 

allows a trivial but important observation in the analysis. It is 

related to the sequence of local extreme (maximum or minimum) values in 

a trajectory; there is no possibility of two similar local extreme 

values to occur adjacently in a trajectory. In other words, if a local 

maximum occurs at the beginning of a given time interval the following 

local extreme value in the trajectory must be a minimum. Moreover, if 

the storage in a trajectory is increasing (or decreasing) in a given 

time interval the next local extreme value must be a maximum (or 

minimum).
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These observations are useful in the following analysis. Consider 

two trajectories with marginal instantaneous benefit of releases equal 

to Ωa and Ωb , with Ωa less than fl . If a local maximum occurs in   
the first trajectory (Ωa) at the beginning of the k-th time interval, 

Equations (5.9) and (5.10) state

q(k-l) > w(Ωa ,k-l) (5.14)

q(k) ≤ w (Ω a,k) (5.15)

The marginal instantaneous benefit is by definition a 

non-increasing function of the releases. Then, as < 0^

w(Ωa,k-l) ≥ w(Ωb ,k-l) (5.16)

w(Ωa,k) ≥ w (Ωb,k) (5.17)

Inequalities 5.14 and 5.16 imply

q(k-l) > w(Ωb,k-l) (5.18)

Or, during (k-l)-th time interval the inflow is greater than the 

release with marginal instantaneous benefit equal to Ωb Hence, the 

storage is increasing during time interval k-1 in trajectory . No 

conclusions can be made relating to the storage variation in the same 

trajectory during time interval k (see inequalities 5.15 and 5.17). 

Therefore, the first local extreme value in trajectory occurring 

before time interval k is a minimum. And consequently, the first 

local extreme occurring at the beginning or after time interval k in 

the trajectory Ωb is a maximum. Or the local maximum in the trajec

tory Ωb occurs after or at the same time a local maximum occurred in 

trajectory Ωa . This conclusion can be generalized: the time interval 

of occurrence of local maximum values in a trajectory is a non

decreasing function of the marginal instantaneous benefit of its 

releases.
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Suppose now that instead of a local maximum a local minimum occurs 

at the beginning of time interval k in trajectory Ωa . The 3 
inequalities are in the case

q(k-l) < w(Ωa ,k-l) (5.19)

q(k) ≥ w(Ω ,k) (5.20)a
As is still less than the inequalities 5.16 and 5.17

still hold. Therefore, 5.20 and 5.17 imply

q(k) ≥ (5.21)

It implies that the storage is increasing (or is constant) during 

time interval k in trajectory Or, the first local extreme value

at the beginning or before time interval k in the trajectory Ωb is a 

minimum. And, the first local extreme value after beginning of time 

interval k in the same trajectory must be a maximum. Therefore, the 

minimum in the trajectory occurs before or at the time interval a 

minimum occurred in trajectory Ωa . This conclusion can be generalized: a
the time interval of occurrence of a local minimum in a trajectory is a 

non-increasing function of the marginal instantaneous benefit of its 

releases.

In the construction of the trajectories on Figures 4 and 5 the 

relative position of maximum and minimum values followed the derived 

characteristics. :

The sequence of occurrence of maximum and minimum values in the 

trajectories is the basis for development of the algorithm. In the 

optimal operation the reservoir's storage variation may be represented 

by a unique trajectory provided no storage constraint tightens the 

operation. Otherwise, when a storage constraint tightens the operation 

the trajectories representing the storage variation must change. When 
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the tightening constraint is the maximum storage constraint, the 

marginal instantaneous benefit of releases increases. Therefore, tra

jectories with increasing marginal values will represent the storage 

variation. When the tightening constraint is the minimum storage con

straint the marginal instantaneous benefit of the releases decreases. 

Consequently, the storage variation is represented by trajectories with 

decreasing marginal values. When a reservoir becomes either full or 

empty the water inflow equals the water release. When this equality 

occurs inside a time interval k in a trajectory with marginal value 

equal to Ω the following inequalities hold.

1. When the reservoir is full

s(Ω,k-l) < s(Ω,k) > s(Ω,k+l)

2. When the reservoir is empty

s(Ω,k-l) > s(Ω,k) ≤ s(Ω,k+l)

These inequalities define the occurrence of a local maximum or 

minimum in the trajectory at the beginning of the time interval k (see 

inequalities 5.7 and 5.11). It follows that the transition between tra

jectories in the optimal operation is made through local extreme values 

of successive trajectories.

It is interesting but not surprising to note that the sequence of 

maximum or minimum values in trajectories agrees with the requirement of 

optimal operation. The time interval of occurrence of maximum values of 

trajectories is a non-decreasing function of the marginal instantaneous 

benefit of the respective trajectory's releases. And the time interval 

of occurrence of the minimum values of trajectories is a non-increasing 

function of the marginal instantaneous benefit of the respective 
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trajectory's releases. Therefore it will always be possible to perform 

a transition with increasing marginal values of trajectories through 

their maximum values. Otherwise, it will always be possible to perform 

a transition with decreasing marginal values of the trajectories through 

their minimum values (Figure 4 and 5).

At this point all the elements needed to present the algorithm have 

been derived. The algorithm seeks the identification of the trajec

tories which make up the reservoir's storage variation in the optimal 

operation. Each trajectory is identified by a marginal value equal to 

the marginal instantaneous benefit of its releases. Therefore, the 

optimal sequence of releases can be easily retrieved by their marginal 

instantaneous benefit.

Two basic routines exist in the algorithm. One is directed toward 

computation of the constant value of the marginal instantaneous benefit 

of the releases that defines a trajectory linking two time intervals 

with given storages. The computation is made through an iterative 

procedure which exploits the unimodality of the marginal instantaneous 

benefit function. Figure 6 illustrates the procedure. The trajectory 

which links the time interval 1 to k is to be defined such that the 

storage at the beginning of time intervals 1 and k must be S(l) 

and S(k) respectively. The convergence of the computed final storage 

to the value S(k) is accepted with a tolerance equal to TOL. Suppose 

two arbitrary trajectories Ω1 and Ω2 are initially defined. The 

trajectory Ω1 defines a final storage below the required final storage 

S(k). The trajectory Ω2 defines a final storage above it. Conse

quently, Ω1 < Ω2 . The required trajectory will have its marginal value 

defined between  Ω1 and Ω2 . Suppose it is obtained by linear
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interpolation. The new Ω3 trajectory computes a final storage within 

the limits of acceptance defined by the tolerance value. Hence, it is 

accepted as the required trajectory.

The second routine of the algorithm defines the operating period to 

be considered in the previous routine. It's logic is presented as 

examples of algorithm application.

Four examples of application of the algorithm are presented. Each 

example is related to different situations likely to occur in the opera

tion of a single reservoir.

Consider the problem of operation of a reservoir with the 

characteristics of the case study. The reservoir is full at the begin

ning and empty at the end of the operating period. The first step in 

the algorithm is computation of the trajectory which links the initial 

to the final time interval through respective storages (Figure 7.a). 

The iterative procedure explained before is applied. Assuming the 

trajectory Ω1 is obtained (Figures 7.a and 8.a), if this trajectory 

does not violate the reservoir storage constraints, the solution is 

optimal. This refers to the case where no storage constraint is re

stricting the optimal operation. Therefore, the marginal instantaneous 

benefit of releases remains constant the entire period of operation.

However, Figure 7.a shows that it is not the case. The trajectory 

Ω1 violated the maximum storage constraint from the time interval k1 

to the time interval k3. It also violated the minimum storage con

straint in the period defined by the time intervals k4 and k6. This 

implies that the reservoir storage variation during optimal operation is 

defined by more than one trajectory.
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At this point in analysis it may be helpful to recall the concept 

of temporal water transfer in single reservoir operation previously 

presented in section 4.1.2. The transfer of water to the future occurs 

when the storage increases. In this case the water entering in the 

reservoir is maintained for future use. No additional volume of water 

may be stored and consequently transferred to the future if the reser

voir is full. Water may also be transferred to the past when given an 

initial solution for the operation it is modified by increasing the re

leases before a given time interval arbitrarily defined as the present. 

The limitation in this case developes when the reservoir is empty at the 

beginning of such a time interval.

The concept of water transfer may be used in the analysis of the 

violations of the trajectory Ω1 . This trajectory promotes the best 

transfer of water within the operating period if no storage constraint 

existed. Violation of the maximum storage constraint implies that less 

water can be transferred from the initial time intervals of operation to 

the future. Conversely, violation of the minimum storage constraints 

imply that less water can be transferred from the final time intervals 

of operation to the past. These restrictions cause an increase of the 

releases at the initial and final time intervals of operation and the 

resultant marginal instantaneous benefit of the releases during these 

time intervals will decrease.

At this point all elements required in the definition of optimal 

operation at the initial and final time intervals are available. Opera

tion in the final time intervals is defined first. The objective in 

this case is to transfer the maximum quantity of water to the past 

without violating minimum storage constraints. This maximum transfer 
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occurs when the reservoir is empty before the end of the operating 

period. Computation of the time interval of emptiness is made through 

an iterative procedure that uses the characteristics of the trajectories 

and the optimality conditions of operation.

Assuming the optimal operation in the period is given by a 

trajectory Ω2 ,the following reasoning is used in the computation

1. As previously demonstrated, Ω1 is greater than Ω2 because

releases in trajectory Ω2 greater than releases in trajectory Ω1. 

The minimum value of trajectory Ω2 must be equal to the minimum

storage.

2. A previously mentioned characteristic of the trajectories 

refers to the time interval of local minimum values occurrence. It was 

shown that this time interval is a non-increasing function of the mar

ginal instantaneous benefit of releases in the trajectory. Consequent

ly, if Ω1 is greater than Ω2 the time interval k5 (Figure 7.a)

where local minimum of the trajectory Ω1 occurs is a lower bound for

the time interval when the local minimum value of trajectory Ω2 oc

curs .

It is convenient to start the iterations with a lower bound for the 

time of occurrence of the minimum value of the trajectory Ω2 . A tra

jectory is computed linking the time interval k5 to the final time

interval. It is represented in Figure 7.a as the trajectory Ω12 . The

minimum value of this trajectory occurs below the minimum storage. This 

indicates that the marginal instantaneous benefit of releases in tra
jectory Ω12 still greater than in trajectory However, trajec

tory  Ω12 defines a new lower bound for the minimum value of trajectory Ω2 

This is time interval k7 when the minimum value of trajectory Ω12
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occurs. The iterative procedure continues defining a trajectory to link 

time interval k7 to the final time interval. The resultant trajectory 

does not violate the minimum storage constraint (Figure 7.b). Any 

trajectory with marginal value less than that obtained in the last 

trajectory will have its minimum value above the minimum storage. In 

this case, it will not promote a maximum transfer of water to the past. 

Therefore the trajectory defined in the last iteration is the feasible 

trajectory that promotes the maximum transfer of water to the past 

intervals of operation. Therefore it is the optimal trajectory Ω2 . It 

may be noted that the iterative procedure proposed for computation of Ω2 

converges asymptotically to the optimal value through trajectories 

with marginal value greater than Ω2 .In other words, it converges

through infeasible solutions to the trajectory Ω2•

The objective in the initial time intervals of operation is to 

transfer the maximum quantity of water to the future intervals. This 

requires the reservoir be full sometime following the initial time 

interval of operation. Let the trajectory that defines the storage 

variation in these time intervals be trajectory Ω3 . The following 

reasoning is used in its computation

1. The releases in trajectory Ω3 are greater than in trajectory 

Ω1 . Therefore Ω3 is less than Ω1. The maximum value of the trajec- 

tory Ω3 is equal to the maximum storage.

2. The time interval of occurrence of local maximum values in a 

trajectory is a non-decreasing function of the marginal instantaneous 

benefit of the releases. Therefore, as Ω1 is greater than Ω3, the 

time interval k2 (Figure 7.a and 7.b) is an upper bound for the time

interval of occurrence of the maximum value in trajectory Ω3 .
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Let the time interval when the maximum value of trajectory 

occurs be time interval k(Ω3) . The first estimate for this time inter

val is made on its upper bound, time interval k2. A trajectory is 

computed linking the beginning of the initial time interval of operation 

to the beginning of time interval k2. This trajectory is represented 

in Figure 7.b by trajectory Ω13 . It violates the maximum storage con

straint. Therefore, Ω3 is still less than Ω13 .However, trajectory

Ω13 defines another upper bound for k(Ω3) at the beginning of time 

interval k8 when a maximum value occurs. The new iteration computes a 

trajectory linking the initial time interval to time interval k8 with 

maximum storage occurring at the beginning of both time intervals. The 

new trajectory does not violate any storage constraint (Figure 7b) Any 

trajectory with the marginal value less than this trajectory's marginal 

value will not have its final storage equal to the maximum storage. 

Otherwise, any trajectory with the marginal value greater than this 

trajectory's marginal value will violate the maximum storage constraint. 

Therefore trajectory Ω3 is the feasible trajectory to promote the 

maximum transfer of water to the future time intervals.

The remaining period of operation starts at the beginning of time 

interval k(Ω3) and ends at the beginning of time interval k' (Ω2) 

(Figures 7.b and 7.c). The reservoir is full at its beginning and empty 

at its end. According to optimality conditions, the marginal instanta

neous benefit of releases will increase during time interval k(Ω3) and 

decrease during the time interval immediately preceding k'(Ω2) Con

sequently, during these time intervals a transition occurs between the 

trajectories that define the storage variation of the reservoir. This 

transition follows local extreme (maximum or minimum) values of the 
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trajectories. Under these conditions the inflows to the reservoir equal 

the releases.

The algorithm continues by computing a trajectory to link time 

interval k(Ω3) to time interval k' (Ω2 ) with their respective stor

ages. The resultant trajectory is represented by trajectory Ω14 in the 

Figure 7.c. This trajectory violates both storage constraints. There

fore it defines a situation similar to that which occurred with the 

trajectory Ω1 (Figure 7.a). Trajectory Ω14 would promote the most

efficient transfer of water within the period if no storage constraint 

existed. Violation of the storage constraints indicates that less water 

can be transferred to a period inside the remaining period of operation. 

Consider the period of operation defined by the time intervals k(Ω3) 

and k9 (Figure 7.c). During this period maximum water transfer must 

be made to the future. If the reservoir can be maintained full during 

this period without the marginal instantaneous benefit of releases being 

decreased the solution will be optimum. Trajectories Ω3 and Ω14 have 

local maximum values occurring respectively at the beginning of the time 

intervals k(Ω3) and k9 while no minimum value occurs in these tra 
jectories between these time intervals. As Ω3 < Ω14 trajectories with
marginal values greater than Ω3 and less than Ω14 have local maximum 

 
values that occur between the time intervals k(Ω3) and k9. The 

sequence of occurrence of these maximum values is a non-decreasing 

function of the marginal value of their trajectories. Therefore, the 

referred optimal solution obtained with the reservoir full exists.

Another analogous solution exists for the period defined by the 

time intervals k10 and k' (Ω2 ). The objective of the operation in 

this period is to transfer maximum water to the past. Therefore if the
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reservoir can be maintained empty during this period and the marginal 

instantaneous benefit of releases does not increase the solution is 

optimal. In this case, trajectories Ω14 and Ω2 have local minimum 

values occurring respectively at the beginning of time intervals k10 

and k'(Ω2). No local maximum value occurs in any one of the trajec

tories during the same period. As Ω14  >  Ω2 , trajectories with marginal

values less than Ω14 and greater than  Ω2 have local minimum values

that occur between time intervals k10 and k'(Ω2). The sequence of 

these minimum values is a non-increasing function of the marginal value 

of their trajectories. Therefore, the referred optimal solution with 

the reservoir empty exists.

The definition of such singular solutions restricts the remaining 

period of operation to that defined by time intervals k9 to k10. A 

new trajectory is defined for the operation in this period with viola
tions similar to those of trajectory Ω14 . Therefore, it defines an 

extension of the singular solution to both sides of the period for more 

time intervals (Figure 7.c). Finally, a trajectory is computed to link 

the time intervals that define the remaining period of operation without 

violating the storage constraints (Figure 7.d).

Relative position of local extreme (maximum or minimum) values in 

trajectories Ω3 , Ω4 and Ω2 defines the sequence of marginal values

in Figure 8.d along the entire operation. Since the marginal values of 

the trajectories increase along the operation when the reservoir is full 

and decrease when empty, the solution is optimal.

A second example is presented in Figure 9. In this case an initial 

trajectory Ω1 has its resultant operation tightened by the maximum

storage constraints on two occasions. In other words, the optimal
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transfer of water to the future is inhibited twice. In the optimal 

operation the marginal instantaneous benefit of releases will decrease 

before time interval k1 since there is more water available for re

lease. The period after time interval k2 has less water to release. 

Therefore, the marginal instantaneous benefit of its releases will in

crease in the optimal operation. Finally, the intermediate period has 

less water transferred from the previous period, but it also transfers 

less water to the next period. Therefore, the effect of the variation 

of the marginal instantaneous benefit of releases is undetermined. 

Since the intermediate period has limitations in transferring water to 

the next period, it will have additional water available. In this case 

optimal transfer of water from initial time intervals of operation to 

the intermediate period may eventually be made without being limited by 

the maximum storage constraints. Hence, the period of operation which 

occurs prior to time interval k1 cannot have its operation defined 

without taking into account operation in the intermediate period.

Consider the period of operation beginning with the initial time 

interval and ending at the beginning of time interval k2. Since less 

water is transferred to the time intervals after k2 , more water is 

available to be released within this period. Therefore, if a unique 

trajectory may define its operation the marginal instantaneous benefit 

of its releases will be less than Ω1. If a maximum quantity of water 

must be transferred to the next period in the optimal operation, the 

reservoir will be full near time interval k2. In other words, the 

trajectory defining the operation will terminate with a local maximum 

value equal to maximum storage. Since the time of occurrence of a local 

maximum is a non-decreasing function of the trajectories' marginal value



112

and the marginal value of this trajectory is less than Ω1 , time 

interval k2 is an upper bound for the time of occurrence of the maxi

mum value of the trajectory. Applying the iterative procedure defined 

in the previous example, a unique trajectory is eventually obtained for 

definition of the operation in the period (Figure 9).

The remaining period of operation begins with time interval k2 . 

Let the optimal trajectory in this period have a marginal value equal to

Ω2 . Since the storage is maximum at the beginning of time interval k2, 

Ω2 is greater than Ω1 . Since the time of occurrence of a local maxi

mum is a non-decreasing function of the trajectories' marginal value, 

time interval k2 becomes the lower limit for the time of occurrence of 

the maximum value where trajectory Ω2 begins. Therefore, the itera

tive procedure can be applied once more in computation of Ω2 completing 

the computation of the operation in the example. Summarizing the oper

ating period can be partitioned in two sub-periods of operation. The 

optimal operation of each of these sub-periods can be computed indepen

dently if a maximum transfer of water from the first to the second 

sub-period is promoted.

The third example is illustrated by Figure 10. In this case the 

optimal water transfer is restricted by the minimum storage constraint 

on two occasions. Therefore, water transfers to the past are restricted 

twice. Enforcement of the violated constraints results in less water 

available for the operating period prior to time interval k1 This 

also implies that more water is available for the operating period after 

time interval k1. Therefore, in the optimal operation the marginal 

instantaneous benefit of releases before time interval k1 is greater 

than Ω1 and the marginal instantaneous benefit of releases is less
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than Ω1 after time interval k1 . Operation of the period located

after time interval k2 depends on operation of the previous period. 

Therefore, the algorithm must be initially applied in the computation of 

the operation before and after time interval k1 .

The next step in the algorithm is identification of upper or lower 

limits for the time interval of occurrence of maximum or minimum values 

in the trajectories that define the operation in both periods. The same 

analysis applied in the two previous examples indicate that the time 

interval k1 defines an upper bound for the trajectory to its left and 

a lower bound for the trajectory to its right.

Identification of the upper bound for the trajectory to the left of 

time interval k1 permits computation of trajectory Ω2 in Figure 10.

The lower bound for the trajectory to the right of time interval k1 

determines trajectory Ω3 .In this case, water transfer in this period 

is not restricted by minimum storage constraints in proximity to time 

interval k2 •

The analysis performed utilizing the past three examples allows 

generalization in the procedure used to define periods where the opera

tion may be independently computed. This generalization is considered 

in two examples given in Figure 11. In the first case (Figure 11.a), 

trajectory Ω1 starts with multiple violations of maximum storage

constraints and terminates with multiple violations of the minimum 

storage constraints. In this problem time intervals k1 and k2 

define the partition of the entire period of operation in sub-periods 

that have their operation initially computed. The basis for this defi

nition was stated in previous examples. For definition of k1 refer to 

definition of k2 in the second example (Figure 9) and for definition
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of k2 refer to definition of k1 in the third example (Figure 10). 

The sequence of computation of optimal operation starts with the period 

before time interval k1 and with the period following time interval 

k2 .The remaining period of operation, the intermediate period, has its 

operation computed in sequence.

In Figure 11.b trajectory Ω1 starts with multiple violations of 

minimum storage constraints and ends with multiple violations of maximum 

storage constraints. Time intervals of partition are defined in this 

case by k1 and k2. For definition of k1 refer to definition of 

time interval k1 in the third example (Figure 10) and for definition 

of k2 refer to definition of k2  in the second example (Figure 9).

In conclusion, the general rule applied to the partition of periods 

is that when multiple violations of maximum storage constraints occur, 

the time interval of occurrence of the maximum value of the last viola

tion defines the partition of the period. Conversely, when multiple 

violations occur with minimum storage constraints the partition is 

defined by the time of occurrence of the minimum value of the first 

violation. In both cases the optimization of water transfers in a 

constrained optimal operation is assured.

At this point it is interesting to identify similarities and 

differences between this algorithm and the one proposed by Laufer (1977) 

and Laufer and Morel-Seytoux (1979). This last algorithm assumes that 

the marginal instantaneous benefit of releases is given by an inverse 

exponential law. This assumption permits definition of a trajectory 

through the solution of an equation presenting marginal value of the 

trajectory as an explicit function of the summation of inflows and 

initial and final reservoir storages in a given period of operation.
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The partition of the operating period is based in a delineation of each 

year of operation into drawdown and refill phases. Assuming the reser

voir is full at the end of the season, each phase is separately 

optimized with violated constraints enforced stepwise. Correction of 

the final storage value is performed assuming in the following season 

the occurrence of a sequence of inflows equals the average value of 

recorded weekly inflows. Finally, the transition between drawdown and 

refill phases is tested. A later date of emptiness of the reservoir is 

assumed when the marginal instantaneous benefit of releases does not 

decrease after the minimum storage, as it is required in the optimal 

operation.

The seasonal characteristics of the hydrologic processes in alpine 

regions determined that the reservoir is usually full and empty in a 

very restricted range of pre-defined weeks. It makes the partition 

proposed by the algorithm viable and efficient in the determination of 

the optimal operation.

In the case being studied the function of the marginal 

instantaneous benefit of releases cannot be represented by an inverse 

exponential law. Hence, the marginal value of a trajectory must be 

computed by an iterative procedure. However if an inverse exponential 

law produced a good fitting of the function the same procedure used in 

the Laufer-Morel-Seytoux algorithm may be applied. Therefore, under 

these conditions the algorithms are identical although the present 

situation is more general.

The seasonal characteristic exploited in the Laufer-Morel-Seytoux 

algorithm cannot be extrapolated elsewhere without previous analysis. 

In the? present study carryover storage is expected to be highly utilized 

in order to optimize water transfers. The dates of extreme storages are 
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expected to randomly occur. Therefore, the partition of the operating 

period proposed in the Laufer-Morel-Seytoux algorithm seems to be not 

applicable to this study. As an alternative, a procedure of partition 

is proposed based on the analysis of a totally relaxed solution where no 

storage constraint is considered. This prevents the occurrence of 

non-optimal sequence of marginal instantaneous benefits of releases in 

the operation. In other words, the Laufer-Morel-Seytoux algorithm's 

test for transition between drawdown and refill phases is not required 

in the proposed algorithm.

A simplified version of the presented algorithm was coded in 

FORTRAN. In this version the last time interval of partition (time 

interval k1 , Figure 12) is initially identified. Next, the relaxed 

operation to the left of this time interval is computed and another 

partition is defined by the time interval k2 . This procedure is suc

cessively applied until a feasible (and optimal) trajectory is computed 

for the beginning of operation (trajectory Ω2 , Figure 12). The re

maining operating period starts at the end of the computed trajectory 

(time interval k3 , Figure 12) and ends with the final time interval of 

the entire operating period. Its operation is defined by identical 

approach. The simplified version does not utilize other computational 

artifices presented in the discussion of the complete version of the 

algorithm. Therefore, the simplified version requires less programming 

effort but will probably require more computation time.

A limited number of tests were performed to evaluate computational 

efficiency of the algorithm. In Table 7.a each test is presented ac

cording to the number of time intervals of operation, the reservoir 

useful capacity, and the tolerance of convergence of each trajectory to
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Figure 12. Algorithm’s Simplified Version
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the final storage. The Central Processing time (CP time) for each test 

is presented with the number of trajectories that defined the optimal 

operation. The first two tests used simulated data. The remaining 

tests are based on applications to the case study. In these tests, the 

time interval of operation equals one week.

In Table 7.b the same problems of test 1 and 2 were solved by a 

Discrete Dynamic Programming code (Labadie, 1977). The results verify 

the computational efficiency of the proposed algorithm. The Cumulative 

Minimum Surplus Analysis was not used in the tests since it may be 

applied independently of the algorithm used to define the optimal 

operation.

The memory requirements of the algorithm are low and independent of 

the tolerance value used. The vector of the initial trajectory 

with length equal to the number of time intervals must be stored. The 

optimal reservoir storage variation may be optionally stored in the same 

vector. Finally, memory space is required for a vector containing the 

optimal sequence of marginal values with dimension not greater than the 

number of time intervals. The remaining memory requirements refer to 

data. Therefore, they are common to any algorithm. The memory require

ments of the algorithm are approximately 1/M of the memory requirements 

of the Discrete Dynamic Programming. M is the average number of dis

crete intervals representing the state variable in the Discrete Dynamic 

Programming .

The algorithm is based on the analysis of the marginal values of 

alternative decisions under constrained operation. Therefore, it will 

be referred to as the Constrained Marginal Analysis.



121

TABLE 7

run
time 

intervals 
(weeks)

reservoir 
capacity 
(hm3)

number of CP time
tolerance trajectories (sec)

(hm3)

1 36 20600 20 3 0.56

2 40 20600 20 14 1.15

3 92 42700 20 2 1.17

4 132 42700 20 4 1.83

5 137 42700 20 1 1.43

6 182 42700 20 10 3.84

7 248 42700 20 3 2.71

8 1377 42700 200 28 53.27

9 1377 42700 20 48 72.11

1) Computer used: Cyber 172 of Colorado State University.

2) The interval of discretization on Table 7.b refers to the discrete 
representation of the state variable in the Dynamic Programming
approach.

time
run intervals

(weeks)

reservoir interval of CP time
capacity discretization (sec)
(hm3) (hm3)

1 36 20600 200  97.19

2 40 20600 200 105.99

a. Constrained Marginal Analysis tests.

b. Dynamic Programming tests.
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5.2 Multiple Reservoir Operation Optimization

In the theoretical analysis of optimal conditions of operation 

periods of water surplus are identified. In these periods water inflow 

into the reservoir is sufficient to allow its operation with maximum 

release. An algorithm was developed to identify such periods in the 

operation of a single reservoir. This algorithm, referred to as Cumula

tive Minimum Surplus Analysis, may have its application extended to the 

case of operation of multiple reservoirs. In this extension some partic

ularities of a system of multiple reservoirs have to be considered.

If for instance the system is composed of only unlinked reservoirs, 

each reservoir is analyzed individually to identify isolated water 

surplus periods. When the reservoirs are serially linked the analysis 

will be applied to the upstream reservoirs first. During identified 

periods of water surplus it is possible to define the inflow to the 

immediately downstream reservoir originated from releases from the 

upstream reservoir. Therefore, the downstream reservoir may be analyzed 

only during periods of water surplus in the upstream reservoir.

When a reservoir has a period of water surplus the generated energy 

in this reservoir is first used to supply the demand since it would 

otherwise be lost by water spills. Consequently the problem is reduced 

to defining operation of the remaining reservoirs in order to provide 

the remaining energy demand. The remaining energy demand is given by 

energy demand less the part of the demand provided by reservoirs in 

periods of water surplus. Eventually, the remaining energy demand is 

null. In this case, the operation of the system is trivially defined.

In the operation of multiple reservoirs the marginal instantaneous 

benefit of the releases in each reservoir depends on the operated re

leases in all reservoirs of the system. Its mathematical formulation is
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where the terms on both sides of the equation represent the first 

derivative of the objective function with respect to the release from 

the reservoir j during the t-th time interval or, as previously de

fined, the marginal instantaneous benefit of the releases from the 

reservoir j during the t-th time interval. The term x(t) is the 

total hydroenergy generation during the t-th time interval, which is 

given by

cost of operation during the t-th time interval. It depends on the 

thermoenergy generation (given by the expression in brackets or by the 

difference between the energy demand D(t) and the total hydroenergy 

generation) during the same time interval.

It may be noted that the marginal instantaneous benefit of releases 

in each reservoir is proportional to the marginal cost of operation 

(Equation 5.22). The proportionality factor is given by the energy 

conversion coefficient alpha(j,t). The hydraulic head variation during

where w(j,t) is the release from the reservoir j during the t-th 

time interval and alpha (j,t) is the energy conversion coefficient in 

the reservoir j during the time interval t. This coefficient is a 

function of hydraulic head during the t-th time interval, hydraulic 

losses and efficiency of the operation of the power plant in reservoir 

j •

(5.23)

(5.22)

The function is the marginal
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a weekly time interval can be considered insignificant in any reservoir 

of the system. Therefore, given a total hydroenergy generation value in 

the system, the marginal instantaneous benefit of release in a reservoir 

is defined independently of the reservoir's release. This charac

teristic is also derived from a property of operation of interconnected 

hydropower systems that the hydroenergy provided in a given time inter

val implies the same benefit independently of which reservoir it is 

produced from.

At this point of analysis it is helpful to recall the optimality 

conditions of operation derived in Chapter 4. The optimal variation of 

marginal instantaneous benefit of releases in each reservoir of a mul

tiple reservoir system is similar to the variation in single reservoir 

operation during periods with no water surplus. The marginal instanta

neous benefit is constant in each reservoir as long as there is no 

extreme (maximum or minimum) storage simultaneously in all reservoirs. 

It increases only after all reservoirs simultaneously reach the maximum 

storage and it decreases only after all reservoirs simultaneously reach 

the minimum storage. This interrelated variation of the marginal in

stantaneous benefit of the releases is not surprising, though. Equation 

5.22 shows that the variation does not occur under other conditions 

since it is function of the total hydrogeneration and not of the 

isolated reservoir energy production.

Variation of the marginal future benefit of storage and of the 

marginal benefit of water transfer in serially linked reservoirs has 

characteristics dependent on the referenced reservoir. These marginal 

values determine the optimal release from a reservoir in situations 1) 

when the reservoir is operated under a period of surplus of water and 2) 
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when the chain of the extreme storages occurs. In this last situation, 

the upstream reservoirs have their operation defined to optimize the 

transfer of water between reservoirs. It occurs during a period prior 

to simultaneous extreme storage occurrence. Nevertheless, the marginal 

instantaneous benefit of the releases remains proportional to the mar

ginal operating cost of the system.

Relative freedom in the partition of total hydroenergy generation 

among the reservoirs of the system suggests a simplified approach for 

determining optimal operation. It is based on the premise that the 

optimal hydroenergy generation in the system is not significantly 

related to each reservoir's storage and inflows but depends mainly on 

the total value of these figures. However, the total water storage and 

inflow to the system are poor estimators of the system's actual hydro

energy generation capability. For instance, the same volume of water 

produces different amounts of energy in different reservoirs due to the 

distinct hydraulic heads, losses and efficiencies. Moreover, a volume 

of water stored in the upstream reservoir of a serially-linked reservoir 

system has more "energetic value" than the same volume stored in the 

downstream reservoir. Therefore, the total storage and inflows to the 

system must be expressed by energy equivalent values in order to be good 

estimators of the system's energy capability.

The result is a formulation of an aggregated representation for the 

system. In this formulation a unique reservoir with a given energy 

storage capacity receives energy inflows and promotes energy releases. 

Computation of numeric values for these variables depends on the hy

draulic head variation in each reservoir. As the hydraulic heads are 

adjusted iteratively the formulation of the aggregated representation 

must be updated at each iteration.
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Optimal operation of the unique, equivalent reservoir is defined by 

the Cumulative Minimum Surplus Analysis and by the Constrained Marginal 

Analysis. Results of the operation are presented in terms of the total 

hydro energy generation in each time interval.

The partition of these total hydro energy generation values among 

the reservoirs of the system is defined by a disaggregation procedure 

that is based on a heuristic criterion. This criterion seeks the en

forcement of an "optimal state" (Hall, 1971) of water storage distribu

tion among the reservoirs. In this case, optimal state was considered 

as a situation that minimizes energy lost from the system due to spills.

The aggregation and disaggregation procedures are presented in the 

following sections. They were obtained experimentally based on tests 

performed on deterministic operation studies.

5.2.1 The Aggregated Formulation

The equivalent reservoir storage is supplied by an energy inflow. 

The stored energy may be released up to its maximum value that is 

defined by the hydraulic head and the system’s installed capacity. If 

the reservoirs have fixed hydraulic head transformation of water to 

energy is trivial. Under variable hydraulic head the energy produced by 

a given water volume has to be estimated under the hydraulic head that 

is expected when the given water volume is released. This introduces 

some complexities into the transformation between water inflows and 

resulting energy production.

Assume an unlinked reservoir has storage s(t) at the beginning of 

time interval t and that the respective hydraulic head is computed by 

the I-degree polynomial:
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(5.24)

where A(i), i = 0, 1, I are the polynomial's parameters.

The maximum hydraulic head is represented by

Hmax = h[Smax]

where Smax is the maximum storage in the reservoir.

Assuming an elementary volume of water ds(t) is released through 

the turbines the resultant energy production de(t) is given by

where coef is a constant coefficient.

If a non-elementary volume of water Δs(t) is utilized the 

resultant energy production is given by the integral

(5.26)

Therefore, the total energy storage in the reservoir at the 

beginning of the time interval t is given when Δs(t) = s(t) - Smin, 

where Smin is the minimum storage 

where E[s(t)] is the total energy storage when the water storage in 

the reservoir is s(t).

If s(t) = Smax, then e(t) = Emax, the reservoir useful energy 

storage capacity.

Let the equivalent hydraulic head at the beginning of time interval 

t be defined by
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h(t) = e(t)/{[s(t) - Smin] * coef} (5.28)

where h(t) is the equivalent hydraulic head at the beginning of time 

interval t. It represents the constant value of hydraulic head which 

computes the same energy produced under variable hydraulic head when the 

total storage is released.

The corresponding maximum equivalent hydraulic head is given by

Umax = Emax/{[Smax - Smin]* coef} (5.29)

Transformation of water to energy inflow is computed by the 

following procedure. Suppose a volume of water q(t.) enters the reser

voir during the time interval t. The stored water will increase from 

the beginning to the end of the time interval t from s(t) to s(t) + 

q(t). The stored energy will increase from e(t) to e(t) + qe(t) in 

the same time interval. Therefore, qe(t) is the corresponding energy 

inflow during the time interval.

If s(t) + q(t) is less than the storage capacity Smax all the 

water can be stored. The value of qe(t) is given by

qe(t) = E[s(t) + q(t)] - E[s(t)] (5.30)

If q(t) is small relative to s(t), the equivalent hydraulic head can 

be considered invariant during the time interval t. Therefore

qe(t)  coef * (s(t) + q(t)] * h(t) - coef * s(t) * h(t) or

qe(t) ~= coef * q(t) * h(t) (5.31)

If s(t) + q(t) is greater than the storage capacity Smax, the 

water inflow can be stored up to Smax. The remaining inflow must be 

released with the maximum hydraulic head or it will spill. Thus, the 

total energy inflow to the reservoir is formed by a storable and a 

non-storable part. The storable inflow is given by
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qes(t) = coef * [Smax - s(t)] * h(t) = coef * [Smax - s(t)] * Hmax 
(5.32)

The non-storable part is given by

qen(t) = coef * [s(t) + q(t) - Smax] * Hmax (5.33)

If the reservoir has downstream run-of-river power plants Equations 

5.27, 5.32, and 5.33 become Equations 5.34, 5.35, and 5.36 respectively.

Σ coef(j) * s(J,t) * H(j) = E[s(J,t)] (5.34)
jεJD

(energy storage)

qes (t) = coef * [Smax(J) - s(J,t)] * h(J,t) +

Σ (coef(j) * H(j)] * (Smax(J) - s(J,t)] (5.35)
jεJD

(storable water inflow)

qen(j,t) = coef(j) * [s(J,t) + q(J,t) - Smax(J)] * Hmax(J) +

Σ coef(j) * (s(J,t) + q(J,t) - Smax(J) + q(j,t)] * H(j) (5.36) 
jεJD

(non-storable water inflow)

where JD is the set of the values of j representing the run-of-river

power plants downstream of the reservoir-plant J,

s(J,t) is the water storage in the reservoir-plant J at the 
beginning of the time interval t

H (j) is the fixed hydraulic head in the run-of-river power
plants,

q(J,t) is the water inflow to the reservoir-plant J during the 
time interval t, and

q(j,t) is the water inflow to the run-of-river plant j during 
the time interval t.
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In the case of serially-linked reservoir with hydroplants no 

rigorous solution for such transformations is available. The water 

inflow to an upstream reservoir has the energy value related to the 

downstream reservoir estimated only upon arrival there. It will be 

function of the storage that then occurs in the downstream reservoir. 

However this storage is function of the future releases from the down

stream reservoir that are unknown when the water arrives in the upstream 

reservoir. An approximate transformation is that the water arriving at 

an upstream reservoir during a time interval is assumed to be operated 

downstream with the equivalent hydraulic head prevailing in the down

stream reservoir at the beginning of the same time interval. In this 

case the equation for computation of the stored energy e(t) is identi

cal to Equation 5.34 except for the term H(j). This term represents 

now the equivalent hydraulic head in the downstream reservoir given by 

Equation 5.28.

It was also assumed that in the case of water inflow exceeding 

storage space in the upstream reservoir it will be turbinated downstream 

according to the following procedure

1. the storable water inflow will be turbinated downstream with 

the maximum equivalent hydraulic head (Equation 5.32).

2. The non-storable water inflow will be turbinated downstream 

with the maximum hydraulic head.

The remaining energy demand to be provided by the aggregated system 

is determined by subtracting the non-storable energy inflow from the 

energy demand on the system. The equivalent reservoir energy storage 

capacity is calculated by summation of the individual energy storage 

capacities in each reservoir. The maximum energy release capacity is 
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computed as the total energy which will be produced if the maximum water 

releases (section 3.2.2) were operated in each reservoir. The minimum 

release commitment is not considered in the aggregated formulation. 

During the disaggregation procedure however, it will be enforced always 

when possible, according to the actual meaning of such a commitment.

5.2.2 A Criterion of Disaggregation

The purpose of the disaggregation procedure is to distribute the 

total energy production for each time interval among each reservoir. 

This energy production is computed in the aggregated system’s operation 

optimization. Some heuristic rules based on the enforcement of an ideal 

distribution of space available in each reservoir were tested before the 

criterion of disaggregation was selected. Being heuristic, the rules 

cannot provide the optimal disaggregation. However it is shown experi

mentally that the chosen rule gives results very near the true optimal 

disaggregation for the case study. Additionally, the rule is computa

tionally tractable and allows consideration of some requirements of 

operation not viable for presentation in a standard Mathematical 

Programming formulation. Finally it can be employed in operation with 

deterministic or uncertain future inflows.

The criterion of disaggregation is enforcement, when possible, of 

the following relation for each time interval in any reservoir:

(5.37)

where Smax(j) - s(j,t) is the difference between the maximum and the 

actual water content in reservoir j at the beginning of time interval 

t or the space available in reservoir j at the beginning of time 

interval t; E[q(j,t+1)] is  the expected value of the water inflow to
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reservoir j during time interval t+1; qu(j,t+l) is the water inflow 

to reservoir j during time interval t + 1 caused by previous release 

in the upstream reservoir; Smin(j) is the minimum storage in reservoir 

j .

The criterion promotes an increase in the available storage space 

in a reservoir at the beginning of the next time interval which is 

proportional to the expected total inflow to the reservoir during this 

next time interval. Its basic objective is to avoid spills.

The water balance equation states

s(j,t+l) = s(j,t) + q(j,t) + qu(j,t) - w(j,t) - spill(j,t) (5.38)

where s(j,t+l) is the water storage in reservoir j at the begin
ning of time interval t+1;

s(j,t) is the water storage in reservoir j at the begin
ning of time interval t;

q(j,t) is the water inflow to reservoir j during time
interval t;

qu(j,t) is the water inflow to reservoir j during time
interval t caused by releases from a reservoir 
upstream of reservoir j;

w(j,t)  is the water release from reservoir j during time 
interval t;

and spill(j,t) is the water spill in reservoir j during time 
interval t.

The reservoir storage constraints are

Smin(j) ≤ s(j,t+l) ≤ Smax(j) (5.39)

where Smin(j) is the minimum storage in reservoir j

and Smax(j) is the maximum storage in reservoir j.

The water release constraints state

w(j,t) ≤ Wmax(j,t) (5.40)

where Wmax(j,t) is the maximum release from reservoir j during the 

time interval t, which is function of the hydraulic head in the 

interval.
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w(j,t) ≥ Wmin(j) if and only if

s(j,t) + q(j,t) + qu(j,t) ≥ Wmin(j) + Smin(j) (5.41) 

where Wmin(j) is the minimum release commitment in reservoir j. This 

conditional imposition states that the minimum release will be enforced 

if and only if enough water is available in the reservoir.

Finally, total energy production is computed by

Σ coef(j) * w(j,t) * h(j,t) + xloss(t) - xdef(t) = x(t) (5.42) 
j

where coef(j) represents a constant coefficient

xloss(t) is the excess of energy produced during time interval t 

xdef(t) is the deficit in energy production during time interval 

t.

The Equation 5.42 states that total energy production must equal 

the energy production established by the optimization of the aggregated 

system's operation, unless the water balance equation implies an excess 

or deficit of energy production. Energy deficit or loss are to be 

avoided whenever possible.

The chain of extreme storages must also be considered in the 

disaggregation in order to optimize temporal and spatial water 

transfers. The enforcement of this chain is complicated in a strategic 

operation since an overall extreme storage in the system has just a 

chance of occurring. Consequently, a reservoir with downstream linkages 

will have only a probability of reaching the corresponding extreme 

storage before the occurrence of overall extreme storage in the optimal 

operation. In the case being studied this fact is not very significant 

since the travel times of the water between reservoirs are small, not 

exceeding one time interval (one week). Hence, the non-enforcement of 
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the chain of extreme storages in serially-linked reservoirs will not 

significantly affect the results.

The disaggregation procedure starts by computing the maximum 

release capacity in each reservoir as defined in the section 3.2.2. It 

is assumed the maximum release computed at the beginning of the time 

interval will persist through the interval. This assumption is accept

able when hydraulic head variations are not significant in each time 

interval, what may eventually occur if the time interval is small. The 

total water inflow to each reservoir is computed as the summation of the 

inflow q(j,t) and the inflow caused by upstream releases, qu(j,t).

The computation of qu(j,t) involves two cases. When the travel 

time of the water is equal or greater than one time interval qu(j,t) 

is known at the beginning of time t. When travel time is less than one 

time interval, qu(j,t) is not known since it depends on the release 

being computed for the upstream reservoir. An iterative adjustment of 

qu(j,t) is performed in this case. Initially it is set equal to the 

release in the upstream reservoir during the previous time interval. 

Then the disaggregation is performed and the estimated qu(j,t) is 

compared with the computed one. A new iteration is done if the dif

ference between estimated and computed values is greater than a toler

ance value. The estimated value of qu(j,t) in the new iteration is 

the computed value of qu(j,t) in the previous iteration.

The expected total water inflow in the following time interval is 

given by the summation of the expected inflow E[q(j,t+1)] and the 

inflow caused by upstream releases qu(j,t+l). The expected inflow is 

defined by a forecasting model based on statistical analysis.
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At this point relation 5.37 may be defined for each reservoir 

forming a system of N - 1 linear equations where the releases in each 

one of the N reservoirs are the unknown variables. The Equation 5.42 

gives the last linear equation required to define the values of the 

releases. Some constraints are present, however. Minimum releases in 

each reservoir are defined as the maximum between the minimum release 

commitment and the minimum release in each reservoir to avoid spill. If 

these minimum values are able to fulfill the total required energy 

production the disaggregation is therefore defined and there is no need 

to solve the linear system of equations. In the same way, the maximum 

releases in each reservoir are computed as the minimum between the 

maximum release capacity and the total water availability in each reser

voir. This last term is given by the summation of initial water content 

and the total inflow during a given time interval. In serially-linked 

reservoirs the release is also limited in order to avoid spills in the 

downstream reservoir. If the maximum energy production corresponding to 

the maximum releases is less or equal to the required energy production 

the disaggregation is defined and there is no need to solve the linear 

equation system. These two previous extreme cases correspond to an 

eventual occurrence of spills in the first case and deficits in the 

second case. In order to avoid or decrease the deficits in the energy 

production, the reservoirs with downstream power plants are allowed to 

spill water in some plants as long as the other plants are still pro

ducing energy below their maximum capacities. In the joint operation of 

the run-of-river plants with upstream reservoir plant (section 3.2.3) 

when the reservoir plant spills water, the spill will be used to produce 

energy downstream, if possible.
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For intermediate cases the determination of releases from each 

reservoir is accomplished by solving the linear equation system. The 

computed releases which fall outside the range formed by the minimum and 

maximum releases are equalled to the nearest limit value. The resultant 

energy production is computed. If the energy production is greater than 

the requirement the releases above their minimum limit are decreased. 

This decrease is defined in the inverse proportion of the expected water 

to enter the reservoir in the next interval and in the direct proportion 

of the space available in the reservoir. Otherwise, if the energy 

production is less than the requirement, the releases below their maxi

mum limit are increased. This increase is made in the direct proportion 

of the expected water inflows in the next interval and in the inverse 

proportion of the space available in the correspondent reservoir. This 

second order adjustment is repeated iteratively until the releases are 

feasible and the produced energy equals the requirement for that time 

interval.

5.2.3 Comments

The aggregation-optimization-disaggregation procedure for the 

optimization of multiple reservoir systems allows the reduction of the 

dimensionality of the optimization problem. It also provides a way to 

consider the optimal operation requirements and criteria which can 

not be considered in a standard Mathematical Programming formulation. 

To obtain these computational and practical advantages the procedure has 

to pay the price of derivation of relaxed solutions. A relaxed solution 

is caused by the aggregated representation of the reservoirs' con

straints in the aggregated formulation. It may result in violations of 

the maximum release constraints and of the minimum and maximum reservoir 
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storage constraints in the operation of the real system. As a 

consequence the computed optimal energy production level and the final 

equivalent reservoir content obtained in the optimization of the aggre

gated system may not be achieved in the real operation. Hence, during 

low storage periods the actual energy production may be below the re

quired level. During high storage periods, energy surplus and conse

quent spills may occur. Since these spills are not considered in the 

aggregated formulation, it causes an overestimate of the water actually 

stored in the system.

A characteristic of relaxed solutions is that the computed minimum 

cost of operation represents a lower bound for the real theoretical 

minimum cost. It provides an economic criterion which can be used to 

verify the efficiency of the aggregation-optimization-disaggregation 

procedure in the derivation of near-optimal solutions.

5.3 Application

The aggregation-optimization-disaggregation procedure was applied 

to the computation of the optimal deterministic operation of the studied 

multiple reservoir system. Observed series of inflows into the reser

voirs for the period from 1931 to 1966 were used in this application. 

The optimal operation was computed as if the characteristics of the 

system in 1983 were invariable during a 36 year period.' The inflows 

during this period were identical to the ones observed from 1931 to 

1966. These assumptions obviated the necessity of establishing the 

initial and final reservoir storage for each annual inflow series. It 

permitted study of the characteristics of the optimal operation during 

several probable series of inflows and storages in the reservoirs.
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Initial and final storage values were assumed for the beginning of 

the 1931 inflow series and for the end of the 1966 inflow series. 

Several initial and final storage values were tested. The application 

of the Cumulative Minimum Surplus Analysis to each test verified that 

1931 and 1966 were years of water surplus in the system. This is a 

valid conclusion regardless of the initial and final storages in the 

reservoirs. Consequently, the optimal operation during these years will 

be defined by the maximum release tactics. And the initial and final 

reservoir's storage have little significance in the study. Therefore, 

the initial storages were assumed with the reservoirs being 73 percent 

full. The final storage in each reservoir were maximum.

The initial estimate of the hydraulic head variation in each 

reservoir was given by the rated heads in each reservoir. The reser

voir's energy storage capacities are independent of the assumed hy

draulic heads. Their values are presented in Table 8.

The aggregation-optimization-disaggregation procedure was applied 

using the following steps 

STEP 1. Given: estimated hydraulic heads

Compute: storable energy inflow 

non-storable energy inflow 

maximum energy release capacity for the aggregated 

formulation

STEP 2. Given: the aggregated formulation of step 1

Compute: the periods of water surplus by the Cumulative 

Minimum Surplus Analysis

STEP 3. Given: The water inflows in each reservoir

the maximum water release in each reservoir



Abbreviations used for power plants: Passo Real (PR); Jacuí (JC); Itaúba (IT); 
Foz do Areia (FA); Salto Santiago (SS); Salte Osorio (SO); Passo Fundo (PF); 
Capivari-Cachoeira (CC).

Reservoirs PR JC IT FA
 (Eq. 

SS
MW)

SO PF CC Total %

PR 1354 3099 2954 - - 7407 16.5

FA  - - —- 9546 6912 4645 - - 21103 47.

SS —- — —— - 5640 3790 —— — 9430 21.

SO - - - — 408    -     - 408 .9

PF — — —— - 4955 4955 11.

cc — —— — — - - 1614 1614 3.6

Total 1354 3099 2954 9546 12552 8843 4955 1614 • 44917 100.

% 3. 6.9 6.6 21.3 27.9 19.7 11. 3.6 100

Table 8. Energy storage capacity in the system.

Energy storage capacity related to each power plant

139
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the period where water surplus does not occur (from 

step 2)

Compute: the periods of isolated water surplus in each 

reservoir by the Cumulative Minimum Surplus Analysis

STEP 4. Given: the periods where water surplus does not occur (from

step 2) 

the reservoirs where the maximum release tactics are 

not optimal (from step 3)

Update: the aggregated formulation if needed

STEP 5. Given: the aggregated formulation in each period where

water surplus does not occur (from step 4)

Compute: the optimal aggregated operation by the Constrained 

Marginal Analysis

STEP 6. Given: the optimal operation of the aggregated system (from

steps 2 to 5)

Compute: the actual operation of the system by the disaggre

gation procedure

STEP 7. Given: the actual operation of the system (from step 6)

Compare: the computed and assumed hydraulic heads 

If: convergence does not occur, make estimated hydraulic

heads equal, to the computed ones and return to step 

I

If: convergence occurs, STOP.

The tolerance assumed for the convergence of the final storage in 

each trajectory in the Constrained Marginal Analysis was 20 Eq. MW, 

about 0.04 percent of the total energy storage capacity. After 5 itera

tions the computed hydraulic heads in each reservoir did not differ from
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the assumed ones by more than 2 percent. Table 9 presents the average 

computation time in each step of the aggregation-optimization-disaggre

gation procedure.

At the final iteration the breakdown between water surplus periods 

and period with no water surplus is given in Table 10. This breakdown 

proved to be almost insensitive to hydraulic head variations. A good 

estimate of it was available after the first iteration. No variation 

occurred after the second iteration. Isolated periods of water surplus 

did not occur in any reservoir. The cause may be attributed to the 

homogeneity of the hydrology in the region. Hence, an optimization 

problem with 6 dimensions and 1872 weekly time intervals (or stages) was 

divided into 5 one-dimensional problems with 92 to 248 weekly time 

intervals.

Table 10 presents the optimum tactic of operation of the system. 

The optimum tactic is defined through marginal values in a very concise 

and accurate manner. This characteristic can be considered another 

advantage of the Constrained Marginal Analysis in the deterministic 

operation of reservoirs.

The disaggregation procedure was applied at each iteration in order 

to define each reservoir's operation and the resultant hydraulic head 

variation. The convergence between the estimated and computed hydraulic 

heads occurred faster in the periods of surplus of water. Two reasons 

existed for it; the optimal operation is defined by the maximum release 

tactics during such periods and their locations are not very sensitive 

to the actual values of the hydraulic heads. It caused the convergence 

of the hydraulic heads to occur during the third iteration in periods of 

surplus of water. Therefore, after this iteration, only the periods
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Table 9. Average computation time for the aggregation-optimization- 
disaggregation procedure.

Note: a) computer used: Cyber 172
b) period of operation: 1872 time intervals (weeks)
c) the Cumulative Minimum Surplus Analysis is applied to the 

aggregated formulation of the problem only

Phase

Average 
central processing 
______ time

1 Aggregation procedure ............ . . . 8 seconds

2 Cumulative minimum surplus analysis . . . 0.3 seconds

3 Optimization procedure ....... . . . 12 seconds

4 Disaggregation procedure

- for the entire period . . .

- for non-surplus periods . . 

Total for each iteration:

. . . 60 seconds

. . . 45 seconds

65 to 81 seconds
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Table 10. Optimal tactic of operation for the aggregated system. 
Storage capacity: 44,917 Eq. MW.

Interval 
(week)

Initial 
reservoir 
content
Eq. MW

Marginal 
value 
$/MWh

Interval 
(week)

Initial 
reservoir 
content
Eq. MW

Marginal 
value 
$/MWh

1-104 32789 0.0 781 empty 39.8

105 full 30.1 782 empty 8.4

106-234 full 50.5 783-931 empty 0.0

235 empty 39.5 932 full 19.2

236 empty 15.7 933-1127 full 37.9

237-600 empty 0.0 1128-1178 empty 37.7

601 full 6.8 1179 empty 17.3

602 full 16.1 1180-1401 empty 0.0

603 full 27.2 1402-1538 full 7.9

604-614 full 29.1 1539-1610 empty 0.0

615 full 41.2 1611-1625 full 7.2

616-690 full 42.4 1626-1702 full 12.6

691-780 full 99.5 1703-1872 empty 0.0

1873 full
Note: the periods of water surplus are the ones with zero marginal 

values.
6Total variable cost of operation including deficits: U.S. $1305.8 * 10

Average annual variable cost : U.S. $ 36.3 * 10$
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with no water surpluses needed to have their hydraulic heads corrected 

after each iteration. It represented a substantial computational 

saving.

The production in actual operation of the total hydroenergy 

generation computed by the aggregated formulation presented some ex

pected discrepancies. During periods of low storage the actual hydro

energy generation could not eventually attain the required level or 

hydroenergy deficits occurred. It resulted in an increase of the 

thermoenergy generation which totaled less than 1 percent of the total 

energy inflow during periods with no water surplus. This percentage is 

insignificant during periods of water surplus. During high storage 

periods the observed spills in the real operation were somewhat above 

the levels computed by the aggregated formulation or hydroenergy losses 

occurred. They achieved the order of 4 percent of the total hydro

energy inflow during periods with no water surplus. During periods of 

surplus of water the spills were about 11 percent of the total energy 

inflow. It resulted that the energy storage given by the aggregated 

formulation was consistently above the actual energy storage obtained 

with application of the disaggregation procedure. This situation was 

not surprising, though. When the aggregated formulation was presented 

it was understood that this kind of formulation would overestimate the 

system's actual energy storage capacity. It happens because spills 

occur in the aggregated formulation only when all reservoirs are simul

taneously full. This formulation does not account for spills which may 

occur in an isolated reservoir independently of the other reservoirs' 

storage.
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In order to consider this deficiency of the aggregated formulation 

an artifice was used. The total energy storage capacity of the system 

was reduced to 95 percent of its computed value. The optimal operation 

under this new formulation was computed. The resultant optimal tactic 

is presented in Table 11.

The periods of water surplus had their location unchanged with the 

decrease of the total storage. The tactic itself has very few modifica

tions. The marginal values eventually increased after the reservoir has 

filled and decreased after the reservoir has emptied. This behavior can 

be explained by the concept of water transfer in reservoir operation. 

When the storage capacity decreases relatively less water can be trans

ferred to the future. This implies that less water will be used after a 

maximum storage and consequently the marginal values increase. The 

excedent water has to be used before the time when the reservoir becomes 

full; this decreases the respective marginal values. Tables 10 and 11 

show such an occurrence.

Some discrepancies are still noticed between the operation computed 

by the aggregated formulation and the actual operation of the system. 

The percent values of the hydroenergy deficits decreases during periods 

of low storage when compared with the figures obtained in the previous 

results. During periods of high storage the hydroenergy losses occur 

with roughly the same percentage level for both results. The variable 

cost of operation increases about 6 percent with a decrease on the 

aggregated energy storage capacity of the system.

The trajectories of the variation of the energy storage each time 

interval are presented in Figures 13.a to 13.f. The curves represent 

the results obtained with the aggregated formulation with decreased
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Interval 
(week)

Initial 
reservoir 
content
Eq. MW

Marginal 
value 
$/MWh

Interval 
(week)

Initial 
reservoir 
content
Eq. MW

Marginal 
value 
$/MWh

1-104 32789 0.0 616-690 full 42.4

105 full 30.1 691-780 full 101.0

106-234 full 66.6 781 empty 39.4

2 35 empty 39.5 782 empty 6.8

236 empty 15.7 783-931 empty 0.0

237-600 empty 1.0 932-1127 full 38.2

601 full 6.8 1128-1178 empty 37.3

602-603 full 16.1 1179 empty 16.8

604 full 27.2 1180-1401 empty 0.0

605-614 full 29.1 1402-1538 full 8.8

615 full 41.2 1539-1610 empty 0.0

1611-1702 full 14.4

1703-1872 empty 0.0

1873 full
Note: the periods of water surplus are the ones with zero marginal 

values.

Total variable cost of operation including deficits: U.S. $1393.1 * 106
Average annual variable cost  : U.S. $ 38.7 * 106

Table 11. Optimal tactic of operation for the aggregated system. 
Storage capacity: 42,700 Eq. MW.



Figure 13.a. Energy Storage Trajectories, Aggregated and Actual Formulations, 1931 to 1936
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Figure 13.b. Energy Storage Trajectories, Aggregated and Actual Formulations, 1937 to 1942
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Figure 13.c. Energy Storage Trajectories, Aggregated and Actual Formulations, 1943 to 1948
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Figure 13.d. Energy Storage Trajectories, Aggregated and Actual Formulations, 1949 to 1954
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Figure 13.e. Energy Storage Trajectories, Aggregated and Actual Formulations, 1955 to 1960



Figure 13.f. Energy Storage Trajectories, Aggregated and Actual Formulations, 1961 to 1966

152



153

energy storage capacity and the actual values of total energy storage in 

the real system's operation. The greatest deviations between the 

trajectories occur during the periods when the storages are being 

refilled. It is apparently caused by underestimation of energy inflows 

to the system in the aggregated formulation. During the presentation of 

the aggregation procedure it was observed that no rigorous solution for 

computation of energy inflows to serially-linked reservoirs exists. The 

criterion then adopted resulted in the previously referred 

underestimation. In the computation of the system’s operation the 

underestimation of energy inflows must be of concern during periods with 

no water surplus. During periods of water surplus the optimal operation 

is given by maximum release tactic; the eventual correction of the 

procedure of energy inflow estimate will not cause any change in the 

operation. Figures 13.a to 13. f show that the deviation between 

trajectories is more pronounced during refilling periods which occurred 

in times of water surplus. This minimizes the significance of the 

errors on the optimal operation caused by the underestimation of energy 

inflows into the aggregated formulation.

Spills were observed in the operation of the individual reservoirs 

during periods with no water surpluses. Their values are about the same 

in both derived tactics of operation. The occurrence of spills in such 

a circumstance is caused by two related factors: the underestimation of 

the energy inflows in the aggregated formulation and the heuristic 

criterion of disaggregation. If the resultant value of the energy 

losses was optimally used in the operation the resultant operating cost 

would decrease about 5 percent from the computed cost.
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A property of the aggregated formulation mentioned previously is 

the derivation of a lower bound for the minimum value of the objective 

function. It is caused by the representation of storage constraints in 

each reservoir by a lumped equivalent storage constraint. Therefore, 

the cost of operation presented in Table 10 may be considered such a 

lower bound for the actual minimum cost of operation. A more stringent 

value for this lower bound may be obtained if the 5 percent observed 

cost decrease is taken to account for the optimal usage of spills 

occurring in periods with no water surplus.

The reduction of the aggregated storage value in the second 

application (Table 11) increased the cost of operation by 6 percent. It 

also significantly improved the adherence between the trajectories of 

overall energy storage obtained in the aggregated formulation and in the 

actual operation (Figures 13.a to 13.f). The resultant cost of opera

tion is probably higher than the actual minimum cost. Notice that no 

allowance is made in this case for the optimal usage of spills occurring 

in periods of no water surplus. Therefore, the actual minimum cost of 

the system's operation is in the range of $1240.5 million to $1393.1 

million, or a $34.5 million to $38.7 million per year average. If the 

deterministic operation had a purpose other than its use as a screening 

study, more rigorous solution may need to be devised. An improvement of 

the estimates of energy inflows to the aggregated system would be 

required. For the purpose of screening, however, the approximation of 

solutions is considered satisfactory.

The tactics of operation presented in Tables 10 and 11 were 

analyzed in terms of the utilization of thermal units. The results are 

shown in Table 12. In both cases the thermal units are working at a
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Unit Fuel used Number of idle 
tactic 1

intervals 
tactic 2

Percentage 
tactics 1 tactics 2.

0 0 0 0

# 1 coal 1081 1081 58 58

# 2 coal 1316 1316 70 70

# 3 coal 1317 1317 70 70

# 4 coal 1329 1327 71 71

#5 coal 1330 1328 71 71

# 6 transfer 1 1330 1329 71 71

if 7 oil 1654 1653 88 88

if 8 oil 1782 1653 95 88

if 9 oil 1782 1782 95 95

# 10 transfer 2 1782 1782 95 95

shortage 1872 1872 100 100
Note: tactic 1—aggregated formulation with full storage

tactic 2—aggregated formulation with 95 percent storage

Table 12. Use of thermo units in the optimal deterministic operation.
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minimum load 58 percent of the time. The less efficient oil-fueled 

units are idle 88 percent of the time. The second kind of energy 

transfer is not used 95 percent of the time and is never used at full 

load. No shortage occurs.

The values of energy storage and inflow to each reservoir in the 

system were roughly identical in both cases of operation. Some regular

ity was observed in the partition of these variables among reservoirs of 

the system. Figures 14 through 25 show the pattern obtained with the 

second tactic of operation. In Figures 14 to 19 energy storage in each 

reservoir is plotted with the total energy stored in the system in some 

weeks. A regular pattern is observed in the dominant reservoirs of the 

system, Passo Real, Foz do Areia and Salto Santiago. Their total stor

ages count for 85 percent of the total energy storage of the system.

Figures 20 to 25 represent the relationship between the energy 

inflows into each reservoir and the total energy inflow into the system 

for some weeks. A regular pattern is shown for the reservoirs on the 

dominant river of the system, the Iguaçú River. The energy inflows to 

these reservoirs (Foz do Areia, Salto Santiago and Salto Osório) repre

sent about 62 percent of the total energy inflows to the system on the 

average.

Tables 13 and 14 present some statistical parameters of the 

distribution of energy inflows and storages in each reservoir. The 

non-storable energy inflow to the run-of-river power plants is also 

considered in Table 13 (site RR). This resulted in an insignificant 

part of the energy demand, less than 2 percent, on the average. Weekly 

energy inflows showed a strong variance around the mean. The correla

tion coefficient was also high between adjacent weeks. These



Figure 14.a. Energy Storage Distribution in Passo Real, 1st week
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Figure 14.b. Energy Storage Distribution in Passo Real,
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11th week



Figure 14.c. Energy Storage Distribution in Passo Real, 21st week
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Figure 14.d. Energy Storage Distribution in Passo Real, 31st week
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Figure 14.e. Energy Storage Distribution in Passo Real, 41st week



Figure 15.a. Energy Storage Distribution in Foz do Areia, 1st week
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Figure 15.b. Energy Storage Distribution in Foz do Areia, ,11th week



Figure 15.c. Energy Storage Distribution in Foz do Areia, 21st week
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Figure 15.d. Energy Storage Distribution in Foz do Areia, 31st week



Figure 15.e. Energy Storage Distribution in Foz do Areia, 41st week
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Figure 16.a. Energy Storage Distribution in Salto Santiago, 1st week
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Figure 16.b. Energy Storage Distribution in Salto Santiago, 11th week
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Figure 16.c. Energy Storage Distribution in Salto Santiago, 21st week



Figure 16.d. Energy Storage Distribution in Salto Santiago, 31st week
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Figure 16.e. Energy Storage Distribution in Salto Santiago, 41st week



Figure 17.a. Energy Storage Distribution in Salto Osorio, 1st week
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Figure 17.b. Energy Storage Distribution in Salto Osorio, 11th week
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Figure 17.c. Energy Storage Distribution in Salto Osorio, 21st week





Figure 17.d. Energy Storage Distribution in Salto Osorio, 31st week



Figure 17.e. Energy Storage Distribution in Salto Osorio, 41st week
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Figure 18.a. Energy Storage Distribution in Passo Fundo, 1st week



Figure 18.b. Energy Storage Distribution in Passo Fundo, 11th week
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Figure 18.c. Energy Storage Distribution in Passo Fundo, 21st week
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Figure 18.d. Energy Storage Distribution in Passo Fundo, 31st week
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Figure 18.e. Energy Storage Distribution in Passo Fundo, 41st week
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Figure 19.a. Energy Storage Distribution in Capivari-Cachoeira,
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1st week



Figure 19.b. Energy Storage Distribution in Capivari-Cachoeira, 11th week
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Figure 19.c. Energy Storage Distribution in Capivari-Cachoeira, 21st week
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Figure 19.d. Energy Storage Distribution in Capivari-Cachoeira, 31st week



Figure 19.e. Energy Storage Distribution in Capivari-Cachoeira, 41st week
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Figure 20.a. Energy Inflow Distribution in Passo Real, 1st week
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Figure 20.b. Energy Inflow Distribution in Passo Real, 11th week
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Figure 20.c. Energy Inflow Distribution in Passo Real, 21st week
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Figure 20.d. Energy Inflow Distribution in Passo Real, 31st week
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Figure 20.e. Energy Inflow Distribution in Passo Real, 41st week
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Figure 21. a. Energy Inflow Distribution in Foz do Areia, 1st week
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Figure 21.b. Energy Inflow Distribution in Foz do Areia, 11th week



Figure 21.c. Energy Inflow Distribution in Foz do Areia, 21st week
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Figure 21.d. Energy Inflow Distribution in Foz do Areia, 31st week
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Figure 21.e. Energy Inflow Distribution in Foz do Areia, 41st week
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Figure 22.a. Energy Inflow Distribution in Salto Santiago, 1st week
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Figure 22.b. Energy Inflow Distribution in Salto Santiago, 11th week
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Figure 22.c. Energy Inflow Distribution in Salto Santiago, 21st week
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Figure 22.d. Energy Inflow Distribution in Salto Santiago, 31st week



Figure 22.e. Energy Inflow Distribution in Salto Santiago, 41st week
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Figure 23.a. Energy Inflow Distribution in Salto Osorio, 1st week
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Figure 23-b. Energy Inflow Distribution in Salto Osorio, 11th week
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Figure 23.c. Energy Inflow Distribution in Salto Osorio, 21st week

204



Figure 23.d. Energy Inflow Distribution in Salto Osorio, 31st week
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Figure 23.e. Energy Inflow Distribution in Salto Osorio, 41st week
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Figure 24.a. Energy Inflow Distribution in Passo Fundo, 1st week
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Figure 24.b. Energy Inflow Distribution in Passo Fundo, 11th week
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Figure 24.c. Energy Inflow Distribution in Passo Fundo, 21st week
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Figure 24.d. Energy Inflow Distribution in Passo Fundo, 31st week
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Figure 24.e. Energy Inflow Distribution in Passo Fundo, 41st week



Figure 25.a . Energy Inflow Distribution in Capivari-Cachoeira, 1st week
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Figure 25.b. Energy Inflow Distribution in Capivari-Cachoeira, 11th week



Figure 25.c. Energy Inflow Distribution in Capivari-Cachoeira, 21st week
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Figure 25. d. Energy Inflow Distribution in Capivari-Cachoeira, 31st week
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Figure 25.e. Energy Inflow Distribution in Capivari-Cachoeira, 41st week
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Weeks

Table 13. Statistical parameters of the energy inflows to the reservoirs 
(Eq. MW).

Site 1st 6 th 11th 16th 21st 26 th 31st 36th 41st 46 th 50th

mean 250.6 196.6 168.0 261.2 385.9 426.1 417. 7 564.6 627.1 329.6 290.0
PR st dV 

skew
170.6

1.38
131.6

1.66
118.6

3.22
266.6

1.83
406.8

3.11
263.9

0.65
232.9

1.12
331.5

0.45
381.9

1.01
187.9

0.87
220.2

1.28
corr 0.93 0.98 0.92 0.95 0.98 0.98 0.97 0.99 0.99 0.97 0.99

mean 1122 1335 1442 1021 1193 1360 1324 1538 1962 1606 1315
 st dv FA skew

593.9
1.38

715.1
0.98

890.2
1.62

624.5
2.11

892.6
1.12

1121
1.86

1286
2.82

1418
3.32

1120
1.20

948.1
0.64

905.2
2.15

corn 0.93 0.98 0.99 0.95 0.97 0.98 0.98 0.99 0.98 0.97 0.99

mean 403.5 490.4 421.6 377.8 476.7 532.0 489.3 541.4 844.5 635.0 484.9
ss st dv 

skew
29 7.7

1.92
420.5

2.48
254.6

0.81
270.2

2.02
481.6

2.72
537.7

2.39
497.1

2.17
4 79.2

2.23
853.1

4.25
429.1

1.00
408.8

2.63
corr 0.95 0.99 0.96 0.90 0.98 0.98 0.95 0.98 0.99 0.96 0.99

mean 23.9 26.5 22.6 19.7 23.8 28.0 26.5 37.9 46.1 32.1 25.2
so st dv 

skew
22.5
3.27

18.3
1.17

13.8
0.85

13.9
2.13

19.7
1.50

28.1
2.38

24.8
1.54

65.2
5.05

45.4
3.89

20.2
0.74

21.2
2.71

corr 0.97 0.93 0.97 0.94 0.98 0.99 0.94 0.99 0.96 0.95 0.96

mean 74.6 61.1 56.8 70.8 103.2 113.5 122.0 157.6 173.3 111.0 83.3
PF st dv 

skew
52.5

1.95
36.7
1.41

48.5
1.89

56.0
1.21

72.7
1.25

72.6
1.92

62.0
. 0.89

106.4
1.42

10 7.4
0.99

80.1
1.41

64.8
1.52

corr 0.93 0.97 0.97 0.98 0.96 0.98 0.95 0.99 0.98 0.98 0.99

mean 85.3 114.4 100.8 64.9 54.9 46.7 38.9 52.0 74.9 70.9 78.0
cc st dv 

skew
2 3.9

- 0.19
51.6
1.44

48.1
1.55

33.4
0.93

34.6
1.29

31.3
1.14

36.5
2.98

45.4
2.44

44.6
1.22

39.3
1.16

37.6
0.65

corr 0.90 0.99 0.98 0.95 0.95 0.96 0.98 0.99 0.98 0.97 0.99

mean 39.7 30.4 29.7 40.0 55.7 60.3 69.5 87.8 89.4 50.0 44.0
RR st dV 

skew
26.2
1.34

19.4
1.40

22.7
2.46

37.9
1.64

53.8
2.54

39.4
0.80

39.3
0.88

49.1
0.35

47.7
0.98

26.2
0.80

31.4
0.96

corr 0.93 0.98 0.94 0.96 0.98 0.98 0.96 0.98 0.99 0.97 0.99
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Table 14. Statistical parameters of the energy storage in the reservoirs 
(Eq. MW). 

Site 1st 6 th 11th 16th 21st
Weeks 
26th 31st 36th 41st 46th 50th

mean 6273 6081 5920 5765 5620 5607 5685 5942 6324 6564 6472
PR st dv 

skew
1680

-2.03
1664

-1.53
1716

-1.17
1908

-1.22
 2082 
-1.11

2224
-1.10

2202
-1.19

2052
—1.45

1917
-1.99

1735
-2.46

1665
-2.38

corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mean 17640 17373 17716 17499 16901 16509 16358 16185 17042 18361 18296
FA st dv 4611 4301 3515 3833 4801 5787 5787 5934 5533 4293 4392

skew -1.93 -1.38 -0.76 -0.82 -1.35 -1.39 -1.12 -1.09 -1.08 -1.86 -2.15
corr 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mean 6877 6697 6827 6503 6333 6275 6132 6061 6689 7445 7355
SS st dv 

skew
2941

-1.08
2892

-0.80
2765

-0.88
2977 

-0.82
3197

-0.95
3451

-0.79
3537

-0.59
3624

-0.48
3477

-0.73
2795

-1.23
2863

-1.33
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mean 193 144 140 139 126 167 171 170 226 214 212
SO st dv 

skew
175

0.01
170

0.70
175

0.71
164

0.53
164

0.92
179

0.36
182

0.32
187

0.37
187

-0.22
173

-0.09
163

-0.03
corr 0.85 0.85 0.97 0.84 0.69 0.88 0.91 0.85 0.99 0.85 0.73

mean 2179 1975 1730 1488 1409 1511 1629 1808 2058 2296 2312
PF st dv 

skew
1729
0.17

1707 
0.28

1634
0.59

1600
0.96

1605 
0.91

1684
0.77

1754
0.71

1780
0.66

1784
0.51

1748
0.31

1761
0.20

corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

mean 560 461 422 396 290 292 292 338 454 532 595
CC st dv 

skew
624

0.53
609

0.94
623

1.20
570

1.25
521

1. 77
541

1.80
510

1.73
536

1.41
570

0.94
610

0. 74
643

0.49
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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statistical characteristics of energy inflows agree with the statistical 

characteristics of water inflows to the system presented in Table 6.

The analysis of the trajectories of the reservoir storages 

strengthens the initial supposition about the importance of the inter- 

seasonal carryover storage in the operation of the system. No regular 

pattern for reservoir trajectories was defined. In other words, high 

and low levels of storage were computed for any season. The occurrence 

of maximum and minimum storage was randomly distributed along the weeks. 

Despite that, one remarkable peculiarity was identified. This was the 

pronounced regularity of the partition of energy storage and inflows 

among some of the most important reservoirs in the system. These char

acteristics will be explored in the strategic studies of the operation 

under uncertain future inflows.



Chapter 6

AN ALGORITHMIC APPROACH TO THE OPERATION UNDER UNCERTAINTY

OF THE FUTURE INFLOWS

In this chapter the optimality conditions for operation of the 

studied multireservoir system are derived in the case of uncertain 

future inflows. The strategic objective is the minimization of the 

expected operating cost of the system. This situation was analyzed by 

Massé (1946b) in his Theory of the Marginal Expectations in the problem 

of operation of a single reservoir. Most of the material in the first 

part of this chapter is taken from this report.

An algorithm was developed for a single reservoir operation 

optimization based on the Theory of the Marginal Expectations. This is 

an improved version of the Explicit Stochastic Approach of the Dynamic 

Programming to convex problems.

In the second part of the chapter an extension of the Theory of the 

Marginal Expectations to the operation of a system of multiple reser

voirs is investigated. In order to restrict the dimension of the prob

lem an aggregated formulation is proposed. The problem of a relaxed 

solution with its consequent losses of water is analyzed and a procedure 

to cope with its effects is proposed using some characteristics of the 

deterministic operation.

The application of the method to the derivation of the optimal 

strategy of operation is performed and its results are discussed at the 

end of the chapter.

6.1 Single Reservoir Operation Optimization

The first optimality condition for the operation of a single 

reservoir stated that in the optimal operation the marginal 
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instantaneous benefit of releases is equal to the marginal future 

benefit of remaining storage. In decisions under complete certainty of 

the future the marginal future benefit of storage is known since present 

and future decisions can and must be defined at the beginning of the 

operation. In decisions under uncertainty of the future, the decisions 

are made for the next time interval of operation only, reflecting the 

strategical need to wait until additional information about the future 

is collected. Therefore, the marginal future benefit of storage is 

uncertain when the decision is made.

Suppose, however, that the residual benefit of the remaining 

storage is known at the end of the operating period. This is given by 

the function R[n+1, s(n+l)] , where s(n+l) is the storage at the end 

of the last interval of operation n. The transition between storage at 

the beginning of the interval and storage at the end is defined by the 

hydrologic balance equation

s(n+l) = s(n) + q(n) - w(n) - spill(n) (6.1)

where s(n) is the storage at the beginning of time interval n

q(n) is the inflow during time interval n

w(n) is the operated release during time interval n 

spill(n) is the eventual spill during time interval n.

The restrictions on the operation are given by

Smin ≤ s(n+l) ≤ Smax (6.2)

Wmin ≤ w(n) ≤ Wmax(n) (6.3)

where Smin and Smax are the minimum and maximum storage in the 

reservoir, respectively, and Wmin and Wmax(n) are the minimum and 

maximum release during the time interval n , respectively. Wmax(n) is 

a function of the reservoir's hydraulic head during the time interval n.
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The value of q(n) is associated with a given conditional 

probability function

P[n, q|z(n)] = P[q(n) = q)Z(n) = z(n)] (6.4)

where Z(n) is a set of relevant informations to be used in the fore

casting of q(n)

z(n) is one of the possible realizations of Z(n) 

and q is a realization of q(n) defined as a finite interval of 

inflow values.

For each possible realization of q(n) the definition of the 

optimal decision will follow optimality condition 1 of the deterministic 

operation. The marginal instantaneous benefit of the release must be 

equal to the marginal future benefit of the remaining (or residual) 

storage after the release. This decision is optimal if the assumed 

realization of q(n) actually occurs. Therefore, if such a realization 

is associated with a probability level, the defined decision will be 

optimal with this same probability level. If expected values may be 

used the following equation computes the expected benefit of storage at 

the beginning of time interval n

R[n,s(n)|z(n)] = ∫ P[n,q|z(n)] * {F[n,w(n)] + R[n+1,s(n+1)]} dq (6.5) 
q

where R[n,s(n)|z(n)] is the expected future benefit of storage s(n) 

at the beginning of interval n, such that the set of 

information to forecast q(n) is z(n)

F[n,w(n)] is the instantaneous benefit of release w(n).

The equation states that the expected future benefit of storage at 

the beginning of interval n is given by the expected value of the sum 

of the instantaneous benefit of releases and the benefit of the remain

ing storage after the release.
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It is assumed that the length of the time interval of operation is 

small enough to allow a nearly accurate forecast of inflow q(n) when a 

decision about release w(n) is made. In this case the following 

procedure is used in the computation of the optimal release during time 

interval n.

A. Define a release w(n) such that Wmin ≤ w(n) ≤ Wmax(n).

B. Compute its marginal instantaneous benefit given by the first

derivative of function F[n,w(n)] with respect to w(n).

C. Compute the remaining storage at the end of time interval n 

by hydrologic balance equation (6.1).

D. Compute the marginal benefit of the remaining (or residual) 

storage by the first derivative of function R[n+1,s(n+1)] with respect 

to s(n+1).

E. Release w(n) is optimum if the marginal instantaneous 

benefit of the release is equal to the marginal benefit of the remaining 

(or residual) storage s(n+l), or

(6.6)

When one or more constraints are tightening the optimal operation, 

equality 6.6 may eventually not be attained. To analyze such a case it 

is convenient to express Equation 6.5 in terms of its derivatives with 

respect to s(n)

(6.7)where

The derivative with respect to s(n) from the hydrologic balance 

equation is
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0 if s(n+l) = Smax (6.11)

0 if s(n+l) = Smin (6.12)

where the plus and minus signs mean the derivatives being evaluated 

respectively for increasing or decreasing values of  s(n+l) or to the 

"right" or "left" of s(n+l).

(6.15)

0 if w(n) = Wmax(n) (6.13)

0 if w(n) = Wmin (6.14)

Suppose the optimality condition given by Equation 6.6 can be 

attained without violating any constraints. If no spill occurs the 

value of the variable I is zero (relations 6.9). The equality given 

by the optimality condition (Equation 6.6) and the equality given by 

Equation 6.10 imply for expression T given by Equation 6.7

or

(6.8)

If spill occurs only when the reservoir is full

0 , if spill = 0 (6.9)
1 , if spill > 0 

Collecting identical terms

(6.10)

The derivatives of the restrictions may be defined when they are 

tightened
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Suppose the optimality condition given by Equation 6.6 cannot be 

enforced due to violations of the restrictions. The following cases may 

occur

A. The release is tightened by the maximum release constraint and 

the marginal instantaneous benefit of release is still greater than the 

marginal future benefit of the remaining storage. In this case im

provements in the results of the operation might be obtained if the 

maximum release constraint did not tighten the operation. Substituting 

the value of derivatives given by Equations 6.13 and 6.10 into Equation 

6.7, the value of T becomes

(6.16)

B. The release is tightened by the minimum release constraint and 

the marginal instantaneous benefit of release is still less than the 

marginal future benefit of the remaining storage. In this case improve

ments in the results of the operation might be obtained if the minimum 

release constraint did not tighten the operation. Substituting the 

value of the derivatives given by Equations 6.14 and 6.10 into Equation 

6.7, the value of T is still given by Equation 6.16.

C. The storage is tightened by the minimum storage constraint and 

the marginal instantaneous benefit of release is still greater than the 

marginal future benefit of the remaining storage. Improvements might be 

obtained in the results of the operation if the maximum storage con

straint did not tighten the operation. The value of T in Equation 6.7 

is defined in this case by substituting in 6.7 the value of the deriva

tives in Equations 6.12 and 6.10
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D. The storage is tightened by the minimum storage constraint and 

the marginal instantaneous benefit of release is still less than the 

marginal future benefit of the remaining storage. Improvement of the 

solution in this case would be obtained if the minimum storage con

straint did not tighten the operation. The value of T in Equation 6.7 

is defined by substituting the value of the derivatives given in Equa

tions 6.12 and 6.10 into Equation 6.7. It will be given by an expres

sion identical to 6.17.

The computation can be extended to other time intervals. The 

expected future benefits of storage at the beginning of time interval 

n-1 will be given by an equation similar to 6.5. It will be a function 

of the expected future benefits of storage at the beginning of the time 

interval n and the instantaneous benefit of release during the time 

interval n-1. Generalizing, the expected future marginal benefits of 

storage at the beginning of time interval t is given by

(6.18)

The value of the variable T will be given by equations similar to 

those previously defined, or

Case 1. None of the restrictions are tightening the optimal operation

(6.19)

Case 2. If the marginal instantaneous benefit of release is greater 

(less) than the marginal expected future benefit of the remaining stor

age at the end of interval t and the release is maximum (minimum)
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(6.20)

Case 3. If the marginal instantaneous benefit of release is greater 

(less) than the marginal expected future benefit of the remaining 

storage at the end of interval t and the remaining storage is minimum 

(maximum)

(6.21)

Equations 6.19 to 6.21 have a very concrete meaning. When the 

future is uncertain one is willing to postpone, in some circumstances, 

an instantaneous and certain operating benefit in order to obtain a 

greater but uncertain future benefit. The expected value of future 

benefits is in the case an acceptable utility function for the future 

satisfaction derived from the use of the reserves in the optimal 

operation. Then, in the optimal operation, the marginal instantaneous 

benefit of releases is equal to the marginal expected future benefits 

(or marginal expectation for short) of the remaining storage. Equation 

6.19 states that when this equality may be enforced the marginal 

expectation of storage at the beginning of the time interval is equal to 

the marginal expectation of storage at the end of the same interval. It 

occurs because an infinitesimal value of the initial storage is worth 

the same whether released in the interval or in the future, when the 

equality occurs.

When the marginal instantaneous benefit of release is greater than 

the marginal expectation of the remaining storage, the instantaneous 

release may be optimally increased. Otherwise, the remaining storage 

may be optimally increased. Suppose the release reaches the maximum and 

marginal instantaneous benefit of the release is still greater than the 

marginal expectation of the remaining storage. Then the marginal
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expectation of the storage at the beginning of the interval will equal 

its value at the end of the interval (Equation 6.20). It means that in 

the optimal operation an infinitesimal volume of the initial storage 

will be evaluated where it can be feasibly used, that is, after the 

interval. Suppose, the release is minimum and the marginal instanta

neous benefit of the release is less than the marginal expectation of 

the remaining storage. Then, an infinitesimal volume of the initial 

storage must be evaluated in the optimal operation where it will be 

worth more. The marginal expectation of the storage at the beginning of 

the interval will then be equal to its value at the end of the interval 

(Equation 6.20).

Suppose the reservoir is full at the end of the interval and the 

marginal instantaneous benefit of the release is less than the marginal 

expectation of the remaining storage. In this case Equation 6.21 de

fines the marginal expectation of storage at the beginning of the inter

val as equal to the marginal instantaneous benefit of the release. Or, 

since no additional water may be stored without being spilled, an infin

itesimal volume of the initial storage must be evaluated for its value 

during the interval. Otherwise, suppose the reservoir is empty at the 

end of the interval and the marginal instantaneous benefit of the re

lease is greater than the marginal expectation of the null remaining 

storage. In this case there is no gain in increasing the remaining 

storage, therefore, the infinitesimal volume of the initial storage is 

evaluated by its value during the interval (Equation 6.21).

This recursive computational procedure was first proposed by Massé 

with the name of Chain of Marginal Expectations (1946b). It assumes 

that in the optimal operation whatever the initial state the decisions 
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made up to instant t and the state achieved by the system, the 

decisions from t to the end of the operating period must be optimal 

for this remaining period of operation. This was the first explicit 

recognition of Bellman's Principle of Optimality.

The development is still incomplete, however, since it assumes 

prior knowledge of the marginal benefit function of residual storage at 

the end of the operating period. Suppose this function is not known and 

an arbitrary choice is made. Let the maximum absolute error of estimate 

be given by u(n+l). Then

where

residual storage.

Let z(n) be a given realization of Z(n), the set of information 

used to forecast the inflow during the n-th time interval. The basic 

axiom of the probabilities states

∫ P[n,q|z(n)] • dq = 1 (6.23)
q

is the correct marginal benefit function, of the

and z(n) is accomplished without the storage constraint ever being 

tightened or T is given either by Equation 6.15 or 6.16. If

in the computations the axiom of the probabilities given in 6.23 implies 

u[n, s(n), z(n)] ≤ u(n+l)

and u(n) = max {u[(n), s(n), z(n)]} ≤ u(n+l) (6.24)
s(n),z(n)

u[n, s(n), z(n)] is the absolute error transmitted to

Suppose the computation of for given values of s(n)

The optimal transition between the functions

was defined by Equation 6.7 and Equation 6.15 to 6.17.

and
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to function will be given by the Equation 6.17. In 

these cases no error will be transmitted in the transition. Let 

p[n, s(n), z(n)] be the probability of occurrence of such cases in the 

optimal operation for given values of s(n) and z(n). Or, 

p[(n), s(n), z(n)] is the probability of occurrence of values of in

flows which will cause the operation be tightened by the storage con

straints at the beginning of time interval n+1 when the storage at the 

beginning of time interval n is s(n) and Z(n) = z(n). The axiom of 

probabilities given in Equation 6.24 implies

u[(n), s(n), z(n)] ≤ {1 - p[n, s(n), z(n)]} • u(n+l)

and (6.25)

Applying the reasoning recursively the maximum absolute error in 

the computation of the marginal expected future benefit of the storage 

will present the following relation

u(l) ≤ u(2) ≤ ... ≤ u(t) ≤ ... ≤ u(n) ≤ u(n+l) (6.26)

In other words, error in the arbitrary marginal benefit of the storage 

at the end of the operating period is not amplified along the itera

tions. The sufficient condition for its attenuation is that p[k, s(k), 

z(k)] is non-zero for any s(k) and z(k) or the probability of the 

operation be tightened by the storage constraints is non-null in any 

state of the operation. This situation is the rule instead of being the 

exception in the operation of reservoirs. Therefore, if the computa

tions start enough in advance the computed marginal expected future 

benefit (or the marginal expectation) of the storage will converge to

Suppose, however, the storage constraints at the beginning of time 

interval n+1 tighten the operation for some values of inflow q. In 

this situation the transition between the known function
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its correct value. In stationary (or non-evolutive) systems a cyclic 

iterative procedure may be applied. The computed marginal expectation 

of the storage at the beginning of the first time interval of operation 

updates the assumed marginal expectation of the storage at the end of 

the last interval of operation. For instance, in the case of weekly 

time intervals, the computed marginal expectation of the storage at the 

beginning of the first week updates the assumed marginal expectation of 

the storage at the end of the 52nd week. The iterations are repeated 

until no signficant difference occurs between the marginal expectations 

of the storage in two successive iterations.

The analytical solution of the Chain of Marginal Expectations may 

be accomplished only in very special cases. Generally the marginal 

instantaneous benefit of releases cannot be formulated by an analytical 

function and the conditional probability density function has a complex 

mathematical structure. Under the scope of Dynamic. Programming this 

difficulty suggested the consideration of a discrete approach. In this 

approach the mentioned functions are represented by a discrete form. 

The optimal value of the decision in each time interval (or stage) is 

sought by enumeration of its feasible discrete values. The principle of 

optimality is applied recursively until all stages are analyzed. Arti

fices were devised to define the optimal decision in each stage by 

search techniques, implying what may be called by a systematic enumera

tion (Erickson et al., 1969). The Theory of the Marginal Expectations 

shows that the optimal solution may be enforced according to an optimal

ity condition. A systematic search for the optimal decision cannot be 

avoided. But the optimality conditions given by Equations 6.19 to 6.21 

establish a criterion and a stopping-rule for searching for the optimal 
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decision. The enumeration of decision is consequently reduced to a 

minimum.

An algorithm was defined to implement the computations of the Chain 

of Marginal Expectations in a digital computer. An auto-regressive 

model of forecasting the inflows was tested with the algorithm. There

fore, the set of information which forecasts the inflow during a time 

interval is formed by the previous interval’s inflow.

The Chain of Marginal Expectations is given by

= ∫ p[t,q q(t-l) ] • T • dq (6.27)∂s (t) q

The values of T are computed as
∂R[t+l. s(t+l) q(t)] ∂F[t, w(t)]    Case 1: if - = —and Smin ≤ s(t+l) ≤ Smax∂s(t+l) ∂w(t) - -

and Wmin ≤ w(t) ≤ Wmax(t)

then: T= ∂R[t+l, s(t+l)|q(t)] _ ∂F[t, w(t)] 
 ∂s(t+l)  ∂w(t) (6.28)

∂F[t, w(t)] < ∂R[t+l, s(t+l)|q(t)]    _  .
Case 2: if    and w(t) = Wmin∂w(t) ∂s(t+l)

∂F[t, w(t)] > ∂R[t+l, s(t+l)|q(t)] 
or and w(t) = Wmax(t)

then: T = (6.29)

Case 3: if ∂F[t,w(t)]  < ∂R[t+1,s(t+1) | q(t) an s(t+1) = Smax
∂w(t) ∂s(t+1)

∂F[t, w(t)] ∂R[t+l, s(t+l)|q(t)]  _
or ∂w(t) > ∂s(t+l) and s(t+1) = Smin

then: T = (6.30)∂w(t)

The algorithm presents a structure similar to the Explicit 

Stochastic Approach to Dynamic Programming. The computations in each 

stage however are performed with marginal values.
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Given a value of previous inflow q(t-l) the range where the

inflow in the next time interval q(t) may occur is divided into dis

crete intervals of inflows q. The conditional probability function

P[q q(t-l) ] has its value defined for each value of q. Variable q 

represents the discrete intervals of occurrence of the inflow q(t) 

during the t-th time interval.

For each pair of values for q(t) and s(t) the maximum and 

minimum release strategies are tested for optimality. This verifies the 

occurrence of the Case 2 of optimal operation. It is done by

A. Maximum Release Strategy

wT(t) = min{Wmax(t), s(t) - Smin + q(t)}
... (6.31)

s'(t+l) = min{max[Smin, s(t) + q(t) - w'(t)], Smax}

The optimality condition in this case is

FT1 = ∂F{t, w'(t)] ∂R[t+l s'(t+l)|q(t)]
 ∂w(t) - ∂s(t+1) =

B. Minimum Release Strategy

w"(t) = max{Wmin, s(t) + q(t) - Smax}
(6.33)

s " (t+1) = min{max[Smin, s(t) + q(t) - w"(t)], Smax}

The optimality condition in this case is

 ∂F[t, w"(t)] ≤ ∂R[t+l, s"(t+l)|q(t)]
∂w(t)  ∂s(t+l)

In both strategies the optimality may be obtained under a given 

tolerance TOL if

FT1 - RT1 < TOL (6.35)
or FT2 - RT2 < TOL

The values of the marginal expectations of the remaining storage 

s'(t+l) or s"(t+l) are computed by interpolation. 
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If an extreme strategy is not optimal a cycle of iterations begins 

with the new release being given by linear interpolation

(t) = w"(t) + (FT2 - RT2) • [w'(t) - w"(t)]/[RTl - RT2 - FT1 + FT2]

(6.36)

and s'" (t+1) = min{max[Smin, s(t) + q(t) - w(t)], Smax}

Defining FT3 = ∂F[t, w'" (t) ]
∂w(t)

and RT3 = ∂R[t+l, s (t+1) q(t)]
(6.37)

∂s (t+1)

the optimality condition is given by the approximation

FT3 - RT3 ≤ TOL (6.38)

If the optimality condition is not enforced the following iteration 

will be

A. If FT3 > RT3 it implies that the release must increase. Its 

upper bound is given by w'(t). Therefore

w"(t) = w'"(t), FT2 = FT3, RT2 = RT3 (6.39)

A new w"'(t) is defined and tested by 6.36, 6.37 and 6.38.

B. If FT3 < RT3 it implies that the release must decrease. Its 

lower bound is given by w"(t). Therefore

w’(t) = w'"(t), FT1 = FT3, RT1 = RT3 (6.40)

A new w"'(t) is defined and tested by 6.36, 6.37 and 6.38.

When the optimal solution is computed for all q the marginal 

expectations of storage at the beginning of the time interval t is 

given by

∂R[t,s(t) |q(t-1) ] = Σ P[q q(t-l)] • T (6.41)
∂s(t)

where T = FT1 when the maximum release strategy is optimal
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T = RT2 when the minimum release strategy is optimal

T = FT3 + RT3 otherwise.

A limited number of tests were made with the algorithm. Table 15 

presents their results. Tests 1 and 2 refer to a situation where the 

marginal instantaneous benefit of release function is constant along 

the time intervals. In tests 3 and 4 the marginal instantaneous benefit 

of release function varies through the year. A marginal expectation of 

the remaining storage function was assumed for the last interval of 

operation. The algorithm was applied recursively. The computed mar

ginal expectation of storages at the beginning of the first interval of 

operation updated the assumption for the last interval. After 4 to 5 

iterations the computed marginal expectations converged to their pre

viously assumed values.

6.2 Multiple Reservoir Operation Optimization

In Dynamic Programming the number of variables used to define the 

state of the problem (or the number of state variables) is referred to 

as the dimension of the problem. It is observed that when the dimension 

of the problem increases linearly, the computation time increases expo

nentially. The Chain of Marginal Expectations is a more elaborate 

version of the Explicit Stochastic Approach of Dynamic Programming. 

Nevertheless the problem of dimensionality will limit its extension to 

problems with large dimensions. This limitation caused the extension of 

the Chain of Marginal Expectations to the operation of a multireservoir 

system to be accomplished through an aggregated formulation.

The expense of having this computational advantage will be the 

derivation of relaxed solutions. In other words, the spilling occur

rences and deficits in the actual operation of the system will be above
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Table 15. Chain of marginal expectations. 
Computational tests

Test NS NQP NQ Range 
U.S. $/MWh

Tolerance
U.S. $/MWh

Average 
CP time per 

stage 
(sec)

1 3 3 10 100 3 .10

2 5 5 10 100 3 .27

3 15 8 11 700 10 1.6

4 14 8 11 700 5 2.3
NS : number of discrete values of s(t)
NPQ : number of discrete values of q(t+l)
NQ : number of discrete values of q(t)
Range : range of the values of the marginal instantaneous benefit 

of releases
Tolerance: tolerance for enforcement of the optimality condition
CP time : central processing time—computer Cyber 172
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the levels defined by the aggregated formulation. Another problem is 

the need of the aggregated system formulation to be expressed in terms 

of energy variables. The problem is related to the identification of 

the probability distribution of energy inflows to the aggregated system. 

Energy inflow depend on the existent hydraulic head in each reservoir. 

But, in the operation under uncertainty of the future (strategical 

operation), the hydraulic heads are not known previously.

At this point, however, the optimal deterministic operation of the 

system is known for a given sample of inflows. It allows an estimate of 

the conditional probability distribution of energy inflows into the 

system to be derived from deterministic operation. The use of such a 

probability distribution in the strategic operation must be the subject 

of further analysis.

A basic difference exists between tactical and strategic decisions: 

no allowance for risk is included in a tactical decision since the 

future is known when decision is made. For instance, in the determin

istic operation, no energy shortage occurred. Hence, no matter what the 

cost of the shortage was the optimal operation would be the same. In 

the strategic operation, however, the decision must consider all pos

sible future occurrences. Therefore, an increase in the cost of short

ages would probably imply an increase in the storage in the system. In 

marginal economic terms, if the cost of shortage increases it will cause 

an increase in the marginal expectation of the storage. The optimal 

releases must then be made with higher marginal instantaneous benefits 

and the system's energy storage will increase.

These different approaches in the consideration of risk may drive 

the storage in the strategic operation to be consistently above the 
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levels obtained in the deterministic operation. The cause is related to 

the sudden increase of the marginal cost of operation of the system when 

energy shortage occurs (Figure 2). This implies the derivation of a 

strategy of operation with a pronounced aversion to the risks of short

ages with the consequent higher levels of storage. Therefore, the 

hydraulic heads observed in the deterministic operation are probably 

below the values which will occur in the operation under uncertainty of 

the future inflows. But the variation of hydraulic head in the reser

voirs of the system is not too pronounced. It is on the order of 15 

percent and, never exceeds 30 percent of the gross head of the reser

voir. Consequently, the probability distribution of the energy inflows 

to the system, inferred from the results of the deterministic operation, 

apply to the strategic operation. It will probably give an underesti

mate of the real values of energy inflow in the strategic operation, but 

it should not be too far from the real figures.

A more important deficiency of the aggregated formulation is 

related to the derivation of relaxed solutions or a relaxed strategy. 

In the deterministic operation a corrective measure was used to cope 

with this problem. The total aggregated storage capacity was decreased 

in order to account for isolated spills from the reservoirs of the 

system. This correction method cannot be applied in the strategic 

operation though. The decrease in the aggregated storage capacity will 

mean that the strategy is undefined for values of aggregated storage 

close to the maximum value.

An alternative approach which avoids this deficiency is proposed. 

It is based on estimates of the partition of the storage and inflows to 

each reservoir in the system, given the state of the aggregated
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formulation. The resulting spills from each reservoir can be then 

computed and used to correct the marginal expectations of the aggregated 

storage.

The partition estimates are based on the results provided by the 

deterministic operation. It was observed that a substantial part of the 

energy storage and inflow to each reservoir may be deterministically 

explained as a function of their aggregated values. It suggests defin

ing statistical models to explain the partition of the energy in the 

system. The parameters of the models can be inferred based on the 

results of the deterministic operation.

This extrapolation of results from a situation where the future is 

certain to another where it is uncertain needs further comment. The 

partition of the aggregated storage among the system's reservoirs in the 

deterministic operation is defined by the disaggregation procedure. 

This disaggregation procedure will be used for the same purpose in the 

strategic operation. Therefore, the partition of the aggregated storage 

will be based on the same information in both cases. Thus, the results 

are expected to be identical, statistically speaking.

The partition of the energy inflows among the reservoirs is more 

dependent on the temporal and spatial correlation of the water inflows 

than on the hydraulic heads. This occurs because the hydraulic head 

variation in each reservoir is not pronounced in the operation of the 

system. Then partition of the energy inflows is more dependent on 

natural causes than on the operation of the system. Consequently, the 

partition of the energy inflows in the deterministic and strategic 

operation must be identical, statistically speaking.
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A final consideration refers to the viability of expressing the 

marginal expectations of the storage in terms of its aggregated values. 

The energy storage will have a different marginal expectation according 

to its partition among the system's reservoirs. The marginal expecta

tions can be expressed as a function of aggregated values only if they 

are not significantly sensitive to variations of storage and inflow 

partitions around their deterministic trend. This aspect of the aggre

gated formulation will be analyzed in more detail during the application 

to the case study.

6.2.1 Statistical Model of Partition

This model was first proposed by Valencia and Schaake (1973) under 

the scope of synthetization of a hydrologic series. A generalization 

was presented by Mejia and Rousselle (1976). This application seems to 

be the first extension to a multi-reservoir operation. Its mathematical 

presentation is based on the second reference.

The study of the deterministic operation of the system has defined 

sample values of the reservoir's energy storage and inflows. Suppose Y 

is a vector with the computed value of one of the variables in a given 

time interval. Let X be the aggregated representation of Y. Then

X = Σ y(j) (6.42) 
j

where y(j) are the elements of the vector Y, j = 1, NY; and NY is 

the number of reservoirs. Let Z be a vector of independent variables 

with dimension NZ. The relationship between Y, X and Z is given by 

the linear model

Y = A.X + D.Z + U (6.43)
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where A is a NY dimension vector of parameters

D is a NY * NZ matrix of parameters

U is a NY vector of independent normal residuals of the 

estimation of Y by the model.

The objective of the analysis is to define a method of computation 

of A, D and U such that the first and second moments of the joint 

distribution of Y, X and Z are maintained for each time interval.

Suppose the samples of values of Y, X and Z have been trans

formed in order to have their means equal to zero. Then

X = Ct.Y (6.44)

where is the transpose of a NY dimension vector in which the j-th 

element is given by

mation, respectively.

If the first moments are to be maintained

E[Y] = A.E[X] + D.E[Z] + E [ U ] (6.46)

where E[.] is the expectation operator.

The expected values of Y, X and Z after transformation are zero; 

therefore

E[U] = 0 (6.47)

If the second moments are going to be maintained the following 

equalities occur 

 
S(YXt ) = A.S(XXt ) + D.S(ZXt ) + S(UXt ) (6.48)

S(YZt) = A.S(XZt) + D.S(ZZt) + S(UZt) (6.49)

S(YYt ) = A.S(XYt ) + D.S(ZYt ) + S(UYt ) (6.50)

c(j) =

where and

(6.45)

are the mean of y(j) and X before the trans for-
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where S(YXt) is the covariance between Y and X, for instance.

As U is a vector of independent residuals

S(UXt ) = S(UZt ) =0 (6.51)

Equation 6.44 yields

S(YXt) = S(YYt).C (6.52)

S(XYt) = Ct.S(YYt) (6.53)

 and S(XXt ) = Ct.S(YYt ).C (6.54)

Substituting relations 6.52 and 6.54 into 6.48 

 S(YYt ).C = A.Ct .S(YYt ).C + D.S.(ZXt ) (6.55)

Equations 6.49 and 6.55 may be solved in terms of A and D.

After a lengthy and tedious manipulation it yields

A = S(YYt).C - S(YZt) .S(ZZt)-1 .S(ZXt) *

Ct.S(YYt).C - S(XZt).S(ZZt)-1.S(ZXt)-1 (6.56)

D= [S(YZt) - A.S(XZt)] .S(ZZt)-1 (6.57)

At this point the deterministic part of the model has been solved.

The random part is a function of the independent normal residual U. 

The following equality occurs

 S(YUt ) = A.S(XUt ) + D.S(ZUt ) + S(UUt ) = S(UUt ) since U is 
independent of X and Z. Because S(UUt) is a symmetrical matrix

S(YUt) = S(UUt) = S(UYt) (6.58)

Substituting 6.58 into 6.50

S(YYt) = A.S(XYt) + D.S(ZYt) + S(UUt) (6.59)
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Suppose U = B.V where V is a vector of independent random 

normal variables with a zero mean and unit variance, and B is a NY*NY 

matrix of coefficients. Then

S(UUt) = B.S(VVt).Bt = B.Bt (6.60)

and S(YYt) = A.S(XYt) + D.S(ZYt)+ + B.Bt (6.61)

Using equality 6.54 

B.Bt = S(YYt ) - A.Ct .S(YYt) - D.S(ZYt) (6.62)

and finally

B.Bt = (I - A.Ct).S(YYt) - D.S(ZY) (6.63)

where I is the identity matrix.

The computation of B may be performed using eigenvalues and 
eigenvectors. Let E be the matrix of the eigenvalues of B.Bt and F 

a vector with the associated eigenvectors. It can be shown that

B = F + (E)1/2 (6.64)

Therefore, a necessary condition for the existence of a real matrix 

B is that its eigenvalues are non-negatives. This implies that matrix 
B.Bt must be positive semidefinite. Valencia and Schaake (1973) showed 

that estimate of B.Bt , based in records of equal length of Y, X and 

Z, produces a positive semidefinite matrix. Therefore, since this is 

always the condition in the case study, matrix B will be a real 

matrix. This completes the derivation of the partition model.

6.2.2 Corrective Procedure for the Relaxed Strategy

The algorithm developed to compute the Chain of Marginal 

Expectations was adapted to include the partition models. The correc

tion of relaxed strategy is made through the following steps:
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Step 1. Preliminaries: Given the aggregated values of the energy 

storage and inflow into the system, their partition among the reservoirs 

of the system is computed. The partition models are used in this step. 

A random number generation routine must be introduced in the algorithm 

to define vector U of normal distribution residuals (Equation 6.43). 

The energy storages and inflows are transformed in each reservoir to 

water storage and inflows. The resultant hydraulic head and maximum 

release capacity in each reservoir is computed.

Step 2. Maximum and minimum releases definition: In 

serially-linked reservoirs the maximum releases are corrected to avoid 

spills in the downstream reservoirs. The minimum release in each reser

voir is defined in order to enforce the minimum release commitment. If 

the inflow to a reservoir cannot be totally stored, the value of the 

excedent water is a lower limit to the value of the minimum release from 

the reservoir.

Step 3. Spill computation: If the computed minimum release is 

greater than the maximum release, the excess of water is spilled. In 

serially-linked reservoirs this spilled water is stored downstream if 

possible. When run-of-river plants are located downstream the spilled 

water is used there to produce energy whenever possible. The part of 

the spill which cannot be used to produce energy forms the energy 

losses .

Step 4. Maximum and minimum energy generation: The maximum 

energy generation during a time interval is given by the maximum release 

in each reservoir transformed into energy. The minimum energy genera

tion is computed by the summation of the following components
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A. energy generated by the minimum release in each reservoir 

(step 2)

B. energy produced by the upstream reservoir spills in the 

downstream run-of-river hydroplants (step 3).

Step 5. Net energy inflow into the system: The net energy inflow 

into the system is given by the total energy inflow less the part of 

this inflow which is spilled (step 3). It defines the energy inflow 

which can actually be used in the operation.

The steps 4 and 5 correct values of variables to be used in the 

Chain of Marginal Expectations. The computation is made as explained in 

section 6.1. The Central Processing time for each stage's computation 

increases substantially with the modifications. For tests 3 and 4 

(Table 15) it becomes 7 and 10 seconds, respectively on the average.

6.3 Application

The error in estimating marginal expectations of the storage at the 

end of the operation is attenuated along the computations of the Chain 

of Marginal Expectations. The convergence of the marginal expectation 

function to its actual value can be accomplished through two alternative 

approaches. In the first approach computations must start several time 

intervals after the operating period. This allows the error of estimate 

to be attenuated before computations reach the operating period. The 

second approach can be applied to stationary (or non-evolutive) systems. 

These systems have their characteristics invariant in time or usually 

being periodically repeated each year. The characteristics of a hydro- 

thermal electric generating system refer to configuration, units, oper

ating cost, energy demand, etc.... In non-evolutive systems the mar

ginal expectation function is invariant or varies periodically. For 



instance, the marginal expectation of storages at the beginning of the 

first week and at the end of the 52-th week are equal if the period of 

variation equals one year. In this case the convergence of the marginal 

expectation function is accomplished through a cyclic iterative 

approach. Each iteration updates the marginal expectation function 

computed in the previous iteration until convergence is obtained.

The studied system is a non-stationary or evolutive system. Energy 

demand increases about 12 percent from the beginning to the end of the 

studied year (Table 1). This increase is followed by a similar increase 

of installed thermal unit capacity (Table 4). If such a trend is main

tained over a period of years, no drastic variation in the marginal 

expectation function in the same weeks of two consecutive years is 

expected. Therefore, the equality of these marginal expectation 

functions is a simplifying assumption that may be accepted eventually.

The other alternative is to extend the analysis to the future. The 

work involved in preparation of data and computations increases propor

tionally to the number of years of study. Additional work required may 

be justified in a real word application. For research purposes it 

demands more time and computational resources without significant gain. 

Therefore, it is assumed in this study that the marginal expectations of 

the storages varies within an annual period but the values of the 

marginal expectations of storages in a given week is the same any year 

of operation.

6.3.1 The Aggregated Chain of Marginal Expectations

The high value of the autocorrelation coefficient of the energy 

inflow series (Table 16) implied the use of an autoregressive model to 

forecast future inflows. The conditional probability distribution
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parameters 1st 6th 11th 16th 21st 26th 31st 36th 41st 46 th 50th

average 3.24 3.29 3.29 3.19 3.24 3.31 3.28 3.36 3.51 3.37 3.27

st deviation 2.15 2.35 2.26 2.48 3.20 2.83 3.13 3.20 2.42 2.67 2.72

skewness 0.25 0.00 0.29 -0.23 -0.08 0.16 -0.12 -0.85 -0.30 -0.22 -0.02

correlation 0.95 0.98 0.97 0.96 0.98 0.99 0.98 0.99 0.99 0.98 0.99

parameters 1st 6th 11th 16 th 21st 26th 31st 36 th 41st 46 th 50th

average 1960 2224 2212 1816 2237 2507 2419 2891 3728 2785 2276

st deviation 1066 1238 1214 1040 1586 1826 1858 2122 2190 1566 1522

skewness 1.59 1.24 1.12 1.61 1.00 1.91 2.34 2.80 2.19 0.60 2.01

correlation 0.95 0.99 0.98 0.95 0.98 0.98 0.97 0.99 0.99 0.97 0.99

Table 16. Statistical parameters of the aggregated energy inflow
   (Eq. MW).  

1. Computed Series 
 Weeks

2. Logarithm of the computed series  Weeks
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P[q|q(t-1)] was accepted to be a log-normal distribution. The 

forecasting model is

(6.65) 

where lq(t) is the logarithm of the forecasted inflow during the time 

interval t,

Lq(t-l) is the logarithm of the previous time interval’s inflow, 

lq(.), lsd(.) are the mean and the standard deviation of the 

logarithms of the inflows in the indexed time interval, 

lqr(t) is the correlation coefficient between the logarithm of 

the inflows during the time interval t and t-1, and 

tn is a standard normal deviation.

The discrete representation of the conditional probability 

distribution P[q|q(t-l)] is obtained each week of operation by the 

following procedure. NPQ intervals for the random normal deviation tn 

are defined in a range given by values -tne and tne. The probability 

of values of tn occurring outside that range must be practically null. 

After the intervals of tn have been defined, the corresponding inter

vals of energy inflow during the t-th week are calculated using Equation 

6.65 for each value of previous energy inflow q(t-l). Average value 

of energy inflow in each interval defines the values q in the condi

tional probability distribution P[q|q(t-1)]. The probability of occur

rence of inflow in the interval q during time interval t is given by 

the probability associated to the occurrence of tn in the respective 

interval.

In the application, 11 values of q were considered in the 

discretization of the conditional probability distribution. Standard



249

normal deviations of tn ranged from -3.5 to 3.5. The set of intervals 

of tn and the associated conditional probabilities are given in 

Table 17a.

The discrete values of the aggregated energy storage and previous 

inflows were defined to allow good representation of the marginal expec

tation function. The need for smaller intervals between discrete values 

of total storage at extreme (high or low) storages was noted in experi

mental computations. Variation in the marginal expectations was observ

ed to be more regular when previous inflow value varies. As a result 14 

discrete values for the storage variation and 8 values for the previous 

inflows were defined to represent the marginal expectation function. 

Discrete values of energy storage are presented in Table 17b. Discrete 

values of previous energy inflows were assumed according to the observed 

inflow variation in each time interval. The adopted discretization of 

storage and previous inflows represented (or mapped) the marginal 

expectation function by 112 points each week.

The considered energy demand was the value of the total energy 

demand less minimum thermal production, less firm energy production of 

small hydropower developments and less the mean value of non-storable 

run-of-river energy inflow. Values of the non-storable energy inflows 

are so small compared with the total energy inflow (Table 13) that 

consideration through mean values is assumed acceptable.

6.3.2 The Relaxed Strategy of Operation

An arbitrary function for marginal expectation of storages at the 

end of the 52nd weekly interval was assumed. Marginal expectations of 

storages at the previous weeks were recursively computed. After 5 

cycles of iteration the convergence of the marginal expectations was
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Table 17a. Discretization for the function P[q|q(t-1)].

Interval for tn P[q|q(t-J)] 
%

Interval for tn P[q|q(t-1)]

-3.50 to -2.86 0.19 0.32 to 0.95 20.53

-2.86 to -2.22 1.09 0.95 to 1.59 11.41

-2.22 to -1.59 4.29 1.59 to 2.22 4.29

-1.59 to -0.95 11.41 2.22 to 2.86 1.09

-0.95 to -0.32 20.53 2.86 to 3.50 0.19

-0.32 to 0.32 24.98

Table 17b. Discretization of the equivalent reservoir storage
(Eq. MW).

0 25000

2000 30000

4000 35000

6000 39000

10000 41000

15000 43000

20000 44920
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obtained with a tolerance of U.S. $5. per MWh. Table 18 presents the 

results for several weeks.

6.3.3 The Models of Statistical Partition

In section 6.2.1 a general model of partition that has the ability 

to maintain the variance-covariance matrix of considered variables was 

presented. Selection of these variables and the consequent definition 

of partition models for the aggregated energy inflow and storage are 

made in this section. In each case selection of the dependent variables 

is made considering the covariance (or cross correlations) that are more 

important to maintain in the partition.

For partition of the total energy inflow the following model was 

chosen 
 [q' ( l, t),...,q'(j,t) , . . . ]t = A.q’(t) + D.[s’(l,t),...,s'(j,t) ,... ]

(6.66) 

where q'(j,t) is the transformed value of the energy inflow to the 
reservoir j during the t-th week;

q' (t) is the transformed value of the total energy inflow to 
the system during the t-th week;

s’(j,t) is the transformed energy storage in the reservoir j 
at the beginning of the t-th week;

[.]t stands for the transpose of the vector [.].

The transformations are

q'(j,t) = q(j,t)/q(j,t) - 1 (6.67)

s'(j,t) = s(j ,t)/s(j ,t) - 1 (6.68)

q'(t) = q(t)/q(t) - 1 (6.69)

where q(j,t) and q(t) are the mean of the energy inflows to each 

reservoir and the mean of the total energy inflows to the system during 

the t-th week, respectively; and s(j,t) is the mean of the storages at 

the beginning of t-th week.
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Table 18a. Marginal expected future benefit of the remaining storage
with relaxed formulation.

(U.S. $/MWh)

WEEK NO. 1

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 650. 1000. 1500. 2250. 3000. 3500. 4000. 4500.

0 568.3 513.7 371.9 234.5 151.7 111.0 77.8 49.7
2000 526.9 450.2 337.7 222.0 144.9 106.1 73.9 47.1
4000 503.3 423.1 321.0 212.7 138.6 101.3 70.3 44.6
6000 485.5 405.0 308.2 204.3 132.7 96.5 66.8 42.1

10000 457.8 377.5 286.0 188.4 121.1 87.3 59.6 36.9
15000 426.1 348.1 261.4 169.8 107.1 75.8 50.8 30.6
20000 393.8 319.8 237.8 151.5 93.1 64.5 42.1 24.5
25000 362.2 292.4 215.0 133.2 78.9 53.0 33.1 17.8
30000 332.6 266.4 192.8 114.8 64.4 41.1 24.1 12.5
35000 304.3 241.1 170.1 94.7 48.0 27.8 14.8 6.0
39000 282.5 220.5 149.0 74.2 31.1 15.0 5.5 1.8
41000 271.7 209.2 135.2 60.1 20.6 8.3 2.1 0.5
43000 260.8* 196.7 119.0 43.7 10.4 2.3 0.5 0.1
44920 250.2 185.3 104.5 18. 3 0.5 0.0 0.0 0.0
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Table 18b. Marginal expected future benefit of the remaining storage
with relaxed formulation.

(U.S. $/MWh) 

WEEK NO. 11

Reservoir Previous Inflows (Eq. MW)
storage
(Eq. MW) 700. 1000. 1750. 2400. 3050. 3750. 4500. 5000.

0 578.7 531.3 366.3 248.0 165.6 106.0 63.8 42.1
2000 546.9 489.2 334.2 229.2 155.2 100.1 60.3 39.7
4000 524.4 462.6 312.6 216.1 147.3 95.0 57.0 37.4
6000 504.9 440.7 297.0 206.0 140.3 90.4 54.0 35.3

10000 474.1 407.6 272.8 188.4 127.6 81.5 47.9 31.2
15000 440.2 374.6 247.4 169.0 112.9 71.1 41.0 26.2
20000 405.1 343.0 223.6 150.7 99.2 61.1 34.1 21.3
25000 370.9 312.7 201.3 133.3 86.0 51.3 27.4 16.5
30000 339.6 284.9 180.3 116.6 73.0 41.5 20.3 11.3
35000 311.0 259.2 159.7 99.7 59.5 31.2 13.6 7.0
39000 289.2 239.0 142.4 84.9 47.1 20.9 6.0 2.1
41000 278.5 228.8 132.3 74.8 37.5 12.9 2.3 0.6
43000 267.9 218.3 119.4 59.5 22.9 5.1 0.5 0.1
44920 257.6 208.4 104.2 26.2 0.8 0.0 0.0 0.0
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Table 18c. Marginal expected future benefit of the remaining storage
with relaxed formulation.

(U.S. $/MWh)

WEEK NO. 21

Reservoir Previous Inflows (Eq. MW)
storage
(Eq. MW) 400. 1000. 2000. 3000. 4500. 5500. 6500. 7000.

0 608.0 518.7 251.5 140.6 60.1 31.0 14.1 8.6
2000 565.3 435.7 233.5 133.0 56.3 28.4 12.4 7.4
4000 539.9 400.5 220.4 126.0 52.7 25.9 10.2 5.4
6000 518.0 374.5 209.5 119.6 49.2 23.6 9.2 4.8

10000 482.1 340.5 190.8 107.3 42.2 19.1 6.8 3.5
15000 441.5 308.3 169.7 92.8 34.0 13.5 3.7 1.5
20000 402.8 279.8 149.7 79.3 26.6 8.6 1.6 0.5
25000 368.7 253.4 130.7 66.4 19.8 4.9 0.6 0.1
30000 339.6 228.6 112.5 53.6 13.2 3.0 0.1 0.1
35000 311.1 204.5 94.1 40.3 7.2 0.5 0.0 0.0
39000 289.5 185.5 77.8 27.5 2.0 0.1 0.0 0.0
41000 278.9 175.4 67.0 18.3 0.5 0.0 0.0 0.0
43000 267.9 163.8 51.9 6.6 0.0 0.0 0.0 0.0
44920 257.0 150.5 24.2 0.0 0.0 0.0 0.0 0.0
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Table 18d. Marginal expected future benefit of the remaining storage
with relaxed formulation.

(U.S. $/MWh)

WEEK NO. 31

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 500. 1000. 2000. 3000. 4000. 5000. 6000. 7000.

0 595.3 525.1 267.6 153.6 91.3 51.7 26.6 11.4
2000 534.9 421.9 242.3 144.9 85.6 47.7 23.9 9.9
4000 496.0 381.7 229.8 137.3 80.1 43.8 21.4 8.7
6000 469.9 363.7 220.0 130.0 74.7 39.8 18.4 7.5

10000 437.4 338.5 201.2 115.6 64.3 32.8 14.4 4.6
15000 401.4 308.6 178.0 98.0 51.9 24.4 9.0 2.0
20000 368.4 280.5 155.0 81.1 40.1 16.7 4.8 0.6
25000 339.4 253.3 132.4 64.8 29.2 9.8 1.8 0.4
30000 311.2 226.8 110.2 49.2 19.3 4.7 0.5 0.0
35000 283.8 200.1 88.4 34.3 10.6 1.5 0.1 0.0
39000 261.2 177.7 70.8 23.2 4.4 0.4 0.0 0.0
41000 249.4 165.2 60.9 16.5 1.6 0.1 0.0 0.0
43000 237.0 150.7 48.5 7.1 0.2 0.0 0.0 0.0
44920 224.4 138.5 26.4 0.3 0.0 0.0 0.0 0.0
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Table 18e. Marginal expected future benefit of the remaining storage
with relaxed formulation.

(U.S. $/MWh)

WEEK NO. 41

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 1000. 2000. 3200. 4400. 5600. 6800. 8000. 9000.

0 568.0 422.3 285.5 195.1 129.0 80.4 45.6 24.5
2000 537.7 400.2 273.5 186.8 122.4 75.3 41.9 21.9
4000 515.0 382.4 262.9 178.8 116.0 70.3 38.2 19.4
6000 494.1 367.6 253.0 170.9 109.6 65.2 34.2 17.1

10000 461.4 342.2 233.9 155.2 96.6 54.7 26.7 11.6
15000 432.8 313.8 211.1 135.4 79.9 41.5 17.4 7.0
20000 392.2 287.4 188. 3 115.0 62.9 28.2 9.0 2.0
25000 361.8 261.5 164.3 93.5 45.8 16.7 3.7 0.5
30000 334.6 235.6 137.8 70.3 28.3 6.1 0.6 0.0
35000 306.5 208.0 106.6 43.4 10. 7 0.7 0.0 0.0
39000 285.5 182.1 73.2 16.3 0.6 0.0 0.0 0.0
41000 274.8 164.1 49.8 5.8 0.1 0.0 0.0 0.0
43000 264.2 139.0 24.3 0.4 0.0 0.0 0.0 0.0
44920 254.5 104.3 0.0 0.0 0.0 0.0 0.0 0.0
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The purpose of the model is to maintain correlation between energy 

inflows and energy storage in each reservoir. This correlation has a 

physical meaning derived from the interrelation among energy inflow, 

hydraulic head and energy storage in each reservoir. The cross correla

tion among the energy inflows to each reservoir is also maintained in 

the partition.

A model of partition was defined for each week. The statistical 

analysis of the results is presented for several weeks in Table 19.

The partition of the energy storage was accomplished with the 

following model

[s'(l,t),...,s(j,t),...]t =A.s'(t)+D.q'(t-1) (6.71)

where s'(t) is the transformed value of the total energy stored at the 

beginning of the t-th week and the other variables were defined 

previously.

The transformation is now

s’(j,t) = [s(j,t) - s(j,t)]/C(j) (6.71)

s'(t) = [s(t) - s(t)]/C (6.72)

where s(t) is the mean value of the total storage at the beginning of 

the t-th week, and C and C(j) are respectively the aggregated and 

the individual reservoir capacities.

The transformation used for the previous inflows is given in 

Equation 6.69.

Introduction of the previous aggregated energy inflow in the model 

considers the response of the reservoir's storage partition to regional 

extreme inflow occurrences.
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Table 19. Statistical analysis: Model of partition of energy inflows.

WEEK PR FA

SITE

PF CCSS SO

5 average inflow (Eq. MW) 202 1252 461 26 62 109

explained variance

st dev of residuals

(%) 50.5

.531

96.1

.109

93.3

.216

5 7.1

.512

65.1

.391

59.0

.274

10 average inflow (Eq. MW) 168 1464 447 23 5 7 107

explained variance

St dev of residuals

(%) 43.3

.594

98.2

.085

93.7

.173

89.8

.213

62.8

.557

46.8

. 359

15 average inflow (Eq. MW) 236 1074 374 20 66 70

explained variance 

st dev of residuals

(%) 28.2

.910

91.5

.192

90.7

.237

91.6

.218

52.8

.575

29.6

.440

20 average inflow (Eq. MW) 365 1136 459 23 100 57

explained variance 

st dev of residuals

(%) 39.1

1.09

88.0

.293

75.6

.610

91.3

.286

55.1

.590

36. 3

.629

25 average inflow (Eq. MW) 4 30 1356 527 28 112 48

explained variance

st dev of residuals

(%) 50.7

.496

97.9

.131

95.1

.228

95.0

.227

56.0

 480

41.3

.543

30 average inflow (Eq. MW) 413 1333 499 27 120 40

explained variance

st dev of residuals

(%) 45.5

.480

96.8

 188

83. 3

.489

82.1

.481

41.8

.443

86.0

.391

35 average inflow (Eq. MW) 524 1461 511 34 148 47

explained variance

st dev of residuals

(%) 45.3

.443

97.6

.169

96.1

.208

92.3

.472

41.7

.545

83.4

.396

40 average inflow (Eq. MW) 639 1906 790 46 175 71

explained variance 

st dev of residuals

(%) 49.8

.471

92.5

. 177

87,2

 360

82.3

.473

39.8

.520

65.6

.415

45 average inflow (Eq. MW) 392 1714 700 35 125 72

explained variance 

st dev of residuals

(%) 79.2

.277

97.1

. 107

89. 3

.253

88.1

.266

69.2

.421

39.3

.436

50 average inflow (Eq. MW) 290 1315 485 25 83 78

explained variance 

st dev of residuals

(%) 58.0

.570

97.8

. 113

94.5

.217

94.7

.216

36.5

.692

28.9

.454

52 average inflow (Eq. MW) 264 1176 435 24 74 82

explained variance 

st dev of residuals

(%) 70.2

.437

97.8

.099

95.1

.202

68.3

.517

55.6

.483

34,3

,305
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The relations between energy stored in each reservoir and total 

energy stored in the system (Figures 13 to 15) showed a light curvature 

in the dominant reservoirs of the system. This curvature was more 

pronounced at the extremities. This is attributed to the influence of 

the maximum and minimum storage and release capacities in the partition 

of the energy in the system. Models I and II consider this curvature. 

Model I was defined for total storage values from 37,500 Eq. MW to 

44,920 Eq. MW and Model II for values of total storage from 15,000 Eq. 

MW to 37,500 Eq. MW. The lower levels of storage were not considered in 

the partition because the probability of spills there is practically 

null.

When the equivalent reservoir storage reaches the region of Model I 

the probability of spills is high. Factors that determine the distribu

tion of the water in the system are mainly related to maximal storage 

and release capacity in each reservoir. It refers to the situation in 

the disaggregation procedure (section 5.2.2) where the decision defined 

by the system of linear equations cannot be enforced. Therefore in this 

region, one partition model was defined for the entire year.

The decision defined by the system of linear equations is expected 

to be enforced a substantial part of the time when the aggregated stor

age is in the range defined by the model II. Consequently the partition 

of the storage in the system is expected to be driven mainly by the 

forecasted inflows during the next time interval. This implies the 

definition of a model of partition for each season of the year. The 

seasons of the year were identified by the following procedure. First, 

a partition model was defined for each week of the year. Then the weeks 

where the parameters of the model were statistically identical defined a 

season. They are
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Season I : 48-th to the 7-th weeks

Season II : 8-th to the 29-th weeks

Season III : 30-th to the 38-th weeks

Season IV : 39-th to the 47-th weeks

Table 20 presents a statistical analysis of the results.

The models were tested using as samples of the aggregated energy 

inflow and storage variables the series obtained in the deterministic 

operation. Two tests were made. The first test considered only the 

deterministic component of the partition models and the second test con

sidered the deterministic and random components.

Negative inflows and storages, and storages greater than the 

reservoirs' capacities may be obtained in the partitions. This occurred 

more often when the random component of the partition models was in

cluded. In these cases, a correction was applied distributing the 

deficit or excess of energy among the remaining reservoirs proportional

ly to their storage capacities. As violations above 5 percent of the 

respective variable's mean are rare, such a correction did not signifi

cantly alter the results.

The series of energy inflows and storages in each reservoir of the 

system have some of their statistical parameters presented in Tables 21 

to 24. Comparison between these parameters and parameters obtained in 

the deterministic operation (Tables 13 and 14) give interesting results. 

The mean values are statistically identical in every case. The deter

ministic partition defined standard deviations smaller than the observed 

ones. When the random component of the partition model is introduced 

the standard deviations of the series are statistically identical to 

the observed ones. The most interesting result was related to the
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Table 20. Statistical analysis: Model of partition of energy storage.

a. Region I: 37,500 Eq. MW to 44,920 Eq. MW

RESERVOIRS

PR FA SS SO PF CC

average storage (Eq. MW) 7340 20778 9127 306 2251 661

explained variance (%) 17.0 33.4 34.4 25.5 18.4 27.0

st dev of residuals .024 •021 .038 .286 .210 .294

b. Region II: 15,000 Eq. MW to 37,500 Eq . MW

Season I

average storage (Eq.MW) 5452 15314 4930 28 1187 55

explained variance (%) 32.4 87.6 85.7 12.4 30.4 20.1

st dev of residuals .143 .048 .094 .114 .246 .110

Season II

average storage (Eq. MW) 5284 16345 5677 36 934 32

explained variance (%) 48.4 89.2 89.3 16.7 22.2 8.6

st dev of residuals .140 .042 .075 .200 .210 .070

Season III

average storage (Eq. MW) 5757 15533 4930 48 947 42

explained variance (%) 10.7 93.2 94.1 48.4 18.3 49.0

st dev of residuals .151 .038 .063 .194 .183 .061

Season IV

average storage (Eq. MW) 5714 14152 4224 16  777 0

explained variance (%) 21.4 91.1 81.4 19.0 24.8 —-

st dev of residuals .188 .042 .096 .096 .150



Weeks

Table 21. Deterministic partition: Statistical parameters of the energy inflow 
(Eq. MW).

Site 1st 6 th 11th 16 th 21st 26th 31st 36 th 41st 46 th 50th

aver 253.0 200.1 164.2 266.7 384.7 421.8 417.0 538.7 596.0 331.1 291.7
PR st dv 136.0 89.8 87.3 128.1 192.6 140.0 108.4 156.4 217.2 163.4 162.0

skew 1.41 1.11 0.65 0.83 0.54 0.99 0.18 1.24 1.73 0.65 1.52
corr  0.94 0.96 0.87 0.90 0.93 0.96 0.95 0.91 0.97 0.96 0.97

aver 1120 1330 1437 1022 1195 1365 1336 1572 2006 1627 1314
st dv 591 698 813 599 870 1097 1260 1361 1068 910 898

FA skew 1.58 1.08 1.21 1.56 0.97 1.87 2.40 2.88 2.11 0.48 2.03
corr 0.95 0.98 0.98 0.94 0.98 0.98 0.97 0.99 0.99 0.97 0.99

aver 402.8 492.5 432.8 386.0 480.7 529.8 476.8 540.1 836.5 617.5 482.9
st dv 289.0 413.0 248.1 261.5 445.6 513.4 438.1 459.1 803.2 408.6 396.4SS skew 1.61 2.62 0.97 1.53 1.07 1.96 2.29 2.88 2.33 0.77 2.09
corr 0.96 0.99 0.94 0.94 0.97 0.98 0.96 0.98 0.99 0.97 0.99

aver 23.6 27.1 22.9 20.0 23.8 27.9 27.5 43.4 46.7 31.7 25.1
SO st dv 10.5 15.3 13.5 13.5 19.4 26.8 23.1 57.9 42.6 19.6 20.7

skew 0.80 1.37 1.12 1.59 1.01 1.97 2.12 3.45 2.31 0.70 2.13
corr 0.66 0.98 0.97 0.93 0.97 0.98 0.97 0.99 0.99 0.97 0.99

aver 75.7 59.7 58.7 70.8 102.4 115.3 122.5 155.7 173.5 108.0 84.5
st dv 41.9 30.1 40.6 39.6 49.7 49.2 35.4 61.1 52.9 68.7 32.6PF skew 1.40 0.97 0.69 -1.88 1.02 1.80 1.67 1.51 1.03 0.69 1.78
corr 0.94 0.97 0.97 0.93 0.94 0.98 0.94 0.98 0.95 0.96 0.98

aver 84.9 115.5 98.7 64.4 55.1 47.8 40.4 52.7 77.4 69.7 77.9
st dv 9.96 39.6 30.4 16.6 22.0 23.2 34.0 39,9 29.6 21.0 17.2CC skew 0.49 2.17 1.43 0.10 0.63 1.81 2.01 2.61 1,96 0.48 1.98
corr 0.87 0.99 0.97 0.90 0.92 0.97 0.97 0.98 0,98 0.94 0.93



Table 22. Random partition: Statistical parameters of the energy inflow 
(Eq.MW) 

Site
 Weeks   

1st 6th llth 16th 21st 26th 31st 36th 41st 46th 50th

aver 253.2 213.1 174.2 257.5 498.9 377.4 450.7 585.1 617.4 320.2 298.1
PR st dv 162.1 151.3 102.4 244.0 286.5 296.6 246.9 323.3 351.3 174.6 234.7

skew 0.39 1.18 0.50 0.66 -0.23 0.53 0.44 0.50 0.69 0.32 0.96
corr 0.51 0.41 0.02 0.27 0.26 0.58 0.24 0.20 0.31 0.70 0.68

aver 1132. 1342. 1412. 1050. 1141. 1444. 1308. 1523. 2018. 1679. 1327.
st dv 620.0 705.9 803.5 660.9 940.7 1046. 1283. 1364. 1110. 998.2 872.3

FA skew 0.41 0.88 1.03 1.39 0.85 1.76 2.13 2.79 1.79 0.58 1.90
corr 0.88 0.95 0.91 0.85 0.92 0.94 0.95 0.94 0.91 0.92 0.98

aver 391.6 477.2 445.0 401.6 461.3 528.7 494.5 529.9 814.6 594.9 488.3
st dv 299.3 417.3 282.6 278.4 482.3 509.8 443.9 471.4 836.3 403.9 386.5

SS skew 1.38 2.16 0.71 1.39 0.87 2.03 2.11 2.77 2.45 0.37 2.12
corr 0.86 0.90 0.86 0.77 0.83 0.92 0.86 0.93 0.89 0.88 0.92

aver 25.4 28.9 23.7 20.7 22.5 27.6 29.4 43.0 45.2 30.5 25.1
st dv 22.2 18.5 14.8 14.6 20.6 26.5 21.8 59.5 43.8 20.5 20.2

SO skew 0.34 0.39 0.89 1.44 1.01 2.06 2.57 2.89 2.11 0.61 2.09
corr 0.79 0.75 0.89 0.80 0.91 0.92 0.81 0.87 0.88 0.92 0.90

aver 77.6 59.6 67.2 69.3 112.2 103.4 132.2 177.9 175.9 103.0 83.2
st dv 52.6 33.6 45.9 54.5  66.3 68.3 65.7 96.1 103.4 73.6 65.6PF skew 0.69 0.57 0.33 0.89 0.15 0.60 0.47 0.61 0.68 0.38 0.80
corr 0.36 0.44 0.46 0.55 0.64 0.63 0.29 0.26 0.22 0.64 0.55

aver 89.9 113.8 98.9 59.4 54.5 53.4 42.4 52.6 76.2 69.6 75.8
st dv 18.7 51.8 48.0 30.5 35.5 28.4 35.3 37.1 34.6 33.2 31.1CC skew 0.14 0.14 1.25 -0.09 0.49 1.34 1.47 2.21 0.44 0.46 0.25
corr 0.17 0.57 0.50 0.15 0.36 0.52 0.89 0.76 0.35 0.20 0.27



Table 23. Deterministic partition: Statistical parameters of the energy storage 
 (Eq. MW)

Site
Weeks

1st 6th 11th 16th 21st 26th 31st 36th 41st 46th 50th

aver 6301 6132 5963 5882 5638 5596 5727 5888 6192 6660 6485
st dv 1137 1495 1518 1505 1855 2052 2065 1986 1852 1367 1352PR skew -2.18 -1.54 -0.66 -0.72 -1.03 -1.12 -1.57 -1.58 -1.74 -3.16 -1.88
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aver 17599 17341 17749 17350 16852 16410 16281 16187 16989 18179 18144
FA st dv 4453 4294 3494 3824 4671 5787 5679 5803 5342 4268 4390

skew -2.07 -1.42 -0.94 -1.00 -1.33 -1.43 -1.21 -1.14 -1.18 -1.87 -2.38
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aver 6836 6664 6811 6459 6309 6296 6044 5984 6632 7200 7280
st dv 2810 2868 2644 2945 3209 3310 3459 3572 3262 2745 2714

SS skew -1.05 -0.79 -0.81 -0.88 -0.99 -0.85 -0.64 -0.55 -0.74 -1.24 -1.28
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aver 187 161 160 135 137 152 165 187 220 234 217
st dv 162 157 150 140 132 152 150 166 178 165 169so skew 0.15 0.46 0.41 0.80 0.84 0.66 0.46 0.19 -0.21 -0.36 -0.19
corr 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

aver 2260 1984 1686 1633' 1480 1559 1663 1792 2131 2383 2455
st dv 1559 1415 1368 1330  1306 1331 1452 1641 17 74 1677 1512PF skew 0.62 0.66 0.97 1.19 1.44 1.20 1.12 1.00 0.57 0.56 0.37
corr 0.99 0.97 0.97 0.99 0.99 0.97 0.98 0.99 0.99 0.99 0.97

aver 550 465 398  334 280 350 396 477 627 659 667
st dv 617 54 7 520 503 470 509 545 599 653 653 602
skew 0.82 1.04 1.23 1.61 2.07 1.49 1.33 1.03 0.46 0.46 0.41
corr 0.99 0.98 0.98 0.99 0.97 0.99 0.99 0.99 0.99 0.98 0.98
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Table 24. Random partition: Statistical parameters of the energy storage 
(Eq. MW)

Site 1st 6 th 11th 16th 21st  26th 31st 36th 41st 46th 50th

aver 6328 6085 6002 5664 5616 5296 5869 5803 6141 6743 6353
st dv 1703 1592 15 78 1648 1821 2240 2185 2217 2015 1473 1629PR skew -1.99 -1.20 -0.81 -0.68 -0.77 -0.90 -1.60 -1.39 -1. 70 -3.15 -1.72
corr 0.86 0.87 0.78 0.73 0.83 0.88 0.93 0.92 0.77 0.90 0.76

aver 17714 17433 17668 17489 16785 16588 16137 16189 17043 18191 18114
st dv 4497 4205 3670 3851 5033 5733 5568 5757 5296 4161 4322FA skew -2.12 -1.61 -0.92 -0.91 -1.38 -1.45 -1.19 -1-09 -1.19 -1.75 -2.47
corr 0.98 0.96 0.93 0.97 0.98 0.98 0.99 0.99 0.99 0.98 0.96

aver 6928 6802 6707 6534 6331 6534 5933 5939 6643 7209 7244
 st dv 2808 2683 2790 3066 3236 3283 3342 3604 3356 2879 2626SS skew -1.11 -0.81 -0.81 -0.93 -0.92 -0.87 -0.57 -0.52 -0.85 -1.20 -1.36

corr 0.97 0.94 0.94 0.97 0.97 0.97 0.98 0.99 0.98 0.98 0.93

aver 1975 1833 1596 1448 1647 1687 1541 2072 2263 2408 2164
st dv 171 179 149 131 134 154 168 174 185 164 168SO skew 0.14 0.34 0.67 0.64 0.63 0.56 0.62 0.01 -0.19 -0.25 -0.07
corr 0.89 0.90 0.72 0.79 0.68 0.72 0.79 0.92 0.89 0.79 0.86

aver 2707 1968 1884 1760 ■ 1691 1515 1870 1934 2209 2498 2835
 st dv 1778 1633 1537 1671 1492 1478 1604 1648 1798 1745 1742

skew 0.51 0.48 0.60 0.65 . 0.72 0.95 0.66 0.75 0.44 0.27 -0.39
corr 0.87 0.68 0.61 0.73 0.69 0.80 0.74 0.81 0.89 0.83 0.72

aver 610 517 429 345 270 373 421 536 618 647 610
st dv 630 598 584 522 482 544 586 638 688 664 621
skew 0.67 0.99 1.18 1.60 2.17 1.57 1.25 0.79 0.47 0.55 0.71
corr 0.86 0.79 0.88 0.82 0.84 0.90 0.93 0.86 0.94 0.86 0.83
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autocorrelation coefficient of the computed series. These coefficients 

were maintained when only the deterministic component is used. When the 

random component is introduced the autocorrelation coefficients of the 

series in the Foz do Areia and Salto Santiago reservoirs are still near 

the actual figures. This is remarkable since the partition models 

cannot assure that the autocorrelation coefficients of the variables 

will be maintained. The results are attributed to the high autocorrela

tion observed between values of aggregated inflows and storages. This 

autocorrelation was partially transmitted to the inflows and storages in 

each reservoir through the partition model.

6.3.4 Correction of the Relaxed Strategy

Correction of the relaxed strategy was performed in two steps. 

Initially, only the deterministic component of the partition model was 

used. Later the complete model of partition was considered. The ini

tial function of marginal expectations was provided by the relaxed 

strategy (section 6.3.2). After the relaxed strategy was corrected with 

the deterministic partition the correction with the random partition was 

applied.

Observations made on the deterministic operation indicated that the 

probability of spellings is practically null when the overall energy 

content in the system is below 30,000 Eq. MW. Therefore, the partition 

models were applied only for values of overall energy content greater 

than this level. This resulted in substantial computation economy.

Table 25 presents the obtained strategy with deterministic 

partition correction. The convergence with U.S. $5.00 tolerance was 

obtained after two cycles of computations. The marginal expectations 

increased in periods of imminent shortage and decreased in periods of
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Table 25a. Marginal expected future benefit of the remaining storage
with deterministic partition.

(U.S. $/MWh)

WEEK NO. 1

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 650. 1000. 1500. 2250. 3000. 3500. 4000. 4500.

0 568.3 514.1 376.7 235.3 145.8 101.0 66.9 38.8
2000 548.2 465.9 348.0 223.6 139.0 97.2 62.6 36.5
4000 531.8 442.5 332.4 214.1 132.2 91.3 59.3 33.9
6000 518.1 426.2 319.5 204.9 125.4 85.9 55.0 30.8

10000 492.2 399.9 297.3 187.1 112.3 75.3 46.9 24.9
15000 459.4 369.9 271.5 166.3 96.7 62.0 37.1 19.2
20000 423.1 338.7 244.4 145.2 80.0 48.8 28.1 14.2
25000 388.0 307.3 217.4 122.8 62.8 36.1 19.6 9.7
30000 353.1 276.6 190.1 99.8 44.9 23.7 11.1 4.7
35000 320.2 245.5 162.4 75.7 27.2 11.6 4.3 1.4
39000 295.0 221.7 137.7 53.1 13.6 3.0 0.6 0.1
41000 283.2 209.6 122.7 44.5 8.9 1.2 0.2 0.0
43000 269.5 193.9 105.1 31.4 5.4 0.8 0.1 0.0
44920 255.0 168.3 72.9 10.7 0.2 0.0 0.0 0.0
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Table 25b. Marginal expected future benefit of the remaining storage
with deterministic partition.

(U.S. $/MWh)

WEEK NUMBER 11

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 700. 1000. 1750. 2400. 3050. 3750. 4500. 5000.

0 581.7 533.1 370.1 246.8 159.3 97. 7 53.1 32.7
2000 567.5 506.6 340.7 229.0 149.9 90.9 49.1 30.2
4000 549.6 482.2 320.7 216.8 141.6 85.0 45.7 28.0
6000 534.2 462.0 305.9 206.7 134.2 79.7 42.7 25.5

10000 508.8 432.5 282.5 188.0 121.6 71.1 36.8 21.8
15000 474.7 399.5 255.3 166.9 104.8 60.3 30.2 17.5
20000 435.7 364.7 228.5 145.7 88.8 48.3 23.4 12.4
25000 397.1 330.3 202.7 126.5 74.3 37. 7 16.7 8.9
30000 361.7 298.3 178.1 106.4 60.1 28.2 10.5 4.8
35000 328.9 268.3 149.5 87.3 43.7 17.5 5.0 1.8
39000 303.9 246.0 135.9 55.9 27.9 7.9 0.3 0.1
41000 291.2 234.7 126.0 51.3 22.0 3.7 0.0 0.1
43000 278.9 222.1 109.5 46.7 16.2. 1.9 0.0 0.0
44920 266.2 204.0 70.0 12.8 0.4 0.0 0.0 0.0
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Table 25c. Marginal expected future benefit of the remaining storage
with deterministic partition.

(U.S. $/MWh)

WEEK NO. 21

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 400. 1000. 2000. 3000. 4500. 5500. 6500. 7000.

0 608.0 519.0 251.6 134.3 47.4 20.2 7.5 3.9
2000 582.2 447.2 234.7 125.9 44.5 17.9 4.9 3.4
4000 564.7 415.1 221.6 118.0 40.3 15.5 4.5 1.9
6000 548.6 391.6 210.4 112.6 36.8 14.1 4.1 1.7

10000 518.9 358.3 190.8 100.2 30.5 11.1 3.3 1.4
15000 476.0 324.8 167.4 83.3 22.7 7.1 1.4 0.4
20000 433.4 292.4 144.5 66.9 15.9 4.0 0.5 0.1
25000 396.3 261.6 122.1 52.0 11.2 1.6 0.1 0.0
30000 361.1 234.2 103.2 39.3 5.2 0.5 0.0 0.0
35000 328.8 207.9 84.6 26.9 3.3 0.3 0.0 0.0
39000 303.2 183.6 65.4 15.7 0.0 0.0 0.0 0.0
41000 290.4 173.3 55.0 7.1 0.0 0.0 0.0 0.0
43000 277.5 160.7 41.3 4.7 0.0 • 0.0 0.0 0.0
44920 264.4 139.2 12.8 0.0 0.0  0.0 0.0 0.0
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Table 25d. Marginal expected future benefit of the remaining storage
with deterministic partition.

(U.S. $/MWh)

WEEK NO. 31

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 500. 1000. 2000. 3000. 4000. 5000. 6000. 7000.

0 595.3 525.5 269.8 148.0 80.4 40.4 16.7 7.0
2000 551.6 436.3 246.9 138.4 74.9 35.3 14.9 4.8
4000 523.1 401.7 234.3 130.8 69.2 31.8 13.3 4.3
6000 503.6 385.9 223.1 121.9 62.4 28.9 11.9 3.8
10000 471.7 359.5 201.4 104.9 51.3 22.2 8.0 1.8
15000 432.9 325.5 174.9 87.2 39.3 14.8 4.2 0.6
20000 395.3 292.3 148.8 68.4 27.6 8.9 1.7 0.4
25000 361.4 261.1 123.8 51.4 18.9 4.6 0.6 0.0
30000 328.3 230.6 100.6 35.9 11.8 3.2 0.4 0.0
35000 295.9 198. 7 74.6 22.6 4.3 0.5 0.0 0.0
39000 268.0 169.3 53.4 12.1 0.5 0.0 0.0 0.0
41000 254.8 158.5 49.9 6.7 0.4 0.0 0.0 0.0
43000 240.8 146.6 40.0 5.2 0.1 0.0 0.0 0.0
44920 225.3 121.2 19.7 0.2 0.0' 0.0 0.0 0.0
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Table 25e. Marginal expected future benefit of the remaining storage
with determinstic partition.

(U.S. $/MWh)

WEEK NO. 41

Reservoir Previous Inflows (Eq. MW)
storage
(Eq. MW) 1000. 2000. 32000. 4400. 5600. 6800. 8000. 9000.

0 579.2 438.7 293.6 194.6 120.5 67.1 31.9 15.0
2000 565.8 419.3 281.5 185.1 113.3 62.3 28.3 11.9
4000 547.0 402.1 270.4 175.6 105.6 56.3 24.6 10.4
6000 529.2 387.6 261.0 167.3 99.2 50.1 21.6 9.0

10000 496.9 361.6 239.3 149.5 84.3 40.1 15.4 5.0
15000 455.6 330.9 213.6 127.6 67.2 27.8 8.6 1.9
20000 421.2 301.0 187.1 103.4 48.1 16.4 3.9 0.5
25000 388.2 271.4 158.2 78.9 31.2 8.5 0.7 0.1
30000 356.2 239.9 122.0 48. 7 13.8 1.7 0.1 0.0
35000 323.5 205.6 79.6 18.7 1.6 0.0 0.0 0.0
39000 298.8 169.4 53.1 0.8 0.0 0.0 0.0 0.0
41000 285.9 149.1 24.3 0.0 0.0 0.0 0.0 0.0
43000 272.9 110.5 17.6 0.0 0.0 0.0 0.0 0.0
44920 261.5 41.4 0.0 0.0 0.0 0.0 0.0 0.0
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imminent spillage. Nevertheless, the resultant corrected strategy did 

not differ drastically from the relaxed strategy.

Table 26 presents the resultant strategy after the random partition 

correction. This was determined after 2 cycles of computation using the 

same sequence of random normal deviations to define the random component 

of the partition models in each cycle. Practically no difference from 

the strategy obtained with the deterministic partition correction was 

verified. Other tests were applied to verify the contributions of the 

random component of the partition in the strategy. One test was per

formed with different sequences of random deviations per cycle. No 

sensible modification of the strategy was observed. In another test the 

initial marginal expectations of the storages at the end of the 52-nd 

week were given by the relaxed strategy. The random partition correc

tion was applied with the same series of random normal deviations per 

cycle. After two iterations it was observed that the marginal expecta

tions converged to the previously corrected values. Those tests allow 

the conclusion that the random component of the partition models does 

not introduce any new information into the strategy. In other words, 

the strategy is insensitive to the variations of the reservoirs' stor

ages and inflows around their deterministic trend. This implies that 

aggregated variables provide good representation of the state of the 

system. Consequently the strategy of operation can be defined in terms 

of aggregated values of energy inflows and storages.

Summarizing, the resultant corrected strategy explicitly considers 

the informations about the aggregated reservoir storage and inflow and 

the autocorrelation on the aggregated inflows. It also accounts im

plicitly for the cross correlation among reservoir’s energy inflow and
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Table 26a. Marginal expected future benefit of the remaining storage
with random partition.

(U.S. $/MWh)

WEEK NO. 1

Reservoir Previous Inflows (Ew. MW)
storage 
(Eq. MW) 650. 1000. 1500. 2250. 3000. 3500. 4000. 4500.

0 568.3 514.1 377.1 236.2 147.1 101.9 67.9 40.4
2000 548.2 466.6 348.6 225.0 140.4 97.9 63.9 37.3
4000 531.8 442.6 332.7 214.9 133.5 93.3 60.2 34.8
6000 518.0 426.4 320.4 206.3 126.7 87.1 56.9 32.3
10000 492.2 400.9 298.4 189.4 115.0 78.3 48.9 27.9
15000 459.2 370.6 272.9 169.2 99.6 65.5 40.5 21.6
20000 423.3 340.1 246.1 148.6 84.4 54.1 31.3 16.4
25000 388.3 308.3 220.0 127.4 67.5 41.0 22.6 11.4
30000 354.6 279.0 194.9 106.2 50.7 28.2 14.6 5.7
35000 321.9 249.2 166.9 80.5 32.3 15.2 7.3 1.9
39000 296.4 223.6 140.0 57.2 19.1 8.5 2.2 0.6
41000 283.4 209.4 123.1 46.1 9.9 1.4 0.1 0.0
43000 269.9 193.3 103.9 30.6 5.3  0.8 0.0 0.0
44920 253.8 166.1 69.0 9.8 0.2 0.0 0.0 0.0
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Table 26b. Marginal expected future benefit of the remaining storage
with random partition.

(U.S. $/MWh)

WEEK NO. 11

Reservoir Previous Inflows (Ew. MW)
storage 
(Eq. MW) 700. 1000. 1750. 2400. 3050. 3750. 4500. 5000.

0 581.7 533.1 370.5 247.6 161.1 98.5 54.0 33.4
2000 567.4 506.4 341.1 230.0 150.7 91.8 49. 7 30.9
4000 549.6 482.3 320.8 218.2 143.4 86.3 47.0 28.8
6000 534.3 462.0 306.2 207.0 135.3 82.5 43. 7 26.8

10000 508.8 432.7 283.1 190.2 123.1 73.4 37. 7 22.4
15000 474.2 399.5 256.7 169.1 106.7 61.4 30.8 18.3
20000 436.4 365.7 231.0 148.6 91.6 49.6 24.3 13.2
25000 397.4 331.5 204.8 129.0 77.9 40. 7 18.5 10.0
30000 362.6 300.3 181.4 111.2 62.6 31.4 13.5 7.3
35000 329.1 269.8 157.5 91.9 48.6 21.4 8.2 4.0
39000 302.7 246.2 137.9 73.3 33.9 8.8 1.0 0.0
41000 291.4 234.8 125.9 63.4 18.1 0.7 0.0 0.0
43000 279.4 222.0 10 7.5 45.8 15.8 0.0 0.0 0.0
44920 265.2 201.3 60.5 12.0 0.4 0.0 0.0 0.0
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Table 26c. Marginal expected future benefit of the remaining storage
with random partition.

(U.S. $/MWh)

WEEK NO 21

Reservoir Previous Inflows (Ew. MW)
storage 
(Eq. MW) 400. 1000. 2000. 3000. 4500. 5500. 6500. 7000.

0 608.0 519.0 252.7 134.8 49.0 21.2 7.9 4.1
2000 582.2 446.9 236.0 127.1 46.0 19.1 7.0 3.6
4000 564.7 414.9 222.8 119.5 41.5 16.5 4.8 2.0
6000 548.6 392.0 211.8 113.4 38.7 14.9 4.3 1.8

10000 518.6 358.4 192.1 101.4 32.1 11.8 3.4 1.4
15000 475.6 325.1 169.3 85.0 24.3 7.7 1.5 0.5
20000 433.3 293.5 147.3 70.0 18.6 4.4 0.5 0.1
25000 396.2 263.3 126.4 56.6 13.1 3.3 0.4 0.1
30000 361.1 235.4 105.4 42.7 7.8 1.3 0.1 0.0
35000 328.8 207.8 86.4 29.9 4.0 0.2 0.0 0.0
39000 302.6 185.1 65.9 21.4 0.0 0.0 0.0 0.0
41000 289.7 173.0 54.2 11.4 0.0 0.0 0.0 0.0
43000 277.1 159.9 40.7 4.5 0.0 0.0 0.0 0.0
44920 264.3 135.2 15.9 0.0 0.0 • 0.0 0.0 0.0
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Table 26d. Marginal expected future benefit of the remaining storage
with random partition.

(U.S. $/MWh)

WEEK NO. 31

Reservoir Previous Inflows (Eq. MW)
storage 
(Eq. MW) 500. 1000. 2000. 3000.' 4000. 5000. 6000. 7000.

0 595.3 525.5 270.0 148.9 81.4 40.4 17.2 7.1
2000 551.6 436.2 247.2 139.9 75.7 35.7 15.2 4.9
4000 523.2 401.4 234.6 131.4 68.3 32.3 13.5 4.3
6000 503.5 385.2 224.0 122.8 63.5 29.4 12.1 3.9

10000 471.1 359.0 202.2 107.3 52.9 22.7 8.1 1.8
15000 432.8 325.5 176. 7 87.0 39.5 15.3 4.3 0.6
20000 394.9 292.5 150.1 70.0 29.0 10.9 3.2 0.4
25000 361.3 262.4 125.5 53.9 20.2 6.6 0.6 0.1
30000 328.6 230.9 103.4 40.1 12.7 3.3 0.4 0.0
35000 296.4 199.8 78.8 24.7 6.3 0.5 0.0 0.0
39000 268.8 173.2 57.8 16.8 0.9 0.0  0.0 0.0
41000 255.0 161.0 49.2 7.7 0.0 0.0 0.0 0.0
43000 240.5 144.7 38.4 5.0 0.0 0.0 0.0 0.0
44920 223.4 118.2 18.7 0.2 0.0  0.0 0.0 0.0
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Table 26e. Marginal expected future benefit of the remaining storage
with random partition.

(U.S. $/MWh)

WEEK NO. 41

Reservoir Previous Inflows (Ew. MW)
storage 
(Eq. MW) 1000. 2000. 3200. 4400. 5600. 6800. 8000. 9000.

0 579.2 438.7 293.5 194.4 120.5 67.4 32.4 15.2
2000 565.8 419.3 281.4 185.2 113.7 62.1 28.8 12.0
4000 547.0 402.2 270.8 176.2 106.1 56.1 24.9 10.4
6000 529.2 387.6 260.1 167.4 99.1 50.0 21.7 9.0

10000 496.7 361.6 239.3 149.1 83.7 39.5 15.1 5.0
15000 455.6 331.0 213.3 127.1 65.9 27.2 8.6 1.9
20000 421.2 301.1 187.0 103.1 47.8 16.3 3.9 0.5
25000 388.4 271.2 158.2 78.7 30.1 8.1 0.6 0.1
30000 355.3 240.7 124.6 49.6 13.8 1.7 0.1 0.0
35000 323.4 205.4 83.1 19.3 1.6 0.0 0.0 0.0
39000 297.3 170.3 49.0 0.1 0.0 0.0 0.0 0.0
41000 285.2 144.2 29.2 0.0 0.0 0.0 0.0 0.0
43000 272.4 103.3 15.5 0.0 0.0 •0.0 0.0 0.0
44920 263.4 37.3 0.0 0.0 0.0 0.0 0.0 0.0
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storage. Finally, a substantial part of the autocorrelation on the 

reservoirs' energy inflows and storage is indirectly considered. All 

this information could be explicitly included in the formulation only 

through a disaggregated multidimensional formulation implying severe 

computational limitations, however. Therefore, the aggregated formula

tion considers most important information in the decision process in the 

derivation of the strategy without having cumbersome computational 

requirements of the alternative multidimensional formulation. This 

makes the proposed method attractive from a theoretical and computa

tional points of view.

6.4 Strategy in Transient Periods

Transient periods of operation are periods during which the 

partition of energy inflow and storage among the reservoirs cannot be 

explained by the respective partition model. It may be caused by tran

sient effects of failure of equipment, unexpected variations of the 

energy demand, and rare hydrologic events, among others.

During the transient periods the derived strategy of operation 

cannot be used since the partition models do not apply. However, tacti

cal and strategic approaches that have been developed are still able to 

define transient strategies for such periods. The derivation of tran

sient strategies relies on the definition of the optimal operation for 

several generated series of events likely to occur in the transient 

period. As the extension of the transient period is unknown it has to 

be previously assumed. A first guess may be considered as the number of 

time intervals of the transient variation of the exogenous variable 

(demand, inflow, equipment outage, etc...). The transient period will 

be defined if at the end of this guessed period the endogenous variables 
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(reservoir contents) are spatially distributed according to the 

partition model.

Operation of the aggregated system is defined by the Constrained 

Marginal Analysis for each generated series. A final storage is ini

tially assumed. The marginal expectation of this storage is known from 

the strategic studies. If the marginal instantaneous benefit of release 

in the last time interval of the transient period is different from the 

marginal expectations of the final storage, the assumed final storage 

must be corrected. The correction may be easily defined through analy

sis of the marginal values. If the marginal instantaneous benefit of 

release at the end of the period is greater than the marginal expecta

tion of final storage more energy must be produced in the transient 

period. Therefore, the final storage is decreased. Otherwise, when the 

marginal instantaneous benefit of release at the end of the period is 

less than the marginal expectation of final storage the final storage 

has to be increased. When the equality of the marginal values is ob

tained the optimal operation in the transient period is defined for the 

considered series of events. The disaggregation procedure is then 

applied and the resultant partition of the reservoir energy contents at 

the end of the transient period is verified. If it belongs in the 

statistical sense to the partition model adopted in the definition of 

the strategy the assumed length of the transient period was well de

fined. Otherwise, it will be increased and the procedure repeated.

A reasonable number of generated series of transient events is to 

be used in the definition of alternative tactics of operation. The 

resultant tactics define a sample of marginal expectations of storages 

for each state of the system in the transient period. The marginal 
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expectation function may then be estimated for each possible state of 

the system in the period.

6.5 The Cost of the Uncertainty

The difference between expected minimum cost of the operation under 

uncertainty and minimum cost of operation under certainty of future 

inflows defines what is referred to as the cost of uncertainty. Al

though the knowledge of its value has little practical worth it is 

computed to allow better insight into the characteristics of strategic 

operation.

To avoid unnecessary programming and computation a simple 

application of the strategy of operation was made. The aggregated 

formulation of the system was used. Values of the overall energy in

flows were those values obtained in the deterministic operation. This 

allowed a comparison of the results of the deterministic and the 

strategic operations without too much computational effort.

The same value of the initial storage in the deterministic 

operation was assumed. The strategy of operation was applied to the 36 

years of observed inflows. As in the deterministic operation the ini

tial storage each year was assumed equal to the computed final storage 

at the end of the previous year.

The aggregated storage trajectories for the strategic and 

deterministic operations are presented in Figure 26. As expected, the 

strategic operation defines higher storages than the tactical operation. 

This reflects the shortage aversion of the strategic operation.

Shortages occurred in about 37 percent of the weeks of operation. 

The value of the energy shortage was however always less than 50 Eq. MW, 

or less than 2 percent of the average energy demand. It can not be



Figure 26.a. Energy Storage Trajectories, Deterministic and Strategic Operations, 1931 to 1936
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Figure 26.b. Energy Storage Trajectories, Deterministic and Strategic Operations, 1937 to 1942
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Figure 26c. Energy Storage Trajectories, Deterministic and Strategic Operations, 1943 to 1948
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Deterministic and Strategic OperationsFigure 26.d. Energy Storage Trajectories, 1949 to 1954
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Figure 26.e. Energy Storage Trajectories, Deterministic and Strategic Operations, 1955 to 1960
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Figure 26.f. Energy Storage Trajectories, Deterministic and Strategic Operations, 1961 to 1966
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considered a disaster level shortage. About 40 percent of the time the 

thermal production was minimum. It contrasts with the 58 percent value 

obtained in the tactical operation.

The resultant variable cost of operation for the entire period of 

operation was 5,682 million dollars (U.S.). The corresponding average 

annual cost is 157.8 million dollars which implies an average annual 

cost for uncertainty of 119.1 million dollars. This allows appraisal of 

the importance of information concerning future inflows in the strategic 

operation of reservoirs.



Chapter 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The convexity (or quasi-convexity) of the formulated problem 

allowed the application of the Kuhn-Tucker theorem of Mathematical 

Programming to the deterministic operation. The mathematical formula

tions of the optimality conditions did not allow much insight into the 

nature of the optimal operation. The logic of the optimal decisions was 

identified through an analytical approach which involved two concepts: 

the marginal economic meaning of Lagrange multipliers and the concept of 

optimal temporal and spatial water transfer in reservoir operation. The 

characteristics of the optimal operation were expressed in five optimal

ity conditions in terms of marginal values.

The first optimality condition states that the marginal 

instantaneous benefit of the releases equals the marginal future benefit 

of the remaining storage in each reservoir and at each time interval. 

When a given reservoir is serially-linked to a downstream reservoir 

another component exists in the benefit of the releases derived from the 

spatial transfer of water from the upstream to the downstream reservoir 

or the benefit of water transfer.

When the optimal transfer of water in time and between reservoirs 

is not tightened by any storage constraint the marginal future benefit 

of the storage is constant for each reservoir. Its value will increase 

in a reservoir when this reservoir's maximum storage constraint tightens 

the optimal operation. When the minimum storage constraint tightens the 

optimal operation of a reservoir the marginal future benefit of its 

storage will decrease. These are the second, third and fourth optimal

ity conditions.
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The variations of the marginal future benefit of the storage and of 

the marginal benefit of the water transfer between reservoirs implies 

the occurrence of a chain of extreme storage. In serially-linked reser

voirs the upstream reservoir reaches an extreme (maximum or minimum) 

storage before the downstream reservoir does. The anticipation equals 

the travel time of the water between the reservoirs. Moreover, the 

upstream reservoir again reaches the same extreme storage in the same 

time interval the downstream reservoir does. This occurrence is a 

result of the optimization of temporal and spatial water transfer in 

serially-linked reservoirs.

The existence of a period of operation when the maximum release 

tactic is optimal was demonstrated in the fifth optimality condition. 

These periods may occur in an isolated reservoir or in the system as a 

whole. The optimal operation in this period will start with the 

reservoir empty and will end with the reservoir full.

The objective function in a interconnected hydropower system is 

related to its overall energy production. This implies the equality of 

the marginal instantaneous benefit of the energy production in each 

reservoir along the operation. As a consequence, an aggregated formula

tion of the problem was suggested for definition of its optimal 

operation. It had the basic advantage of decreasing the programming and 

the computational efforts in the solution. The price was derivation of 

an optimal solution in only an approximate sense. Nevertheless, it was 

considered acceptable for screening purposes of the deterministic 

operation study.

An algorithm was developed to identify the periods where the 

maximum release tactic is optimal. Its low computational requirements 
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made the algorithm extremely efficient in the search of the optimal 

solution.

The optimization of the operation of aggregated formulation of the 

problem was accomplished by a new optimization technicpie named 

Constrained Marginal Analysis. It was developed based on the character

istics of the trajectories of the reservoir storage under optimal varia

tion of the marginal instantaneous benefit of the releases. This tech

nique is akin to Massé's Constrained Calculus of Variations. It was 

shown to be a generalization of a previously proposed algorithm which 

was addressed to the optimal operation of a seasonal alpine reservoir 

(Laufer, 1977 and Laufer and Morel-Seytoux, 1979). The Constrained 

Marginal Analysis showed a remarkable improvement in computational and 

memory requirements when compared with Dynamic Programming. Its 

application is restricted to convex problems, however.

A criterion of disaggregation was presented to define the operation 

of each reservoir given the optimal operation of the aggregated system. 

It was based on the enforcement of a heuristic distribution of storage 

among the system's reservoirs with the objective of avoiding water 

spills. At the same time, the disaggregation procedure was developed in 

such a way that it was applicable to the strategic operation.

This aggregation-optimization-disaggregation procedure was able to 

define a near optimal operation for the multireservoir system. A 

characteristic of the operation referred to the partitioning of energy 

storage and inflow among the reservoirs of the system. It was observed 

that these partitions presented a significant deterministic trend in the 

dominant reservoirs and rivers of the system.
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The optimal strategy of operation is obtained when the marginal 

instantaneous benefit of releases equals the marginal expectation of the 

remaining storage. Massé's Theory of Marginal Expectations defined the 

basis of a computational procedure used in the derivation of marginal 

expectations of the storages in the optimal operation. This computa

tional procedure was referred to by Massé as the Chain of Marginal 

Expectations. It is regarded as an improved version of the Explicit 

Stochastic Approach of Dynamic Programming.

Computational limitations implied formulation of the problem in its 

aggregated representation. The correction of the resultant relaxed 

strategy was performed with the consideration of the partition of energy 

inflow and storage among reservoirs observed in the deterministic 

operation. A statistical analysis was applied in the definition of the 

partition models. The Chain of Marginal Expectations was adapted to 

include these models. It allowed the spills not accounted in the aggre

gated formulation to be considered in the computation of the strategy of 

operation.

The application of the algorithm to the case study showed that the 

state of the system, upon which the strategic decisions are made, can be 

represented by aggregated variables. The resultant strategy of opera

tion is defined as a function of the overall values of energy storage 

and previous energy inflow into the system. It explicitly considered 

the autocorrelation in the overall energy inflow variables. The 

strategy also implicitly considered cross correlation among the energy 

inflow and storage variables in each reservoir. Finally, a substantial 

part of the autocorrelation in the energy inflow and storage variables 

in each reservoir is indirectly considered in the derivation of the 

operating strategy.
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The aggregation-optimization-disaggregation procedure has derived a 

near optimal solution. The aggregation part of the procedure under

estimated the energy inflows to the serially-linked reservoirs. The 

definition of improved aggregation techniques in this case may probably 

be obtained. One suggestion is the introduction of the relative size of 

the storage capacities of each serially-linked reservoir into the esti

mate of the energy inflows. Notice that this problem does not exist in 

the strategic operation of the system. There, the energy storages and 

inflows to each reservoir are updated each time interval previous to the 

decision making. Eventual errors in the estimate will not be 

accumulated.

The derived methods are considered attractive both from the point 

of view of theoretical consistency and computational effort. The 

viability of extension of the methods to other multireservoir hydropower 

systems is a matter of discussion. It is verified by the practice that 

no problem is general in management. The accomplishments of each method 

are related to how well it may approach the particularities of each 

problem. However, it cannot be left without mention that some aspects 

of the presented methods seem to be of general applicability.

In the disaggregation part of the procedure the chain of extreme 

reservoir storages was ignored. It was possible due to the short travel 

time between serially-linked reservoirs in the studied system. When 

travel time increases the spatial transfer of water may be an important 

factor in Lhe optimization. It may be argued, however that travel time 

is increased due to the increase of distance between reservoirs, among 

other less significant factors. In this case, the natural water con

tribution between reservoirs may force a decrease in importance of the 



293

spatial water transfer in the optimal solution. In the Brazilian 

hydropower systems this is true except for possibly the São Francisco 

River basin. In this case, the mean course of the river goes through a 

semi-arid region where the natural water contributions may be somewhat 

small compared with the spatial water transfer. In this situation, some 

criteria must be defined to enforce the chain of extreme reservoir 

storages.

The disaggregation procedure had significant computational 

requirements. These requirements tend to increase as the system 

increases in quantity of reservoirs, particularly serially-linked. In 

Brazil this may result in cumbersome computational requirements for the 

hydropower system of the Parana River and tributaries. In this system 

more than 20 reservoirs are projected having multiple serial linkages. 

Utilization of simpler disaggregation criteria may be required in such 

cases with a possible degradation of the quality of results.

The correction of the relaxed strategy for the operation under 

uncertainty of the future inflows was derived from the observed regular

ity of the partition of the system's energy inflow and storage. Occur

rence of such a regularity in larger systems is not assured. In these 

cases the random component of the partition models may increase the sig

nificance. If this occurs the state of the system may not be suitable 

to be represented by aggregated values of storage and inflow. One pos

sible solution is the aggregation of the system on a regional basis. 

This will increase exponentially the computational requirements of the 

Chain of Marginal Expectations which are already extensive. One alter

native is to optimize the operation of each regional system according to 

the regional energy demand only. After that, analysis of the marginal 
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values is used to define optimal transfer of energy among regions. 

Transfer from the region A to the region B is optimal when the marginal 

benefit of the transferred energy to region B is greater than the mar

ginal expectation of the remaining storage in region A. This results in 

a kind of Overlapping Decomposition Approach (Haimes, 1977, p. 70) to 

the operation optimization of the regionally aggregated systems.

The extension of the methodology to evolutive or non-stationary 

systems has the problem of the test of the convergence of the Chain of 

Marginal Expectations. One possible approach is based on the observa

tion that generally 4 to 5 iterations are required to attain conver

gence. If the computations start 4 to 5 years in the future, it may be 

expected the convergence will be obtained in the studied year. No 

modification in the method is required in this multi-annual operation 

except when a reservoir is introduced in the system, with serial linkage 

to a downstream reservoir. Then, in the phase of filling the reser

voir's dead storage a second decision must be made concerning that part 

of the reservoir's inflow which must be transferred to the downstream 

reservoir and that part that must be kept to fill the dead storage. In 

this case, the optimal decision occurs when the marginal benefit of the 

water transfer equals the marginal benefit related to the use of water 

to fill the dead storage. This benefit is derived from the shortening 

of the transient period that preceeds the start of the reservoir's 

energy production. The variables identifying the state of the system 

must include the reservoir's storage. This will obviously increase the 

computational requirements during this phase. This transient phase has 

a possible known beginning but the end is unknown. This creates 
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difficulties in the study of the deterministic operation and an 

indefinition of the partition models of energy storage and inflow during 

this period. 

In conclusion, the presented method may derive reliable solutions 

for the operation of the studied system under certainty and uncertainty 

of future inflow conditions without being constrained by burdensome 

computational requirements. Extension of the methods to larger, multi- 

regional systems may bring some theoretical and computational diffi

culties that do not appear in the study. Nevertheless, exploitation of 

the marginal economic meaning of optimal decisions seems to be a promis

ing approach to handling such difficulties.
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