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Abstract 

This study investigated the feature importance of near-infrared spectra from random forest regression models con‑
structed to predict the carbonization characteristics of hydrochars produced by hydrothermal carbonization of kraft 
lignin. The model achieved high coefficients of determination of 0.989, 0.988, and 0.985 with root mean square errors of 
0.254, 0.003, and 0.008 when predicting the carbon content, atomic O/C ratio, and H/C ratio, respectively. The random 
forest models outperformed the multilayer perceptron models for all predictions. In the feature importance analysis, the 
spectral regions at 1600–1800 nm, the first overtone of C–H stretching vibrations, and 2000–2300 nm, the combination 
bands, were highly important for predicting the carbon content and O/C predictions, whereas the region at 1250–
1711 nm contributed to predicting H/C. The random forest models trained with the high-importance regions achieved 
better prediction performances than those trained with the entire spectral range, demonstrating the usefulness of the 
feature importance yielded by the random forest and the feasibility of selective application of the spectral data.

Keywords  Feature importance measures, Hydrochar, Hydrothermal carbonization, Lignin, Near-infrared 
spectroscopy, Random forest

Introduction
To combat global warming and the resulting cli-
mate change, the Intergovernmental Panel on Climate 
Change (IPCC) has adopted a special report on global 

temperature increase of 1.5 ℃ [1]. In response, countries 
around the globe are establishing carbon–neutral strat-
egies to reduce CO2 emissions, including the use and 
development of sustainable and renewable sources of 
energy. Wood is a representative natural resource that is 
both renewable and sustainable. Lignin, one of the main 
elements in wood is an aromatic component of ligno-
cellulosic biomass and is carbon rich. The pulp indus-
try mass produces kraft lignin as a waste [2]. Lignin is a 
bioresource known for maximizing resource efficiency 
and converting waste into valuable resources, helping in 
achieving carbon neutrality.

Hydrothermal carbonization (HTC) is a thermochemi-
cal process that converts organic compounds, such as 
lignin, into structured carbon materials called hydrochars 
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with relatively mild temperatures of 130–250 ℃ [3, 4]. 
HTC can convert biomass into carbonaceous solids with-
out an energy-intensive drying process [5]. The HTC 
yield of lignin is higher than that of cellulose and hemi-
cellulose because of the thermally stable phenolic struc-
tures of lignin [6, 7].

Lignin-derived hydrochar can be used in various appli-
cations, including fuels, batteries, polymer composites, 
adsorbents, and electrochemical devices [8–11]. The 
carbonization characteristics of hydrochar are typically 
determined using elemental analysis. However, it has 
recently been reported that rapid and non-destructive 
evaluation is possible using near-infrared (NIR) spectros-
copy with multivariate analysis [12]. Numerous studies 
have demonstrated that NIR spectroscopy is suitable for 
capturing the characteristics of biological materials [13–
20]. Nevertheless, the evaluation of the spectral bands 
contributing to predictions by the models has been lim-
ited to estimation using indirect methods.

Random forest (RF) is a prediction model and machine 
learning technique that incorporates the importance of 
input variables for prediction [21]. RF is a framework for 
aggregating predictions from multiple tree models, yield-
ing quantified information about the features and their 
contribution to the prediction. This nature of tree models 
makes them an ideal choice for studies using biological data 
[22–25].

This study established RF regression models trained 
with NIR spectral data to predict the carbonization char-
acteristics of hydrochars produced by the hydrother-
mal carbonization of kraft lignin. Furthermore, the NIR 
spectral regions were classified according to their feature 
importance as computed by the RF models. The perfor-
mance evaluation of the RF models trained with each 
selected spectral region verified the practical usefulness 
of the feature importance computed by the RF.

Materials and methods
Samples and hydrothermal carbonization
Kraft lignin, a raw material for hydrochars, was provided 
by a domestic pulp manufacturer (Moorim P&P, Ulsan, 
Korea). Lignin was produced as a byproduct of an indus-
trial-scale pulping process to manufacture bleached hard-
wood pulp using an alkaline white liquor consisting of 
sodium hydroxide, chlorine dioxide, and sodium sulfide.

For HTC, 5.6  g of lignin powder was mixed with 
140 mL of distilled water to prepare suspensions with a 
solid-to-liquid ratio of 1:25. A glass liner containing the 
suspension was placed in a reaction vessel and heated in 
a heating mantle at target temperatures of 150, 175, 200, 
225, and 250 ℃ for retention times of 1, 2, 3, and 5  h, 
respectively. Retention time is the duration at which the 

target temperature is maintained. After heating, the reac-
tion vessel was allowed to cool naturally to room temper-
ature (13.4–23.1 ℃). The solid residues generated from 
the HTC of lignin were vacuum filtered, oven-dried, and 
pulverized to produce powdered hydrochars.

Elemental analysis
Elemental analysis was performed to investigate the 
elemental compositions of the hydrochars. The weight 
percentages of carbon (C), hydrogen (H), nitrogen 
(N), and sulfur (S) were measured using an elemen-
tal analyzer (Flash EA 1112, Thermo Electron Corp., 
Waltham, MA, USA). The oxygen (O) weight percent-
age was estimated to be 100 −  (C + H + N + S). The C 
wt%, O/C, and H/C ratios were calculated as indicators 
for evaluating the carbonization characteristics of the 
hydrochars.

Spectral dataset
NIR spectral data were used as input variables to build 
regression models for predicting the carbonization 
characteristics of the hydrochars. NIR reflectance spec-
tra were collected from the hydrochars using an NIR 
spectrometer (NIR Quest, Ocean Insight, Orlando, 
FL, USA) with a reflection probe and tungsten halogen 
lamp. The optical resolution of the spectrometer was 
6.6  nm, and the spectra were collected in the wave-
length range of 870–2500 nm.

All spectra were second derivatized by Savitzky–
Golay smoothing to 13 points with the fifth-order 
function [26]. A wavelength range of 1250–2300  nm, 
excluding noisy regions in the original range, was 
selected and used to build the prediction models. The 
selected spectral region corresponded to 165 input var-
iables. Hwang et al. [12] demonstrated the effectiveness 
of second-derivative transformation and spectral selec-
tion in predicting the carbonization characteristics of 
hydrochars.

Three NIR spectra were acquired for each HTC con-
dition, including the control sample. The dataset thus 
consisted of 63 spectra. The dataset was independently 
divided into training and test sets at a ratio of 8–2 and 
used for the construction and evaluation of the predic-
tion model.

Regression models
Random forest regressor
The RF model for regression [21], an ensemble learn-
ing technique, was used to predict the carbonization 
characteristics of the hydrochars. Ensemble learning 
combines predictions from multiple models to produce 
more accurate results than a single model. This study 
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used decision trees (DT) for regression [27] as the base 
learner to construct an RF model.

DT is a simple model that predicts the result by per-
forming a split based on the predictor (input variable) 
that reduces the mean squared error (MSE) the most. 
As shown in Fig. 1a, when predicting the output from 
the input variables, DT starts from a single node (root 
node) and creates branches (decision nodes) based 
on the input variable (feature) with the smallest MSE 
(Eq. 1).

where y and ŷ are the measured and predicted values of 
the samples in a node, respectively, and n is the number 
of samples in a node. This process is repeated at each 
decision node to create a tree-shaped decision struc-
ture. A node that cannot branch further owing to a non-
decreasing MSE is called a leaf node, and the average 
value of the samples in that node becomes a candidate 
for the prediction. When unseen data are input into the 

(1)MSE =
1

n

∑n

i=1

(
yi − ŷ

)2
,

completed DT model, the data move according to pre-
determined branching criteria. The value of the leaf node 
where the data finally arrived was used as the predicted 
value of the DT.

A schematic of the RF model is illustrated in Fig.  1b. 
RF is a combination of multiple DTs and improves pre-
diction performance by averaging the predictions of 
multiple DTs and controls overfitting, a chronic weak-
ness of DTs. To increase the randomness of the DTs, 
the RF model builds them using random sampling with-
out using all input variables. This process is performed 
to create independent trees. In addition, RF generates 
bootstrap sets from the training set using random sam-
pling with replacement. In this process, approximately 
2/3 (in-bag samples) of the training data are used for DT 
training. The remaining 1/3 (out-of-bag samples) of the 
data are used to validate the tree model, similar to the 
threefold cross-validation. The probability that a sample 
is not selected from m data points during random sam-
pling with replacement is (m − 1)/m. If this is repeated m 
times, the out-of-bag (OOB) probability is approximately 
36.8%, according to Eq. (2).

Fig. 1  Schematic diagrams of decision tree (a) and random forest (b) models for regression. MSE, mean square error; n_sample, number of samples 
in a node; OOB, out-of-bag samples
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The RF model was built with multiple DTs generated 
by learning the in-bag samples, and the final predic-
tion of the model for new data was output as the aver-
age value of the predictions of the DTs.

In this study, all DTs constituting the RF were based 
on the classification and regression tree (CART) [27] 
algorithm and were independently generated with-
out pruning. For n_feature, which are input variables 
for DT generation, the square root (‘sqrt’), binary 
logarithm (‘log2’), and one-third (‘1/3’) of all spec-
tral points were tested. An n_tree from 10 to 300 was 
tested, and the optimal n_feature and n_tree were 
determined based on the minimum OOB error via grid 
searches. The coefficient of determination (R2) and 
root mean square error (RMSE) were used as evalua-
tion metrics for the model performance.

Multilayer perceptron regressor
Multilayer perceptron (MLP) models were employed to 
compare the prediction performance with RF models. 
The MLP regressor learns data using backpropagation, 

(2)

OOB = lim
m→∞

(
m− 1

m

)m

= lim
m→∞

(
1−

1

m

)m

= e−1
≈ 0.368.

with no activation function in the output layer. The 
squared error was used as the loss function, and the 
model was optimized using the stochastic gradient 
descent-based optimizers SGD and Adam. The various 
network architectures listed in Table 1 were tested with 
logarithmic learning rates ranging from 0.0001 to 0.1 
to optimize the network configuration of the MLP. The 
maximum number of iterations was set to 3000. Grid 
searches with threefold cross-validation optimized the 
hyperparameters of network architectures, optimizers, 
and learning rates.

The prediction performances of the RF and MLP 
regression models established in this study were com-
pared with those of the reported partial least squares 
(PLS) regression models, which are a chemometric 
approach combined with NIR spectroscopy and multi-
variate analysis [12].

Feature importance measures
The spectral feature importance was measured based on 
the mean decrease in impurity (MDI) [28] to identify the 
NIR regions that contribute to predicting the carboniza-
tion characteristics of hydrochars. Tree-based models 
provide information about the contribution of the input 
variables used in prediction, called feature importance. 

Table 1  Network architectures of MLP regression models tested

2-layer MLP 3-layer MLP

Input layer / Hidden layer / Output layer Input layer / Hidden layers / Output layer

1st 2nd

165 / 64
128
256
512
1024

/ 1 165 / 64 / 64
128
256
512
1024

/ 1

128 / 64
128
256
512
1024

256 / 64
128
256
512
1024

512 / 64
128
256
512
1024

1024 / 64
128
256
512
1024



Page 5 of 12Hwang et al. Journal of Wood Science            (2023) 69:1 	

The feature importance of an ensemble model, such as 
RF, is also an ensemble of the feature importance of its 
base models. In this study, variance reduction based on 
MSE, a criterion for branching nodes, was used to meas-
ure the feature importance of the DTs.

When an upper node (parent node) branches into two 
lower nodes (child nodes) by feature i, the importance of 
the feature is defined as the difference between the MSE 
of the parent node and the sum of the MSEs of the child 
nodes, which is called information gain (Eq. 3).

where GPj is the information gain of node j. Pj is the par-
ent node j, and Lj and Rj are the left and right child nodes 
branched from Pj, respectively. w is the weight of the 
node and is the number of samples in the node relative to 
the total number of samples. M is the mean squared error 
of the node. The importance of feature i in a decision tree 
can be calculated as follows:

where I(fi)DT is the importance of feature i in the tree 
model and Gj is the information gain of node j branched 

(3)GPj = wPjMPj − wLjMLj − wRjMRj ,

(4)I
(
fi
)
DT

=

∑
j:nodej splits onfi

Gj∑
a∈all nodesGa

,

by feature i. The feature importance of the RF model is 
computed as an ensemble of the importance of all the 
DTs in the RF. Before the ensemble, the importance of 
each feature was normalized using Eq. (5).

Then, the final importance of each feature in the RF 
model was averaged over all DTs, as follows:

where I(fi)RF is the importance of feature i in the RF 
model and NT is the total number of DTs in the RF.

Results and discussion
Elemental analysis
The elemental compositions of the hydrochars are listed 
in Table  2. The carbon content (C wt%) of the samples 
increased as the temperature and retention time for HTC, 
i.e., the reaction severity, increased (Fig. 2a). The C wt% 
of the control sample was 62.83 wt%, which increased to 
69.37% after HTC at 250 ℃ for 5 h. The C wt% values of 

(5)I
(
fi
)
norm

=

I
(
fi
)

∑
j∈all feturesI

(
fj
) .

(6)I
(
fi
)
RF

=

∑
j:all treesI

(
fj
)
norm

NT
,

Table 2  Elemental composition of hydrochars produced by hydrothermal carbonization of kraft lignin

a O (wt%) = 100 – (C + H + N + S) (wt%)

Sample Elemental composition (wt%) O/C H/C

Temp (℃) Time (h) C H Oa N S

Control 62.83 5.79 29.25 0.39 1.74 0.35 1.10

150 1 65.07 5.65 28.02 0.31 0.95 0.32 1.03

2 65.68 5.68 27.34 0.33 0.97 0.31 1.03

3 65.38 5.65 27.48 0.31 1.18 0.32 1.03

5 65.46 5.66 27.50 0.32 1.07 0.32 1.03

175 1 65.36 5.66 27.23 0.46 1.29 0.31 1.03

2 65.76 5.65 26.95 0.40 1.24 0.31 1.02

3 65.73 5.64 27.02 0.41 1.20 0.31 1.02

5 65.82 5.63 26.93 0.41 1.21 0.31 1.02

200 1 65.73 5.52 27.06 0.41 1.28 0.31 1.00

2 66.19 5.46 26.51 0.43 1.41 0.30 0.98

3 66.25 5.55 26.53 0.42 1.24 0.30 1.00

5 67.02 5.58 25.73 0.43 1.23 0.29 0.99

225 1 67.24 5.58 25.62 0.43 1.13 0.29 0.99

2 67.43 5.58 25.44 0.42 1.13 0.28 0.99

3 67.44 5.48 25.56 0.41 1.11 0.28 0.97

5 68.11 5.51 24.82 0.43 1.12 0.27 0.96

250 1 68.23 5.48 24.73 0.45 1.12 0.27 0.96

2 68.64 5.54 24.43 0.47 0.92 0.27 0.96

3 69.12 5.47 24.00 0.49 0.92 0.26 0.94

5 69.37 5.38 23.88 0.49 0.87 0.26 0.92
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hydrochars produced at 150 and 175 ℃ were similar at 
approximately 65%. However, above 200 ℃, the content 
increased linearly with an increase in HTC temperature 
and time. The increase in the C wt% was attributed to 
dehydration and decarboxylation during carbonization 
[4, 29]. Simultaneously, the atomic oxygen/carbon (O/C) 
ratio and atomic hydrogen/carbon (H/C) ratio gradu-
ally decreased (Fig. 2b), which was mainly due to chemi-
cal dehydration [30], suggesting that carbon-intensive 
materials were produced from HTC. The van Krevelen 
diagram (Fig.  2b) shows that lignin, whose elemental 
composition is similar to that of lignite brown coal, was 
converted to brown coal via HTC [7]. The reduced S wt% 
of the hydrochars was due to their dissolution during 
HTC [4].

Prediction of carbonization characteristics
RF models
Figure 3 shows the change in OOB errors with the addi-
tion of each regression tree during RF training to predict 
the carbonization characteristics of the hydrochars. At 
the beginning of the tree addition, the OOB errors were 
reduced, and the minima were measured for less than 
50 trees. The following errors recovered slightly and 
remained at a similar level from 100 trees or more. Simi-
lar trends were observed for the C wt%, O/C, and H/C 
predictions. The optimal number of features for tree gen-
eration was ‘log2’ for C wt% prediction and ‘sqrt’ for O/C 
and H/C predictions.

The prediction results of the RF models for the C wt%, 
O/C, and H/C of the hydrochars are presented in Fig. 4 
and Table  3. The scatter plots (Fig.  4) show that the 
training and test sets had similar trends. The RF models 
accurately predicted the carbonization performance of 

the hydrochars (Table 3). For the C wt% prediction, the 
model achieved the R2 value of 0.989 on the test set from 
43 regression trees built using the ‘log2’ (7 features) of all 
input variables. For O/C and H/C predictions, R2 values 
of 0.988 and 0.985 were obtained from 43 and 16 trees 
(n_tree), respectively, with the number of NIR spectral 
points (n_feature) of ’sqrt’ (13 features).

The O/C ratio indicates polarity and is related to the 
adsorbability of the material [31]. Both O/C and H/C 
ratios are indicators of the stability of the carbonaceous 
materials [32]. The lower the ratios the materials have, 
the more stable, inert, and resistant to decomposition, as 
they resemble the characteristics of graphite [33]. There-
fore, the RF models established in this study have the 
potential to be applied for predicting the carbonization 
characteristics and evaluating the quality of hydrochars. 
In addition, the use of NIR spectroscopy supports rapid 
and non-destructive predictions.

Performance comparison
Table  4 shows the comparison of the performance 
of the RF model with that of other regression mod-
els in predicting the carbonization characteristics of 
the hydrochars. Because the DT models for regres-
sion yielded good predictions enough, their collabo-
ration RF did not improve the performance except 
for O/C prediction. However, RF was found to be 
robust against bias and overfitting, whereas a single 
DT was vulnerable [34]. The RF models were compa-
rable to the PLS regression models [12], a chemomet-
ric approach, and produced better predictions than 
MLP models. Although MLP is applicable to various 
non-linear problems, it performed poorer than the 
other tested models. The relatively low performance 

Fig. 2  Changes in the carbon content of lignin samples with increasing reaction severity in hydrothermal carbonization process (a), and the van 
Krevelen diagram for hydrochars (b)
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of MLPs was attributed to the small scale of the NIR 
spectral dataset. These results support the methodo-
logical validity of RF regression combined with NIR 
spectroscopy to predict the carbonization characteris-
tics of hydrochars.

Spectral feature importance
Mean decrease in impurity‑based importance
The feature importance of the RF models for predict-
ing the carbonization characteristics of hydrochars was 
computed based on the total reduction in the MSE. The 
second-derivative NIR spectra in the range of 1250–
2300 nm of the control and hydrochar samples and their 
corresponding importance are shown in Fig. 5.

In the C wt% and O/C predictions, the spectral regions 
with high importance were 1600–1800 and 2000–
2300  nm, respectively. The first region was dominated 
by the first overtone of C–H stretching vibrations [35]. 

However, the band at 1684 nm may have originated from 
a combination of carboxyl groups [36]. The decrease 
in the intensity of the peaks at 1684  nm with increas-
ing temperature can be attributed to decarboxylation 
by HTC (Fig.  5). This is because removing the carboxyl 
groups increases the C wt% and decreases the O/C ratio 
[37]. Consequently, the band at 1684  nm yielded the 
highest importance for the C wt% and O/C predictions 
(Fig. 5a, b). Hwang et al. [12] estimated that the band at 
1449 nm, assigned to the phenolic group, strongly influ-
enced the prediction of the carbonization characteristics. 
However, in this study, the RF models suggested that the 
band had a low contribution in predicting C wt% and 
O/C with its low feature importance values. The second 
region comprises the combination bands, and the bands 
at 2132 nm (coupling of C–H and C=C stretching vibra-
tions) and 2267 nm (coupling of O–H and C–O stretch-
ing vibrations) were assigned to lignin [36, 37]. The latter 

Fig. 3  Changes in out-of-bag error rates with increasing number of regression trees when predicting carbon content (a), O/C (b), and H/C (c)
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has been observed in the second-derivative spectrum of 
milled hardwood lignin [37].

The feature importance computed in the H/C predic-
tion was different from the others. The importance of the 

band at 1449 nm, which has low importance for C wt% 
and O/C predictions, was highest for H/C prediction. 
This band was assigned to the first overtone of the O–H 
stretching vibration of the phenolic groups of lignin [38]. 

Fig. 4  Scatter plots for measured values of carbon content (a), O/C (b), and H/C (c) of hydrochars and their predicted values by RF models. R2
TEST, 

coefficient of determination on test set data; RMSETEST, root mean square error on test set data

Table 3  Performance of random forest models in predicting carbon content, O/C, and H/C predictions

n_feature, number of features; n_tree, number of decision trees; all, all features (input variables); sqrt, square root of n_feature; R2, coefficient of determination; RMSE, 
root mean square error

Output variable RF parameters Training set Test set

n_feature n_tree R2 RMSE R2 RMSE

C (wt%) ‘log2’ = 7 43 0.997 0.083 0.989 0.254

O/C ‘sqrt’ = 13 43 0.996 0.001 0.988 0.003

H/C ‘sqrt’ = 13 16 0.998 0.002 0.985 0.008
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In contrast, the bands at 1684 and 2267 nm, which con-
tributed to the C wt% and O/C predictions, respectively, 
had low importance for H/C prediction. For the spec-
tral region of 1800–1999  nm, assigned to components 
regrading cellulose and water, low importance values 
were observed for all predictions.

Feature selection
The spectral regions were classified into high and low 
importance based on the feature importance values, and 
the RF models trained with the data from each region 
were reconstructed. The RF models trained with the 
high-importance spectral regions outperformed those 
trained with the low-importance regions and the full 
spectral range for all predictions. In addition, the models 

Table 4  Prediction performance for carbonization characteristics of random forest regression models and comparison with other 
regression models

RF, random forest; DT, decision tree for regression, MLP, multilayer perceptron; R2, coefficient of determination; RMSE, root mean square error

Output variable RF DT MLP PLS [12]

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

C (wt%) 0.989 0.254 0.983 0.229 0.969 0.357 0.976 0.246

O/C 0.993 0.003 0.963 0.005 0.946 0.007 0.964 0.006

H/C 0.985 0.008 0.984 0.006 0.908 0.022 0.984 0.004

Fig. 5  Second-derivative NIR spectra of hydrochars and spectral feature importance of random forest regression models for predicting carbon 
content (a), O/C (b), and H/C ratios (c). FI, feature importance; MSE, mean square error
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trained with a combination of high-importance regions 
yielded the best performance in this study (Fig. 6).

Although the number of features available for model 
building was lower owing to partial selection of the spec-
tral region, the improvement in model performance 
proves that the feature importance computed from RF is 
reliable for predicting the carbonization characteristics of 
the hydrochars. Furthermore, these results suggest that 
the selection of custom spectral regions according to the 
output variables may be a better strategy for prediction.

Conclusions
RF regression models combined with NIR spectroscopy 
predicted the carbonization characteristics of lignin-
derived hydrochars with R2 values above 0.98. The MDI-
based feature importance computed from RF models 
indicated that the spectral regions influencing C wt% 

and O/C predictions differed from those for H/C. The 
high-importance regions helped improve model perfor-
mance. These results suggest that the selective applica-
tion of spectral regions, depending on the prediction 
target, might be a better strategy for prediction. In rapid 
and non-destructive prediction using NIR spectroscopy, 
the ensemble method of tree models is a promising tech-
nique and is comparable to chemometrics.
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