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Abstract 
 
 

Assessment of disaster risks induced by climate change, 

using machine learning techniques 

Sang Jin Park 

Interdisciplinary Program in Landscape Architecture and 

Integrated Major in Smart City Global Convergence Program in 

Seoul National University 

Graduate School of Seoul National University 

Supervised by Professor Dong Kun Lee 

 

Climate change is an urgent threat to our generation. Natural 

hazards have become more unpredictable, occurring more frequently 

and with greater force, due to climate change. Natural disasters in 

Korea are mostly caused by meteorological events. The total damage 

caused by disasters in the last ten years is attributed mainly to 

typhoons (49%) and heavy rain (40%). Therefore, risk management, 

which analyzes and evaluates hazard risk related to heavy rainfall 

such as flooding and landslides, is needed to prepare for the long term. 

Also, effective monitoring and detection responses to climate change 

are critical for predicting and managing threats to hazard risks. 

Therefore, the main research questions of this thesis are as 

follows: 1) How to predict future potential risks in a complex 

situation due to climate change considering various factors, 2) And 

what kind of efforts are made to reduce such risks? Is it sustainable? 

First of all, to assess the future risk of multiple hazards such as 

coastal flooding, landslide, 1) this study analyzed the present risk by 

using multiple machine learning (ML) algorithms that have been 
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widely used in recent studies as part of probabilistic approaches, and 

future risks were estimated by considering the forecasted rainfall 

according to different representative concentration pathway (RCP) 

climate change scenarios and regional climate models. Secondly, to 

evaluate the effectiveness of adaptation strategies to respond to 

disaster risks posed by climate change impacts, 2) this research 

analyzed the effectiveness and sustainability of structural measures 

such as green space and seawall, which are widely used and play an 

important role as countermeasures against coastal flooding, by 

dividing into several adaptation pathways. 

The results of this study identify future at-risk areas and 

can support decision-making for risk management and can guide 

disaster reduction and management measures, including land use 

planning and decision-making processes. 

 

Keyword: Climate change impacts, Disaster Risk Reduction 

(DRR), RCP scenario, sea level change, Integrated Coastal Zone 

Management (ICZM), Landslide susceptibility, Nature based 

Solution (NBS), adaptation strategy 
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Chapter 1. Introduction 
 

1. Background 

Climate change is an urgent threat to our generation. Natural 

hazards have become more unpredictable, occurring more frequently 

and with greater force, due to climate change (Berz et al., 2001; 

Kundzewicz et al., 2014; UNISDR, 2015). Urban areas are where 

population, human activity, and artificial structures are spatially 

concentrated. In the event of a disaster, human and economic damage 

tends to increase compared to other areas (Huppert and Sparks, 

2006). On the other hand, natural disasters in South Korea are mostly 

caused by meteorological events (Yoon et al., 2016; Azam et al., 2017; 

Han et al., 2018). The total damage caused by natural disasters in 

the last ten years is attributed mainly to typhoons (49%) and heavy 

rain (40%) (Ministry of the Interior and Safety, 2016). Flood damage 

in South Korea will increase further due to climate change in the 

future. Therefore, risk management, which analyzes and evaluates 

hazard risk related to heavy rainfall such as flooding and landslides, 

is needed to prepare for the long term.  

Coastal areas are threatened by hazards such as flooding, 

erosion, and storms (Klein et al., 1999; Nicholls and Cazenave, 2010; 

Saxena et al., 2013; Lilai et al., 2016) and will be more vulnerable in 

the future because of climate change impacts such as sea level rise 

and extreme weather events (Klein et al., 1999; Lilai et al., 2016; 

Vousdoukas et al., 2018). Furthermore, the number of people living 

in coastal areas globally is expected to increase from 1.8 to 5.2 billion 

by the 2080s (IPCC, 2014; Bhable, 2015; Neumann, 2015). As 

coastal systems continue to become more socially and 
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environmentally complex, the cost of damage from coastal hazards 

due to climate change impacts will also rise (Kleint et al., 2001; IPCC, 

2007; Szlafsztein & Sterr, 2007; Balica et al., 2012). In particular, 

South Korea is a peninsula with several large cities situated along the 

coast and 27.5% of its total population living in coastal areas (Oh et 

al., 2020). Thus, a series of hazard prevention plans and the 

identification of risk areas are crucial for these coastal areas (Tran 

et al., 2008; Kourgialas & Karatzas, 2011). 

However, existing research on coastal flooding has primarily 

used quantitative indices to characterize risks. These index studies 

have focused primarily on analyzing vulnerabilities that may indicate 

the relative risks encountered by coastal areas, but do not 

specifically calculate the actual risks. These previous studies also 

only analyzed current vulnerability or risk and did not analyze future 

risks however, several others have analyzed future risks. Although 

they analyzed the risk of coastal hazards using statistical and 

physically based methods, they did not consider uncertainty by 

comparing multiple models to predict future hazards. 

It is also very important what measures should be taken to 

reduce risk and damage in response to coastal flooding. Measures for 

best coastal management that consider both cost and efficiency to 

optimize limited resources will become essential in the future 

(Ferreira et al., 2019). These efforts can mitigate risks in a proactive 

manner before disasters occur (FEMA, 2018; Reguero et al., 2020). 

As a result of reviewing related previous studies on the effectiveness 

of measures and strategies to reduce the risk of coastal inundation, 

these prior studies lacked consideration of spatiotemporal analysis. 

The impacts and vulnerabilities of climate change may differ 

depending on the spatial and temporal characteristics of countries 
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under present and future climatic conditions (IPCC, 2007; 2014; 

2022). Therefore, it is necessary to consider analysis through 

spatiotemporal down-scaling in order to compare and evaluate the 

effectiveness of adaptation strategies to mitigate the risk of coastal 

inundation. 

Along with coastal flooding, landslides are a major cause of 

serious damage to life and property worldwide (Malamud et al., 2004; 

Gomez & Kavzoglu, 2005; Lee & Pradhan, 2007; Garcia-Rodriguez 

et al., 2008; Yilmaz, 2010; Pham et al., 2020). In the future, when the 

impacts of climate change become more severe, sudden heavy rains 

could cause more damage due to landslides and flooding (Yılmaz, 

2009). Also, studies of the vulnerability or susceptibility to landslides 

have been conducted worldwide. Previous research has mostly 

focused on identifying the factors There have been many great 

previous studies, the contents of the studies were similar only 

differed in the target sites and methodologies. Most of them focused 

on evaluating current susceptibility or sensitivity based on the 

conditions of the target site, collecting data on those factors, and 

analyzing vulnerability or sensitivity through statistical models as 

shown in Table 1 in Chapter3. Few studies have focused on predicting 

the future risk of landslides. In the field of disaster research, 

predictions or future prospects are important in terms of disaster 

management (UNISDR, 2015). 

 

2. Purpose 

Therefore, the main research questions of this thesis are as 

follows: 1) How the future risks of multiple disasters due to climate 

change would be changed considering various factors, 2) And what 

kind of efforts are effective to reduce such risks? To answer the 
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above two questions, this study set the scope of the study to include 

heavy rains as the cause of the greatest damage in South Korea and 

coastal flooding and landslides as disasters caused by heavy rains. 

As a method to answer the first question, a widely used 

machine learning algorithm was used as part of a probabilistic 

approach in a recent study to evaluate the potential risk of future 

disasters such as coastal flooding and landslides. In addition, when 

analyzing potential future risks, it was estimated to consideration 

with the predicted rainfall according to various representative 

concentration pathway (RCP) climate change scenarios and sea level 

rise forecasts obtained through spatio-temporal detailed modeling. 

Next, the effectiveness and sustainability of structural measures 

such as green spaces and seawalls (Dong et al., 2020; Jeong et al., 

2021), which are widely used and play an important role as 

countermeasures against coastal inundation, are compared and 

analyzed by dividing into several adaptation pathways. 

The results of this study are thought to be able to support 

decision-making on Korea's Integrated Coastal Zone Management 

(ICZM) by identifying potential hazardous areas in the future and 

proposing sustainable adaptation strategies. Furthermore, it is 

expected to contribute to disaster reduction and management 

measures, including land use planning and decision-making 

processes (Akgun, 2012; Nsengiyumva et al., 2018; Dou et al., 2019b, 

2020b). 
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Figure 1. Conceptual framework of the research 
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Chapter 2. Prediction of coastal flooding risk 
under climate change impacts in South Korea 

using machine learning algorithms 
 

1. Introduction 

Existing research on coastal flooding has primarily used 

quantitative indices to characterize risks. The index method 

expresses the vulnerability of an area using arithmetic operations 

that incorporate classified factors affecting hazards. Several studies 

have generated a coastal/composite vulnerability index for 

calculating and assessing of coastal hazards in different study areas 

by using different variables (Dwarakish et al 2009, Sankari et al 2015, 

Pantusa et al 2018, Sahana and Sajjad 2019). These index studies 

have focused primarily on analyzing vulnerabilities that may indicate 

the relative risks encountered by coastal areas, but do not 

specifically calculate the actual risks.  

These previous studies also only analyzed current 

vulnerability or risk and did not analyze future risks; however, 

several others have analyzed future risks. They calculated the future 

risk of coastal hazards by estimating water level heights (Wahl et al 

2016, Vousdoukas et al 2016). Unlike previous reports, this study 

quantitatively calculated coastal hazard risks and predicted future 

risks by considering the occurrence of compounding probabilistic 

events such as extreme precipitation and the rising tidal ratio. 

Although they analyzed the risk of coastal hazards using statistical 

and physically-based methods, there are some factors that could not 

be addressed. These studies did not obtain a spatial distribution of 

risk (Wahl et al 2016) and analyzed continental scales that are 

difficult to apply to regional scales (Vousdoukas et al 2016). Also, 
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they did not consider uncertainty by comparing multiple models to 

predict future hazards. In addition, rainfall is a very important factor 

in flooding but they herein focus only on changes in water level. 

In short, this study analyzed the actual risk probability, not a 

relative vulnerability, using a coastal flooding risk analysis that 

considers rainfall events as well as tidal levels, because the risk to 

coastal areas of heavy rainfall depends on the tide (Van Den Hurk et 

al 2015, Eilander et al 2020). Additionally, future coastal flooding 

risks were estimated by considering the actual rising rate of the tide 

and the forecasted rainfall according to different representative 

concentration pathway (RCP) climate change scenarios and regional 

climate models. Multiple machine learning (ML) algorithms that have 

been widely used in recent studies as part of probabilistic approaches 

were used to probabilistically calculate the coastal flood risk. The 

results of this study identify future at-risk areas and can support 

decision-making for integrated coastal zone management (ICZM) in 

South Korea by identifying which areas require hazard prevention 

plans.  
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2. Materials and Method 

2.1 Study Area 

 

 

Figure 1. (a) Countries in East Asia, (b) South Korea and the study area (Coastal 

area: 1 km, Geodetic Datum: WGS84) 

In this study, the spatial coverage is South Korea (33–38◦ N, 

125–131◦ E). Summer in South Korea is generally hot and wet and 

typhoons that occur frequently in July and August bring heavy rainfall 

to coastal areas. The heaviest rainfall in this region was recorded in 

mid-July and mid-August when the daily average rainfall ranged 

between 220 mm and 322 mm. The maximum daily rainfall recorded 

for the period of 1973–2010 was 870.5 mm in Gangneung, South 

Korea, on August 31, 2002 (Korea Meteorological Administration 

2011).  

The total length of the coastline of Korea is 14 962.8 km and 

the spatial scope of this research was set up 1 km from the coastline, 

following the ‘coastal management law’ in Korea. The coastline along 

the East Sea is monotonous, and the water depth is generally deep. 

The West Sea has a shallow coastline with an average depth of 44 m. 
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The coastline of the South Sea is complex and contains numerous 

islands and harbors. Figure 4 shows the locations of the 68 weather 

observatories and 46 tide observatories in Korea. 

 

2.2 Machine learning algorithms 

A coastal hazard risk analysis was implemented using three 

ML algorithms: k-nearest neighbor (kNN), random forest (RF), and 

support vector machine (SVM). Previous studies have frequently 

compared these three machine learning techniques in their prediction 

methods (Harefa and Pratiwi 2016, Potdar and Kinnerkar 2016; 

Lopez-Serrano et al 2016, Danades et al 2017, Thanh Noi and 

Kappas 2017). The results of these algorithms were subsequently 

compared. 

The kNN, proposed by Cover and Hart (1967), is an easy-

to-implement supervised ML algorithm that is as simple as the 

Naive-Bayes Classifier (Jadhav and Channe 2016). The proximity of 

data points to one another affects the results of the algorithm 

(Bhavsar and Ganatra 2012, Kim et al 2012). In this study, the 

analysis was performed by setting k as 5, 10, and 15. The analysis 

was the best when k was set to 5. The RF algorithm is an ensemble 

learning method operated by constructing multiple decision trees 

during a training period, and it is frequently used in research along 

with ML techniques such as SVM and neural networks. More details 

related to RF are described by Breiman (2001). Setting the number 

of trees and depths is important; herein, these values were set to 10 

and 3, respectively. The SVM algorithm, proposed by Cortes and 

Vapnik (1995), is a versatile ML algorithm in that it can be classified 

in unlabeled datasets. When dividing two sets to create the classifier 
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hyperplane (Rebentrost et al 2014), various classifiers such as linear 

and non-linear forms can be generated according to the 

characteristics of the data. Therefore, this algorithm is a high-

performing technique used to analyze real-world data (Tong and 

Koller 2001). Set- ting the kernel function is important in SVM since 

it helps to overcome shortcomings related to linear separability 

(L´opez-Serrano et al 2016). In this study, we used the radial basis 

function (RBF) kernel function, which makes non-linear classifiers 

These ML algorithms were used in this study to compensate 

for the shortfalls of each individual algorithm (Hao et al 2019). 

Additionally, by using ML algorithms, we could consider complex and 

diverse influencing factors caused by climate change. The results of 

the algorithms were compared through approximately 700 iterations 

to reduce the uncertainty of the model itself. 

 

2.3 Method 

2.3.1 Data 

The variables used in the analysis (tide, rainfall, elevation, 

slope, urban area, and grassland) were selected based on previous 

literature reviews (Mahendra et al 2010; Sankari et al 2015, Ashraful 

Islam et al 2016, Giardino et al 2018, Pantusa et al 2018), while 

rainfall, which was unaddressed in previous studies, was used to 

consider compounding events in this study. All data obtained for the 

risk analysis were transformed into a 1 km² grid because the raw 

data consisted of different points and polygons. All of the data were 

obtained from Official Korean Government websites (table 1). They 

were organized into a data table by day and grid. In addition, a map 

showing data for coastal flooding traces was obtained and used as the 
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labeling data for classifying a machine learning algorithm. The grids 

on the map where coastal flooding occurred were labeled ‘1’ (173 

cases), or ‘0’(224,053 cases) if no flooding occurred. 

 

Table 1. List of variables 

Data 

(abbreviation) 

Source 

(abbreviation, Website) 
Type Period 

Mean tide(T) 

Korea Hydrographic and 

Oceanographic Agency 

(KHOA, www.khoa.go.kr/eng/) 
Point 

2002-

2014 Daily 

maximum 

rainfall (R) 

Korea Meteorological Administration 

(KMA, 

https://web.kma.go.kr/eng/index.jsp) 

Elevation (E) 

Ministry of Environment 

(ME, 

https://eng.me.go.kr/eng/web/main.do) 

Grid 

2010 

Slope (S) 

Urban area 

(U) 

Polygon 
Grassland (G) 

Coastal flood 

trace (CF) 

Korea Land and Geospatial Informatrix 

Corporation 

(LX, www.lx.or.kr/eng.do) 

2002-

2014 

RCP 

precipitation 

data 

KMA Climate Information Portal 

(KMA, http://climate.go.kr) 
Ascii 

2002-

2018 

 

2.3.2 Coastal risk analysis 

The entire data table, in which all variables were organized 

by day and grid, was under-sampled for the risk analysis due to 

imbalanced data that included more cases of non-flooding than 

flooding. By under-sampling the data, the risk analysis could be 

performed (He and Garcia 2009). The under-sampled data were 

subsequently split into training (70%) and test (30%) datasets, after 

which the risk analysis was implemented using kNN, RF, and SVM. 
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The procedure from the under-sampling to running the algorithms 

was repeated 1200 times. After running the three ML algorithms, the 

results were compared using the receiver operating characteristic 

(ROC) accuracy scores and curves. ROC curves are mainly used to 

assess model accuracy, and the model is judged by the relationship 

between the false positive rate (1-Specificity) and the true positive 

rate. The risk probability was calculated, and risk maps were 

constructed using the results obtained from the three ML algorithms 

with the highest accuracy scores. 

 
Figure 2. The sequence of the method from data collection to prediction. 

2.3.3 Prediction 

The future risk probability was predicted using the highest 

performance algorithm. To predict future risks under the impacts of 

climate change, the continuous variables (rainfall and tidal level) 

were forecasted daily into the future. These were used to evaluate 

future coastal flooding risks 

Initially, the rainfall data used was the RCP AR5 scenario (4.5, 

8.5) precipitation data produced from five different regional climate 



 

１４ 
 

models (RCMs): CCLM, HadGEM3-RA, RegCM4, SNU- RCM, and 

WRF. These models were produced by the Regional Climate Detailing 

Project in East Asia (CORDEX-EA: Coordinated Regional 

Downscaling Experiment—East Asia, source: http://cordex- 

ea.climate.go.kr/cordex). These were obtained from the KMA climate 

information Portal (table 1), and KMA uses the HadGEM3-RA as its 

principal data. Daily maximum rainfall amounts for the different RCP 

scenarios of the RCMs were used, and monthly average rainfall 

values were calculated. Next, the tide was forecasted using real tidal 

range data obtained from a number of tidal observation stations. A 

Bayesian-influenced generalized additive model (GAM) was used to 

accurately forecast the tidal data as a sine-shaped curve with 

repetitive rising and falling trends. The Bayesian-influenced GAM, 

based on Bayes’ theorem, performs regression while keeping 

functions smooth as a non-linear regression (Wood, 2020). The past 

tidal pattern for each tidal station was analyzed and future tidal values 

were calculated and organized by day. The monthly average tidal 

values were then calculated from the daily tidal values. 

Lastly, the calculated future tidal and rainfall data were then 

used to predict future risk probabilities. Future target periods ranged 

from the 2030s to the 2080s, with one division spanning 5 years (e.g. 

2050: January 1, 2046–December 31, 2055). The process of running 

the model for prediction consisted of three steps (figure 2). (1) The 

kNN classifier was created similar to the manner in which it was 

created in the coastal risk analysis, (2) tidal and rainfall variables 

were each replaced by the predicted values, and (3) the replaced 

data table was used for prediction. This routine was repeated almost 

1200 times to reduce uncertainty. 
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3. Results 

3.1 Comparison of ML algorithms 

 
Figure 3. (a) ROC curves of accuracy scores: comparison of results of 3 ML 

algorithms, and (b) plot of k-nearest neighbor ROC curves. 

As a result of running the three ML algorithms for the coastal 

risk analysis, the accuracy of the resulting average ROC curves of 

each algorithm were kNN (0.946), RF (0.938), and SVM (0.940), as 

shown in figure 3(a). The ROC curves of the other models did not 

appear to be low either; however, the kNN model produced relatively 

better results. Also, figure 6(a) shows that the kurtosis at the density 

of the kNN ROC accuracy is slightly higher than the others, which 

means that the accuracy of the kNN is not as biased compared to the 

others. Therefore, the kNN was used for the final risk probability 

mapping and future prediction analysis. Figure 6(b) shows the trade-

off between the false positive rate (1-Specificity) and the true 

positive rate. When the curves are closer to the upper left corner, its 

classifier exhibits good performance. 
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3.2 Risk probability map 

 
Figure 4. (a) Risk probability map (blue dots are the observed coastal flooding points, 

and the gradational color distribution indicates the estimated result, which is the risk 

probability, from the kNN algorithm), (b) frequency of each class (a comparison 

between the observed coastal flooding events and the estimated result of the kNN 

when the result is classified in five classes) 

A risk probability map with a gradational color distribution 

was developed, as shown in figure 7(a), based on the results of the 

model. The higher probabilities indicate areas at a higher risk of 

compounding events such as high tides and heavy rainfall. The blue 

dot on the graph indicates where coastal flooding occurred from 

2002–2014. Comparing where the actual flooding occurred and was 

estimated to occur, the risk probability was relatively high in the area 

where the actual flooding occurred. Figure 7(b) compares the 

frequency in percentage by each class between the actual coastal 

flooding point mentioned above and the risk probability calculated by 

the kNN. According to this result, the value calculated by the kNN 

model overestimated the risk class below 0.75; however, it was 

approximately 64.35% accurate in estimating risk probabilities above 



 

１７ 
 

0.5. Even if the model for calculating risk probabilities tends to 

overestimate the risk, areas where risk probabilities of 0.5 or higher 

have been derived could still be at risk in the near future. 

 

3.3 Future risk under climate change impacts 

 
Figure 5. Risk probability changes in the future depending on regional climate model 

(RCMs: HadGEM3-RA, WRF, SNU-RCM, RegCM4, CCLM) and target years in the 

RCP 8.5 scenario. 

The prediction was implemented using monthly average 

rainfall and tidal values as described. In the process, rainfall predicted 

to occur in the future was used as a density function to consider the 

uncertainty of future rainfall. Tidal data was input into the kNN 

classifier by month, the rainfall value was estimated by substituting 

the kernel density in one month, and the model was used to calculate 

the monthly predicted risk. Then, according to the comparison of the 
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monthly risk probability data, the risk probability increased for the 

months of June, July, and August for most of the RCP 4.5 and 8.5 

scenarios. Based on these data, the average risk probability for each 

scenario (RCP 4.5/8.5; the 2030s to the 2080s) in June, July, and 

August was calculated to create a maximum risk probability map for 

the scenario. Figure 8 shows the future risk probability changes in 

the 2030s, 2050s, and 2080s for RCP 8.5, according to the five RCMs. 

In general, risk increases from the 2030s to the 2080s among the 

five RCMs, and in particular, from the 2050s to the 2080s for CCLM 

and HadGEM3-RA. Although there were differences among the 

results obtained using the five RCMs, the southern coastal areas will 

generally be more vulnerable than the eastern and western areas. 

The reason for these regional differences should be determined, as 

this could be significant for coastal zone management. 

 

4. Discussion 

4.1 Regional differences 

 
Figure 6. Comparison of the future risks faced by the three coasts: risk probability 

change according to the RCP scenarios (4.5/8.5) and target year (2030s–2080s) by 

using the result of the average regional climate models (RCMs). 
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The description of the impacts under different climate change 

scenarios in the Intergovernmental Panel on Climate Change (IPCC) 

report states that, as climate change progresses, the world will be 

affected differently by region (IPCC 2007, 2014). In Korea, which is 

surrounded by three seas, the geographical characteristics along the 

eastern, western, and southern coasts are different (figure 1). 

Therefore, the impacts of climate change are expected to differ, and 

therefore the risks associated with coastal inundation also differ. 

Figure 6 displays the change in risk probability for the three 

seas around South Korea from the present to the future. In these 

graphs, the southern coast shows slightly more risk than the other 

two coasts from the 2030s to the 2080s at both RCP scenarios (4.5, 

8.5). The risk level also exhibits an increase in the 2060s in the RCP 

4.5 scenario, but the risk increases in the 2070s in the RCP 8.5 

scenario. Although there is a difference in the time at which the risk 

increases, this suggests that the risk probabilities will increase in any 

scenario in the 2050s. Therefore, measures for long-term adaptation 

(30 or 40 years from now) should be prepared. 
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4.2 Significance factor 

 
Figure 7. Comparison of the relative influence of variables according to the 

conditions of an occurrence and a non-occurrence of a coastal flood (0.0: not 

occurred, 1.0: occurred) 

The average tidal values for the three bordering seas (west, 

south, and east) are 546.56 mm, 222.16 mm, and 23.76 mm, 

respectively, in the 2050s. The average elevations are 22.8 m, 50.9 

m, and 43.1 m, respectively. Theoretically, the western area should 

be the most vulnerable since the ratio of tidal rise is higher and the 

average elevation is lower than the others, as shown in figure 1. 

However, both the southern and western areas are also at risk, 

though the gap will gradually increase in the future. In order to 

determine the reason why the risk along the southern coast was 

estimated to be higher than that of the other two coasts, we 

investigated which variable dominated the results.  

We divided the original data that was used for the risk 

analysis into whether the coastal flood event occurred or not. Then, 

each variable was normalized from 0 to 1 and the results were 

compared. The difference in rainfall between the normalized values 
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according to floods that occurred was higher than the others. We 

inferred that rainfall is therefore a key factor compared to other 

variables, such as altitude or slope, in the risk analysis, as shown in 

figure 7 (Ward et al 2018). This also demonstrates that the water 

level does not fit the assumption that the western coastal area is 

theoretically more at risk, as shown in figures 5 and 6. Furthermore, 

the fact that urban areas are frequently flooded may suggest that 

coastal management plans such as building facilities for protection 

should account for the vulnerability of urban coastal areas. 

 

4.3 Methodological implications 

This study compared coastal flood risk analyses using three 

ML algorithms. As a result of the risk analyses, the results of the 

kNN analysis model exhibited the highest reliability and accuracy. 

This suggests a slightly different implication from that of other 

studies. In other studies that used various ML techniques, the 

accuracy of the algorithm was higher when using a ML technique such 

as artificial neural networks (ANN), SVM, or RF than those obtained 

when using kNN (Potdar and Kinnerkar 2016, L´opez- Serrano et al 

2016, Thanh Noi and Kappas 2017). We concluded that the 

performance of the kNN in this study was slightly higher because it 

may have been influenced by the difference in data quality. This 

study used traces of actual flooding for the risk analysis, and as a 

result of running the model with these data, the accuracy was high. 

We infer that the risk analysis using kNN may be applied broadly as 

a quantitative technique, unlike studies with index methods, 

according to the spatial distribution of the flooded region data, 

regardless of region. In addition, the data-driven statistical method 
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using ML algorithms as well as kNN is useful in terms of scalability, 

because it can account for various influences such as compounding 

events and can quickly adapt to the input of new data. Therefore, this 

quantitative approach could be effective for risk analysis. 

Moreover, we attempted to consider uncertainty by using an 

ensemble method such as comparing the results from the five RCMs. 

The climate model itself does have uncertainty, and that uncertainty 

increases over time (Knutti and Sedl´aˇcek 2013). Therefore, many 

studies consider uncertainty regarding future climate change using 

an ensemble approach that compares multiple models (Parker 2013). 

This could be the best way for decision-makers to communicate 

about future risks. In this study, trends were confirmed by comparing 

several climate models rather than one. We used a data-driven 

method instead of a model-driven method because it is difficult to 

confirm the uncertainty of future risk in a model-driven approach 

when using large amounts of data from the regional climate models 

used in the study. 

 

5. Conclusions 

Six variables were used to evaluate the future probability of 

coastal flooding events based on three different ML algorithms, 

namely kNN, RF, and SVM. All the data obtained for the model, such 

as tidal, rainfall, and elevation data, were converted into data in a 1 

km2 grid since each raw data type consisted of different points or 

polygons. Using the three ML classifiers method, the risk probability 

was calculated and the results of the ROC curves and their accuracy 

scores were compared. The average accuracy score of the kNN was 

the highest (0.946), and a risk probability map was developed using 
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the results estimated by the kNN classifier. To evaluate future 

coastal flood risks due to climate change, tidal and rainfall data were 

used as a continuous value in prediction. For the RCP (4.5/8.5), daily 

maximum rainfall data for different RCMs from the 2030s to the 

2080s (e.g. 2050s, 01.01.2046–12.31.2055) were used for model 

prediction and the kernel density was used as the input data for the 

prediction. In terms of the tidal level, the rising values of future tides 

were calculated by considering the rate of increase at each tidal 

station and forecasted using a Bayesian-influenced GAM. We 

estimated the future risk probability using forecasted tidal and future 

rainfall. As a result, the risk probability increased over time and the 

risk probability increased in the southern coastal areas more so than 

in the eastern or western coastal areas 

In this study, we argue that there are significant implications. 

We initially found that the results of the kNN were performed slightly 

better than the other methods by comparing three ML algorithms. 

This can be attributed to the characteristics of the kNN, according to 

the quality of the original data. It also infers that risk analysis using 

a simple ML algorithm such as kNN could be applied widely, 

regardless of region. Next, rainfall was identified as a significant 

factor in this study. This means that the possibility of flooding can be 

increased due to the uncertainty in forecasting future rainfall patterns 

due to climate change. Lastly, future coastal flood risk analysis was 

analyzed using ensemble methods from different RCMs. We 

considered future uncertainty, though it might be helpful for 

decision-makers to communicate about future risks by providing 

variances and trends from different results. 

As in the previous claim, the ML technique used in this 

analysis exerts a powerful force when reliable data is used, but the 
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results are not as sophisticated or deterministic as the results of a 

model-driven analysis, such as a hydrodynamic model. As long as 

there is uncertainty regarding climate change, a data-driven 

approach using ML may be easy for predictive analyses. Therefore, 

future studies could address the idea that the future tide and surge 

heights are calculated using a hydrodynamic model together, as in the 

work of Hoch et al (2019) and Muis et al (2020) to improve the 

quality of the results. This could also be aligned with precipitation or 

rainfall to consider compound flooding of discharge-tidal interactions 

through statistical analysis, as in the work of Eilander et al (2020). 

In addition, shoreline changes could be included in the analysis of 

coastal hazard risks, making the results more meaningful for ICZM. 

Furthermore, for the purposes of predicting future risk, it was 

generally assumed that variables other than tide and rainfall would 

not change over time. Geographical factors such as elevation and 

slope might not vary with time, but land cover such as urban areas 

and grasslands will change over time. Thus, according to land cover 

changes, the future spatial distribution of risk probability could be 

different. However, the rainfall was a key factor in this analysis as 

described previously, so the land cover change might not affect 

strongly the prediction. Therefore, it would be informative if a similar 

study could be conducted that accounts for social and economic 

changes in the risk analysis. 
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Chapter 3. Predicting susceptibility to 
landslides under climate change impacts in 
metropolitan areas of South Korea using 

machine learning 
 

1. Introduction 

Along with flooding, landslides are a major cause of serious 

damage to life and property worldwide (Malamud et al., 2004; Gomez 

& Kavzoglu, 2005; Lee & Pradhan, 2007; Garcia-Rodriguez et al., 

2008; Yilmaz, 2010; Pham et al., 2020). In the future, when the 

impacts of climate change become more severe, sudden heavy rains 

could cause more damage due to landslides and flooding (Yılmaz, 

2009). Therefore, studies related to landslide-susceptibility 

assessments and responses are necessary to guide disaster 

reduction and management measures, including land use planning and 

decision-making processes (Akgun, 2012; Nsengiyumva et al., 2018; 

Dou et al., 2019b, 2020b). 

Studies of the vulnerability or susceptibility to landslides 

have been conducted worldwide. Previous research has mostly 

focused on identifying the factors that cause landslides based on the 

conditions of the target site, collecting data on those factors, and 

analyzing vulnerability or sensitivity through statistical models, as 

shown in Table 1. A review of previous studies indicates that, while 

the target sites and methodologies differed, the contents of the 

studies were similar (Tien Bui et al., 2012; Zare et al., 2013; Pham 

et al., 2016; Kumar et al., 2016; Kornejady et al., 2017; Chen et al., 

2017a; Hong et al., 2017; Nsengiyumva et al., 2018; Polykretis et al., 

2019; Pham & Prakash, 2019; Dou et al., 2020a; Wang et al., 2020). 
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Table 1. Previous landslide studies that used machine learning algorithms. 

Author, Year Study area Method used in study 

Tien Bui et al, 

2012 

Hoa Binh province, 

Vietnam 

Adaptive Neuro-Fuzzy 

Inference System 

Zare et al, 2013 Vaz Watershed, Iran 
Multilayer perceptron and 

radial basic function 

Pham et al, 2016 
Uttarakhand state, 

India. 

Naïve Bayes Trees, 

Support Vector Machines 

Kumar et al, 2016 Indian Himalayas Fuzzy–frequency ratio 

Pham et al, 2017 Indian Himalayas 
Multiple Perceptron Neural 

Networks 

Kornejady et al, 

2017 

Golestan Province, 

Iran 
Maximum Entropy 

Chen et al, 2017a Langao County, China. 
Rotation forest ensembles, 

Naive Bayes Tree 

Hong et al, 2017 Chongren area, China 
frequency ratio, certainty 

factor, index of entropy 

Nsengiyumva et 

al, 2018 

Eastern Province, 

Rwanda 

Spatially different criteria 

evaluation methods 

Polykretis et al, 

2019 

Mediterranean 

catchment, Greece 

Adaptive neuro-fuzzy 

modeling 

Pham & Prakash, 

2019 

MuCang Chai, 

northern Vietnam 

Bagging-based Naïve 

Bayes Trees 

Dou et al, 2020 
Northern parts of 

Kyushu, Japan 

Support vector machine 

hybrid ensembles 

Wang et al, 2020 
Sichuan Province, 

China 

deep belief network 

(DBN) 

 

There have been many great previous studies, but most of 

them focused on evaluating current susceptibility or sensitivity. Few 

studies have focused on predicting the future risk of landslides. In 

the field of disaster research, predictions or future prospects are 

important in terms of disaster management (UNISDR, 2015). The 
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probabilistic statistical techniques used in previous studies (Table 1) 

to predict and forecast landslides in a specific vulnerable area also 

have the potential for future studies (Pourghasemi et al., 2020). 

Therefore, this study aimed to predict future landslides in areas that 

have not received adequate attention in previous studies by using 

multiple climate change scenarios. A probabilistic statistical model 

was constructed to estimate landslide-susceptibility because it can 

consider the uncertainties in the calculations used for prediction 

(Barría et al., 2019).  

Recently, machine learning (ML) algorithms have become 

popular and are being used extensively for the spatial prediction of 

diverse types of hazards (Chen et al., 2017a). Also, data-driven 

models, such as machine learning models, performed better and were 

considered more efficient than other approaches, such as expert 

opinion-based methods (Goetz et al., 2015; Pham et al., 2020). In 

this study, landslide susceptibility was assessed using five ML 

algorithms widely used in previous studies: Naïve bayes classifier 

(NB), k-Nearest Neighbor (kNN), Decision Tree (DT), Random 

Forest (RF), and Support Vector Machine (SVM). Predictions of 

future landslides were then made by considering the probability 

distribution of precipitation data obtained from representative 

concentration pathway (RCP) climate change scenarios provided by 

the Intergovernmental Panel on Climate Change (IPCC) and regional 

climate models (RCMs) provided by the Korea Meteorological 

Administration (KMA). In addition, climate models have uncertainties 

because of uncertainty in the scenario values (Knutti & Sedláček, 

2013). This is the reason many studies have used the ensemble 

approach to consider uncertainty by using diverse scenarios (Parker, 
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2013). The findings of this study can serve as a data source for 

formulating long-term policies for response and disaster 

management related to landslides.  

 

2. Materials and Method 

2.1 Study Area 

 
Figure 1. Study area (metropolitan area including Seoul, South Korea) and landslide 

occurrences (n=326, 2011–2017). 

Figure 1 shows the study area and locations where landslides 

have occurred. This study considered the metropolitan area of South 

Korea (33–38° N, 125–131° E), including the capitol city of Seoul 

(36–38° N, 126–128° E). The metropolitan area of South Korea 

covers 11,851.26 km², accounting for 11.8% of the total area of Korea. 

At the end of October 2020, the number of residents registered in 

the metropolitan area was 26.3 million according to demographic data, 

accounting for 50.21% of the total population of Korea (Ministry of 

the Interior and Safety official website: https://www.mois.go.kr). The 
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summer climate in Korea is generally hot and humid, especially from 

July to August, and typhoons are common from August to September. 

The annual cumulative precipitation during the summer (June, July, 

and August) is 892.1 mm, accounting for approximately 61% of the 

annual precipitation. The highest recorded daily rainfall in 37 years 

in Seoul was 354.7 mm, which occurred on August 2, 2020 (KMA 

official website: https://www.weather.go.kr).  

 

2.2 Data 

 
Figure 2. Research workflow 

As shown in Figure 2, nine factors were used in the study. 

The selected factors were the same as those used for analyzing the 

impact or sensitivity of landslides by other studies (Tien Bui et al., 

2012; Zare et al., 2013; Pham et al., 2016; Kumar et al., 2016; 

Kornejady et al., 2017; Nsengiyumva et al., 2018; Polykretis et al., 

2019). Topographic (elevation, slope, aspect, curvature), geologic 

(lithology), environmental (road area ratio, forest area ratio), and 

meteorological (daily maximum precipitation) data pertaining to 
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these variables were collected for analysis from National Geographic 

Information Institute, Korea Institute of Geoscience and Mineral 

Resources, Korean Meteorological Administration, and National 

Disaster Management Research Institute (Table 2). By collecting 

data on these eight factors, as well as the landslide inventory, four 

topographic factors based on the digital elevation model (DEM) were 

created using a 10 m grid (Dou et al., 2015), and others including 

environmental factors were created using a 250 m grid. All data was 

resampled to a 250 m grid in consideration of the area of the target 

site. Because the dataset was created by matching the rainfall data 

with the landslide occurrence dates from the inventory, the size of 

the dataset used for analysis was the number of grids multiplied by 

the number of occurrences. Table 2 shows the source, type, and 

period of each factor. In addition, Figure 3 shows the mapping of 

variables used in the study, with July 27, 2011 mapped as an example 

for Daily Maximum Precipitation (DMP). 

 

2.3 Landslide factors analysis 

To control unnecessary factors used in the analysis prior to 

a landslide susceptibility assessment (LSA), multi-collinearity 

analysis was used to find the relationship among the factors (Bui et 

al., 2019, Dou et al., 2019a), and the use of information gain ratio 

(IGR) to determine the degree of factor influence on the results was 

analyzed. This is because multi-collinearity and influencing factor 

analysis using IGR affect the results and accuracy of the model (Zhou 

et al., 2018). Variance Inflation Factor (VIF) and tolerances were 

used to calculate the accuracy of multi-collinearity. Then, the 
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influence of each factor was determined using the IGR technique 

(Zhou et al., 2018). 

 

Table 2. Data acquisition for the landslide-susceptibility analysis. 

Category 
Factor 

(Abbreviation) 
Source Type Period 

Topographical 

Elevation (E) 

*NGII Grid 2014 
Slope (S) 

Aspect (A) 

Curvature (C) 

Geological Lithology (L) **KIGAM Polygon - 

Environmental 

Roads area ratio 

(RA) 
NGII 

Polyline 2018 

Forest Area Ratio 

(FA) 
Polygon 2017 

Meteorological 

Daily Maximum 

Precipitation (DMP) 

***KMA 

Points 2011–2013 

Precipitation from 

Regional Climate 

Models 

(*used for 

prediction) 

Grid 
2026.1.1–

2085.12.31 

Target Landslides (LS) ****NDMI Points 2011–2013 

*NGII (National Geographic Information Institute) 

**KIGAM (Korea Institute of Geoscience and Mineral Resources) 

***KMA (Korean Meteorological Administration): 

****NDMI (National Disaster Management Research Institute)  
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Figure 3. Maps of variables used in this study: a) Elevation, b) Slope, c) Aspect, d) 

Curvature, e) Lithology, f) Roads area ratio, g) Forest area ratio, h) Daily maximum 

rainfall (ex. July 27 2011), i) Time series graph in summer season (Jun to Aug) of 

daily maximum rainfall in RCP 8.5 scenario according to the five different Regional 

Climate Models. 

2.4 Machine learning algorithms and validation 

Each of the five ML algorithms used in this study had their 

own characteristics. NB is a stochastic-statistical method based on 

Bayes’ rule, where prior probability is used to estimate the posterior 

probability. Bayes' theorem is stated mathematically as follows: 

P(A|B) = P(A)P(B|A)/P(B). In that equation, P(A) and P(B) is the 

prior probability, P(B|A) is the likelihood, and P(A|B) is the 

posterior probability. kNN was developed by Cover and Hart (1967), 
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is easy to run, and is as simple as NB (Jadhav & Channe, 2016). The 

designation of the number k, which is the proximity of the data points 

to one another, is important because it affects the result of the 

algorithm (Bhavsar & Ganatra, 2012; Kim et al., 2012). DT, 

developed by Breiman et al. (1984), is a popular ML algorithm 

resembling a tree and based on decision tree theory. It is useful for 

decision-making because it provides a simple representation of the 

results (DeFries & Chan, 2000). RF is an algorithm that is often used 

in studies that use ML, combined with algorithms such as SVM and 

neural networks (e.g., Breiman, 2001). SVM, devised by Cortes and 

Vapnik (1995), is a multi-purpose algorithm that can classify 

unlabeled datasets. It identifies and analyzes the characteristics of 

data clusters. 

Using the receiver operating characteristic (ROC) curve 

score, the results of the LSA derived from the five ML algorithms 

were compared. ROC analysis was mainly used to assess model 

performance (Pham et al., 2016), the relationship between the false 

positive rate (1−Specificity), and the true positive rate determining 

the model's performance. The closer the average AUC (area under 

the ROC curve) is to 1, the higher the accuracy of the model (Chen 

et al., 2018).  

 

2.5 LSA using different algorithms 

The landslide inventory was divided into inventories for 

landslide occurrence and non-occurrence. Because there was a 

considerable difference in frequency between the occurrence and 

non-occurrence areas, under-sampling was performed based on the 
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occurrence area (He & Garcia, 2009). The analysis was then 

conducted by dividing the data into a training set and a test set with 

a ratio of 70:30 (Dou et al., 2015, 2019b, 2020; Zhou et al., 2018). 

Tens of thousands of iterations were required to analyze all of the 

grids because under-sampling was performed prior to grid creation. 

Landslide susceptibility was assessed using five ML algorithms that 

have been used widely in recent years: NB, kNN, DT, RF, and SVM. 

Additionally, these five algorithms were used to account for the 

uncertainty of the model (Hao et al., 2019). Results were obtained 

through an analysis involving approximately 50,000 iterations. 

 

2.6 Predicting landslide susceptibility 

Susceptibility was predicted using the highest performing 

algorithm. Precipitation data from RCP climate change scenario 8.5, 

obtained from five different RCMs (GRIMs, HadGEM3-RA, RegCM4, 

SNURCM, and WRF), were used as the main variables for prediction. 

RCP climate change scenarios are scenarios using radiative forcing 

to measure the amount of carbon emissions that are the main cause 

of climate change, and there were four scenarios (2.6, 4.5. 6.0, 8.5). 

The higher the number, the higher the carbon emission scenario, with 

8.5 indicating the scenario with carbon emission continuously carried 

out at the current level (IPCC, 2014). Precipitation data for these five 

RCMs were obtained from the Regional Climate Detailing Project in 

East Asia (CORDEX-EA: Coordinated Regional Downscaling 

Experiment-East Asia, http://cordexea.climate.go.kr/cordex). The 

climate information portal of the KMA provided the RCM data (Table 

2). We used the daily maximum rainfall amounts for the different RCP 



 

３５ 
 

scenarios of the RCMs, and their probability distributions were used 

as inputs to determine the future susceptibility to landslides. The 

temporal targets for forecasting are the 2030s, 2050s, and 2080s, 

and daily maximum rainfall amounts for 10 years before and after 

each year were used (Figure 2).  

 

3. Results 

3.1 Multi-collinearity and influencing factor analysis 

Table 3. Multi-collinearity analysis among factors. 

Factors 
All factors Without 'Slope’ 

VIF Tolerance VIF Tolerance 

Elevation 3.657 0.273 1.872 0.534 

Slope 5.013 0.199   

Aspect 3.039 0.329 2.505 0.399 

Curvature 1.217 0.822 1.000 1.0 

Lithology 1.697 0.589 1.696 0.59 

Roads area ratio 1.446 0.692 1.414 0.707 

Forest area ratio 1.568 0.638 1.567 0.638 

Daily Maximum Rainfall 1.713 0.584 1.695 0.59 

 

Table 3 shows the result of the multi-collinearity analysis. 

If the tolerances were less than 0.2 or the VIF was greater than 5, it 

was interpreted that there was multi-collinearity (O'Brien, 2007). 

The VIF and tolerances of the factor ‘slope’ were 5.013 and 0.199, 

respectively. Since the VIF was greater than 5, and the tolerance was 

less than 0.2, the ‘slope’ was removed for LSA. As a result of 
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performing the multi-collinearity analysis again without the ‘slope’, 

it was found that there was no multi-collinearity among the factors. 

 
Figure 4. a) Influencing factor analysis, and b) comparison of the average AUC value 

of the result of LSM by removing the influencing factor analysis result with low 

influence in order 

Figure 4 shows the result of influencing factor analysis and 

the average AUC value of the result of LSA by removing the 

influencing factor analysis result for low influence in order. As can 

be seen from the results (Figure 4a), the most influential variable 

was 0.45, which was shown as daily maximum precipitation (DMP). 

The variable with the least influence was aspect (0.05), which was 

much higher than the altitude (0.023) that most affected the colluvial 

landslide calculated by Zhou et al (2018). The factor’s influence is 

difficult to compare accurately because the number of variables used 

is different, but even after taking this into account, it was a high value. 

As a result of performing LSA ignoring factors having low influence, 

it can be seen that the AUC value is not significantly different (Figure 

4b). Then, LSA was implemented by using all factors without factor 

‘slope,’ which was removed at the multi-collinearity analysis. In 

addition, DMP appeared to be the most influential factor, similar to 
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those studies that analyzed flooding in coastal areas (Park & Lee, 

2020). These results reiterate the importance of responding to heavy 

rain as part of disaster management. 

 

3.2 Comparison of machine learning algorithms 

  

Figure 5. (a) Comparison of the accuracy scores of each ML algorithm and (b) plot 

of ROC curves of the RF algorithm. 

As shown in Figure 5a, the accuracies of the average ROC 

curves produced from the five algorithms were: 0.822 (NB), 0.896 

(kNN), 0.869 (DT), 0.932 (RF), and 0.866 (SVM). The accuracy of 

the model using RF was the highest of the 5 models; however, the 

results of the other models were also high. In addition, the graph 

depicting the density of RF versus ROC accuracies shows that the 

kurtosis of the graph is slightly higher than those of other algorithms. 

This indicates that the results obtained with RF were precise. 

Therefore, we used RF for the landslide susceptibility mapping and 

prediction. Figure 5b shows the ROC curves obtained using RF. 
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3.3 Predicting landslide susceptibility 

 
Figure 6. Landslide susceptibility changes for different RCMs under RCP climate 

change scenario 8.5 from the 2030s to the 2080s. 

The predictions were conducted using monthly average 

rainfall amounts. In this process, rainfall predicted to occur in the 
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future was used as a density function to consider the uncertainty of 

future rainfall. The rainfall was estimated by substituting the kernel 

density in one month, and the model was used to calculate the 

monthly predicted susceptibility. By comparing the probability of 

monthly susceptibilities, we observed that the probability increased 

during the months of June, July, and August for most of the RCP 8.5 

scenarios. Based on these data, the average probabilities of 

susceptibility for each scenario (8.5, 2030s, 2050s, and 2080s) 

during June, July, and August were calculated to create a probability 

map of the maximum susceptibility for the given scenario. 

The results of the predictions are shown in Figure 6. These 

results were obtained for the RCP climate change scenario 8.5 using 

five different RCMs with the 2030s, 2050s, and 2080s as the target 

periods. The susceptibility was high, on average, when HadGEM3-

RA was used. Moreover, when GRIMs were used, the susceptibility 

increased over time, while the remaining three RCMs had tendencies 

for reduced susceptibility. This is because the peak precipitation 

value appeared differently depending on the scenario considered by 

the RCMs (Figure 3i). 

 

4. Discussion 

4.1 Analysis of results from different ML algorithms 

This study accounted for the model uncertainty by 

performing LSA using five different ML algorithms. The resulting 

performance was good for most models, with RF having the best 

performance, similar to the findings of previous studies such as those 

using supervised learning classification with spatially geographical 
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data (Cracknell & Reading, 2014; Chen et al., 2017b; Naghibi et al., 

2017; Pourghasemi et al., 2020). 

 

4.2 Difference in susceptibilities based on land cover type 

 
 

Figure 7. a) Changes in landslide susceptibility according to land-cover type in the 

RCP 8.5 scenario for different periods. b) Relative susceptibility of other land-cover 

types near forest areas. 

We determined how susceptibility changed according to the 

type of land cover when the same land cover is maintained in the 

future using five different RCMs under climate change scenario 8.5 

(Figure 7a). The risk in forest areas is largely due to the occurrence 

of landslides. The uncertainty of the results increased over time. This 

can be attributed to the uncertainty of climate models and the 

distribution characteristics of the precipitation values in each RCM.  

Moreover, it is important to know which areas among other 

land cover types near the forest are more sensitive in the future. 

Figure 7b shows how three land-cover types near the forest are 

relatively susceptible during the target periods under the RCP 8.5 

scenario. The uncertainty increased with time; however, the urban 

area remained more susceptible than other areas. This is because 
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many urban areas are distributed around forest areas that have high 

susceptibilities to landslides. More indirectly, it could be explained 

that due to the high urbanization around the forest area, economic 

damage is high when landslides occur due to heavy rains. These 

results highlight the need for future efforts in land-use planning to 

reduce landslide susceptibility in urban areas located near forest 

areas. 

 

5. Conclusions 

This study evaluated landslide susceptibility in the 

metropolitan area that includes Seoul, South Korea. Prior to LSA, 

multi-collinearity was analyzed among eight factors. As a result of 

the multi-collinearity analysis, the factor ‘slope’ had high multi-

collinearity, and it was removed for LSA. Then, to improve the ML 

model’s performance, the influencing factors were addressed by 

using the IGR technique. The most influential factor was the daily 

maximum precipitation (0.45). In addition, the results of performing 

LSA while ignoring factors having low influence in turn showed that 

the AUC value is not significantly different from each result. Based 

on evaluations using five different ML algorithms with seven factors, 

the average AUC using RF exhibited the best performance (0.932). 

To predict future landslide susceptibility, projected future 

precipitation values from the RCP climate change scenario were used, 

and the target years were set to the 2030s, 2050s, and 2080s. 

Additionally, various future possibilities were predicted based on five 

different RCMs. This allowed us to consider future uncertainties. The 

landslide susceptibility generally increased over time, with the 
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exception of some results where RegCM4, SNURCM, and WRF were 

used. 

From this study, we arrived at the following additional 

inferences. First, among the five ML algorithms used to assess 

landslide susceptibility, RF had the best performance. Similar studies 

using supervised learning classification have shown comparable 

results. Second, we found that it is necessary to reduce the landslide 

susceptibility in forest areas, based on an analysis of changes in 

landslide susceptibility over the target period (2030s, 2050s, and 

2080s) and land cover types (urban, agricultural, forest, and 

grassland). We found that urban areas were more susceptible than 

other land-cover types because they were distributed around the 

forest areas that were estimated as more susceptible to landslides. It 

might indicate that many areas were urbanized around the forest area, 

and it also highlighted the need for future efforts in land-use planning 

to reduce landslide susceptibility.  

Additionally, the result and process of this study reveal some 

limitations. First, since the purpose of this study was to predict future 

landslide susceptibility, the effect of data resolution was not 

considered, although the resolution of the area of the target site was 

larger than the resolution of the two other studies (Dou et al., 2015; 

Chang et al., 2019); thus, the resolution of data should be considered 

in future studies because it is important for determining landslide 

susceptibility. Second, we predicted future landslides by assuming 

that the socioeconomic factors (as indicated by land cover type) did 

not change. In the future, socioeconomic factors may become more 

important for determining susceptibility; therefore, these factors 

should be considered in future studies. 
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Chapter 4. Adaptation strategies to future 
coastal flooding: performance evaluation of 

green and grey infrastructure in South Korea 
 

1. Introduction 

Climate change is one of the most dangerous environmental 

problems that humans face at present and poses profound global and 

regional impacts. Climate change contributes to an increase in the 

frequency and intensity of extreme drought, heavy rain, and heat 

waves (IPCC, 2022). Floods caused by heavy rains and abnormal 

climates cause substantial damage to various regions around the 

world. (Merz et al. 2021). It is expected that more than a billion 

people will live in low-lying coastal areas by 2060 (Neumann et al., 

2015). Coastal areas with a high concentration of economic activity 

are particularly at risk of extreme weather events owing to climate 

change, as they are exposed to cyclones, tsunamis, and other coastal 

hazards. (Kron, 2013; Reguero et al., 2015; Ferreira et al., 2019; 

Reguero et al., 2020). The global sea level is currently rising by 3–4 

mm per year because of ocean warming and land ice melting and is 

projected to rise by 0.3–2.0 m by 2100 (Watson et al., 2015; Yi, et 

al., 2015). Therefore, the damage to coastal areas will likely be even 

more severe in the future because of the combined risk effects of 

climate change, including heavy rain and sea-level rise (Barnard et 

al. 2015; Caldwell et al. 2009; Church et al., 2013; Vitousek et al., 

2017). 

Korea is a peninsula surrounded by the sea on three sides, 

with many large cities being in coastal areas. Approximately 27.5% 

of the total population of Korea lives in coastal areas (Oh et al., 2020) 
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and 1.3 million people are forecasted to experience coastal flooding 

by 2050, and further exposed to Pacific typhoons (Kulp & Strauss, 

2019). The cost of damage to property caused by Typhoon Maemi 

(2003) and Rusa (2002) was $6.6 billion and $5.3 billion, 

respectively (Ministry of Public Safety and Security, 2015). Without 

an appropriate response to coastal flooding, increasing property loss 

and fatalities are inevitable. 

The steps for responding to disaster events, such as coastal 

flooding, can be divided into three major parts (Reguero et al., 2018): 

1) identifying areas vulnerable to hazards, 2) predicting how much 

damage will be caused by the risk, and 3) taking appropriate 

measures to reduce the risk and damage. All three processes are 

integral, but the last step must consider the efficacy of different 

strategies. The best possible coastal management measures 

considering cost and effectiveness will be essential in the future to 

optimally use limited resources (Ferreira et al., 2019). These efforts 

can proactively facilitate risk mitigation before a disaster strike 

(FEMA, 2018; Reguero et al., 2020). 

Past studies have investigated the effectiveness of measures 

and strategies to reduce the risk of coastal flooding. Reguero et al. 

(2018) quantitatively evaluated the cost-effectiveness of natural-

based solutions (NBS) and structural techniques by comparing the 

effects of reducing the risk of coastal flooding in the Gulf Coast region 

at the county level. They found that applying NBS has a risk-

reduction effect of 3.5 times compared to the investment. Ferreira et 

al. (2019) used a numerical model to compare the performance of 

beach nourishment with shelter removal and movement for reducing 

the impact of storms in 55-km coastal areas. It was found that using 
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both options together or nourishment alone could avoid almost all 

observed effects. Vousdoukas et al. (2020) considered composite 

events with respect to climate and developed analytical tools to 

optimize adaptation strategies (ASs) and assess their impacts during 

the present century. They revealed that the use of dykes could 

reduce the economic effect of European flood damage by 23.7–32.1%. 

Tiggeloven et al. (2020) proposed a framework that considered 

different flood risk factors to assess the future benefits and costs of 

structural protection measures related to coastal flooding on a global 

scale at the country level. The benefits of the application of dykes 

were calculated according to four objectives, including maintaining 

the current protection level, and all showed positive effects. Creach 

et al. (2020) compared the implementation cost and efficiency of 

different housing ASs when exposed to flood risk to mitigate the level 

of risk in La Guérinière, France. Relocation reduced the risk by 100%, 

but was expensive while protection (dykes and seawall) reduced risk 

by 26–46% with an investment of 3.8 billion €. Therefore, numerous 

studies have been conducted to compare and evaluate the 

effectiveness of strategies for mitigating and reducing the risk of 

coastal flooding, although with different spatiotemporal extents. 

However, previous studies often did not consider spatiotemporal 

downscaled analysis. A study of the smallest spatial units was carried 

out by Reguero et al. (2018) at the county level. Additionally, a 

predictive study using future climate change scenarios (Tiggeloven 

et al., 2020) at the country level did not consider downscaled spatial 

range. The impact of and vulnerability to climate change may vary 

owing to the spatiotemporal characteristics of nations, under both 

current and future climate conditions (IPCC, 2007, 2014, 2022). It is 
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thus necessary to consider spatiotemporal downscaled analysis to 

compare and evaluate the effectiveness of ASs in mitigating the risk 

of coastal flooding. 

Therefore, this study aimed to explore the risk of coastal 

flooding driven by heavy rain and sea-level rise through detailed 

spatial and temporal modeling. To answer the question of how ASs 

for coastal flooding will be effective in the face of climate change, we 

examined the effects of green space and seawalls according to the 

geographic locations and urbanization intensities of cities along the 

South Korean shorelines. 

 

2. Materials and Method 

2.1 Study area 

  

Figure 1. (a) Countries in East Asia, (b) South Korea and the study area (Coastal 

area: 1 km from the coastline, resolution:0.25km, Geodetic Datum: WGS84), Adapted 

from “Prediction of coastal flooding risk under climate change impacts in South Korea 

using machine learning algorithms” by Park & Lee, 2020, Environmental Research 
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Letters, 15.094502 (https://doi.org/10.1088/1748-9326/aba5b3) CC BY IOP 

Publishing Ltd. 

The study sites included the coastal areas of South Korea 

(33–38 °N, 125–131 °E). Following the “coastal management law” in 

the country, the spatial scope of this study was set to a 1 km inland 

buffer area from the coastline at a resolution of 250 m. The total 

length of the coastline of South Korea is 14,962.8 km and Figure 1 

shows the locations of 68 weather stations and 46 tide stations in the 

nation. 

For the past 106 years (1912–2017), the average annual 

temperature in South Korea has been 13.2 ℃ and the annual 

precipitation has been 1,237.4 mm (National Institute of 

Meteorological Science, 2018). In general, summer precipitation 

(June–August) is 710.9 mm, accounting for 54% of the annual 

precipitation. In addition, over the past 30 years, the amount of 

precipitation during summer has increased by an average of 0.11 mm 

per year. The frequency and intensity of extreme rainfall on the 

Korean Peninsula have also been gradually increasing since the mid-

1990s (Korea Meteorological Administration, 2020). 

 

2.2 Data 

To analyze the risk of coastal flooding, a total of six variables, 

including the flood trace, were used with reference to Park and Lee 

(2020) (see Table 1). These variables have diverse data types and 

resolutions and were refined to match a resolution of 250 m. In 

addition, because traces of flooding existed from 2003 to 2018 and 

the associated climatic and environmental conditions on the days 
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when flooding occurred were different for each event, a refinement 

process was performed to match the event-based time-series data. 

For example, in the case of flooding that occurred on September 1, 

2003, the daily maximum precipitation and mean tide data for that 

date were coordinated. 

 

Table 1. Data list with source and period 

Category Variable (unit) Period 
Data 

Type 
Source 

Marine Mean Tide (mm) 
2003-

2018 
Point 

*KHOA 

Meteorological 
Daily Maximum 

Precipitation (mm) 
**KMA 

Geophysical 

Elevation (m) 
2010 

Grid 

(250m) 
***ME 

Slope (degree) 

Urban area (%) 
2000, 

2009 
Polygon 

Coastal Flood Trace 
2003-

2018 
Polygon 

****LX 

Adaptation 

Strategies (ASs) 

Seawall (m) 2020 Polyline 

Greenspace (%) 2013 Polygon ***ME 

*KHOA: Korea Hydrographic and Oceanographic Agency 

(http://www.khoa.go.kr) 

**KMA: Korea Meteorological Administration 

(https://www.weather.go.kr) 

***ME: Ministry of Environment (http://me.go.kr) 

****LX: Korea Land and Geospatial Informatrix Corporation 

(https://www.lx.or.kr) 
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2.3 Comparison of machine learning (ML) techniques and 

coastal flooding risk analysis 

 
Figure 2. Research flow 

As shown in Figure 2, to predict coastal flooding potentials, 

the under-sampled dataset was divided into training (70%) and test 

(30 %) sets and analyzed using three different machine learning (ML) 

techniques: k-nearest neighbor (kNN), random forest (RF), and 

artificial neural network (ANN). The reason for under-sampling is 

that coastal flooding trace data were imbalanced, with more non-

occurrence than occurrence. Through more than 5,000 iterations of 

training per technique, the average performance obtained for the 

techniques was compared. Coastal flood risk was analyzed using the 

technique showing the best performance. The technique with the best 

performance was selected by comparing the Area under the Receiver 

operating characteristic (ROC) curve (AUC), which is mainly used to 

evaluate the performance of machine learning (Huang & Ling, 2005). 
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The probability results ranged from 0 to 1, with a higher probability 

value indicating a higher risk of flooding.  

kNN, proposed by Cover and Hart (1967), is a supervised 

learning ML algorithm that is simple and easy to implement. The 

setting of the k value that indicates proximity has a significant 

influence on the results of the algorithm (Bhavsar & Ganatra, 2012; 

Kim et al., 2012). The RF algorithm, described by Breiman (2001), 

is an ensemble learning method that constructs and operates several 

decision trees during the training period and is widely used in 

research along with ML techniques that use neural networks. ANNs 

are computational models inspired by the human brain (Yang, 2008). 

ANNs are used to model complex relationships between input and 

output information through a network of interconnected nodes to find 

patterns in the data. (Potdar & Kinnerkar, 2016). 

 
2.4 Evaluation of coastal flooding risk with ASs 

Using the ML technique that showed the highest performance, 

the effect of reducing the risk probability was computed under AS 

scenarios. As shown in Table 1, the seawall, representing the gray 

infrastructure installed to protect coastal areas, and the green space, 

representing the green infrastructure, were compared. Green space 

and seawalls play an important role in the protection of coastal 

flooding (Dong et al., 2020; Jeong et al., 2021). In this study, green 

spaces were artificially created and developed grasslands, including 

urban parks, open lawns, and riparian buffers. In previous studies, 

green infrastructure was found to be effective at reducing runoff by 

3–47%. (Zhang et al., 2012; Ahiablame & Shakya, 2016; Arjenaki et 

al., 2021; Li et al., 2021). Therefore, the same reduction range was 
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applied in this study to predict the potential of green spaces to 

mitigate surface flooding. Meanwhile, in the case of the seawalls, 

which are mainly installed along the coastline and serve to protect 

the land, a range of elevations was applied, elevating the height of the 

seawall, and the associated slope was calculated and updated in the 

prediction model.  

 

2.5 Potential coastal flooding risk depending on different 

adaptive pathways 

Table 2. Pathways according to the degree of application of adaptation strategy 

(Target of the period: RCP 8.5, 2050s) 

Adaptive 

Pathways 

Application 

of adaptation 

strategy 

Degrees of application 

Baseline No adaptation - 

Pathway 1 Greenspace 5% 10% 15% 20% 25% 30% 

Pathway 2 Seawall 1.5m 3m 4.5m 6m 7.5m 9m 

 

Among the variables used in the analysis, daily maximum 

precipitation and mean tide are time-variant factors; therefore, 

future values were projected based on carbon emission scenarios 

developed by the Intergovernmental Panel on Climate Change (IPCC). 

Using their fifth assessment report’s RCP 8.5, which represents the 

“business as usual” scenario with a high-energy demand, a long-

term precipitation trajectory was predicted by the middle of the 

century. We used five regional climate models (RCMs) provided by 

the Regional Climate Detailing Project in East Asia (CORDEX-EA: 

Coordinated Regional Downscaling Experiment, East Asia; source: 

http://cordex-ea.climate.go.kr/cordex): CCLM, HadGEM3-RA, 
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RegCM4, SNU-RCM, and WRF. Ensemble methods using multiple 

climate models allow researchers to consider the uncertainty of 

different models (Parker, 2013). Time-series tide data from 46 

stations located along the coast of Korea were used. As the observed 

mean value approximates a sine distribution, a Bayesian-influenced 

generalized additive model (GAM) was used to predict the future 

value for each station. The longitudinal data were then spatially 

interpolated onto the grid block for the input of the prediction model. 

The model was used to calculate the potential coastal flooding risk 

by extracting the space corresponding to the study site from 

interpolated data (see Figure 2). In this study, we analyzed the 

potential coastal flooding risk probability, setting the year 2050 as 

the target. We selected 2050 because this is the year of the global 

target to achieve “net zero”, meaning that net carbon emissions 

should be zero (IPCC, 2018). 

Under the forecasted future climate conditions, two adaptive 

pathways were developed based on the flood mitigation techniques 

adopted and multiple scenarios were formulated for each pathway 

according to the intensity of application (see Table 2). 1) The 

baseline pathway maintained the current level of ASs with no 

additional implementation. Pathway 1 hypothesized that green spaces 

were applied to 5–30% of the entire study area at 5% increments on 

a cell basis. Pathway 2 applied seawalls with heights ranging from 

1.5 to 9 m at 1.5 m increments. These application levels were 

determined using the standard construction cost per unit area for 

each technique. Regarding green space, the standard cost was 73,000 

₩ ($66.4 US dollars) per 1 m² according to the “national land planning 

and utilization act” in South Korea. For seawall, the cost was 500€ 
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($550 US dollars) per 1 m in height and length (Creach et al. 2020). 

In other words, 1% of the area of green space equated to 625 m² 

(considering the resolution of the analysis), with corresponding 

construction costs of $41,500. With the same amount of money, a 

seawall with an approximate length of 75m of 1 m height 

(=$41,500/$550) can be built. Thus, the construction costs of 75 × 

1 m (length × height) of seawall were equivalent to that of a 250 × 

0.3 m seawall in a unit cell. That is, a 1% increase in green space 

corresponded to a 0.3 m increase in seawall height (i.e., 5% is equal 

to 1.5 m of seawall).  

 

3. Results 

3.1 Performances of ML algorithms 

  
Figure 3. Comparison of machine learning algorithms’ performances (a: comparison 

of performances among 3 different machine learning techniques, b: ROC curve plot 

by using Random Forest)  

According to the results obtained through approximately 

5,000 runs using three different ML algorithms, the RF model 

performed the best, with an average AUC of 0.976, followed by kNN 

(0.938) and ANN (0.896) (Figure 3a). Although the differences were 
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not significant, the dispersion of AUC was the lowest when RF was 

used, implying that RF was the most stable model. Figure 3b shows 

the ROC curve plot obtained using RF. The ROC curve is suitable to 

indicate the reliability of the model, and a more curvilinear shape 

towards the left or top indicates a higher reliability of the model. 

 

3.2 Coastal flooding risk with ASs 

 

Figure 4. Comparison of coastal flooding risk probability depending on consideration 

of two adaptation strategies under current level 

The current level of coastal flood risk was probability 

calculated using the best-performing algorithm, RF, and the change 

in risk probability was analyzed when two spatially distributed ASs 

were applied (Figure 4). The average risk probability was 0.117 in 

the absence of ASs. When green spaces and seawalls were applied 

at the current level, the average risk probabilities were 0.066 and 

0.056, respectively. Finally, when both were applied together, the 

average risk probability was 0.051. There was no significant 
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difference in the average risk probability between the two strategies, 

applied separately or together.  

Despite the insignificant reduction rates of the strategies 

applied, the spatial analysis demonstrated their varying performances 

by geographic location. Figures 5 a, b, and c show the mapping results 

of the coastal flood risk probability when AS was not applied (a), 

when AS was applied (b), and when the risk probability was reduced 

by more than 0.9 (c). The blue dots in Figure 5 c represent the points 

where coastal flooding occurred, as shown in Table 1. Although the 

average reduction in risk probability may seem low for the entire 

considered area (below 1%), regions disproportionally benefitted 

from AS; areas where the actual flood occurred particularly 

experienced a greater reduction in risk probability than other areas. 

Thus, it is important to use an adaptation strategy to reduce coastal 

flooding risk. 

 

   
Figure 5. Comparison of coastal flooding risk probability spatially depending on 

consideration of adaptation strategies under current level (a: without adaptation 

strategies, b: with both adaptation strategies, c: reduced to a probability of more 

than 0.9, blue dots are the points where coastal flooding occurred from 2003 to 2018) 
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3.3 Potential coastal flooding risk according to different 

adaptive pathways 

 
Figure 6. Coastal flooding risk probability according to the degree of application of 

each adaptation strategy in the three adaptive pathways (RCP 8.5, 2050s) 

As shown in Figure 6, the results of applying varying 

intensities of ASs in the two pathways revealed that green spaces 

generally have a better reduction effect than seawalls. The effect of 

green spaces improved slightly as the coverage area increased, and 

the effect was noticeable when it was expanded from 25% to 30%. 

However, for seawalls, the average risk probability did not change 

significantly when the height was increased, even though the 

frequency of high extreme values tended to gradually decrease. 

Ultimately, seawalls were less effective than green space, but they 

reduced the degree of risk to some extent for high-risk areas. 

Nevertheless, seawalls are an effective and economical 

structural strategy that are primarily considered for reducing the risk 

of coastal disasters (Duvat, 2013) and can be used in combination 

with green infrastructure when federal and local budgets are 

restrained. A prioritized approach should be taken, implementing 
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green spaces in the most vulnerable areas while applying seawalls as 

supplemental systems in moderate- or low-risk areas.  

Next, to identify the spatial differences in risk probability, the 

spatial distribution according to the AS application scenario, targeting 

2050, was compared for five different RCMs within the RCP 8.5 

climate change scenario to determine the probability of potential 

coastal flood risk (Figure 7). When no ASs were applied until 2050, 

HadGEM3RA and GRIMs showed a higher coastal flooding risk than 

the other three RCMs. This is because the result of the projected 

precipitation slightly differed according to the difference in the 

statistical techniques with which the RCMs are created (Déqué, 2007). 

Therefore, to consider the uncertainty of each model, the results of 

various models were assembled and the combined results were 

compared. As shown in Figure 6. considering the ensemble of 

baseline, pathways 1, and 2, green space (30%) application showed 

a greatly reduced risk spatial distribution than seawall (9 m) 

application.  
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Figure 7. Spatial distribution of coastal flooding risk probability using five different 

RCMs at 2050s of RCP 8.5 (Left: comparison of five RCMs without adaptation 

strategy, Right: comparison of ensemble with each adaptation strategy) 
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4. Discussion 

4.1 Effect of AS according to spatial characteristics 

Considering that the general opinion in climate change 

research is that the impact and vulnerability of climate change can 

vary greatly depending on the regional characteristics of climate 

change adaptation (IPCC, 2007, 2013, 2020), it is important to 

identify the differences in risk and vulnerability according to spatial 

characteristics. Therefore, a comparison of risk probabilities 

according to geographic and environmental differences was 

conducted to determine the differences in the application of ASs. 

 

4.1.1 Differences in risk according to coastal geographical 

characteristics 

 
Figure 8. Regional difference among three coasts (a: three coasts of South Korea, b: 

coastal flooding risk probability among 3 coasts without and with two adaptation 

strategies), Adapted from “Prediction of coastal flooding risk under climate change 

impacts in South Korea using machine learning algorithms” by Park & Lee, 
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2020, Environmental Research Letters, 15.094502 (https://doi.org/10.1088/1748-

9326/aba5b3) CC BY IOP Publishing Ltd 

In the case of South Korea, a peninsula-shaped country, the 

geographical characteristics of the east, west, and south coasts differ. 

The east coast has a monotonous coastline with a deep-water depth, 

while the west coast has substantial difference in tides owing to the 

low land and water depth. On the southern coast, there are numerous 

large and small islands with complex coastlines. (Park & Lee, 2020) 

which respond differently to flooding (see Figure 8). When AS was 

not applied, the risk probability of the southern coastal region was 

found to be the highest, on average. The probability between the 25th 

and 75th percentiles ranged from 0.09 to 0.25, a wider distribution 

than that for the other coasts. The southern coastline is characterized 

by an irregular pattern of low-lying lands and a high density of 

islands (see Figure 8a). The region is the most vulnerable to flooding 

when tropical storms pass over the south coast during the typhoon 

season and reach landfall from June to September. However, when 

two ASs (green space and seawall) were applied, the probability 

decreased, with comparable interquartile ranges across the three 

regions. It is important to note that the high extremes of risk 

probability significantly reduced on applying ASs, demonstrating 

their importance. 
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4.1.2 Differences in risk by urbanization rate 

 
Figure 9. Coastal flooding risk probability according to the urbanized area ratio 

change and whether adaptation strategy is applied 

Figure 9 shows the change in the distribution of risk 

probability according to the urbanization ratio and AS type. Except 

for regions where the urban area ratio was less than 20%, the risk 

probability increased with the urban area ratio regardless of whether 

an AS was applied. It should be noted that when AS was not applied, 

the risk probability increased substantially as the urban area 

increased. On average, the risk probability with more than 80% 

urbanization was 2.5 times greater than that with 0 to 20% 

urbanization.  However, this increase can be mitigated by the 

application of ASs. Comparatively, when comparing the risk 

probabilities depending on whether two ASs were applied, if only one 

was applied, green spaces had a greater mitigation effect than 

seawalls. Importantly, when these two techniques were applied 

together, the reduction effect increased as the ratio of the urban area 

increased; the slope of the baseline scenario (red) was steeper than 

that of the combined strategy (purple) and the difference between 
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them increased as the area of an urban area increased. This indicates 

the importance of investments in ASs in highly urbanized areas. 

In summary, Figure 9 implies that the risk in urban areas with 

high population density and socioeconomic activity may increase in 

the future. According to the forecast that more than one billion people 

will live in low-lying coastal zones by 2050 (IPCC, 2019), it is 

imperative to prepare for this.  

 

4.2 Importance of nature-based solutions as ASs 

To respond to the climate crisis, efforts by the international 

community to achieve carbon neutrality to not exceed a global 

temperature increase of 2 °C are being accelerated. However, despite 

the aim to achieve a carbon-neutral society, the increasing 

frequency and intensity of natural disasters due to rising global 

temperatures driven by emitted and accumulated carbon will continue 

and efforts must be made to adapt and respond to these. Therefore, 

climate change ASs are as important as reducing and absorbing 

carbon emissions.  

NBSs have been emphasized for achieving goals in 

international communities, such as the Sendai Framework for 

Disaster Risk Reduction, Sustainable Development Goals (SDGs), and 

Paris Climate Agreement (Reguero et al., 2020). In particular, the 

importance and necessity of ecosystem-based ASs, such as green 

or natural infrastructure, have been emphasized among potential 

strategies to reduce flooding risk in coastal areas (Cheong et al., 

2013; Spalding et al., 2014; World Bank, 2018; Jongman, 2018; 

Reguero et al. 2018; 2020; Ferreira et al. 2019; Jeong et al., 2021), 
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which is consistent with the findings of this study. In addition, NBSs 

can play an important role in realizing carbon neutrality. As they are 

based on nature, NBSs include ecological elements, such as 

vegetation and soil, which have the function of absorbing carbon 

(IUCN, 2012). Therefore, investments in NBSs are of utmost 

importance for increasing the resilience of urban spaces to climate 

change. 

 

5. Conclusion 

This study predicts areas at high risk of flooding in coastal 

regions of South Korea because of climate change, which will likely 

cause extreme rainfall and sea-level rise, using spatial and temporal 

downscaling of future scenario values. Changes in risk probability 

according to the application or non-application of ASs were 

confirmed. To calculate the coastal flooding risk probability, the RF, 

which showed excellent performance, was utilized by comparing the 

performances of three ML techniques (RF, ANN, and kNN). To 

predict the potential coastal flooding risk probability in the future, the 

precipitation data were projected through an ensemble of five RCMs 

of the RCP 8.5 scenario provided by IPCC AR5. In addition, using 

real-time tide data from 46 tide stations on the coast of South Korea, 

the spatial and temporal data were projected by the Bayesian-

influenced GAM. 

In this study, “nature” based green spaces and “gray-

infrastructure” based seawalls, which are representative structural 

approaches to coastal flooding, were used as ASs. There was a clear 

difference in the risk probability distribution when ASs were applied 
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or not applied and the effects of green space and seawall did not differ 

significantly (see Figure 4). However, the effects of the two ASs on 

the future potential risk probability were somewhat different, and 

when 2050 was predicted as a target, green spaces were slightly 

more effective than seawalls (see Figure 6). 

However, this study had a limitation in that it did not utilize 

more diverse ASs. Several structural measures have been proposed 

to reduce the risk of coastal flooding, including sand nourishment, 

reefs, and dykes (Singhvi et al., 2022). Nevertheless, the importance 

of ecosystem based NBS strategies was confirmed by utilizing the 

two contrasting strategies. In addition, this study only considered the 

effects of rainfall and sea-level changes as causes of coastal flooding. 

As in previous studies that considered coastal flooding through the 

interaction between rainfall and sea level (Eilander et al., 2020; Park 

& Lee, 2020), in coastal areas, like inland areas, inundation caused 

by heavy rains is just as important as flooding by storms and waves. 

However, this study has several notable aspects. The impact 

of climate change differed spatially and different adaptation measures 

are required according to the characteristics of the region. Therefore, 

it is necessary to consider the characteristic differences of the coasts 

of Korea because there are differences in the geographical 

characteristics of the east, west, and south coasts and between urban 

and non-urban areas. As a result of comparing the coastal flooding 

risk probability of the east and west coasts of Korea, the risk 

probability of the south coast was slightly greater than that of the 

east and west coasts, with a comparatively wider distribution. This 

may be because of the geographical characteristics of the southern 

coast. Moreover, the risk probability increased as the urbanization 
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rate increased. This means that a climate change response strategy 

is necessary for coastal cities, considering that the population and 

socioeconomic activities will increase in urban areas in the future. 
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Chapter 5. Conclusion 
 

Climate change is an urgent threat to our generation. Natural 

hazards have become more unpredictable, occurring more frequently 

and with greater force, due to climate change (Berz et al., 2001; 

Kundzewicz et al., 2014; UNISDR, 2015). Natural disasters in Korea 

are mostly caused by meteorological events, damage due to hazards 

such as flooding, landslide in Korea will increase further due to 

climate change in the future. Therefore, risk management, which 

analyzes and evaluates hazard risk related with heavy rainfall such 

as flooding and landslides, is needed to prepare for the long term. 

Also, it is very important what measures should be taken to reduce 

risk and damage in response to natural disasters caused by climate 

change. 

Firstly, South Korea is a peninsula with several large cities 

situated along the coast and 27.5% of its total population living in 

coastal areas (Oh et al., 2020). Thus, it will be more vulnerable in 

the future to predicted climate change impacts such as sea level rise 

and extreme weather events. We evaluated the future probability of 

coastal flooding events-based ML algorithm, namely kNN by using 

six variables. A risk probability map was developed, and to evaluate 

future coastal flood risks due to climate change, we estimated the 

future risk probability using forecasted tidal and future rainfall. As a 

result, the risk probability increased over time and the risk 

probability increased in the southern coastal areas more so than in 

the eastern or western coastal areas. In this study, there are three 

significant implications: 1) kNN classifier were performed slightly 

better than the other methods (RF, SVM), 2) rainfall was identified 
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as a significant factor in this study, 3) future coastal flood risk 

analysis was analyzed using ensemble methods from different RCMs 

for considering future uncertainty. 

Along with coastal flooding, landslides are a major cause of 

serious damage to life and property worldwide (Malamud et al., 2004; 

Gomez & Kavzoglu, 2005; Lee & Pradhan, 2007; Garcia-Rodriguez 

et al., 2008; Yilmaz, 2010; Pham et al., 2020). In the future, when the 

impacts of climate change become more severe, sudden heavy rains 

could cause more damage due to landslides and flooding (Yılmaz, 

2009). We evaluated landslide susceptibility in the metropolitan area 

that includes Seoul, South Korea. Through the multi-collinearity, the 

factor ‘slope’ was removed for landslide susceptibility assessment 

(LSA) because of high multi-collinearity. The LSA was analyzed 

using five different ML algorithms, then to predict future landslide 

susceptibility, we used five different RCMs for considering future 

uncertainties. The landslide susceptibility generally increased over 

time. In this study, there are three significant implications: 1) To 

assess landslide susceptibility, RF had the best performance. 2) it is 

necessary to reduce the landslide susceptibility in forest areas, based 

on an analysis of changes in landslide susceptibility over the target 

period (2030s, 2050s, and 2080s) and land cover types (urban, 

agricultural, forest, and grassland), 3) urban areas were more 

susceptible than other land-cover types because they were 

distributed around the forest areas that were estimated as more 

susceptible to landslides. 

The application of an appropriate adaptation strategy to the 

potential damage of coastal inundation that is further aggravated by 

the effects of climate change is a very important part of integrated 
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coastal management. Using machine learning techniques, predict 

areas with high potential for coastal flooding in Korea’s coastal 

waters due to future climate changes such as extreme rainfall and 

sea level rise, and check changes in coastal flooding risk probability 

due to application of adaptation strategies (green areas and 

breakwaters) did Four important findings from the process were as 

follows. 1) There was a clear difference in the risk probability 

distribution when the adaptation strategy was not applied and when 

it was applied. 2) The effectiveness of reducing potential future 

flooding risk depends on the choice of adaptation strategy, 

geographical characteristics, and degree of urbanization. It shows 

that green spaces are slightly more effective than seawalls when 

forecasting the future 2050. This indicates the importance of nature-

based strategies highlighted in previous studies. 3) It emphasizes the 

need to prepare adaptation measures according to regional 

characteristics to the effects of climate change. In the case of Korea, 

it has independent geophysical and climatic characteristics because 

it is surrounded by the sea on three sides. Among the three sides, 

the southern coast was found to have a higher risk of coastal flooding 

than the east and west coasts. 4) The higher the urbanization rate, 

the higher the risk probability. This suggests that a climate change 

response strategy for coastal cities is necessary because the 

population and socioeconomic activities of coastal cities will increase 

in the future. 

Summarizing the three studies, the risks of disasters that 

may occur due to the complex effects of climate change were 

analyzed and strategies for reducing the risks were evaluated. As a 

method commonly used in the process, machine learning techniques 
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are increasingly useful in various fields in analyzing and evaluating 

phenomena that are difficult to explain due to the complexity of social 

and economic systems including the environment and the 

accumulation of vast amounts of data. However, there are still areas 

that require explanation and understanding in securing reliability for 

analysis and verifying the model. In particular, the reliability of 

climate change-related models as in this study is more important 

because uncertainty is always present. Therefore, in order to secure 

the reliability of techniques such as machine learning, efforts must 

be made to reduce uncertainty from data collection to analysis. 

Therefore, in this study, two processes were performed to secure 

model uncertainty and reliability: 1) the uncertainty of the model was 

considered by comparing various models, and 2) a myriad of running 

times to consider the number of different cases. 

In addition, this study focuses on the relationship between 

climate change and disasters. Looking at the process of 'prevention-

preparation-response-recovery' applied to South Korea's traditional 

disaster management, the scope of the study covers from ‘prevention’ 

to ‘response’. Although the first three steps are important, the 

recovery process is also very important, and the most necessary 

discussion in this process is related to risk financing and insurance. 

It is necessary for many international agreements and initiatives such 

as the Sendai Framework for Disaster Risk Reduction, the 

Sustainable Development Goals (SDGs), or the Paris Climate 

Agreement (Reguero et al., 2020).  

Since damage caused by massive natural disasters, such as 

floods, is difficult to collateralize in private insurance, the 

development and sales of related insurance products have not been 
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active. if natural disasters occur more frequently in the future, 

resulting in a continuous increase in physical and human damage, the 

stability of the national economy and people’s lives must be planned 

through insurance coverage. For instance, parametric insurance can 

be introduced, which pays out a flat insurance amount upon the 

occurrence of a certain trigger. Parametric insurance is a form of 

insurance-linked security, such as collateralized reinsurance or 

catastrophe bond, which was developed nearly 20 years ago to cover 

large risks, such as massive natural disasters, to which conventional 

insurance alone cannot respond. Therefore, if parametric insurance 

would be used properly, private insurance can help respond to risks 

that could not be covered in the past, including floods. Furthermore, 

from the standpoint of insurance subscribers, losses caused by floods 

can be compensated for to a certain extent. In this respect, product 

operation in terms of policies warrants examination in the future. 

However, because parametric insurances do not cover actual losses, 

the so-called protection gap cannot be avoided, and the subscribers 

cannot be fully compensated for such losses. 
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머신러닝 기법을 활용한 기후변화 영향에 따른 
재해 리스크 평가 

 
박 상 진 

서울대학교 환경대학원 협동과정조경학 및  

대학원 융합전공 스마트시티 글로벌 융합 

논문지도교수: 이 동 근 

 

기후 변화는 우리 세대에게 시급한 위협이다. 자연 재해는 기후 

변화로 인해 더 잦은 빈도와 강력하게 발생하고 있어 예측불가성이 

커져가고 있다. 특히, 한국의 자연재해는 대부분 기상 현상으로 인해 

발생하는데, 지난 10 년간 재해로 인한 전체 피해는 주로 태풍(49%)과 

호우(40%)에 기인하였다. 따라서 장기적으로 대비하기 위해서는 홍수, 

산사태 등 호우와 관련된 위험을 분석하고 평가하는 위험관리가 

필요하다.  

따라서 본 논문의 주요 연구질문은 다음과 같다: 1) 기후변화로 

인한 복잡한 상황에서 다양한 요인을 고려하여 미래의 잠재적 위험을 

어떻게 예측할 것인가, 2) 이러한 위험을 줄이기 위해 어떤 노력을 하는 

것이 지속가능한가?. 먼저 연안 홍수, 산사태 등 복합적 영향의 미래 

위험도를 평가하기 위해 첫째, 최근 연구에서 널리 활용되고 있는 다중 

머신러닝(ML) 알고리즘을 확률론적 접근 방식으로 활용하여 현재의 

위험도를 분석하였다. 다양한 RCP 기후변화 시나리오 및 지역 기후 

모델에 따른 예측 강우량을 고려하여 미래 위험을 추정했습니다. 둘째, 

기후변화 영향으로 인한 재난위험 대응을 위한 적응전략의 실효성을 

평가하기 위하여, 적응전략으로 중요한 역할을 하는 녹지, 방파제 등 



 

８７ 
 

구조적 대책의 효과성과 지속가능성을 여러 적응경로로 나눠 연안침수에 

대한 위험저감을 평가하였다.  

연구의 결과는 미래의 위험 지역을 식별하고 위험 관리를 위한 

의사 결정 과정, 그리고 토지 이용 계획 및 의사 결정 프로세스를 

포함한 재난 감소 및 관리 조치에 대해 지원 가능할 것이다.  
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