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1 Introduction

Axions are actively investigated in the literature ever since their proposal by Peccei and
Quinn to solve the problem of strong CP-violation [1, 2]. More generally, inspired by ax-
ionic QCD, Axion-like Particles (ALPs) are treated as pseudo Nambu-Goldstone bosons
that arise in various extensions of the Standard Model (SM), and are promising candidates
for a dark matter portion in the universe [3–5]. Unlike of the axionic QCD, in which axions
couple with the gluons, the scalar ALPs (φ) couple with the photon through the interaction
gaγ φ (E ·B), where gaγ is a coupling constant with length dimension. Several efforts have
been made in an attempt to detect these particles, whether in astrophysical observations
or in terrestrial experiments such as particle accelerators, or high-intensity lasers. It is
important to emphasize the huge range of possibilities for the mass of the ALPs. In this
sense, there are two perspectives in the search for ALPs, the first one takes into account the
scattering processes that are capable of producing ALPs in the mass range eV−TeV. The
second one considers astrophysical observations, where it is capable to produce ALPs with
an upper bound for the mass which may be in the range of 10−10 eV− 30KeV [6]. For in-
stance, the Chandra’s data analysis for the active galactic nucleus NGC 1275 at the center
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of the Perseus cluster provides the most stringent limit on the ALP-photon coupling con-
stant for very light ALPs, i.e., gaγ < (6.3− 7.9)×10−13 GeV−1 forma < 10−12 eV depending
on the magnetic field, at 99.7% confidence level [7]. Recent searches for ALP-Photon res-
onant conversion on magnetar SGR J1745-2900 exclude couplings gaγ > 10−12 GeV−1 for
ma ≤ 10−6 eV [8]. Another well-established limit was obtained in CAST, which searches for
axions coming from the solar core by converting the X-rays into axions via a magnetic field
up to 9.5T. They report the upper limit on the gaγ ' 0.66×10−10 GeV−1 for ma < 0.02 eV
at 95% confidence level [9].

For larger values of the ALPs masses, we must take into account the bounds obtained
by experiments in particle accelerators. As example, axions can be produced in the reaction
γγ → φ→ γγ through the Primakoff-process at the LHC. In this case, there is a wide range
for the ALPs masses, ranging from eV to TeV scale [10–12]. For lead-lead collisions, the
exclusion limits for the ALP masses is ma ' (5 − 100)GeV, for a coupling constant of
gaγ ' 0.05TeV−1 at 95 % confidence level [13]. Since ALPs are searched for in experiments
with intense magnetic fields, it is reasonable to expect that non-linear effects might be
excited in this situation. They may arise whenever magnetic fields are close to the critical
Schwinger magnetic field, |B|S = m2

e/qe = 4.41 × 109 T [14]. In astrophysical searches
for ALPs, there are cases of blazars and magnetars with magnetic fields of the order or
higher than the critical Schwinger magnetic field [8, 15, 16]. In a recent work, it has been
discovered that non-linearities can also arise at low magnetic fields in a QED level for the
so-called Dirac materials. In this case, strong non-linear effects arise in dirac materials
for a magnetic field strength of approximately 1T [17]. Several non-linear theories are
candidates to extension of the Maxwell electrodynamics (ED) in the literature [18–24].
One of the most known is the Born-Infeld (BI) ED that was originally proposed to remove
the singularity of the electric field of a point-like charged particle at the origin [25]. It is
worth mentioning that BI electrodynamics was investigated in a scenario involving axions,
in which the analog of Snell’s law was found considering an axionic domain wall [26].
Currently, the BI ED emerges in scenarios of superstring theory, quantum-gravitational
models and magnetic monopoles [27–33]. The measurement of the light-by-light scattering
at the ATLAS Collaboration of the LHC imposes a lower bound & 100GeV on the BI
parameter [34]. More stringent bounds on the BI parameter are also discussed in the
electroweak model with the hypercharge sector associated with the BI model [35].

It is known that the vacuum can be considered as a non-linear optical medium and
that this concept applies to the standard model of elementary particles [36]. In this sense,
non-linear ED models may present dichroism and vacuum birefringence phenomena. In
particular, the vacuum magnetic birefringence (VMB) is a macroscopic quantum effect
predicted by QED [37, 38] in which the difference of the refractive indices between parallel
and perpendicular polarized light is non-trivial in the presence of an external magnetic
field. The PVLAS (Polarisation of Vacuum with LASER) experiment carried out 25 years
of efforts in the search for the vacuum birefringence and dichroism, and although it did
not reach the values predicted by the QED, it established the best limits known so far [39–
42]. Although the VBM has not yet been directly detected, the indirect evidence has
been found in the neutron star RXJ1856.5 − 3754, with magnetic fields on the order of
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1013 Gauss (G) [43]. It is interesting to notice that the VBM phenomenon can be a tool for
the detection of ALPs, where it is known that the conversion of photons into axions changes
the polarization of the incident beam by means of a magnetic background field. Thereby,
a measure of the birefringence can provide important limits on the axion mass and the
coupling constant gaγ [44, 45]. In this direction, we point out that the birefringence effects
related to the axion field in the presence of a laser beam were investigated in ref. [46]. We
also highlight that the birefringence phenomena associated with a pure electric background
field is due to the optical Kerr effect [47, 48].

At this stage, it should be mentioned that other extensions of the Maxwell electro-
dynamics (ED) coupled to the axion field have been investigated in the literature. For
instance, in a seminal paper by Raffelt and Stodolsky [49], the authors included the non-
linear effects of the Euler-Heisenberg electrodynamics and obtain the correspondent dis-
persion relations of the non-linear photon. We also highlight that the axion field theory
was considered in connection with high-order derivative Podolsky ED [50], where the ef-
fective photonic theory and the inter-particle potential were carried out. Similarly, the
axion field contributions were investigated in the context of non-commutative field theo-
ries [51, 52]. Furthermore, in the work of ref. [53], by using the Proca theory, the authors
analyzed the influence of a massive photon and its effects on the axion-photon mixing.
Later, the axion-Proca ED was obtained as an effective field theory in a Condensed Matter
system [54]. Recently, new extensions involving a hidden photon (another massive dark
matter candidate) coupled to the axion and photon fields have been proposal in the lit-
erature [55, 56]. The propagation effects in the presence of extra CPT-odd terms also
motivate other extensions of the Maxwell ED [57]. The study of the constitutive relations
on the wave propagation in bi-isotropic and anisotropic media has applications in material
physics [58]. Axionlike couplings can be generated via quantum corrections in a Lorentz
violation background [59].

In this paper, we propose the study of a general non-linear ED coupled to an ax-
ionic scalar field, that we call φ, coupled to the non-linear sector through the interaction
g φ (E0 ·B0). We start the description of the model with a general non-linear kinetic
sector. We expand the 4-potential associated with electromagnetic (EM) fields (E0,B0)
around an EM background up to second order in the propagating EM fields. Thereby, we
have a general linearized ED propagating in an EM background field coupled to an axionic
scalar field. We explore the propagation effects for the plane wave solutions in which the
dispersion relations, the group velocities, the electric permittivity, and the magnetic per-
meability are obtained in a uniform and constant EM background fields. The Born-Infeld
(BI) non-linear theory is considered as an application of these results. Therefore, we discuss
the properties of the wave propagation, like the dispersion relations, group velocities and
the characteristics of the medium in the presence of an external magnetic field, and poste-
riorly, of an external electric field. We analyze the results in a regime of strong magnetic
field for the BI theory. The birefringence phenomena is also investigated in the BI theory
for the cases with magnetic and electric background fields, separately. In the case of the
birefringence with a magnetic background, we calculate the axion coupling constant using
the data of the PVLAS-FE experiment. For the birefringence with an electric background,
we make a connection with the optical Kerr effect.
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The paper is organized with the following outline. In section 2, we describe the non-
linear ED-axion model in an EM background, and obtain the corresponding field equations
for the axion and photon. Next, section 3 focus on the properties of plane wave solu-
tions and we organize our results in two subsections: the first subsection 3.1 considers the
purely magnetic background case. The second subsection 3.2 discusses a purely electric
background. In section 4, we apply all the results of the previous section to BI ED, for a
magnetic background in subsection 4.1; next, we go into a purely electric background in
subsection 4.2. After that, in section 5, we investigate the birefringence of the axion-BI
model for a wave in a magnetic (subsection 5.1) and in an electric background (subsec-
tion 5.2). Section 6 casts our Concluding Comments. Finally, we include an appendix A,
where the energy-momentum tensor of a general non-linear ED and the corresponding
conserved quantities are obtained in a constant and uniform EM background.

Throughout this paper, we adopt natural units ~ = c = 1 with 4πε0 = 1, and the
Minkowski metric ηµν = diag(+1,−1,−1,−1). The electric and magnetic fields have
squared-energy mass dimension in which the conversion of Volt/m and Tesla (T) to the
natural system is as follows: 1Volt/m = 2.27 × 10−24 GeV2 and 1T = 6.8 × 10−16 GeV2,
respectively.

2 Non-linear electrodynamics coupled to an axionic scalar field

We start up with the Lagrangian (density) of the model

L = Lnl(F0,G0) + 1
2 (∂µφ)2 − 1

2 m
2 φ2 + g φG0 − JµAµ , (2.1)

where Lnl(F0,G0) denotes the most general Lagrangian of a non-linear electrodynamics
that is function of the Lorentz- and gauge-invariant bilinears F0 = −1

4 F
2
0µν , and G0 =

−1
4 F0µνF̃

µν
0 . We consider the antisymmetric field strength tensor as F µν

0 = ∂µA ν
0 −

∂νA µ
0 =

(
−E i

0 , −εijkB k
0

)
, and the correspondent dual tensor is F̃ µν

0 = εµναβF0αβ/2 =(
−B i

0 , ε
ijkE k

0

)
, which satisfies the Bianchi identity ∂µF̃ µν

0 = 0. Therefore, in terms of
electromagnetic fields, the invariants are F0 = 1

2
(
E2

0 −B2
0
)
and G0 = E0 ·B0. In addition,

φ corresponds to the axion field with mass m, and g is the non-minimal coupling constant
(with length dimension) of the axion with the electromagnetic field, i.e., the usual coupling
with the G0-invariant. There are many investigations and experiments to constraint the
possible regions in the space of the parameters g and m, which still remains with a wide
range of values, depending on the phenomenological scale in analysis. For more details, we
point out the recent reviews [60, 61].1

The action principle related to the Lagrangian (2.1) leads to the motion equations with
a classical external current Jν :

∂µ

(
∂Lnl
∂F0

F µν
0 + ∂Lnl

∂G0
F̃ µν

0

)
= −g (∂µφ) F̃ µν

0 + Jν , (2.2a)(
�+m2

)
φ = g G0 , (2.2b)

in which the current is conserved ∂µJµ = 0.
1See section 90 of [61]: Axions and Other Similar Particles.
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We expand the abelian gauge field as A µ
0 = aµ + A µ

B , with aµ being the photon 4-
potential, and A µ

B denotes a background potential. In this conjecture, the tensor F µν
0

is also written as the combination F µν
0 = fµν + F µν

B , in which fµν = ∂µaν − ∂νaµ =(
−ei , −εijkbk

)
is the EM field strength tensor that propagates in the space-time, and

F µν
B =

(
−Ei , −εijkBk

)
corresponds to the EM background field. The notation of the

4-vector and tensors with index (B) indicates that it is associated with the background.
At this stage, we consider the general case in which the background depends on the space-
time coordinates. Under this prescription, we also expand the Lagrangian (2.1) around the
background up to second order in the propagating field aµ to yield the expression

L(2) = −1
4 c1 f

2
µν −

1
4 c2 fµν f̃

µν − 1
2 GBµν f

µν + 1
8 QBµνκλ f

µνfκλ + 1
2 (∂µφ)2 − 1

2 m
2 φ2

−1
2 g φ F̃Bµν f

µν + g φGB − Jµ aµ − JµA µ
B + Lnl (FB,GB) , (2.3)

where the background tensors are defined by

GBµν = c1 FBµν + c2 F̃Bµν ,

QBµνκλ = d1 FBµν FBκλ + d2 F̃Bµν F̃Bκλ + d3 FBµνF̃Bκλ + d3 F̃BµνFBκλ , (2.4)

and Lnl (FB,GB) is the non-linear Lagrangian as function of the Lorentz invariants FB =
−1

4 F
2
Bµν = E2−B2 and GB = −1

4 FBµνF̃
µν

B = E ·B, both in terms of the EM background
field, and F̃ µν

B = εµναβFBαβ/2 =
(
−Bi , εijkEk

)
is the dual tensor of FBµν . Furthermore,

the coefficients c1, c2, d1, d2 and d3 are evaluated at E and B, as follows:

c1 = ∂Lnl
∂F0

∣∣∣∣
E,B

, c2 = ∂Lnl
∂G0

∣∣∣∣
E,B

, d1 = ∂2Lnl
∂F2

0

∣∣∣∣∣
E,B

, d2 = ∂2Lnl
∂G2

0

∣∣∣∣∣
E,B

, d3 = ∂2Lnl
∂F0∂G0

∣∣∣∣∣
E,B

,

(2.5)
that depend on the EM field magnitude and it may also be functions of the space-time
coordinates. Following the previous definitions of the tensors, we have that GBµν = −GBνµ,
and QBµνκλ is symmetric under exchange µν ↔ κλ, and antisymmetric when µ ↔ ν or
κ↔ λ. Note that the current Jµ also couples to the external potential A µ

B , but this term
and Lnl (FB,GB) are irrelevant for the field equations in which we are interested. If we
consider the scalar potential as V (φ) = m2φ2/2−g φGB, it has a minimal at φ0 = g GB/m2.
Writing φ = φ̃+ φ0, the term g φGB can be eliminated in the Lagrangian (2.3):

L(2) = −1
4 c1 f

2
µν −

1
4 c2 fµν f̃

µν − 1
2 HBµν f

µν + 1
8 QBµνκλ f

µν fκλ + 1
2 (∂µφ̃)2 − 1

2 m
2 φ̃2

−1
2 g φ̃ F̃Bµν f

µν − Jµ aµ − JµA µ
B + Lnl (FB,GB) + g2 G2

B

2m2 , (2.6)

where HBµν = GBµν +g2 GB F̃Bµν/m2. In this context, the scalar field φ̃ is reinterpreted as
the axion field with mass m. It should be noted that φ0 is non-trivial only in the presence
of both electric and magnetic background fields.

Using the action principle in relation to aµ, the Lagrangian (2.6) yields the EM field
equations with source Jµ

∂µ
[
c1 fµν + c2 f̃µν −

1
2 QBµνκλ f

κλ
]

= −g (∂µφ̃) F̃Bµν − ∂µHBµν + Jν , (2.7)
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and the Bianchi identity remains the same one for the photon field, namely, ∂µf̃µν = 0.
The action principle related to φ̃ in eq. (2.6), now yields the axion field equation evaluated
at the EM background: (

�+m2
)
φ̃ = −1

2 g F̃Bµν f
µν . (2.8)

Notice that, when we fix c1 = 1 and d1 = d2 = d3 = 0, the non-linear effects disappear,
and we have the usual Maxwell ED coupled to the axion field and EM background. In
the limit g → 0, the axion uncouples the photon field, and we have a simple combination
of a massive free scalar field with the Maxwell ED. Moreover, the Maxwell equations also
are recovered in eq. (2.7) by taking the aforementioned considerations and turn-off the
background fields, FBµν = 0.

3 The dispersion relations in the presence of magnetic and electric back-
ground fields

In this section, we obtain the dispersion relations (DRs) associated with the axion and pho-
ton fields in the presence of a uniform and constant electromagnetic background. Thereby,
from now on, all the coefficients defined in eq. (2.5) are not dependent on the space-time
coordinates. We start with the equations written in terms of the fields e and b. For the
study of the wave propagation, we just consider the linear terms in e, b and φ̃, as well as
the equations with no current and source, J = 0 and ρ = 0. Under these conditions, the
modified electrodynamics from eq. (2.7) and Bianchi identity is read below:

∇ ·D = 0, ∇× e + ∂b
∂t

= 0 , (3.1a)

∇ · b = 0, ∇×H− ∂D
∂t

= 0 , (3.1b)

where the vectors D and H are given by

D = c1 e + d1 E (E · e) + d2 B (B · e)− d1 E (B · b) + d2 B (E · b) + g φ̃B , (3.2a)
H = c1 b− d1 B (B · b)− d2 E (E · b) + d1 B (E · e)− d2 E (B · e)− g φ̃E . (3.2b)

Observe that, in eqs. (3.2a) and (3.2b), we have eliminated the terms with dependence
on the coefficient d3, since d3 = 0 in the non-linear ED model in which we will consider
ahead. The axion field equation (2.8) leads to(

�+m2
)
φ̃ = g (e ·B) + g (b ·E) . (3.3)

We write the Fourier integrals for the fields e, b and φ̃ such that the field equa-
tions (3.1a), (3.1b) and (3.3) in momentum space are given by:

k ·D0 = 0, k× e0 − ω b0 = 0, (3.4a)
k · b0 = 0, k×H0 + ωD0 = 0, (3.4b)(

k2 − ω2 +m2
)
φ̃0 = g (B · e0) + g (E · b0) , (3.4c)
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where the amplitudes D0i and H0i are functions of the k-wave vector and the frequency ω.
In terms of the electric and magnetic amplitudes e0i and b0i, we obtain

D0i(k, ω) = εij(k, ω) e0j + σij(k, ω) b0j , (3.5a)
H0i(k, ω) = −σji(k, ω) e0j + (µ−1)ij(k, ω) b0j , (3.5b)

in which the electric permittivity symmetric tensor εij(k, ω) and σij(k, ω) are defined by

εij(k, ω) = c1 δij + d1EiEj + d2BiBj + g2BiBj
k2 − ω2 +m2 , (3.6a)

σij(k, ω) = −d1EiBj + d2BiEj + g2BiEj
k2 − ω2 +m2 . (3.6b)

In addition, µ−1 stands for the inverse of the magnetic permeability symmetric tensor, with
the components

(µ−1)ij = c1 δij − d1BiBj − d2EiEj −
g2EiEj

k2 − ω2 +m2 . (3.7)

The inverse of eq. (3.7) yields the following expression for the magnetic permeability

µij(k, ω) = 1
c1

(
1− dB B2 − dE E2) δij + dB BiBj + dE EiEj + dB dE (E×B)i (E×B)j

1− dB B2 − dE E2 + dB dE (E×B)2 ,

(3.8)
where we adopted the shorthand notations

dB := d1
c1

and dE := d2
c1

+ g2/c1
k2 +m2 − ω2 , (3.9)

for simplicity of the equations. In both the cases in which E = 0 or B = 0, we have
σij(k, ω) = 0. Moreover, it is important to note that the dependence of electric permittivity
and magnetic permeability on k and ω is exclusively due to the presence of the axion
coupling, see eqs. (3.6a) and (3.8), as well as the above definition for the coefficient dE .

The eigenvalues of the electric permittivity matrix are given by

λ1ε = c1 , (3.10a)

λ2ε = c1

(
1 + dB E2

2 + dE B2

2

)
− c1

√(
dB E2

2 − dE B2

2

)2
+ dB dE (E ·B)2 ,(3.10b)

λ3ε = c1

(
1 + dB E2

2 + dE B2

2

)
+ c1

√(
dB E2

2 − dE B2

2

)2
+ dB dE (E ·B)2 .(3.10c)

The correspondent eigenvectors are known as the optical axes of the system. If these
eigenvalues are positive, it satisfy the conditions

c1 > 0 and 1 + dE B2 + dB E2 + dB dE (E×B)2 > 0 , (3.11)

and the electric permittivity matrix will be defined positive.
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The eigenvalues of the magnetic permeability matrix are

λ1µ = 1
c1
, (3.12a)

λ2µ = 1
2c1

2− dB B2 − dE E2 −
√

(dB B2 − dE E2)2 + 4 dB dE (E ·B)2

1− dB B2 − dE E2 + dB dE (E×B)2 , (3.12b)

λ3µ = 1
2c1

2− dB B2 − dE E2 +
√

(dB B2 − dE E2)2 + 4 dB dE (E ·B)2

1− dB B2 − dE E2 + dB dE (E×B)2 , (3.12c)

where the permeability is positive if we impose the conditions

c1 > 0 and 1− dB B2 − dE E2 + dB dE (E×B)2 > 0 . (3.13)

However, situations with negative eigenvalues are also acceptable and this would indicate,
according to the references [62–64], that the vacuum manifests the behaviour of a category
of metamaterial.

If we just consider the magnetic background field (E = 0), the electric permittivity has
two degenerated eigenvalues, λ1ε = λ2ε. Analogously, if the background is purely electric
(B = 0), the magnetic permeability has the two degenerated eigenvalues, λ1µ = λ2µ.
In the limit g → 0, the conditions (3.11) and (3.13) are reduced to c2

1 + c1 d1 B2 +
c1 d2 E2 + d1 d2 (E×B)2 > 0 and c2

1 − c1 d1 B2 − c1 d2 E2 + d1 d2 (E×B)2 > 0, respec-
tively. For the particular case of Maxwell ED coupled to the axion field in which c1 = 1
and d1 = d2 = 0 in eqs. (3.11) and (3.13), we arrive at the following constraints on the
frequency: −

√
k2 +m2 + g2 E2 < ω <

√
k2 +m2 + g2 E2 (for the positive permittivity)

and −
√

k2 +m2 − g2 E2 < ω <
√

k2 +m2 − g2 E2 (for the positive permeability).
Using the equations in momentum space (3.4a)−(3.4c) and the constitutive rela-

tions (3.5a) and (3.5b), we obtain the wave equation for the components of the electric
amplitude:

M ij e j
0 = 0 , (3.14)

where the matrix elements M ij are given by

M ij = a δij + b ki kj + cB B
iBj + cE E

iEj + dB (B · k)
(
Bi kj +Bj ki

)
+ dE (E · k)

(
Ei kj + Ej ki

)
− dB ω

[
Ei (B× k)j + Ej (B× k)i

]
+ dE ω

[
Bi (E× k)j +Bj (E× k)i

]
, (3.15)

whose the coefficients a, b, cB and cE are defined by

a= ω2 − k2 + dB (k×B)2 + dE (k×E)2 , (3.16a)
b= 1− dB B2 − dE E2, (3.16b)

cB = dE ω
2 − dB k2, cE = dB ω

2 − dE k2 . (3.16c)

The non-trivial solution of eq. (3.14) implies that the determinant of the matrix M ij is
null. It is difficult to analyze the situation with both E 6= 0 and B 6= 0. The frequency
solutions are feasible for the cases with E = 0 or B = 0. In what follows, we investigate
these two particular cases separately.
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3.1 The magnetic background case

Let us consider E = 0 in the matrix elements (3.15):

M ij
∣∣∣
E=0

= aB δ
ij + bB k

i kj + cB B
iBj + dB (B · k)

(
Bi kj +Bj ki

)
, (3.17)

where aB = ω2 − k2 + dB (k×B)2 and bB = 1− dB B2. The determinant of (3.17) is

det(M)|E=0 = aB
{
a2
B + 2 aB dB (B · k)2 + aB

(
cBB2 + bBk2

)
+

+ bB cB (k×B)2 − d2
B (B · k)2 (k×B)2

}
, (3.18)

and imposing that det(M)|E=0 = 0, we obtain the first solution aB = 0, that yields

ω1B(k) = |k|
√

1− d1
c1

(B× k̂)2 . (3.19)

The other solutions come from the polynomial equation

ω2
(
PB ω

4 +QB ω
2 +RB

)
= 0 , (3.20)

where the coefficients are defined by

PB = 1 + d2
c1

B2 , (3.21a)

QB = −2 k2 −m2 − d2
c1

B2
(
k2 +m2

)
− d2
c1

(k ·B)2 − g2

c1
B2 , (3.21b)

RB = k2 (k2 +m2) + d2
c1

(k2 +m2) (k ·B)2 + g2

c1
(k ·B)2 . (3.21c)

The second solution is the trivial ω = 0. Solving the above polynomial equation, one
can show that the non-trivial solutions correspond to

ω2
2B = k2 + m2

2 + g2B2 − d2(B× k)2

2(c1 + d2B2)

−

√[
k2 + m2

2 + g2B2 − d2(B× k)2

2(c1 + d2B2)

]2
− k2 g

2(B · k̂)2 + (k2 +m2)(c1 + d2(B · k̂)2)
c1 + d2B2 ,

(3.22a)

ω2
3B = k2 + m2

2 + g2B2 − d2(B× k)2

2(c1 + d2B2)

+

√[
k2 + m2

2 + g2B2 − d2(B× k)2

2(c1 + d2B2)

]2
− k2 g

2(B · k̂)2 + (k2 +m2)(c1 + d2(B · k̂)2)
c1 + d2B2 .

(3.22b)

The equations (3.22a) and (3.22b) indicate that the dispersive character of the refractive
index is exclusively due to the presence of the axion. The non-linearity alone does not yield
dispersion, as the equation above show.
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At this stage, it is interesting to analyse the approximation of the very small axion
coupling constant. Using g2 |B| � 1, the previous frequencies are reduced to

ω2B(k) '
√

k2 +m2 +O(g2) and ω3B(k) ' |k|

√
1− d2 (B× k̂)2

c1 + d2B2 +O(g2) . (3.23)

In this approximation, ω2B leads to the usual DR for a massive particle, while the results
for ω1B and ω3B, eqs. (3.19) and (3.23), confirm the DRs obtained in ref. [65] for a general
non-linear ED in a uniform magnetic background. The refractive index associated with the
DRs are defined by

niB = |k|
ωiB

(i = 1, 2, 3) . (3.24)

We point out that, for the DR in eq. (3.19), the refractive index only depends on the
direction of the magnetic field B with the wave propagating direction k. On the other hand,
for the DRs in eqs. (3.22a) and (3.22b), the refractive index depends on the wavelength
(λ = 2π/|k|) due to the presence of the axion mass (m) and the coupling constant (g). In
the limit m→ 0 and g → 0, all the refractive indices do not depend on the wavelength in
the non-linear EDs.

Since we have three solutions for the frequencies, each solution has a different group
velocity. For the frequency in eq. (3.19), we obtain

vgB|ω=ω1B
= k̂

√
1− d1

c1
(k̂×B)2 . (3.25)

The polynomial equation (3.20) has the correspondent group velocity:

vgB = k̂ dω

dk
= − k̂

2ω (2ω2PB +QB)

(
dRB
dk

+ ω2 dQB
dk

)
, (3.26)

where ω is now evaluated at the DRs ω = ω2B and ω = ω3B, in which k ≡ |k|. Using the
definitions of PB, QB and RB, the expression (3.26) is read below

vgB = k
ω

[
2c1(ω2 − k2)− c1m

2 − d2(B · k)2 + d2ω
2B2 + d2(ω2 − k2 −m2)(B · k̂)2 − g2(B · k̂)2

2c1(ω2 − k2)− c1m2 + d2B2(2ω2 − k2 −m2)− d2(B · k̂)2 − g2B2

]
.

(3.27)
Substituting the frequencies ω2B and ω3B in eq. (3.27), the group velocities in the approx-
imation g2 |B| � 1 are given by:

vgB|ω=ω2B
' k̂

√
1− d2 (B× k̂)2

c1 + d2 B2 +O(g2) , (3.28a)

vgB|ω=ω3B
' k√

k2 +m2
+O(g2) . (3.28b)

The results (3.25) and (3.28a) show the dependence of the group velocity on the angle
between the magnetic background B and the propagation direction k̂. It is important to
highlight that the Maxwell limit recovers the known results for the group velocities (3.25)
and (3.27), i.e., vg = c k̂ (with c = 1), when d1 = d2 = 0 and c1 = 1.
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3.2 The electric background case

The electric background case is obtained with B = 0 in eq. (3.15):

M ij
∣∣∣
B=0

= aE δ
ij + bE k

i kj + cE E
iEj + dE (E · k)

(
Ei kj + Ej ki

)
, (3.29)

where aE = ω2− k2 + dE (k×E)2 and bE = 1− dE E2. The correspondent determinant is
similar to the result (3.18):

det(M)|B=0 = aE
{
a2
E + 2 aE dE (E · k)2 + aE

(
cEE2 + bEk2

)
+ bE cE (k×E)2 − d2

E (E · k)2 (k×E)2
}
. (3.30)

The null determinant in eq. (3.30) implies the first condition aE = 0, or equivalently
ω2−k2 + dE (k×E)2 = 0, that yields the solutions ω±1E = ±ω1E(k) and ω±2E = ±ω2E(k),
where the DRs are given by

ω1E(k) =

√√√√k2 + m2

2 −
d2
2c1

(E× k)2 −

√[
m2

2 + d2
2c1

(E× k)2
]2

+ g2

c1
(E× k)2, (3.31a)

ω2E(k) =

√√√√k2 + m2

2 −
d2
2c1

(E× k)2 +

√[
m2

2 + d2
2c1

(E× k)2
]2

+ g2

c1
(E× k)2. (3.31b)

The second condition for eq. (3.30) to be null leads to the polynomial equation

ω2
[(

1 + d1
c1

E2
)
ω2 − k2 − d1

c1
(E · k)2

]
= 0 . (3.32)

The first root in eq. (3.32) is ω = 0, and the non-trivial solutions are ω±3E = ±ω3E(k), with

ω3E(k) = |k|

√
1− d1(E× k̂)2

c1 + d1E2 . (3.33)

Therefore, we obtain three possible DRs for the axionic non-linear ED in an electric back-
ground. However, only the frequencies ω1E(k) and ω2E(k) contain contributions of the
axion field.

The refractive index in an electric background field is

niE = |k|
ωiE

(i = 1, 2, 3) . (3.34)

The DR (3.33) yields a refractive index that depends on the direction of E with the k-wave
propagation. In the case of the DRs (3.31a) and (3.31b), the refractive indices depend on
the wavelength if we consider m 6= 0.

From the condition aE = 0, the correspondent group velocity is given by

vgE = k
ω

[
1 + g2

c1

(E× k)2

(k2 − ω2 +m2)2

]−1

×

×
[
1− d2

c1
(E× k̂)2 − g2

c1

(E× k̂)2

k2 − ω2 +m2 + g2

c1

(E× k)2

(k2 − ω2 +m2)2

]
, (3.35)
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where ω must be evaluated at the dispersion relations ω1E and ω2E . Substituting the
frequencies (3.31a) and (3.31b) in eq. (3.35), we obtain the results

vgE |ω=ω1E
' k̂

√
1− d2

c1
(E× k̂)2 +O(g2) , (3.36a)

vgE |ω=ω2E
' k√

k2 +m2

[
1− d2

c1
(E× k̂)2

]
+O(g2) . (3.36b)

The third possible solution for the group velocity comes from the eq. (3.32). In this case,
we obtain the group velocity

vgE = k
ω

[
1− d1 (E× k̂)2

c1 + d1 E2

]
. (3.37)

Using the dispersion relation (3.33) in eq. (3.37), the correspondent group velocity reads

vgE |ω=ω3E
= k̂

√
1− d1 (E× k̂)2

c1 + d1 E2 . (3.38)

In the Maxwell limit, d1 = d2 = 0 and c1 = 1, the group velocities (3.36a) and (3.38)
reduce to the usual case when g → 0: vgE = c k̂ (with c = 1). Still in this limit, the group
velocity (3.36b) is reduce to the result of a wave-particle of mass m. Analogously to the
magnetic background case, the results obtained in this subsection also depends on the angle
between the electric background and the wave propagation direction. In all the results,
the dispersion relations and the group velocities depend on the coefficients c1, d1 and d2,
which are fixed by the non-linear ED as functions of the magnetic or electric background
fields.

4 Application to the axion-Born-Infeld model

In this section, we apply the Born-Infeld (BI) theory as an example of non-linear elec-
trodynamics in the model (2.1). Therefore, we can discuss the results of the previous
section applied to a well-known non-linear ED in the literature. The BI electrodynamics
is described by the Lagrangian

LBI(F0,G0) = β2

 1−

√
1− 2 F0

β2 −
G2

0
β4

 , (4.1)

where β is a scale parameter with dimension of squared energy (in natural units). It
can be interpreted as a critical field in the theory, and has the same dimension of the
electromagnetic field. The BI Lagrangian is CP-invariant since it depends on the G2

0 . The
limit of β → ∞ yields the Maxwell Lagrangian. The measurement by ATLAS of the
light-by-light scattering in Pb-Pb collisions constraints a stringent lower bound on the
β-parameter [34], namely, √

β & 100GeV , (4.2)
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in the case of a pure quantum electrodynamics with the Born-Infeld theory associated with
the Abelian U(1) symmetry. Keeping this in mind, we shall consider

√
β = 100GeV as the

scale of the BI theory in our future analysis. In what follows, let us examine the dispersion
relations and group velocities, as well as the properties of the permittivity and permeability
tensors of the axion-BI model for the cases of magnetic background field (subsection VI.A),
and posteriorly, in the presence of an electric background field (subsection VI.B).

4.1 The axion-BI model in a magnetic background

From eq. (2.5), we obtain the correspondent coefficients c1, d1 and d2 for the BI theory,

cBI1

∣∣∣
E=0,B

= β√
β2 + B2 , d

BI
1

∣∣∣
E=0,B

= β

(β2 + B2)3/2 , d
BI
2

∣∣∣
E=0,B

= 1
β
√
β2 + B2 , (4.3)

with c2 = d3 = 0. All these coefficients are positive and the axion-BI model reduces to the
usual Maxwell theory coupled to the axion in the limit β →∞, i. e., limβ→∞ cBI1

∣∣∣
E=0,B

= 1

and limβ→∞ dBI1

∣∣∣
E=0,B

= limβ→∞ dBI2

∣∣∣
E=0,B

= 0 . Substituting these coefficients in the
results (3.19), (3.22a) and (3.22b), we obtain the dispersion relations in a uniform and
constant magnetic field B:

ω
(BI)
1B (k) = |k|

√
1− (B× k̂)2

β2 + B2 . (4.4a)

[
ω

(BI)
2B (k)

]2
= k2 + m2

2 −
(B× k)2

2 (β2 + B2) + g2 B2

2
√

1 + B2/β2

−


[
k2 + m2

2 −
(B× k)2

2 (β2 + B2) + g2 B2

2
√

1 + B2/β2

]2

−k2
(
k2 +m2

) [
1− (B× k̂)2

β2 + B2

]
− g2 (B · k)2√

1 + B2/β2

}1/2

, (4.4b)

[
ω

(BI)
3B (k)

]2
= k2 + m2

2 −
(B× k)2

2 (β2 + B2) + g2 B2

2
√

1 + B2/β2

+


[
k2 + m2

2 −
(B× k)2

2 (β2 + B2) + g2 B2

2
√

1 + B2/β2

]2

−k2
(
k2 +m2

) [
1− (B× k̂)2

β2 + B2

]
− g2 (B · k)2√

1 + B2/β2

}1/2

. (4.4c)

At this stage, it is interesting to consider particular limits. For instance, under an
intense magnetic background field, i. e., |B| � β, the dispersion relations are reduced to
ω

(BI)
1B (k) = ω

(BI)
2B (k) ' |k · B̂| and ω(BI)

3B (k) '
√

k2 +m2, in which we have also considered
g2β � 1 in the frequencies ω(BI)

2B and ω(BI)
3B . In the strong magnetic field regime, the DRs

ω
(BI)
1B and ω(BI)

2B are not dependent on the magnetic field magnitude, and depend only on
the angle between the wave vector k and the direction of the magnetic background field.
On the other hand, when β →∞, we recover the photon DR in the frequency ω(BI)

1B , while
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ω
(BI)
2B and ω(BI)

3B reduce to the expressions:

lim
β→∞

ω
(BI)
2B (k) =

√√√√k2 + m2 + g2 B2

2 −

√(
m2 + g2 B2

2

)2
+ g2 (B× k)2 , (4.5a)

lim
β→∞

ω
(BI)
3B (k) =

√√√√k2 + m2 + g2 B2

2 +

√(
m2 + g2 B2

2

)2
+ g2 (B× k)2 . (4.5b)

The dependence of the DRs with the angle between B and k remains in eqs. (4.5a)
and (4.5b). In the regime g2|B| � 1, the previous frequencies lead to

ω2B(k) ' |k|
[
1− g2

2m2

(
B× k̂

)2
]
, (4.6a)

ω3B(k) '
√

k2 +m2 + g2 B2

2
√

k2 +m2
+ g2

2m2
(B× k)2
√

k2 +m2
. (4.6b)

Using the results (3.25) and (3.28a), the group velocity for the axion-BI model is

vgBI |ω(BI)
1B

= vgBI |ω(BI)
2B

= k̂

√
1− (B× k̂)2

β2 + B2 . (4.7)

As expected, the β →∞ limit recovers the result of usual electrodynamics group velocity
vg = k̂, in natural units. Under a strong magnetic field, the group velocities also depend
on the angle of k̂ with the B̂-direction:

vgBI |ω(BI)
1B

= vgBI |ω(BI)
2B

' k̂ |k̂ · B̂| = k̂ | cos θ| . (4.8)

Substituting the coefficients (4.3) in the eigenvalues of the electric permittivity matrix,
we obtain

λ
(BI)
1ε

∣∣∣
E=0

= λ
(BI)
2ε

∣∣∣
E=0

= β√
β2 + B2 , (4.9a)

λ
(BI)
3ε

∣∣∣
E=0

=
√

1 + B2

β2 + g2 B2

k2 +m2 − ω2 . (4.9b)

Similarly, the eigenvalues of the magnetic permeability are

λ
(BI)
1µ

∣∣∣
E=0

= λ
(BI)
2µ

∣∣∣
E=0

=
√

1 + B2

β2 , λ
(BI)
3µ

∣∣∣
E=0

=
(

1 + B2

β2

)3/2

. (4.10)

With these expressions, we conclude that the eigenvalues of eqs. (4.9a) and (4.10) are
positive, while that in eq. (4.9b) is positive if the ω-frequency satisfies the inequality:

−
√

k2 +m2 + g2 B2√
1 + B2/β2 < ω <

√
k2 +m2 + g2 B2√

1 + B2/β2 . (4.11)

In the limit β →∞, the results (4.9a) and (4.10) go to one, but in eq. (4.9b), we obtain a
contribution of the axion coupling with the Maxwell ED:

lim
β→∞

λ
(BI)
3ε

∣∣∣
E=0

= 1 + g2 B2

k2 +m2 − ω2 . (4.12)
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4.2 The axion-BI model in an electric background

In this case, the coefficients c1, d1 and d2 at B = 0 are given by

cBI1

∣∣∣
E,B=0

= β√
β2 −E2 , d

BI
1

∣∣∣
E,B=0

= β

(β2 −E2)3/2 , d
BI
2

∣∣∣
E,B=0

= 1
β
√
β2 −E2 ,(4.13)

and c2 = d3 = 0, in which the magnitude of the electric background must satisfy the
condition β > |E| for these coefficients to be real. When |E| > β, the coefficients are
complex and can bring interesting consequences for the DRs and the wave propagation.
Phenomenologically, the constraint of |E| > β is not usual since that, in general, electric
fields with strong magnitude of |E| > 104 GeV2 are not suitable. Using these coefficients in
the dispersion relations (3.31a), (3.31b) and (3.33), we arrive at the following frequencies
for the axion-BI model in a uniform and constant electric background:

ω
(BI)
1E (k) =

√√√√√k2 + m2

2 −
(E× k)2

2β2 −

√√√√[m2

2 + (E× k)2

2β2

]2
+ g2(E× k)2

√
1− E2

β2 ,

(4.14a)

ω
(BI)
2E (k) =

√√√√√k2 + m2

2 −
(E× k)2

2β2 +

√√√√[m2

2 + (E× k)2

2β2

]2
+ g2(E× k)2

√
1− E2

β2 ,

(4.14b)

ω
(BI)
3E (k) = |k|

√
1− (E× k̂)2

β2 , (4.14c)

where β > |E×k̂| in the frequency (4.14c). Notice that the Maxwell limit yields the photon
DR in eq. (4.14c). Moreover, the solutions (4.14a) and (4.14b) are, respectively, reduced to

lim
β→∞

ω
(BI)
1E (k) =

√√√√k2 + m2

2 −

√
m4

4 + g2 (E× k)2 , (4.15a)

lim
β→∞

ω
(BI)
2E (k) =

√√√√k2 + m2

2 +

√
m4

4 + g2 (E× k)2 . (4.15b)

For a weak electric field, the previous DRs assume the form

ω1E(k) ' |k|
[

1− g2

2m2

(
E× k̂

)2
]
, (4.16a)

ω2E(k) '
√

k2 +m2 + g2

2m2
(E× k)2
√

k2 +m2
. (4.16b)

The group velocities associated with these dispersion relations can be read below:

vg|ω(BI)
1E

= vg|ω(BI)
3E

= k̂

√
1− (E× k̂)2

β2 , (4.17a)

vg|ω(BI)
2E

= k√
k2 +m2

[
1− (E× k̂)2

β2

]
, (4.17b)
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where the condition β > |E × k̂| constraints the velocity (4.17b) in the same direction of
the wave propagation.

Analogously to the magnetic background case, we insert the expressions (4.13) in the
eigenvalues of the electric permittivity and magnetic permeability matrices. Thereby, we
obtain for the electric permittivity:

λ
(BI)
1ε

∣∣∣
B=0

= λ
(BI)
2ε

∣∣∣
B=0

= β√
β2 −E2 , λ

(BI)
3ε

∣∣∣
B=0

= β3

(β2 −E2)3/2 . (4.18)

In addition, for the magnetic permeability, we arrive at the following eigenvalues

λ
(BI)
1µ

∣∣∣
B=0

= λ
(BI)
2µ

∣∣∣
B=0

=
√

1− E2

β2 , (4.19a)

λ
(BI)
3µ

∣∣∣
B=0

=

√1− E2

β2 −
g2 E2

k2 +m2 − ω2

−1

. (4.19b)

Observe that the eigenvalues (4.18) and (4.19a) are real with the condition β > |E|. The
eigenvalue (4.19b) is positive if the ω-frequency satisfies the condition:

−
√

k2 +m2 − g2 E2√
1−E2/β2 < ω <

√
k2 +m2 − g2 E2√

1−E2/β2 . (4.20)

5 The birefringence in the non-linear ED axion model

The vacuum birefringence is one of the phenomena present in some non-linear EDs. We
back to the wave equation (3.14) to investigate the birefringence in a uniform and constant
magnetic background and also for the electric background case in the linearized axion-BI
model.

5.1 Birefringence in the axion-BI model with a magnetic background field

The birefringence analysis requires that we impose some considerations on the wave prop-
agation. We assume the propagation direction k = k x̂ and the magnetic background
B = B ẑ. In the first situation, we consider the electric wave amplitude parallel to B,
with e0 = e03 ẑ. In this case, the wave equation (3.14) (with E = 0) yields the relation
µ22(k, ω) ε33(k, ω)ω2 = k2, where the parallel refractive index is defined by

n
(B)
‖ (k, ω) =

√
µ22(k, ω) ε33(k, ω) =

√
1 + d2

c1
B2 + g2

c1

B2

k2 − ω2 +m2 . (5.1)

The second situation is when the electric wave amplitude is perpendicular to the magnetic
background field, with e0 = e02 ŷ. In this case, the wave equation leads to the relation
µ33(k, ω) ε22(k, ω)ω2 = k2, in which the perpendicular refractive index is

n
(B)
⊥ (k, ω) =

√
µ33(k, ω) ε22(k, ω) =

[
1− d1

c1
B2
]−1/2

. (5.2)
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Using the coefficients of the axion-BI model in eq. (4.3), the difference between these two
refractive indices, ∆n(B)

BI (k, ω) = n
(B)
‖ (k, ω)− n(B)

⊥ (k, ω), is given by

∆n(B)
BI (k, ω) =

√√√√1 + B2

β2 + g2B2

k2 − ω2 +m2

√
1 + B2

β2 −
√

1 + B2

β2 . (5.3)

From eq. (5.1), we expect that the variation of the refractive index depends on the ω-
frequency. Thereby, we can have the birefringence phenomena associated with the three
DRs from (4.4a), (4.4b) and (4.4c), respectively. The limit g → 0 recovers the well-known
result in which the pure BI theory does not exhibit birefringence, i. e., limg→0 ∆n(B)

BI (k, ω) =
0. Substituting the dispersion relations (4.4a), (4.4b) and (4.4c) in eq. (5.3), we obtain the
differences of the refractive indices:

∆n(B)
BI (k)

∣∣∣
ω

(BI)
1B

= ∆n(B)
BI (k)

∣∣∣
ω

(BI)
2B

' g2B

2
B (B2 + β2)

m2 (B2 + β2) +B2 k2 , (5.4a)

∆n(B)
BI (k)

∣∣∣
ω

(BI)
3B

' k√
k2 +m2

−
√

1 + B2

β2 , (5.4b)

where we have used the approximation g2B � 1. Notice that in eq. (5.4a), a very small
(residual) birefringence remains in the model with g2-dependence. The result (5.4b) re-
covers the usual Maxwell ED when β → ∞, and if we consider a very small mass for the
axion-particle m ' 0.

The PVLAS-FE experiment presented the following result for the vacuum magnetic
birefringence in ALPs [39]:

∆nPVLAS−FE

B2 = (+19± 27)× 10−24 T−2 . (5.5)

In this situation, we have that B = 2.5 T and the wavelength of λ = 1064 nm (or equiva-
lently, k = 0.185 eV). Let us consider the axion mass at m = 1 meV and BI parameter of√
β = 100GeV. Using the results in eqs. (5.4a) and (5.5), we estimate the axion coupling

constant as

g ' 9.065× 10−9 GeV−1 , (5.6)

which is consistent with the upper bound g < 6.4×10−8 GeV−1 (95%C.L.) reported in this
experiment.

5.2 Birefringence in the axion-BI model with an electric background field

The case with an electric background is similar to the previous subsection. We consider the
same wave propagation direction, with the electric background E = E ẑ. In the first situa-
tion in which the electric wave amplitude e0 is parallel to E, the correspondent refractive
index is

n
(E)
‖ =

√
1 + d1

c1
E2 . (5.7)
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On the other hand, when e0 is perpendicular to E, the refractive index leads to

n
(E)
⊥ (k, ω) =

[
1− d2

c1
E2 − g2

c1

E2

k2 − ω2 +m2

]−1/2

. (5.8)

Thereby, the difference between the parallel and perpendicular refractive indices in the
axion-BI model is

∆n(E)
BI (k, ω) =

(
1− E2

β2

)−1/2

−

 1− E2

β2 −
g2E2

k2 − ω2 +m2

√
1− E2

β2

−1/2

. (5.9)

The limit of the pure BI electrodynamics (g → 0) recovers the result of null birefrin-
gence in eq. (5.9). Furthermore, note that the difference (5.9) depends on the ω-function,
that is function of the electric field and β-parameter. Substituting the dispersion rela-
tions (4.14a), (4.14b) and (4.14c) in eq. (5.9), we obtain

∆n(E)
BI (k)

∣∣∣
ω

(BI)
1E

= ∆n(E)
BI (k)

∣∣∣
ω

(BI)
3E

' −g
2E

2
E β2

(1− E2/β2) (m2β2 + E2k2) , (5.10a)

∆n(E)
BI (k)

∣∣∣
ω

(BI)
2E

'
(

1− E2

β2

)−1/2

− k√
k2 +m2

, (5.10b)

in which the approximation for a weak electric field, g2E � 1, is applied. The result (5.10a)
shows a very small effect of the birefringence with the g2 dependence. In eq. (5.10b), the
birefringence is null when β → ∞ and the axion mass is approximately zero. In the
approximation β � Ek/m, the result (5.10a) yields the electric birefringence

|∆n(E)
BI |

E2 ' g2

2m2 . (5.11)

Therefore, this result can be used to constraint the parameter space (m, g) through the
optical Kerr effect.

6 Concluding comments

In this paper, we investigate the properties of the electromagnetic (EM) wave propagation
in a general non-linear electrodynamics coupled to the axion field. The non-linear sector
is expanded up to the second order at the propagation fields in a uniform and constant
EM background field. We obtain the correspondent field equations for the propagating
EM and axion fields. Next, we investigate the dispersion relations and group velocities in
the presence of magnetic and electric background fields, separately. The refractive indices
associated with these dispersion relations depend on the wavelength due to contributions
involving the axion mass (m) and coupling constant (g) in the magnetic background field.
For the case of the electric background, the dependence on the wavelength occurs when
m 6= 0. The permittivity and permeability tensors are calculated as function of the EM
background and wave propagation frequencies. We study the conditions for these tensors
to be positive through the eigenvalues of the permittivity and permeability matrices.
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We apply all the results for the Born-Infeld (BI) electrodynamics coupled to the axion
field. Consequently, we obtain the wave propagation properties for the BI-axion model in
magnetic and electric background fields. The results of the usual Maxwell electrodynamics
are recovered when the BI parameter is very large, and the coupling with the axion goes
to zero. The magnetic permeability is manifestly positive in the BI-axion model with a
magnetic background, while one of the solutions for the electric permittivity to be positive
imposes the condition (4.11) on the ω-frequency. Otherwise, if the ω-frequency satisfies
the constraints

ω < −
√

k2 +m2 + g2 B2√
1 + B2/β2 and ω >

√
k2 +m2 + g2 B2√

1 + B2/β2 , (6.1)

the medium can behave as a metamaterial. Similarly, in the axion-BI model with an electric
background, the electric permittivity is positive if β > |E|, and one of the solutions for the
magnetic permeability to be positive constrains the ω-frequency in eq. (4.20).

To conclude, we have investigated the birefringence phenomena in the BI-axion model
for the situations with magnetic and electric background fields, separately. We obtain the
variation of the refractive indices (parallel and perpendicular to the electric propagating
amplitude) as function of the k-wave number, ω-frequency, β-parameter and background
fields in eqs. (5.3) and (5.9). Therefore, since we have three solutions for the ω-frequencies,
the variation of the refractive index has also three possible solutions for the birefringence.
In both the cases with magnetic or electric background fields, in the weak field regime,
the variation of the refractive index is residual in g2, see eqs. (5.4a) and (5.10a). The
third solution points out for the birefringence as a function of the β-parameter, axion mass
and background fields, as described in eqs. (5.4b) and (5.10b). As we expect from usual
electrodynamics, the absence of birefringence in these results is attained in the β →∞ limit,
and for the axion mass approaching zero. In the case of the birefringence with magnetic
background field, we use the results of the PVLAS-FE experiment, with

√
β = 100GeV, λ =

1064 nm and m = 1 meV, to obtain the axion coupling constant g = 9.065× 10−9 GeV−1.
This result agrees with the upper bound g < 6.4× 10−8 GeV−1 (95%C.L.) in the PVLAS-
FE experiment. The birefringence in the electric background case gives the result g2/(2m2)
in the regime of weak electric field. This result must be interesting in connection with the
optical Kerr effect to constraint the parameter space (m, g) for the axion-like particle.

A The energy-momentum tensor of the axionic non-linear electrodynam-
ics model

In this appendix, we address the recent discussion about the definition of Poynting vector in
axionic electrodynamics. According to ref. [66], one could define two possible Poynting vec-
tors in terms of the constitutive relations and electromagnetic fields, namely, SDB ∼ D×B
or SEH ∼ E×H, and the authors claim that the choice leads to different phenomenolog-
ical results. This issue has also been discussed in refs. [67, 68], where the authors point
out the relevance of considering terms of the order O(g2), to analyze the corresponding
conservation law. Here, we follow our own path to tackle the question: we avoid to start

– 19 –



J
H
E
P
1
0
(
2
0
2
2
)
1
6
0

off from any definition; instead, we work exclusively with the field equations to naturally
identify the expressions for the Poynting vector and the momentum density transported
by the waves.

In what follows, we work out the energy-momentum tensor for the non-linear ED
model coupled to the axion field in an electromagnetic background, as described by the
Lagrangian (2.6). For this purpose, we contract the eq. (2.7) with fνα and using the
Bianchi identity, we arrive at

∂µ
[
c1fµνf

να − 1
2QBµνκλf

κλfνα + gφ̃F̃Bµνf
να − δαµ

(
−1

4c1f
2
ρσ + 1

8QBρσκλf
ρσfκλ

− 1
2gφ̃F̃Bρσf

ρσ
)]

= Jνf
να + 1

4 (∂αc1) f2
µν + 1

4 (∂αc2) f̃µνfµν −
1
8 (∂αQBµνκλ) fµνfκλ

+1
2g(∂αφ̃)F̃Bµνfµν + 1

2gφ̃
(
∂αF̃Bµν

)
fµν − (∂µHBµν) fνα. (A.1)

Now, we multiply the axion field equation (2.8) by ∂αφ̃ and, after some algebraic manipu-
lations, we end up with

∂µ
{
∂µφ̃ ∂

αφ̃− δ α
µ

[ 1
2 (∂ν φ̃)2 − 1

2 m
2 φ̃2

]}
= −1

2 g F̃Bµν f
µν ∂αφ̃ . (A.2)

The sum of the equations (A.1) with (A.2) yields the result

∂µ Θ α
µ = Ωα , (A.3)

where the energy-momentum tensor of the system is given by

Θ α
µ = (∂µφ̃) (∂αφ̃) + c1 fµν f

να − 1
2 QBµνκλ f

κλ fνα + g φ̃ F̃Bµν f
να

− δ α
µ

[
−1

4 c1 f
2
ρσ + 1

8 QBρσκλf
ρσfκλ + 1

2 (∂ρφ̃)2 − 1
2 m

2 φ̃2 − 1
2 g φ̃ F̃Bρσ f

ρσ
]
,

(A.4)

and Ωα corresponds to the dissipative terms, namely,

Ωα = Jν f
να + 1

2 g φ̃
(
∂αF̃Bµν

)
fµν − (∂µHBµν) fνα

+ 1
4 (∂αc1) f 2

µν + 1
4 (∂αc2) f̃µνfµν −

1
8 (∂αQBµνκλ) fµνfκλ. (A.5)

The energy-momentum tensor (A.4) exhibits the well-known contributions of non-
linear electrodynamics and axion field. Furthermore, due the presence of an electromag-
netic background, we also obtain axion-photon mixing terms related to φ̃ F̃Bµν f

να and
φ̃ δ αµ F̃Bρσ f

ρσ. We highlight that our result does not include the influence of magnetic
monopoles because we used the Bianchi identity. Notice that Ωα contains the usual con-
tribution Jν f

να and other terms involving derivatives of the background fields. For the
particular case of vanishing axion field, we recover the results discussed in ref. [65]. We
point out that the energy-momentum tensor is not symmetric, Θµα 6= Θαµ, due to the
background terms QBµνκλ fκλ fνα and g φ̃ F̃Bµν f

να. This fact also happens in scenarios
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with Lorentz symmetry violation (see, for instance, refs. [69, 70]). If we consider a uni-
form and constant electromagnetic background with Jµ = 0, the eq. (A.3) leads to the
conservation law ∂µΘ α

µ = 0. When α = 0, we obtain

∂tu+∇ · S = 0 , (A.6)

where u := Θ00 denotes the energy density,

u = 1
2 (∂tφ̃)2 + 1

2 (∇φ̃)2 + 1
2 m

2 φ̃2 + 1
2 c1

(
e2 + b2

)
+1

2 d1 (e ·E)2 + 1
2 d2 (e ·B)2 − 1

2 d1 (b ·B)2

−1
2 d2 (b ·E)2 + d3 (e ·E) (e ·B) + d3 (b ·E) (b ·B)

+g φ̃ (b ·E) + g φ̃ (e ·B) , (A.7)

and S corresponds to the Poynting vector, whose components are defined by Si := Θi0,
such that

Si = (∂iφ̃) (∂tφ̃) + c1(e× b)i + d1 (e ·E) (e×B)i

−d1 (b ·B) (e×B)i − d2 (e ·B) (e×E)i − d2 (b ·E) (e×E)i

+d3 (e ·B) (e×B)i − d3 (e ·E) (e×E)i + d3 (b ·E) (e×B)i

−d3 (b ·B) (e×B)i − g φ̃ (e×E)i . (A.8)

For α = j, the conservation law is written as

∂tP +∇ ·←→T = 0 , (A.9)

where P stands for the momentum, with the components P i := Θ0i given by

P i = (∂tφ̃) (∂ iφ̃) + c1 (e× b)i − d1 (e ·E) (E× b)i

−d1 (b ·B) (E× b)i − d2 (e ·B) (B× b)i

+d2 (b ·E) (B× b)i − d3 (e ·B) (E× b)i

−d3 (e ·E) (B× b)i − d3 (b ·B) (B× b)i

+d3 (b ·E) (E× b)i + g φ̃ (B× b)i , (A.10)

and ←→T denotes the stress tensor, whose components (←→T )ij := Θij yield the expression

(←→T )ij = (∂iφ̃) (∂jφ̃)− c1(ei ej + bi bj)− d1(e ·E)Ei ej − d2(e ·B)Bi ej

+d1(b ·B)Ei ej − d2(b ·E)Bi ej − d1(e ·E) biBj + d2(e ·B) biEj

+d1(b ·B) biBj + d2(b ·E) biEj − d3(e ·B)Ei ej − d3(e ·E)Bi ej

−d3(b ·E)Ei ej + d3(b ·B)Bi ej − d3(e ·B) biBj + d3(e ·E) biEj

−d3(b ·E) biBj − d3(b ·B) biEj + g φ̃ (biEj −Bi ej) . (A.11)

The presence of an electromagnetic background introduces some interesting features.
Firstly, the energy density of the model acquires new contributions involving the axion
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field, given by g φ̃ (b · E) and g φ̃ (e ·B). In addition, from the eqs. (A.8) and (A.10), we
conclude that the Poynting vector does not coincide with the linear momentum. However,
as already expected, both equations lead to the same expression if the electromagnetic
background is switched of.

Finally, it should be mentioned that using the above definitions for u,S,P and ←→T ,
based on the conservation laws (A.6) and (A.9), the results will be consistent.
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