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A comprehensive comparison between single- and two-step
GBLUP methods in a simulated beef cattle population
Mario L. Piccoli, Luiz F. Brito, José Braccini, Fernanda V. Brito, Fernando F. Cardoso,
Jaime A. Cobuci, Mehdi Sargolzaei, and Flávio S. Schenkel

Abstract: The statistical methods used in the genetic evaluations are a key component of the process and can be
best compared by using simulated data. The latter is especially true in grazing beef cattle production systems,
where the number of proven bulls with highly reliable estimated breeding values is limited to allow for a trust-
worthy validation of genomic predictions. Therefore, we simulated data for 4980 beef cattle aiming to compare
single-step genomic best linear unbiased prediction (ssGBLUP), which simultaneously incorporates pedigree, phe-
notypic, and genomic data into genomic evaluations, and two-step GBLUP (tsGBLUP) procedures and genomic esti-
mated breeding values (GEBVs) blending methods. The greatest increases in GEBV accuracies compared with the
parents’ average estimated breeding values (EBVPA) were 0.364 and 0.341 for ssGBLUP and tsGBLUP, respectively.
Direct genomic value and GEBV accuracies when using ssGBLUP and tsGBLUP procedures were similar, except
for the GEBV accuracies using Hayes’ blending method in tsGBLUP. There was no significant or slight bias in
genomic predictions from ssGBLUP or tsGBLUP (using VanRaden’s blending method), indicating that these predic-
tions are on the same scale compared with the true breeding values. Overall, genetic evaluations including
genomic information resulted in gains in accuracy >100% compared with the EBVPA. In addition, there were no
significant differences between the selected animals (10% males and 50% females) by using ssGBLUP or tsGBLUP.

Key words: accuracy, genomic breeding value, beef cattle breeding, ssGBLUP, genomic selection, genomic data
simulation.

Résumé : Les méthodes statistiques utilisées dans les évaluations génétiques sont des composantes clés du proces-
sus et peuvent être mieux comparées en utilisant des données simulées. Cette dernière affirmation est
particulièrement vraie dans les systèmes de production de bovins à bœuf en pâturage, où le nombre de taureaux
confirmés ayant des valeurs estimées de reproduction grandement fiables est limité pour permettre la validation
fiable des prévisions génomiques. Donc, nous avons simulé les données pour 4980 bovins à bœuf dans le but de
comparer les procédures de type meilleure projection linéaire génomique sans biais à étape unique (ssGBLUP —

« single-step genomic best linear unbiased prediction »), qui incorpore simultanément les données de pedigree,
de phénotype et de génotype dans les évaluations génomiques, et la méthode à deux étapes (tsGBLUP— « two-step
genomic best linear unbiased prediction ») et les valeurs génomiques estimées de reproduction (GEBV —

« genomic estimated breeding values ») des méthodes de mélange. Les plus grandes augmentations d’exactitude
de GEBV par rapport aux valeurs estimées de reproduction de la moyenne des parents (EBVPA — « parents’ average
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estimated breeding values ») étaient de 0,364 et 0,341 pour ssGBLUP et tsGBLUP, respectivement. Les exactitudes de
la valeur génomique directe et de GEBV lors d’utilisation des procédures ssGBLUP et tsGBLUP étaient similaires,
sauf pour les exactitudes GEBV utilisant la méthode de mélange de Hayes dans tsGBLUP. Il n’y avait pas d’influence
significative ni légère dans les prévisions génomiques de ssGBLUP ou tsGBLUP (utilisant la méthode de mélange de
VanRaden), indiquant que ces prévisions se trouvent sur la même échelle lorsque comparées aux valeurs réelles de
reproduction. De façon générale, les évaluations génétiques incluant l’information génétique se soldaient par des
gains d’exactitude de plus de 100 % par apport aux EBVPA. De plus, il n’y avait pas de différences significatives entre
les animaux choisis (10 % mâles et 50 % femelles) en utilisant ssGBLUP ou tsGBLUP. [Traduit par la Rédaction]

Mots-clés : exactitude, valeur génomique de reproduction, reproduction de bovins à bœuf, ssGBLUP, sélection
génomique, simulation de données génomiques.

Introduction
Genomic selection has shaped modern breeding

programs and contributed substantially to the increase
of genetic progress for a variety of economically impor-
tant traits, especially in dairy cattle (Hayes et al. 2009;
VanRaden et al. 2009; Harris and Johnson 2010; Su et al.
2012; Meuwissen et al. 2016). These gains are associated
with shorter generation intervals, increased selection
intensity, and greater selection accuracies (Meuwissen
et al. 2001; Schaeffer 2006; Hayes et al. 2009; Aguilar
et al. 2010).

The first studies to combine genomics and estimated
breeding values (EBVs) data were based on two-step
genomic best linear unbiased prediction (tsGBLUP)
procedure, where direct genomic values (DGVs) gene-
rated based solely on genomic and phenotype informa-
tion, and EBVs were combined using different indexes
weighted by the accuracy of breeding values and herit-
ability of the trait. The blending of DGVs and EBVs is a
key step in genomic predictions because if the effect of
the quantitative trait loci (QTL) is not captured by the
genomic markers, it may be captured by the polygenic
effects via EBVs (Hayes et al. 2009; VanRaden et al. 2009;
Pryce et al. 2014). In the single-step GBLUP (ssGBLUP)
approach (Aguilar et al. 2010; Christensen and Lund 2010),
pedigree, phenotypes, and genotypes are used jointly to
predict genomic estimated breeding values (GEBVs).

Previous studies presented by Aguilar et al. (2010), Chen
et al. (2010), Garrick (2010), and Vitezica et al. (2010)
showed both advantages and disadvantages when using
ssGBLUP or tsGBLUP procedures. Other studies have
reported an increase in accuracies of genomic breeding
values when using ssGBLUP compared with tsGBLUP in
various species such as cattle, dairy sheep, dairy goats,
pigs, and chicken (Chen et al. 2011; Koivula et al. 2012;
Harris et al. 2013; Přibyl et al. 2013; Baloche et al. 2014;
Carillier et al. 2014; Legarra et al. 2014). However, in the
majority of dairy cattle (and other livestock species) breed-
ing programs, routine genomic evaluations have been
performed through the tsGBLUP procedure (e.g., Hayes
et al. 2009; VanRaden et al. 2009; Harris and Johnson 2010;
Su et al. 2012; Brito et al. 2017; Piccoli et al. 2017).

In beef cattle, the application of ssGBLUP in genomic
evaluations is still incipient (Onogi et al. 2014; Cardoso
et al. 2015). Furthermore, beef cattle datasets are more

complex compared with other livestock industries
(e.g., dairy cattle) due to larger amount of missing pedi-
gree information, smaller sib families, and greater influ-
ence of maternal effects (Legarra et al. 2014). Moreover,
most beef cattle breeds have small number of genotyped
animals compared with dairy cattle. The use of simu-
lated data to compare statistical methods is of great
value due to the possibility of making comparisons with
the actual simulated true breeding values (TBVs). This is
especially important for beef cattle in grazing produc-
tion systems, where the number of proven bulls with
highly reliable EBVs is limited to allow for a trustworthy
validation of genomic predictions. Therefore, the objec-
tives of this study were to compare ssGBLUP and
tsGBLUP procedures and GEBV blending methods using
beef cattle simulated data.

Materials and Methods
Animal Care and Use Committee approval was not

obtained as all the data used for this study was computa-
tionally simulated (i.e., no biological samples collection
or animals’ involvement).

Data simulation
Studies with simulated data can be efficient when

there is a need to compare different methodologies.
Moreover, simulation analysis should use parameters
based on the target populations to mimic real scenarios.
The simulated data used in this study mimicked the
extent of linkage disequilibrium (LD) in beef cattle and
was previously described in Brito et al. (2011).

Defining the population structure
The beef cattle population was simulated based on

forward-in-time process, using the QMSim software
(Sargolzaei and Schenkel 2009) to generate 40K single
nucleotide polymorphisms (SNPs) markers evenly dis-
tributed along the genome, and 750 QTL across the
29 Bos taurus autosomes. First, 1000 generations with a
constant size of 1000 individuals were simulated.
Subsequently, 1020 generations with a gradual decrease
in population size from 1000 to 200 individuals
were simulated to create initial LD and to establish
mutation-drift equilibrium in historical generations.
The number of males and females remained constant
(n = 200) and the mating system was based on random
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union of gametes, randomly sampled. In the second
step, an expansion of the population was created by ini-
tially randomly selecting 100 founder males and
100 founder females from the last generation of the his-
torical population. In the third step, to enlarge the pop-
ulation, eight generations were simulated with five
offspring per dam. The mating was based on the
random union of gametes and no presence of selection.
In the fourth step, the two most recent generations
were simulated from the last generation by selecting
640 males and 32 000 females (i.e., rate of 1 male
to 50 females). The parameters used in the recent
generations were chosen to mimic a practical produc-
tion system: one progeny per dam per year, 50% of
male/female progeny, only the animals with highest
EBVs kept for breeding, and a replacement rate of 60%
for sires and 20% for dams. Furthermore, sires and dams
were randomly mated. The whole process was used to
generate 10 independent populations to obtain 10 repli-
cates for the study.

Genome simulation
The simulated genome consisted of 29 pairs of

autosomes with length identical to the real bovine
genome size (2333 cM) based on Btau_3.1 assembly
(Snelling et al. 2007). The SNPs were evenly distributed
along the genome to generate one density of segregating
bi-allelic loci with minor allele frequency (MAF) >0.1. The
markers were neutral regarding to their effect on the
trait. A number of QTL were simulated to generate 750
segregating loci (randomly distributed along the
genome) with two, three, or four alleles and MAF >0.1.
Additive allelic effects were randomly sampled from
gamma distribution with shape parameter equal to 0.4.
The rate of missing marker genotypes was 0.01 and the
rate of marker genotyping error was 0.005. A recurrent
mutation rate of 10−5 for both markers and QTL was con-
sidered to establish mutation-drift equilibrium in his-
torical generations. The same mutation rate was also
applied in all subsequent generations.

Simulation of phenotypes and genetic values
A single trait with heritability of 0.25 (average herit-

ability estimate for the majority of beef cattle traits)
and phenotypic variance of 1.0 was simulated using
the QMSim package (Sargolzaei and Schenkel 2009).
The EBVs were predicted using the BLUPF90 software
(Misztal et al. 2002) to fit an individual animal model,
considering the true additive genetic variance. The rate
of missing sire and dam information was 0.05. The TBV
of an individual was equal to the sum of the additive
effects of the QTL. The phenotypes were generated by
adding random residuals to the TBVs.

Defining training and validation populations to be used
in the tsGBLUP procedure

The training population (TP) was composed of 1920
sires under selection from generation three to eight of

the current population and each sire had 50 ormore prog-
eny. The validation population included 3060 individuals
randomly chosen from the 10th generation with parents
born until the 8th generation (individuals from 9th gener-
ation were not included to simulate a genetic distancing
between training and validation populations). Three sets
of EBVs were generated using the BLUPF90 software
(Misztal et al. 2002). The first set of EBVs was formed by
all the animals born until 8th generation (TP). The other
two sets were formed by the TP plus all animals born in
the 10th generation. These EBVs were generated either
including the 10th generation animals’ phenotypes (VP2)
or excluding their phenotypes (VP1) from the analyses.
These last two sets of alternate EBVs were used for blend-
ing with DGVs to generate GEBVs. The VP2 scenario mim-
icked the situation where phenotypes are available prior
to selection in beef cattle. The approach of VanRaden
and Wiggans (1991) was used to calculate de-regressed
EBVs (dEBVs) free of parent average effects using the
EBVs and reliabilities of genotyped animals and their sires
and dams. The EBVs and dEBVs of TP were used as pseudo-
phenotypes to estimate SNP effects. The DGVs were esti-
mated using the GEBV software (Sargolzaei et al. 2009) to
fit a GBLUP model considering 5%, 10%, 15%, and 20%
(package default) contribution of polygenic effects to the
genomic relationship matrix (VanRaden 2008). The
GBLUP model can be described as y= 1n μ+ Zg+ e, where
y is the vector of EBVs or dEBVs for the trait, μ is the over-
all mean, 1n is a vector of ones, Z is the design matrix that
relates records to breeding values, g is the vector of DGVs
to be predicted, and e is the vector of residual effects. We
assumed that g ∼ Nð0,G � σ2gÞ, where σ2g is the additive
genetic variance and G is a genomic relationship matrix
(VanRaden et al. 2009), and e ∼ Nð0,R � σ2eÞ, where σ2e is
the residual variance and R is a diagonal matrix whose
elements account for the differences in reliabilities of
the EBVs or dEBVs.

For tsGBLUP, we investigated two methods to combine
DGVs with EBVs to generate GEBVs: (1) as described in

Hayes et al. (2009), in which GEBV = r2DGV ×DGV + r2EBV ×EBV
r2DGV + r2EBV

,

and r2DGV and r2EBV are the reliabilities of DGV and EBV,
respectively; and (2) as described by VanRaden et al.
(2009), in which GEBV = b1 × DGV + b2EBV1 + b3 × EBV,
and EBV1 was predicted for the subset of genotyped ani-
mals using traditional relationship information and
their respective dEBVs, excluding data from nongeno-
typed animals, and b1, b2, and b3 are weights based on
reliabilities of DGV, EBV1, and EBV.

Defining population to be used in the ssGBLUP procedure
The pedigree information included up to the 10th gen-

eration. The phenotype information was used until the
8th generation in one of the analysis (VP1) and in the
other one (VP2), phenotypes of genotyped animals of
the validation population (10th generation) were also
included. The genotyped individuals included in the
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analysis were 1920 sires with 50 or more progeny (TP)
plus 3060 (randomly selected) genotyped animals, as
part of the validation population.

The DGVs (obtained by excluding pedigree informa-
tion in the single-step analysis) and GEBVs were
estimated using the BLUPF90 package (Misztal et al.
2002) by fitting a GBLUP model considering the same
options for H matrix including different weights to cre-
ate G* =G + β ×A22, where β is the polygenic proportion
added to the G matrix. The levels of beta investigated
were 5% (package default), 10%, 15%, and 20%. In
ssGBLUP procedure, GEBVs were obtained by directly
combining phenotypic, genomic, and pedigree informa-
tion (Misztal et al. 2009; Aguilar et al. 2010), where the
traditional relationship matrix (A) was replaced by a
matrix that also included the genomic information (H).

Comparison between the alternate prediction procedures
Three statistics were used to compare the alternate

prediction procedures based on 10 simulation replicates,
using analysis of variance procedure in SAS version 9.2
(SAS Institute Inc., Cary, NC, USA): (1) the accuracy mea-
sured by Pearson’s correlation between either DGV or
GEBV and TBV in the validation population; (2) the slope
of the regression of TBV on either DGV or GEBV (b1TBV,
DGV or GEBV) in the validation population to evaluate the
degree of inflation or deflation of genomic predictions;
and (3) the percentage of ranking coincidence when
selecting the best 10% and 50% of males and females for
breeding, respectively.

Results
Accuracy of breeding values

There were no significant differences (P> 0.05) in DGV
accuracies generated by ssGBLUP and tsGBLUP (using
EBVs or dEBVs as pseudo-phenotypes) procedures at the
same level of polygenic effect in the combined genomic
relationship matrix. The different levels of polygenic
effect added to G did not result in significant differences
in the DGV accuracies, except for the DGV by ssGBLUP
procedure in the levels of polygenic effect 15% and 20%.

When ssGBLUP and tsGBLUP procedures considered the
default of polygenic effects (5% in BLUPF90 and 20% in
GEBV software), the DGV accuracies were 0.584 and
0.564, respectively (Table 1).

There were no significant differences (P > 0.05) in
GEBV accuracies by ssGBLUP and tsGBLUP procedures
within the same level of polygenic effect in the genomic
relationship matrix using VP1 and VP2 validation popula-
tions. However, there were significant differences
(P < 0.05) in GEBV accuracies between VanRaden and
Hayes blending methods in the tsGBLUP procedure using
VP1 and VP2 validation populations. The levels of
polygenic effect added to G did not have significant
(P > 0.05) effect on the GEBV accuracies, except for
the GEBVs calculated using Hayes blending method
in tsGBLUP procedure in the levels 15% and 20%, and
using VP1 as validation population (Tables 2 and 3).
Considering default contribution of polygenic effects to
the genomic relationship matrix for single- (5%) and
two-step (20%) GBLUP procedures, the GEBV accuracies
for VP1 were 0.589 ssGBLUP and ranged from 0.542 to
0.604 for the alternate implementations of two-step
procedure (Table 2), and for VP2 validation population
they were 0.699 and ranged from 0.639 to 0.676, respec-
tively (Table 3).

The accuracy of an EBV based on a candidate’s paren-
tal average (EBVPA) was 0.335 and improved to 0.534
when the phenotypic information of the selection candi-
dates was available and included the genetic evaluation
(EBVphe), i.e., increasing the accuracy by 0.199 points
(59.4%). When genotypes were added in the ssGBLUP pro-
cedure, the ssGEBVPA (GEBV generated by ssGBLUP
including only pedigree and genotype information) and
ssGEBVphe (GEBV generated by single-step procedure
including pedigree, phenotype, and genotype informa-
tion) accuracies (using default polygenic effect added
to G) were 0.589 and 0.699, respectively. These results
showed an increase of 0.254 (75.8%) and 0.055 (10.3%),
and 0.364 (108.7%) and 0.165 (30.9%) compared with the
EBVPA and the EBVphe accuracies, respectively (Table 4).

Table 1. Direct genomic value (DGV) accuracies (Acc) and standard deviations (SD) for genomic breeding values from
alternative genomic prediction methods using different phenotypes.

DGVa

G95-A5
b

G90-A10 G85-A15 G80-A20

Acc SD Acc SD Acc SD Acc SD

ssDGV 0.584 0.018 a,a 0.571 0.018 a,a 0.554 0.018 b,a 0.535 0.020 b,a
tsDGVdebv 0.577 0.018 a,a 0.573 0.018 a,a 0.569 0.019 a,a 0.564 0.019 a,a
tsDGVebv 0.576 0.019 a,a 0.573 0.019 a,a 0.569 0.019 a,a 0.563 0.019 a,a

Note: Different letters indicate significant differences (P< 0.05) by Scheffé’s test. The letters before the comma
indicate differences within rows, whereas the letters after the comma indicate differences within columns.

assDGV predicted by single-step procedure and tsDGVdebv and tsDGVebv predicted by two-step procedure using
de-regressed estimated breeding values (dEBVs) or EBVs as pseudo-phenotypes.

b
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.
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Table 3. Genomic estimated breeding value (GEBV) accuracies (Acc) and standard deviations (SD) using VP2 validation
population.a

GEBVb

G95-A5
c

G90-A10 G85-A15 G80-A20

Acc SD Acc SD Acc SD Acc SD

ssGEBV 0.699 0.016 a,a 0.696 0.016 a,a 0.692 0.016 a,a 0.687 0.016 a,a
tsGEBVv_debv 0.685 0.016 a,a 0.683 0.016 a,a 0.680 0.016 a,a 0.676 0.016 a,a
tsGEBVv_ebv 0.684 0.016 a,a 0.681 0.016 a,a 0.678 0.016 a,a 0.674 0.016 a,a
tsGEBVh_debv 0.655 0.016 a,b 0.650 0.016 a,b 0.645 0.016 a,b 0.640 0.016 a,b
tsGEBVh_ebv 0.653 0.016 a,b 0.649 0.016 a,b 0.644 0.016 a,b 0.639 0.016 a,b

Note: Different letters indicate significant differences (P< 0.05) by Scheffé’s test. The letters before the comma indicate
differences within rows, whereas the letters after the comma indicate differences within columns.

aVP2 validation population formed with all animals born in the 10th generation and including the phenotypes of genotyped
animals.

bssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, tsGEBVv_ebv, and tsGEBVh_ebv predicted by two-
step procedure using de-regressed EBV (dEBV) or EBV as pseudo-phenotype, and VanRaden “v” or Hayes “h” blending methods.

c
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic relationship

matrix, respectively.

Table 4. Accuracies (Acc) and standard deviations (SD) using single-step procedure compared with traditional
estimated breeding value (EBV).a

Genetic merit

G95-A5
b

G90-A10 G85-A15 G80-A20

Acc SD Acc SD Acc SD Acc SD

EBVPA 0.335 0.019 d 0.335 0.019 d 0.335 0.019 d 0.335 0.019 d
EBVphe 0.534 0.017 c 0.534 0.017 c 0.534 0.017 c 0.534 0.017 c
ssDGVPA 0.584 0.018 b 0.571 0.018 b 0.554 0.018 bc 0.535 0.020 c
ssGEBVPA 0.589 0.019 b 0.583 0.019 b 0.577 0.019 b 0.569 0.019 b
ssDGVphe 0.695 0.016 a 0.686 0.015 a 0.674 0.014 a 0.661 0.014 a
ssGEBVphe 0.699 0.016 a 0.696 0.016 a 0.692 0.016 a 0.687 0.016 a

Note: Different letters indicate significant differences (P< 0.05) by Scheffé’s test. The letters indicate differences
within columns. SD, standard deviations.

aEBVPA are EBVs parent’s average, EBVphe are traditional EBVs, ssDGVpa and ssDGVphe are direct genomic values,
ssGEBVPA and ssGEBVphe are genomic estimated breeding values. The “PA” means that the analyses were performed
with validation population formed with all animals born in the 10th generation and not including the phenotypes of
genotyped animals (VP1) and “phe” including the phenotypes of genotyped animals (VP2).

b
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.

Table 2. Genomic estimated breeding value (GEBV) accuracies (Acc) and standard deviations (SD) using VP1 validation population.a

GEBVb

G95-A5
c

G90-A10 G85-A15 G80-A20

Acc SD Acc SD Acc SD Acc SD

ssGEBV 0.589 0.019 a,ab 0.583 0.019 a,ab 0.577 0.019 a,ab 0.569 0.019 a,bc
tsGEBVv_debv 0.612 0.016 a,a 0.610 0.017 a,a 0.608 0.017 a,a 0.604 0.017 a,a
tsGEBVv_ebv 0.611 0.017 a,a 0.609 0.017 a,a 0.605 0.017 a,a 0.601 0.017 a,ab
tsGEBVh_debv 0.570 0.020 a,b 0.562 0.020 a,b 0.554 0.021 a,b 0.545 0.021 a,c
tsGEBVh_ebv 0.566 0.021 a,b 0.559 0.021 a,b 0.551 0.021 a,b 0.542 0.021 a,c

Note: Different letters indicate significant differences (P< 0.05) by Scheffé’s test. The letters before the comma indicate
differences within rows, whereas the letters after the comma indicate differences within columns.

aVP1 validation population formed with all animals born in the 10th generation and not including the phenotypes of genotyped
animals.

bssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, tsGEBVv_ebv, and tsGEBVh_ebv predicted by
two-step procedure using de-regressed EBV (dEBV) or EBV as pseudo-phenotype, and VanRaden “v” or Hayes “h” blendingmethod.

c
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic relationship

matrix, respectively.
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By adding genotypes in tsGBLUP with VanRaden blend-
ing method and default polygenic effect in the genomic
relationship matrix, the tsGEBVv_pa (GEBV generated by
two-step procedure, including solely pedigree and geno-
type information and using the VanRaden blending
method) and tsGEBVv_phe (GEBV generated by two-step
procedure, including pedigree, phenotype, and genotype
information and using the VanRaden blending method)
accuracies were 0.604 and 0.676, respectively, showing an
increase of 0.269 (80.3%) and 0.07 (13.1%), and 0.341
(101.8%) and 0.142 (26.6%) in comparison to the EBVPA and
the EBVphe, respectively. Using the Hayes blending
method, there were decreases in accuracy of 0.06 and
0.04 compared with VanRaden blendingmethod (Table 5).

Bias of DGV and GEBV predictions
Tables 6, 7, and 8 present the regression slopes, which

ideally should be close to 1.00, indicating that DGV or
GEBV predictions are not biased (inflated or deflated).

Analysis with tsGBLUP procedure using dEBV as pseudo-
phenotypes in the SNPs estimation yielded a slope
of the regression on DGV statistically equal to 1.00
(P > 0.05), i.e., no evidence of inflation or deflation.
However, for the ssGBLUP procedure the slope of the
regression on DGVs was statistically <1.00 (P< 0.05), indi-
cating slight inflation of the DGVs.

The slope of the regression on GEBV using tsGBLUP
procedure did not show significant deviation from one
using the VanRaden blending method. However, the
slope of the regression showed deflated GEBVs when
using Hayes blending method in both VP1 and VP2 vali-
dation populations. On the other hand, bias on GEBV
was observed for ssGBLUP procedure in both VP1 and
VP2 validation populations.

Selecting 10% of males and 50% of females
The ranking coincidence, when selecting 10% males

and 50% females of highest genetic merit individuals

Table 5. Accuracies (Acc) and standard deviations (SD) using two-step procedure compared with traditional estimated
breeding value (EBV).a

Genetic merit

G95-A5
b

G90-A10 G85-A15 G80-A20

Acc SD Acc SD Acc SD Acc SD

EBVPA 0.335 0.019 f 0.335 0.019 f 0.335 0.019 f 0.335 0.019 e
EBVphe 0.534 0.017 e 0.534 0.017 e 0.534 0.017 e 0.534 0.017 d
tsDGV 0.577 0.020 d 0.573 0.018 d 0.569 0.019 d 0.564 0.019 d
tsGEBVh_pa 0.570 0.018 d 0.562 0.020 de 0.554 0.021 de 0.545 0.021 d
tsGEBVv_pa 0.612 0.016 c 0.610 0.017 c 0.608 0.017 c 0.604 0.017 c
tsGEBVh_phe 0.655 0.016 b 0.650 0.016 b 0.645 0.016 b 0.640 0.016 b
tsGEBVv_phe 0.685 0.016 a 0.683 0.016 a 0.680 0.016 a 0.676 0.016 a

Note: Different letters indicate significant differences (P< 0.05) by Scheffé’s test. The letters indicate differences
within columns.

aEBVPA are EBVs parent’s average, EBVphe are traditional EBVs, tsDGV is two-step direct genomic value, tsGEBVh_pa,
tsGEBVv_pa, tsGEBVh_phe, and tsGEBVv_phe are genomic estimated breeding value. The “pa” means that the analyses
were performed with validation population formed with all animals born in the 10th generation and not including
the phenotypes of genotyped animals (VP1) and “phe” including the phenotypes of genotyped animals (VP2). The “h”
means that the Hayes blending method and the “v” means that the VanRaden blending method.

b
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.

Table 6. Regression coefficients [b1; regression of true breeding value on direct genomic value (DGV)] and standard
deviations (SD).a

DGV

G95-A5
b

G90-A10 G85-A15 G80-A20

b1 SD b1 SD b1 SD b1 SD

ssDGV 0.944 0.033 ns 0.919 0.036 * 0.882 0.040 * 0.837 0.045 *
tsDGVdebv 0.982 0.032 ns 1.005 0.034 ns 1.026 0.036 ns 1.045 0.038 ns
tsDGVebv 1.038 0.036 ns 1.063 0.038 ns 1.085 0.041 * 1.106 0.043 *

Note: ns means statistically not different from 1.00 (P> 0.05) and * means statistically different from 1.00 (P< 0.05).
assDGV predicted by single-step procedure and tsDGVdebv and tsDGVebv predicted by two-step procedure using

de-regressed estimated breeding value (dEBV) or EBV.
b
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.
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based on TBV compared with selection based on DGV or
GEBV (VP1 and VP2 validation populations), was estimated
as another comparison criterion for ssGBLUP and
tsGBLUP procedures. There were no statistical differences
(P> 0.05) in the percentage of coincidence between DGV
or GEBV (VP1 and VP2 validation populations) when com-
paring ssGBLUP and tsGBLUP procedures (data not
shown). For DGVs, the percentage of ranking coincidence
was ∼40% in males and ∼70% in females, whereas for
GEBV with VP1 validation population it was ∼42% in
males and ∼70% in females and with VP2 validation popu-
lation the percentage of coincidence was ∼48% in males
and ∼73% in females. The overall TBV mean for the entire
population (males and females) was 2.31 units, whereas
the TBV average for the 10% elite males and 50% elite
females was 3.07 and 2.66 units, respectively. The 10% elite
males showed a TBV average 33% greater than the overall

mean. When elite males’ selection was based on DGV or
GEBV the averages were 15% and 26% greater than the
overall populationmean, respectively. On the other hand,
the 50% elite females showed a TBV average 15% greater
than the overall population mean. When selecting the
50% elite females based on DGV or GEBV, their average
breeding values were between 7% and 11% greater com-
pared with the population mean.

Discussion
Using EBVs or dEBVs in the tsGBLUP procedure

As the TBVs of the individuals are unknown in practi-
cal situations, a variety of pseudo-phenotypes such as
daughter yield deviations (DYD) (Guo et al. 2010;
Ostersen et al. 2011; Baloche et al. 2014), dEBVs, and
EBVs (Brito et al. 2011; Boddhireddy et al. 2014; Neves
et al. 2014a) have been used to estimate SNP effects for

Table 8. Regression coefficients [b1; regression of true breeding value on genomic estimated breeding value (GEBV)]
and standard deviations (SD) using VP2 validation population.a

GEBVb

G95-A5
c

G90-A10 G85-A15 G80-A20

b1 SD b1 SD b1 SD b1 SD

ssGEBV 0.984 0.039 ns 0.995 0.040 ns 1.002 0.042 ns 1.007 0.043 ns
tsGEBVv_debv 1.006 0.025 ns 1.011 0.027 ns 1.013 0.029 ns 1.015 0.031 ns
tsGEBVv_ebv 1.039 0.027 ns 1.041 0.029 ns 1.041 0.031 ns 1.039 0.033 ns
tsGEBVh_debv 1.286 0.034 * 1.293 0.035 * 1.296 0.036 * 1.297 0.037 *
tsGEBVh_ebv 1.341 0.040 * 1.346 0.041 * 1.348 0.042 * 1.348 0.043 *

Note: ns means statistically not different from 1.00 (P> 0.05) and * means statistically different from 1.00 (P< 0.05).
aVP2 validation population formed with all animals born in the 10th generation and including the phenotypes of

genotyped animals.
bssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, tsGEBVv_ebv, and tsGEBVh_ebv

predicted by two-step procedure using de-regressed EBV (dEBV) or EBV as pseudo-phenotype, and VanRaden “v” or
Hayes “h” blending method.

c
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.

Table 7. Regression coefficients [b1; regression of true breeding value on genomic estimated breeding value (GEBV)]
and standard deviations (SD) using VP1 validation population.a

GEBVb

G95-A5
c

G90-A10 G85-A15 G80-A20

b1 SD b1 SD b1 SD b1 SD

ssGEBV 0.967 0.032 ns 0.993 0.034 ns 1.014 0.036 ns 1.032 0.037 ns
tsGEBVv_debv 1.035 0.026 ns 1.058 0.027 * 1.079 0.028 * 1.098 0.029 *
tsGEBVv_ebv 1.076 0.027 * 1.099 0.028 * 1.119 0.029 * 1.136 0.030 *
tsGEBVh_debv 1.256 0.053 * 1.271 0.056 * 1.281 0.060 * 1.288 0.063 *
tsGEBVh_ebv 1.298 0.057 * 1.312 0.061 * 1.322 0.064 * 1.327 0.068 *

Note: ns means statistically not different from 1.00 (P> 0.05) and * means statistically different from 1.00 (P< 0.05).
aVP1 validation population formed with all animals born in the 10th generation and not including the phenotypes of

genotyped animals.
bssGEBV predicted by single-step procedure and tsGEBVv_debv, tsGEBVh_debv, tsGEBVv_ebv, and tsGEBVh_ebv

predicted by two-step procedure using de-regressed EBV (dEBV) or EBV as pseudo-phenotype, and VanRaden “v” or Hayes
“h” blending method.

c
G95-A5, G90-A10, G85-A15, and G80-A20 refers to 5%, 10%, 15%, and 20% of polygenic effect added to the genomic

relationship matrix, respectively.
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genomic prediction of breeding values. The average
reliability for the dataset was 85% (sires in TP had
between 50 and 250 progeny) and with this level of reli-
ability, there is no need to de-regress the EBVs as there
were no statistical differences in accuracies between
the use of dEBV or EBV as pseudo-phenotypes for the
estimation of the markers effects (DGVs). Guo et al.
(2010) and Neves et al. (2014a), based on simulated data,
did not observe differences in accuracies when using
dEBVs, EBVs, or DYDs as pseudo-phenotypes in the
genomic predictions of breeding values. A situation
where the whole TP shows high reliability generally does
not occur in commercial production systems of beef cat-
tle. However, Boddhireddy et al. (2014) showed that the
use of EBVs compared with dEBVs produced greater
accuracy values in American Angus cattle.

Different levels of polygenic effect in the genomic
relationship matrix

Genomic selection using medium- to high-density SNP
chip panels does not cover the whole genome (de Roos
et al. 2007) and therefore part of the genetic variation of
the trait may not be accounted for by the markers, and
could potentially be captured by polygenic effects.
Considering that, we analyzed the accuracy of DGVs and
GEBVs based on different levels of polygenic effect in the
genomic relationship matrix (i.e., 0.05, 0.10, 0.15,
and 0.20). With regards to tsGBLUP, the accuracies were
always higher (but not statistically significant) when the
weight for the markers effect was 0.95 (i.e., 0.05 polygenic
effect). In the ssGBLUP procedure, the values were also
higher when considering 95% of the markers effect in
the prediction of breeding values. When a 20% polygenic
effect was considered in predicting breeding values, there
were lower accuracies. In contrast, Onogi et al. (2014)
studying carcass traits in Black Japanese cattle using
ssGBLUP with different weights to the polygenic effect
observed greater GEBV accuracies for larger polygenic
effect fractions. Moreover, Neves et al. (2014b), studying
15 traits in Brazilian Nellore, reported higher accuracies
when tsGBLUP considered 20% of polygenic effects.
Similar trend was reported by Gao et al. (2012) for 16 traits
in Nordic Holstein population. Calus and Veerkamp
(2007), working with simulated data and a variety of traits
with different heritabilities, concluded that the inclusion
of polygenic effect in the model increased the accuracy
of DGVs. Liu et al. (2011) showed that, for German
Holstein cattle, adjusting for the polygenic effect reduced
GEBV bias and concluded that weighting for polygenic
effect seems to differ between traits.

Accuracy of breeding values
The DGV accuracies presented in this study (0.584 for

ssGBLUP and 0.564 for tsGBLUP), using default polygenic
contributions to G showed that the use of genetic values
obtained solely by the markers produced gains in accura-
cies of 74% and 68% compared with the EBVs parent’s

average for single- and two-step procedures, respectively.
These accuracies were higher than the accuracies
reported by Neves et al. (2014b) for traits with similar
heritability in Brazilian Nellore and lower than those
reported by Boddhireddy et al. (2014) in American
Angus cattle. The DGV accuracies observed in this study
for ssGBLUP and tsGBLUP procedures were statistically
similar, which is in agreement with results reported by
Vitezica et al. (2010), based on simulated data in the pres-
ence of artificial selection. However, gains in reliability
for ssGBLUP compared with tsGBLUP have been reported
in the literature (e.g., in Nordic Red cattle, Koivula et al.
2012; and in Lacaune sheep, Baloche et al. 2014). Přibyl
et al. (2013) concluded that, if all available data are used
in the traditional evaluations of Czech Holstein cattle
and the genomic evaluation also exploits all the relevant
traditional data and procedures, ssGBLUP should not
cause a substantial increment in accuracy compared
with tsGBLUP, which is consistent with our results.

The GEBV estimates from single- and two-step
(VanRaden blending method) procedures were sta-
tistically equal and showed higher accuracies compared
with the Hayes blending method in tsGBLUP. Cardoso
et al. (2015) studied tick resistance in Hereford and
Braford cattle in Brazil also reported greater GEBV accu-
racy by VanRaden blending method compared with the
Hayes blending method. In addition, the authors
reported greater GEBV accuracies when implementing
ssGBLUP compared with tsGBLUP procedure. Similarly,
Su et al. (2012) observed an increase in GEBV accuracies
when implementing ssGBLUP compared with tsGBLUP
(VanRaden blending method) for Nordic Red cattle.

A common practice in extensive production systems is
to undertake the first culling of animals at weaning.
Thus, it is possible to measure calves for a variety of
traits (e.g., birth weight, weight gain between birth and
weaning) to predict EBVs. In this scenario, information
from parents and from the animals itself can be used in
the EBVs prediction. If an animal was genotyped, this
information would also be used for the prediction of
breeding values. Therefore, we investigated this scenario
in VP2. First, there were gains in accuracy of 59% using
only the phenotypes combined with pedigree informa-
tion with the accuracy increasing from 0.335 to 0.534.
When genotypes were included there was a further
improvement of 30.9% for ssGBLUP and 26.6% for
tsGBLUP with the respective accuracies reaching 0.699
and 0.676, respectively. Based on the results of this study,
it seems that the use of DGVs for selection of animals
produce similar or greater accuracies in comparison
with EBVs (i.e., generated solely based on pedigree and
phenotype information).

Bias of DGV and GEBV predictions
The bias of genomic predictions is relevant to deter-

mine if DGV or GEBV of younger animals is on the same
scale to be comparable with EBV or GEBV of older,
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proven animals being, therefore, useful for predicting
future differences in the EBVs or GEBVs once they are
proven with progeny information. If the regression coef-
ficient of DGV or GEBV on TBV <1.0, it indicates that
genomic breeding values were overestimated, whereas
regression coefficients >1.0 indicate underestimation of
genomic predictions. Vitezica et al. (2011) have discussed
the scale of breeding values under the effect of selection.
If the parents of the next generation come from only
genotyped selection candidates, they share a common
mean for belonging to the same generation, then the
bias would not be a concern. However, for different
selection candidates there is a different amount of infor-
mation (e.g., progeny tested males and newborn ani-
mals) and in the presence of bias, newborns could have
an overestimated or underestimated genetic merit.
Regarding to the DGV results, the regression coefficients
indicated that tsGBLUP generated unbiased estimates
when using dEBVs as pseudo-phenotypes in the estima-
tion of SNP effects. In general, the regression coefficients
for GEBV from ssGBLUP and tsGBLUP indicated small or
no bias, except when using Hayes blending method in
tsGBLUP. Similar regression coefficients were reported
in the literature (Gao et al. 2012; Su et al. 2012).

Selecting 10% of males and 50% of females
Breeding programs use (traditional or genomic) breed-

ing values to select individuals for breeding or culling.
Therefore, we looked at the ranking coincidence with
the ranking based on TBV for the 10% best replacement
males and 50% best replacement females. Our findings
indicated that the percentage of ranking coincidence in
selected elite males (∼40%) and females (∼70%) was simi-
lar when using DGV or GEBV estimated by ssGBLUP or
tsGBLUP to rank the best males and females (data not
shown). These findings are in agreement with the accu-
racy results, which were similar for ssGBLUP and
tsGBLUP procedures.

Our findings indicate that incorporation of genomic
information into tradition genetic evaluations might
result in gains of accuracy >100% compared with the
EBVPA. However, it is worth to notice that these gains
could be even more substantial when a higher propor-
tion of missing pedigree information exist than the
simulated here (5%), as it would be the case of the use
of multiple sire matings. Simulated data are of great
value to compare methodologies under alternate scenar-
ios, however, there might exist specificities in a popula-
tion which will be identified only when using real data.
Therefore, studies using real data for a variety of traits
with different genetic architecture are warranted to
corroborate the findings of this study.

The costs for implementing large-scale genomic selec-
tion are still high for beef cattle producers in developing
countries. However, it has been already used for difficult
or expensive-to-measure traits and traits measured late
in life to select breeding candidates more accurately,

particularly males. Therefore, the results of this study will
help to decide the most appropriate genomic prediction
methodology to use in the genomic evaluations with
respect to accuracy and bias of genomic predictions.

Conclusions
Direct genomic values and GEBVs predicted by single-

and two-step GBLUP procedures showed very similar
accuracies, except for the GEBVs generated by Hayes
blending method (in the two-step procedure), which
were significantly lower. There was no significant or only
slight bias on GEBV predictions from single- or two-step
(using VanRaden blending) procedures, indicating that
these predictions are on the same scale compared with
the TBVs. The levels of contribution of polygenic effects
to the genomic relationship matrix tested did not signifi-
cantly affect the GEBV accuracies in single- and two-step
procedures. Overall, genetic evaluations including
genomic information resulted in gains of accuracy
>100% compared with the EBVPA. Moreover, there were
also no significant differences between the coincidence
of selected animals (10% males and 50% females) using
single- and two-step procedures with actual best candi-
date list based on TBV. Therefore, using single-step or
two-step (with VanRaden blending) GBLUP approaches
for genomic prediction are equally recommended to
increase accuracy of genetic evaluations, regardless the
level of contribution of polygenes to the genomic rela-
tionship matrix (between 5% and 20%) adopted.
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