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Abstract

Study on Loss Surface of Deep Neural
Networks and Several Applications of

Deep Learning

Yeachan Park

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this thesis, we study the loss surface of deep neural networks. Does the loss func-

tion of deep neural network have no bad local minimum like the convex function?

Although it is well known for piece-wise linear activations, not much is known for

the general smooth activations. We explore that a bad local minimum also exists

for general smooth activations. In addition, we characterize the types of such lo-

cal minima. This provides a partial explanation for the understanding of the loss

surface of deep neural networks. Additionally, we present several applications of

deep neural networks in learning theory, private machine learning, and computer

vision.
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Chapter 1

Introduction

“There is Nothing More Practical Than A Good Theory.”

- Kurt Lewin,

Modern machine learning with neural networks as shown remarkable results in

many real-world applications. However, little is known about the theoretical foun-

dation of how the neural network works. In particular, most of modern machine

learning models rely on gradient descent-based optimization algorithm which min-

imize the difference between the output of neural network and the target function.

In this thesis, we present and discuss the mathematical foundation of deep neu-

ral network. Generally, universal approximation theorems [17, 45, 57, 60] state

that deep neural network can approximate any continuous functions. Thanks to

the universal approximation property, deep neural networks can approximate any

continuous function, and gradient-based optimization algorithms such as stochastic

gradient descent (SGD), can realize this. For convex loss function, we can guarantee

that SGD can converge to the global minimum of the loss [79]. However, since the
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output and the loss of the deep neural network is highly non-convex, such conver-

gence may not be guaranteed anymore. In practice, since the loss function is very

non-convex, such loss surface may have local minima which hinder the convergence

to the global minimum. Therefore, several methods enabling stable convergence to

the global minimum without falling into the local minimum are studied.

However, in this context, an important fundamental question arises. Does the bad

local minimum really exist? Here, a bad minimum means minimum which is not

global. A bad minimum is also called sub-optimal, spurious, harmful, etc. Not much

is known about the existence of a local minimum in deep neural networks. We in-

vestigate the existence of a bad local minimum in deep neural network with smooth

activation functions. We present the results in Chapter 2 and summarize the key

ingredients below.

• For partially linear activation, we show that a local minimum exists in 2-layer

neural network.

• For general smooth activation and small sample size (N = 1, 2), we show that

a bad local minimum exists in the 2-layer narrow network.

• For general smooth activation with some assumptions, we show that a bad

non-attracting local minimum exists in the 2-layer neural network.

• For general smooth activation with some additional assumptions, we show

that a bad non-attracting local minimum exists in the 3-layer neural network.

In the following chapters, we present several applications of deep neural networks.

In Chapter 3, we present a novel self-knowledge distillation technique using dropout.

In Chapter 4, we present a novel membership inference attack methods agains ob-

ject detection models.
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In Chapter 5, we present a novel single image de-raining models to effectively re-

move rain streaks from the rainy images.

3



Chapter 2

Existence of local minimum in

neural network

2.1 Introduction

Modern machine learning with neural networks as shown remarkable results in

many real-world applications. However, little is known about the theoretical foun-

dation of how the neural network works. In particular, most of modern machine

learning models rely on gradient descent-based optimization algorithm which min-

imize the difference between the output of neural network and the target function.

In this context, understanding of the loss surface of neural networks is of funda-

mental importance.

The question of the existence of a local minimum is also very important, because

it provides whether the gradient descent-based algorithms can stably reach the

global minimum without falling into the local minimum. For convex loss function,

it is widely known that the loss surface has a unique global minimum. For general
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neural network, it is not easy to investigate the loss surface because of its strong

non-convexity.

Several works suggest that there exists no bad local minimum in deep linear net-

work. Kawaguchi [53] and Lu & Kawaguchi [71] show that there are only global

minima and saddle point in deep linear network with squared error. Zhou & Liang

[134] provides a analytic formulation of critical points in deep linear network. Lau-

rent & von Brecht show that every local minimum of deep linear network is global

under any differentiable convex loss function.

On the other hand, existence of a bad local minimum has reported in deep non-

linear network. Yun et al. [124] and He et al. [39] show that a bad local minimum

exists in the neural network with piece-wise linear activations. For smooth activa-

tion functions, Petzka et al. [84] and Ding et al. [22] show that a bad local minimum

exists in the deep neural network with sigmoid activation functions. However, ex-

istence of a bad local minimum for general smooth activations remains unclear.

In this context, we find that a bad local minimum exists in the 2-layer neural

network with several smooth activation functions that satisfy some conditions. In

addition, we show that the found local minimum is of non-attracting type.

We organize this chapter as follows. We first show that we can construct a local

minimum in deep neural network with partially linear activation by borrowing pa-

rameters from the linear model. Next, we show that the borrowing from the linear

model technique is not applicable to activation without linearity. That is, the bor-

rowed parameters may not be a local minimum for the general smooth activation.

To study the existence of the local minimum in the general smooth activation,

we explore the case with small the sample size N . For N = 1, we show that no

local minimum exits in the shallow 1 − 1 − 1 network. Moreover, for N = 2, we
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also show that no local minimum exists in the shallow 1 − 1 − 1 network. Then

for N = 7 and L2 loss, we find that there exists a strict local minimum in the

shallow 1 − 1 − 1 network for generic X. We extend this local minimum to the

1−d1−1 network using local minimum embedding. Because of the property of the

local minimum embedding, we can conclude that this constructed local minimum

is non-attracting. Moreover, for N ≥ 29, we find that shallow 3-layer 1− 1− 1− 1

network has a strict a local minimum for generic X. Similar to 2-layer network, we

extend this local minimum to the wide 1−d1−d2−1 network using local minimum

embedding.

2.2 Local Minima and Deep Neural Network

2.2.1 Notation and Model

We begin by defining the notation. Let L be a the number of layers. Let (X,Y ) be

the training dataset with X ∈ RdX×N , and Y ∈ RdY ×N , where N is the number of

samples. dX and dY denote the dimension of the inputs and outputs, respectively.

d1, d2, ...dL−1 denote the width of the i-th layer.

2.2.2 Local Minima and Deep Linear Network

First, Goodfellow et al. [32] remark that Baldi & Hornik [3] show that every local

minimum is a global minimum for shallow linear networks.

Proposition 2.1 (Baldi & Hornik [3]). Consider shallow linear network with L =

2:

F (W,X) =W2W1X.
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Assume XXT and XY T are invertible. Assume Σ := Y XT (XXT )−1XY T has dY

distinct eigenvalues and d1 < dX = dY . Every local minimum is a global minimum

for the L2 loss function L(W ).

Kawaguchi [53] extends this result by showing that every local minimum is a

global minimum in the deep linear network.

Proposition 2.2 (Kawaguchi [53]). Consider shallow linear network with layer L:

F (W,X) =WLWL−1...W2W1X.

Assume XXT and XY T are of full rank with dY ≤ dX and Σ := Y XT (XXT )−1XY T

has dY distinct eigenvalues. Then every local minimum is a global minimum for

the L2 loss function L(W ).

Lu & Kawaguchi [71] advance the result by relaxing the assumption.

Proposition 2.3 (Lu & Kawaguchi [71]). Consider shallow linear network with

layer L:

F (W,X) =WLWL−1...W2W1X.

Assume X and Y are full rank. Then every local minimum is a global minimum

the L2 loss function L(W ).

Laurent & Brecht [59] show that every local minimum is global even for any

convex loss function.

Proposition 2.4 (Laurent & Brecht [59]). Consider shallow linear network with

layer L:

F (W,X) =WLWL−1...W2W1X.
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and the loss function

L(W ) =
1

N

N∑
i=1

ℓ(F (W,xi), yi).

Suppose ℓ is convex and differentiable and max{dX , dY } ≤ minN−1
i=1 di. Then every

local minimum is a global minimum.

2.2.3 Local Minima and Deep Neural Network with piece-wise

linear activations

So far, it is known that a bad (not global) local minimum does not exist in the

linear network. On the other hand, the opposite result is known in deep neural

network with non-linear activations. We introduce several results on existence of

bad local minima in neural networks with piece-wise linear activations.

Yun et al. [124] shows that bad local minima exist in the deep nueral network with

two-piece linear activation.

Proposition 2.5 (Yun et al. [124]). Consider the 1-hidden layer neural network

with L2 loss:

ŷ =W2h(W1X + b11
T
N ) + b21

T
N , ℓ(W, b) =

1

2
∥ŷ − Y ∥2F (2.1)

where h is a nonlinear activation function:

hs+,s−(x) = max(s+x, 0) + min(s−x, 0) (2.2)

where s+, s− ≥ 0 and s+ ̸= s−. Suppose that the following conditions hold:

(1) dY = 1 and linear models RX cannot perfectly fit Y .

(2) All data points xi’s are distinct

8



(3) The hidden layer has at least width 2: d1 ≥ 2.

Then there exists infinitely many spurious local minima and whose losses are same

as linear model.

This indicates that a small non-linearity including ReLU, can create a bad

local minimum. Since two-piece linear activation functions, including ReLU, are

used very widely, this indicates that most of the deep neural networks can have

bad local minima.

He et al. [39] generalize the results of Yun et al. [124] by improving two-piece linear

to piece-wise linear activation function, 2-layer neural network to general N -layer

deep neural network, and L2 loss to convex loss function.

Proposition 2.6 (He et al. [39]). Consider a deep neural network with piecewise

linear activation σ(x) and L layers:

F (j) = σ(WjF
(j−1) + bj1

T
N ), j = 1, 2, ..., L− 1

F (L) =WLF
(L−1) + bL1

T
N .

Suppose that the following assumptions hold:

(1) The training data cannot be fit by a linear model.

(2) All data points are distinct.

(3) di > dY for i = 1, ..., N − 1.

(4) For piece-wise linear activation functions, there exists some turning point that

sum of the slops on the two slides does not equal to 0.

Then there exists infinitely many bad local minima under any differentiable convex

loss.

9



2.2.4 Local Minima and Deep Neural Network with smooth acti-

vations

Although numerous researches reveal the existence of bad local minima in deep

neural networks with piece-wise linear activations, but not much is yet known for

general smooth activation functions. Since neural networks with various smooth

activations other than ReLU are currently widely used, the study of the existence

of bad local minimum for smooth activations is of great importance. Some results

are known for sigmoid activations where sigmoid is defined as:

s(x) =
1

1 + e−x
.

We classify the local minima into two types.

Definition 2.7 (Sprinkhuizen-Kuyper & Boers [94]). Let L : Rn → R be a dif-

ferentiable loss function. Let R be a connected component of local minima of L(w)

such that ∀w ∈ R, w is a local minimum and with value L(w) = c.

• R is called an attracting region of local minima, if there is a neighborhood U

of R such that every non-increasing continuous path w(t) in U , which starts

from w(0) ∈ R, end in R.

• R is called an non-attracting region of local minima, if every neighborhood U

of R contains a non-increasing continuous path w(t) in U , which starts from

w(0) ∈ R, end in a point w(1) with L(w(1)) < c.

Petzka et al. [84] shows that a non-attracting region of bad local minimum exist

in the deep neural network with sigmoid activations.
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Proposition 2.8 (Petzka et al. [84]). Consider a deep neural network with sigmoid

activation σ(x) and L layers:

F (j) = σ(WjF
(j−1) + bj1

T
N ), j = 1, 2, ..., L− 1 (2.3)

F (L) =WLF
(L−1) + bL1

T
N . (2.4)

Then, there exists a dataset (X,Y ) such that L2 loss function has a non-attracting

region of local minima.

Proposition 2.9 (Ding et al. [22]). Consider 2-layer network with d0 = d2 = 1,

N ≥ 7 and sigmoid activation. Then for generic X ∈ RN , there exists a positive

measure of Y ∈ RN such that the L2 loss function of the network has a bad local

minimum.

2.2.5 Local Valley and Deep Neural Network

Definition 2.10 (Spurious Valley). For c ∈ R, define the sub-level set of L as

ΩL(c) = {θ ∈ Θ : L(θ) ≤ c}. We define a spurious valley as a path-connected

component of a sub-level set ΩL(c) which does not contain a global minimum of the

loss L(θ)

Lemma 2.11. For any initial parameter θ0 ∈ Θ, suppose there exists a continuous

path θt ∈ Θ, t ∈ [0, 1] such that

• θ1 ∈ argminL(θ)

• The function t 7→ L(θt) is non-increasing.

Then this is implies that there is no spurious valley.
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Proposition 2.12 (Venturi et al. [101]). For any continuous function σ and

r.v. X with finite upper intrinsic dimension dim∗(σ,X), For one-hidden-layer NN

Φ(x; θ) = Uσ(Wx), θ = (U,W ) ∈ (Rm×p,Rp×n), the empirical loss function

L(θ) =
1

N

N∑
i=1

ℓ(Φ(x; θ), yi). (2.5)

admits no spurious valleys in the over-parametrized regime p ≥ dim∗(σ,X) .

Consider N data point {(xi, yi)}Ni=1 ∈ Rn×Rm, then we already have dim∗(σ,X) ≤

dim(L2
X) ≤ N.

Proposition 2.13 (Nguyen [81]). Consider a deep neural network with smooth

linear activation σ(x) and L layers:

F (j) = σ(WjF
(j−1) + bj1

T
N ), j = 1, 2, ..., L− 1 (2.6)

F (L) =WLF
(L−1) + bL1

T
N . (2.7)

Suppose σ(x) is strictly increasing and σ(R) = R. Assume dX ≥ N,, d1 > d2 >

... > dL, and rank(X) = N , then every sub-level set is connected.

2.3 Existence of local minimum for partially linear ac-

tivations

Consider the problem :

X ∈ RdX×N , Y ∈ RdY ×N , (2.8)

12



and define X̃i =

Xi

1

.
Consider the 2-layer neural network for [W1, b1,W2, b2] ∈ [Rd1×dX ,Rd1 ,RdY ×d1 ,RdY ] :

Ŷi =W2σ(W1X + b1) + b2, (2.9)

F1 = σ(W1X + b1), F2 =W2σ(W1X + b1) + b2. (2.10)

Let W = [W1, b1,W2, b2] be weights of 2-layer network. Then define the loss

function of 2-layer network R(W ) as

R(W ) = L([W1, b1,W2, b2]) =
∑
i

ℓ(Yi, F2([W1, b1,W2, b2])).

Assume σ is smooth, one-to-one and strictly increasing function.

Define ℓ(Y, ·) be a convex loss function, and ℓ̄ = ℓ◦σ Let W̄ be a local minimizer

of

Rlinear(W ) =
∑
i

ℓ̄(σ−1(Yi),W

Xi

1

) = ∑
i

ℓ(Yi, σ(W

Xi

1

)), (2.11)

and define Flinear(W ) and Ȳ as

Flinear(W ) =W

Xi

1

 , Ȳ = σ(W̄

Xi

1

).

First, we show that if the activation function has some linearity, then we can

construct a local minimum by borrowing local minima from the linear model.
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Proposition 2.14. Suppose σ is partially linear with σ(x) = cx + d on a open

interval (α, β). Then R(W ) has a local minimum.

(Proof) Consider the linear minimization problem

∑
i

ℓ(Yi,W

Xi

1

). (2.12)

Let W̄ be a linear minimizer of the above problem.

Let Ȳ ∈ RdY be the output of linear model and M,m be the maximum and

minimum value of {Ȳi}Ni=1

Ȳi = W̄

Xi

1


M := max

i
max(Ȳi)

m := min
i

min(Ȳi).

Then we can find f(x) = px+ q, p ̸= 0, p, q ∈ R such that,

f(M), f(m) ∈ (α, β).

Let define the weight Ŵ = [Ŵ1, b̂1, Ŵ2, b̂2] of 2-layer network as :

Ŵ1 =

f(W̄[1:dX ])

0

 , b̂1 =
f([W̄ ][dX+1])

0

 (2.13)

Ŵ2 =

[
(cp)−1IdY 0

]
, b̂2 = (−p−1q − (cp)−1d)1. (2.14)

Since Ŵ1Xi + b̂1 = f(Ȳi) ∈ [α, β] , we have σ(Ŵ1Xi + b̂1) = cf(Ȳi) + d. Then we

14



claim Ŵ is the local minimum. To show this, we introduce the small disturbance

δW = (δw1 , δb1 , δw2 , δb2). Then, since (Ŵ1 + δW1)Xi + b̂1 + δb1 ∈ (α, β),

σ((Ŵ1 + δW1)Xi + b̂1 + δb1) = σ(

pȲi + q1dY

0

+ δW1Xi + δb1) = c(

pȲi + q1dY

0

+ δW1Xi + δb1) + d

F2 = (Ŵ2 + δW2)(

cpȲi + cq1dY

0

+ cδW1Xi + cδb1 + d) + δb2

= Ȳi + [p−1δW1Xi + p−1δb1 ][:dY ] + δW2([cpȲi + cq1dY ][:dY ]cδb1 + d) + cδW2δW1Xi + δb2

= Ȳi + δ

Xi

1

 (2.15)

where δ = [δ1, δ2] and

δ1 = p−1δW1 [:,:dY ] + cδW2δW1 (2.16)

δ2 = p−1δb1 [:,:dY ] + δW2([cpȲi + cq1dY ][:dY ]cδb1 + d) + δb2 . (2.17)

Because, R(Ŵ ) = Rlinear(W̄ ) < Rlinear(W̄ + δ) = R(Ŵ + δW ), we can conclude

that Ŵ is the local minimum. □

Proposition 2.15. Let denote the Affine transformation of σ as σa(x) = cσ(x)+d.

Then consider the linear minimization model with σa

Ralinear(W ) =
∑
i

ℓ̄a((σa)−1(Yi),W

Xi

1

) = ∑
i

ℓ(Yi, σ
a(W

Xi

1

)) (2.18)

where ℓ̄a = ℓ ◦ σa. Let W̄ a be the local minimizer of Ralinear(W ).

15



Then define Ŵ a = [Ŵ a
1 , b̂

a
1, Ŵ

a
2 , b̂

a
2] as

Ŵ a
1 =

W̄ a
[1:dX ]

0

 , b̂a1 =

[W̄ ]a[dX+1]

0

 (2.19)

Ŵ a
2 =

[
cIdY 0

]
, b̂a2 = c−1d1. (2.20)

Then, R(Ŵ a) = Ralinear(W̄ a)

(proof) Let Ȳ a = σa(W̄ aX). (σa)−1(x) = σ−1(c−1(x− d))

σ(Ŵ a
1X + b̂a1) = c−1σa(Ŵ a

1X + b̂a1)− c−1d = c−1Ȳ a − c−1d (2.21)

Ŵ a
2 σ(Ŵ

a
1X + ba1) + ba2 = Ȳ a. (2.22)

Hence,

R(Ŵ a) =
∑
i

ℓ(Yi, F2([Ŵ
a
1 , b̂

a
1, Ŵ

a
2 , b̂

a
2])) =

∑
i

ℓ(Yi, Ȳ
a) (2.23)

=
∑
i

ℓ(Yi, σ
a(W̄ a

Xi

1

)) = Ralinear(W̄ a).□ (2.24)

Remark 2.16. For general smooth activation σ(x), the borrowing technique does

not apply. For linear activation, Ralinear(W̄ a) is constant because the linear model

output is invariant to Affine transformation. In other words, the borrowed local

minimum Ŵ has constant loss via Affine transformation path.

However, for general smooth activation, Ralinear(W̄ a) is continuously changing,

hence the local minimum property of the borrowed weight is broken.
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2.4 Absence of local minimum in the shallow network

for small N

Proposition 2.17. Consider a 2-layer network with N = 1, and dX = d1 = dY .

Then R(W ) has no bad local minimum.

(proof) The neural network output is represented as:

F2(W ) = w2σ(w1x+ b1) + b2.

First, For x1 ∈ R, y1 ∈ R, take Ŵ = (w1, b1, w2, b2) = (0, σ−1(y1), 1, 0), then since

F2(Ŵ ) = y1, the global minimum value is zero.

R(Ŵ ) = 0.

For any W = (w1, b1, w2, b2), and R(Ŵ ) > 0, introduce the disturbance δW =

(δw1 , δb1 , δw2 , δb2) = (0, 0, 0, δsign(y1 − F2(W )), for sufficiently small δ ∈ R. Then

since

ℓ(y1, F2(W + δW )) < ℓ(y1, F2(W )),

there exists strictly decreasing path to the global minimum Ŵ . ThereforeW cannot

be a local minimum. □

Proposition 2.18. Consider a 2-layer network with N = 2, and dX = d1 = dY .

Suppose the convex loss ℓ(x) has strictly increasing derivative i.e., ℓ′(x) is injective.

Then R(W ) has no bad local minimum if x1 ̸= x2.

17



(proof) The neural network output is represented as :

F1(W,x) = w1x+ b1, F2(W,x) = w2σ(w1x+ b1) + b2.

For the training samples (x1, y1), (x2, y2),F1(W,x1) 1

F1(W,x2) 1


w2

b2

 =

y1
y2

 .
Suppose x1 ̸= x2. If we take (w1, b1) such that F1(W,x1) ̸= F1(W,x2), then since

the 2× 2 matrix is invertible, we can take W = (w1, b1, w2, b2) such that

F2(W,x1) = y1, F2(W,x2) = y2.

Therefore the global minimum value is zero. Suppose W = (w1, b1, w2, b2) is a

bad local minimum with R(W ) > 0. For sufficiently small disturbance δW =

(δw1 , δb1 , δw2 , δb2), we have R(W ) < R(W + δW ). Suppose F1(W,x1) < y1, and

F1(W,x2) < y2, then for δW = (0, 0, 0, δ) with δ > 0, we have

ℓ(yi, w2σ(w1xi + b1) + b2 + δ) < ℓ(yi, w2σ(w1xi + b1) + b2), i = 1, 2.

Therefore we get R(W + δW ) < R(W ), which is a contradiction. This method

similarly applies for F1(W,x1) > y1, F1(W,x2) > y2. Therefore we assume

F1(W,x1) ≤ y1, F1(W,x2) ≥ y2.

Without loss of generality, assume F1(W,x1) ̸= y1.
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Then for the same disturbance δW = (0, 0, 0, δ), we have

ℓ(y1, w2σ(w1x1 + b1) + b2 + δ) < ℓ(y1, w2σ(w1x1 + b1) + b2)

ℓ(y2, w2σ(w2x1 + b1) + b2 + δ) > ℓ(y2, w2σ(w1x2 + b1) + b2).

First, assume F1(W,x1) < y1, F1(W,x2) = y2, then

|∂ℓ(y1, w2σ(w1x1 + b1) + b2 + δ)

∂δ
|δ=0| > |

∂ℓ(y2, w2σ(w1x2 + b1) + b2 + δ)

∂δ
|δ=0|

because ℓ′(x) > ℓ(0) for x ̸= 0. Since ℓ(y1, w2σ(w1x1 + b1) + b2 + δ) term decreases

faster, we have

R(W + δW ) < R(W ).

So W is not a local minimum.

Next, assume F1(W,x1) < y1, F1(W,x2) > y2. In this case,

If

|∂ℓ(y1, w2σ(w1x1 + b1) + b2 + δ)

∂δ
|δ=0| > |

∂ℓ(y2, w2σ(w1x2 + b1) + b2 + δ)

∂δ
|δ=0|,

then because ℓ(y1, w2σ(w1x1 + b1) + b2 + δ) term decreases faster,

R(W + δW ) < R(W ).

Otherwise if

|∂ℓ(y1, w2σ(w1x1 + b1) + b2 + δ)

∂δ
|δ=0| < |

∂ℓ(y2, w2σ(w1x2 + b1) + b2 + δ)

∂δ
|δ=0|,
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similarly,

R(W − δW ) < R(W ).

Therefore we have to have

|∂ℓ(y1, w2σ(w1x1 + b1) + b2 + δ)

∂δ
|δ=0| = |

∂ℓ(y2, w2σ(w1x2 + b1) + b2 + δ)

∂δ
|δ=0|,

and because ℓ′(x) is injective, we have

y1 − (w2σ(w1x1 + b1) + b2) = (w2σ(w2x1 + b1) + b2)− y2.

Similarly, by introducting the disturbance

δW = (δw1 , δb1 , δw2 , δb2) = (δ, 0, 0, 0), (0, δ, 0, 0), we have

x1σ
′(w1x1 + b1) = x2σ

′(w1x2 + b1) (2.25)

σ′(w1x1 + b1) = σ′(w1x2 + b1). (2.26)

Because σ′(x) > 0, it would be a contradiction since x1 ̸= x2. □

2.5 Existence of local minimum in the shallow network

Assumption 2.19. Assume σ(x) is analytic and

{1, σ(x), σ′(x), xσ(x), σ′′(x), xσ′′(x), x2σ′′(x)}
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is linearly independent. Actually σ(x) is not a solution to any second order linear

ODE with polynomial coefficient of the following form:

(Ax2 +Bx+ C)y′′ + (Dx+ E)y′ + Fy +G = 0 (2.27)

if A,B,C,D,E, F, and G are not zero at the same time.

We discover that widely used activation functions actually satisfy the assump-

tion.

Lemma 2.20. Tanh, Sigmoid, SiLU, SoftPlus, and GELU activation functions

satisfy Assumption 2.19.

tanh(x) =
ex − e−x

ex + e−x
(2.28)

sigmoid(x) =
1

1 + e−x
(2.29)

SiLU(x) =
x

1 + e−x
(2.30)

SoftP lus(x) = log(1 + ex) (2.31)

GELU(x) =
x

2
(1 + erf(

x√
2
)). (2.32)

(proof) Suppose σ(x) is sigmoid. Suppose σ(x) is a solution of some second

order linear ODE of form (2.27). Then since

σ′(x) = σ(x)(1− σ(x)), σ′′(x) = σ(x)(1− σ(x))(1− 2σ(x)),
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we have

(Ax2 +Bx+ C)(σ(x)(1− σ(x))(1− 2σ(x))) + (Dx+ E)σ(x)(1− σ(x)) + Fσ(x) +G

=(2Ax2 + 2Bx+ 2C)(σ(x))3 + (−3Ax2 + (−3B −D)x+ (−3C − E))(σ(x))2+

(Ax2 + (B +D)x+ (C + E + F ))(σ(x)) +G = 0.

Since σ(x) can be viewed as the root of a cubic equation with polynomial coeffi-

cients, we can consider the field extension of the quotient field of polynomial ring.

Let Q denote the quotient field of polynomial ring and Q(σ(x)) be a extension field

of Q with σ(x). Let K be a Galois extension of Q including element σ(x). Since

σ(x) is the root of cubic equation, the degree of field extension is finite.

[Q(σ(x)) : Q] ≤ [K : Q] ≤ |S3| = 6.

However, since σ(x) = 1
1+e−x is transcendental function, it cannot be expressed in

terms of a finite sequence of the algebraic operations, hence

[Q(σ(x)) : Q] =∞.

This is a contradiction, therefore the sigmoid function satisfies Assumption 2.19.

Similarly, because tanh(x) = 2sigmoid(2x)−1, the tanh function satisfies Assump-

tion 2.19.

For σ(x) = SiLU(x), let σ(x) = xs(x), where s(x) denotes the sigmoid function.
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Then we have

σ′(x) = s(x)(1 + x(1− s(x)))

σ′′(x) = s(x)(1− s(x))(2 + x− (2x+ 1)s(x) + x(s(x))2).

By substituting into (2.27), we get the quartic equation with polynomial coefficient,

of which s(x) is a solution. Similarly, let K be a Galois extension of Q including

element s(x), the degree of field extension is

[Q(s(x)) : Q] ≤ [K : Q] ≤ |S4| = 24.

Since s(x) is transcendental, this is a contraction.

For σ(x) = SoftP lus(x), we have σ′(x) = s(x) where s(x) denotes the sigmoid

function. Then we have

σ′(x) = s(x)

σ′′(x) = s′(x) = s(x)(1− s(x)).

By substituting into (2.27), we have

σ(x) = P2(s(x))

for some quadratic polynomial P2(X). By substituting into (2.27) again, we have

σ(x) = P4(s(x))
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for some quartic polynomial P4(x). Similar to SiLU case, we have a contradiction.

Therefore we conclude that for sigmoid activation function s(x), if σ(x) is a form

of polynomial of s(x), k-th derivative, k-th indefinite integral or their linear com-

bination, i.e,

σ(x) ∈ span{Pi(s(x)), s(k)(x),
∫ (k)

s(s)dx(k)}

then σ(x) satisfies Assumption 2.19.

For σ(x) = GELU(x), direct substitution into (2.27) induces

(Ax2 +Bx+ C)(

√
2√
π
e−

x2

2 − x2 1√
2π
e−

x2

2 )

+ (Dx+ E)(
1

2
erf(

x√
2
) + x

1√
2π
e−

x2

2 +
1

2
) +

F

2
(xerf(

x√
2
) + x) +G = 0 (2.33)

1

2
erf(

x√
2
)(Dx+ E + Fx) +

1√
2π
e−

x2

2 (−Ax4 −Bx3 + (2A− C +D)x2 + (2B + E)x+ 2C)

+ (
D + F

2
)x+

E

2
+G = 0. (2.34)

Since erf(x) = 2√
π

∫ x
0 e

−t2dt is not elementary function by Liouville’s theorem, we

have

(Dx+ E + Fx) = 0.

Otherwise, erf(x) would be elementary function. Therefore we have

D = −F, E = 0.

Similarly, since e−
x2

2 is transcendental over Q, we have

A = 0, B = 0, (2A−C+D) = 0, (2B+E) = 0, C = 0, D+F = 0, E = 0, G = 0.
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Therefore every coefficient is zero. Hence we have a contradiction. □

Proposition 2.21. Consider a 2-layer network with N ≥ 7, and dX = d1 = dY .

Suppose ℓ is L2 loss function, and σ(x) satisfies Assumption 2.19. Then R(W ) has

a strict local minimum Ŵ for a generic dataset X ∈ R1×N with R(Ŵ ) > 0.

(proof) By assumption, {1, σ(x), σ′(x), xσ(x), σ′′(x), xσ′′(x), x2σ′′(x)} is linearly

independent. LetA(X) = {1N , [σ(xi)], [σ′(xi)], [xiσ(xi)], [σ′′(xi)], [xiσ′′(xi)], [x2iσ′′(xi)]}.

Consider the mapping

(x1, x2, ..., x7) 7→ det(A([xi]
7
i=1)).

Because of linear independence, this map is not zero map. Since σ(x) is analytic,

this map is also analytic. Therefore, zero set of the map has measure zero.

For generic X = (x1, x2, ...xN ), we have seven linearly independent N -dimensional

vectors

{1N , [σ(xi)], [σ′(xi)], [xiσ(xi)], [σ′′(xi)], [xiσ′′(xi)], [x2iσ′′(xi)]}Ni=1.
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Then we can find N−5 linearly independent N -dimensional vectors {uk} such that

⟨uk,1N ⟩ = 0 (2.35)

⟨uk, [σ(xi)]⟩ = 0 (2.36)

⟨uk, [σ′(xi)]⟩ = 0 (2.37)

⟨uk, [xiσ(xi)]⟩ = 0 (2.38)

⟨uk, [xiσ′′(xi)]⟩ = 0 (2.39)

⟨uk, [σ′′(xi)]⟩ > 0 (2.40)

⟨uk, [x2iσ′′(xi)]⟩ > 0. (2.41)

Let n(xi) = w1x+ b1 be a pre-activation output at the first layer.

Select data points Y = [yi]
N
i=1 as

yi = F2(xi)− w2

N−5∑
k=1

ck[uk]i (2.42)

for some positive ck ∈ R. Note that the degree of freedom of selecting Y is N − 5.

Then pick Ŵ = (w1, b1, w2, b2) = (1, 0, w2, 0), where w2 is fixed later. Define ∆y ∈ R

such that

[∆y]i = F2(xi)− yi = w2

N−5∑
k=1

ck[uk]i.
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Then we get

⟨∆y,1N ⟩ = ⟨∆y, [σ(xi)]⟩ =⟨∆y, [σ′(xi)]⟩ = ⟨∆y, [xiσ(xi)]⟩ = ⟨∆y, [σ′′(xi)]⟩ = 0

(2.43)

⟨∆y, [xiσ′′(xi)]⟩ > 0 (2.44)

⟨∆y, [x2iσ′′(xi)]⟩ > 0. (2.45)

Then for the loss R = ℓ(yi, F2(xi)) = ∥F2(xi) − yi∥2 = ⟨F2(X) − Y, F2(X) − Y ⟩,

derivatives are

∂R
∂w1

= 2⟨∆Y,Xσ′(X)⟩ = 0 (2.46)

∂R
∂b1

= 2⟨∆Y, σ′(X)⟩ = 0 (2.47)

∂R
∂w2

= 2⟨∆Y, σ(X)⟩ = 0 (2.48)

∂R
∂b2

= 2⟨∆Y,1⟩ = 0. (2.49)

therefore Ŵ is a stationary point.

To show Ŵ is a local minimum, we introduce a small disturbance δW = (δw1 , δb1 , δw2 , δb2).

The difference between losses is:

R(Ŵ + δW )−R(Ŵ ) = ⟨F2(Ŵ + δW )− Y, F2(Ŵ + δW )− Y ⟩ − ⟨F2(Ŵ )− Y, F2(Ŵ )− Y ⟩

= ⟨F2(Ŵ + δW )− F2(Ŵ ), F2(Ŵ + δW )− F2(Ŵ )⟩+ 2⟨∆Y, F2(Ŵ + δW )− F2(Ŵ )⟩

(2.50)

= ∥F2(Ŵ + δW )− F2(Ŵ )∥22 + 2⟨∆Y, F2(Ŵ + δW )− F2(Ŵ )⟩. (2.51)
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Note that

F2(Ŵ + δW )(xi)− F2(Ŵ )(xi) (2.52)

= ((w2 + δw2)σ((w1 + δw1)x+ b1 + δb1) + b2 + δb2)− (w2σ(w1x+ b1) + b2)

(2.53)

= (w2 + δw2)(σ((1 + δw1)xi + δb1)− σ(xi)) + δw2σ(xi) + δb2 . (2.54)

We consider the following two cases.

Case 1: (δw1 , δb1) ̸= (0, 0).

In this case, Therefore, we need to show ⟨∆Y, F2(Ŵ + δW ) − F2(Ŵ )⟩ > 0. Let

δ1,i = δw1xi + δb1 . By Taylor theorem,

σ(xi + δ1,i)− σ(xi) = σ′(xi)δ1,i +
1

2
σ′′(xi)δ

2
1,i + o(|δ1,i|2) (2.55)

= σ′(xi)δw1xi + σ′(xi)δb1 +
1

2
σ′′(xi)(δ

2
w1
x2i + 2δw1xiδb1 + δ2b1) + o(|δ1,i|2).

(2.56)

By using Equation (2.43), we have

⟨∆Y, F2(Ŵ + δW )− F2(Ŵ )⟩ =
1

2
(w2 + δw2)δ

2
w1
⟨∆Y, σ′′(X)X2⟩+ 1

2
(w2 + δw2)δ

2
b1⟨∆Y, σ

′′(X)⟩+ (w2 + δw2)⟨∆Y, o(∥δ1∥2)⟩.
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Pick δw2 , such that |δw2 | < 1
2 |w2|, then

(w2 + δw2)δ
2
w1
⟨∆Y, σ′′(X)X2⟩ > 1

2
w2δ

2
w1
⟨∆Y, σ′′(X)X2⟩ :=M1 > 0 (2.57)

(w2 + δw2)δ
2
b1⟨∆Y, σ

′′(X)⟩ > 1

2
w2δ

2
b1⟨∆Y, σ

′′(X)⟩ :=M2 > 0 (2.58)

(w2 + δw2)⟨∆Y, o(∥δ1∥2)⟩ ≤
3

2
|w2|⟨∆Y, o(∥δ1∥2)⟩ ≤

3

2
|w2|∥∆Y ∥2∥o(∥δ1∥2)∥2.

(2.59)

For sufficiently small δ1,

∥o(∥δ1∥2)∥2 <
1

12|w2|∥∆Y ∥2
min(

M1

∥X∥22
,
M2

N
).

Then we have

⟨∆Y, F2(Ŵ + δW )− F2(Ŵ )⟩ > 1

2
(M1δ

2
w1

+M2δ
2
b1 − 3|w2|∥∆Y ∥2|o(∥δ1∥2) (2.60)

>
1

4
(M1δ

2
w1

+M2δ
2
b1) > 0. (2.61)

Case 2: (δw1 , δb1) ̸= (0, 0)

In this case, we have

F2(Ŵ + δW )− F2(Ŵ ) = δw2σ(X) + δb21N . (2.62)

Since σ(X) and 1N are linearly independent, 2(Ŵ +δW )−F2(Ŵ ) ̸= 0N . Therefore,

⟨∆Y, F2(Ŵ + δW )− F2(Ŵ )⟩ = 0 (2.63)

∥F2(Ŵ + δW )− F2(Ŵ )∥2 > 0. (2.64)
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In both cases, we conclude that

R(Ŵ + δW )−R(Ŵ ) > 0.

Hence R(W ) has the strict local minimum at W = Ŵ . □

Lemma 2.22. If σ(x) satisfies Assumption 2.19, then

{1, σ(s), σ′(s), sσ(s), σ′′(s), sσ′′(s), s2σ′′(s)} (2.65)

is also linearly independent where s = σ(x).

Next, we find the local minimum for shallow 3-layer network under the following

assumption on σ(x).

Assumption 2.23. Assume σ(x) is analytic and let

B = {1, σ(σ(x)), σ′(σ(x)){1, σ(x), σ′(x){1, x}, σ′′(x){1, x, x2}},

σ′′(σ(x)){1, σ(x), σ(x)2, σ′(x){1, x}, σ′′(x){1, x, x2}, σ′(x)2{1, x, x2},

σ(x)σ′(x){1, x}, σ(x)σ′′(x){1, x, x2}, σ′(x)′σ′′(x){1, x, x2, x3}}}.

Let B1 = {σ′′(σ(x))σ′(x)2}, B̄1 = {σ′′(σ(x))σ(x)σ′′(x)}, B2} = {σ′′(σ(x))σ′(x)2x2},

B̄2 = {σ′′(σ(x))σ(x)σ′′(x)x2}, and B̃ = B −B1 −B2 − B̄1 − B̄2.
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Then assume

span{B1} ∩ span{B̃} = {0} (2.66)

span{B2} ∩ span{B̃} = {0} (2.67)

span{B1} ∩ span{B2} = {0}. (2.68)

Remark 2.24. If B is linearly independent, then σ(x) satisfies Assumption 2.23.

Lemma 2.25. Tanh, Sigmoid activation functions satisfy Assumption 2.23.

(proof) To prove the lemma, we need the following lemma.

Lemma 2.26. Let Q be the quotient field of polynomial ring. Assume σ(x) is

transcendental function. Then σ ◦ σ(x) is transcendental over Q(σ(x)).

(proof) Since σ(x) is transcendental, we the following have an (field) isomor-

phism

Q(σ(x)) ∼= R(x, y), (2.69)

for indeterminate x and y. Therefore, we have

Q(σ ◦ σ(x)) ∼= R(x, σ(y)). (2.70)

Since σ(y) is transcendental, we conclude that Q(σ ◦σ(x)) is transcendental exten-

sion of Q(σ(x)). □

First, let σ(x) be Sigmoid. Since σ(x) contains an exponential part, by Lemma

2.26, we can say that σ(σ(x)) is transcendental overQ(σ(x)). Since σ′(x) = σ(x)(1−

σ(x)), σ′(x) and σ′′(x) are the second and third order polynomials in terms with
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σ(x). Now we claim that

span{B} = span{σ′′(σ(x)){...}} ⊕ span{Rest of B}}.

Suppose not, then there exists a intersection between two spaces.

Since σ′′(σ(x)) = P3(σ(x)), σ
′′(σ(x)) = P2(σ(x)), for some third and second order

polynomials P3, P2, we can say (σ(x)) is a solution of a cubic polynomial inQ(σ(x)).

This is a contradiction since (σ(x)) is transcendental over Q(σ(x)).

Therefore, we only need to show

span{B1} ⊈ span{B̃′}

where B̃′ = σ′′(σ(x)){...} −B1 −B2 − B̄1 − B̄2.

Suppose not. Since B1 = {σ′′(σ(x))σ′(x)2} is represented as constant equation

in terms of x, and quartic polynomial in terms of σ(x), we conclude that

p(σ(x)) ∈ span{B1}

where p(x) is a cubic polynomial with constant coefficient. Since there is no such

term in span{B̃′}, we conclude that there exists a quartic polynomial in terms of

σ(x) with polynomial degree q(σ(x)) = 0. However, since σ(x) is transcendental

over Q, it is a contradiction.

For case of σ(x) = Tanh, since σ′(x) = −σ(x)2, we can apply the similar argument

with Sigmoid. □

Proposition 2.27. Consider a 3-layer network with N ≥ 29, and dX = d1 = d2 =
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dY . Suppose ℓ is L
2 loss function, and σ(x) satisfies Assumption 2.23. Then R(W )

has a strict local minimum Ŵ for a generic dataset X ∈ R1×N with R(Ŵ ) > 0.

(Proof) Consider 3-layer network.

F3(W ) = w3σ(w2σ(w1x+ b1) + b2) + b3. (2.71)

First, we decompose B as

B = B1 ⊕ B2 ⊕ B⊥. (2.72)

where B1 = span{B1},B2 = span{B2} and B⊥ is the space in B which is orthogonal

to B1 and B2. By the assumption, we can say

B̃ ⊆ B⊥ (2.73)

where B̃ = span{B̃}.

Similar to Proposition 2.21, Equations (2.72)-(2.73) hold for genericX = (x1, x2, ..., xN ).

Then we can find (N − 29) independent N -dimensional vectors {uk} such that

⟨uk, [bj,B⊥(xi)]⟩ = 0 (2.74)

⟨uk, [bj,B1(xi)]⟩ > 0 (2.75)

⟨uk, [bj,B2(xi)]⟩ > 0 (2.76)

where {bj,B⊥(x)}j , {bj,B1(x)}, and {bj,B2(x)} are basis of B⊥, B1, and B2, respec-

tively. Therefore we conclude

⟨uk, [bj,B̃(xi)]⟩ = 0 (2.77)

33



where bj,B̃ are basis of B̃ = span(B̃).

Then select data point Y = [yi]
N
i=1 as

yi = F3(xi)− w3

N−29∑
k=1

ck[uk]i. (2.78)

for some ck ∈ R. Now pick Ŵ = (w1, b1, w2, b2, w3, b3) = (1, 0, 1, 0, w3, 0). To show

Ŵ is a local minimum, we introduce a small disturbance δW = (δw1 , δb1 , δw2 , δb2 , δw3 , δb3).

Then we have

F3(Ŵ + δW )(x)− F3(Ŵ )(x) (2.79)

= ((w3 + δw3)σ((1 + δw2)σ((1 + δw1)x+ δb1) + δb2) + δb3)− (w3σ(σ(x))).

We consider the following two cases.

Case 1: (δw1 , δb1) = (0, 0)

In this case, this is very similar case with L = 2 network.

F3(Ŵ + δW )(x)− F3(Ŵ )(x) (2.80)

= ((w3 + δw3)σ((1 + δw2)σ(x) + δb2) + δb3)− (w3σ(σ(x))).

Only difference is x is replaced with σ(x). By Lemma 2.22, the assumption of

Proposition 2.21 is satisfied. Therefore, by using Proposition 2.21, we can conclude

R(Ŵ + δW )−R(Ŵ ) > 0.

Case 2: (δw1 , δb1) ̸= (0, 0)
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In this case, we calculate F3(Ŵ + δW )(x). First, by Taylor theorem, we have

σ((1 + δw1)x+ δb1) = σ(x) + σ′(x)(δw1x+ δb1) +
1

2
σ′′(x)(δw1x+ δb1)

2 + o(|δ21 |)

(2.81)

where δ1 = δw1x+ δb1 Then, by Taylor theorem again, we have

σ((1 + δw2)σ((1 + δw1)x+ δb1) + δb2) (2.82)

=σ(σ(x) + δw2σ(x) + (1 + δw2)(σ
′(x)(δw1x+ δb1) +

1

2
σ′′(x)(δw1x+ δb1)

2 + o(|δ21 |)) + δb2)

=σ(σ(x)) + σ′(σ(x))δ2 +
1

2
σ′′(σ(x))δ22 + o(|δ2|2) (2.83)

where δ2 = δw2σ(x)+(1+δw2)(σ
′(x)(δw1x+δb1)+

1
2σ

′′(x)(δw1x+δb1)
2+o(|δ21 |))+δb2 .

Therefore F3(Ŵ + δW )(x) is

F3(Ŵ + δW )(x) = (w3 + δw3)σ((1 + δw2)σ((1 + δw1)x+ δb1) + δb2) + δb3 (2.84)

=(w3 + δw3)(σ(σ(x)) + σ′(σ(x))δ2 +
1

2
σ′′(σ(x))δ22 + o(|δ2|2)) + δb3 . (2.85)

Therefore we have

F3(Ŵ + δW )(x)− F3(Ŵ )(x) (2.86)

δw3σ(σ(x)) + (w3 + δw3)(σ
′(σ(x))δ2 +

1

2
σ′′(σ(x))δ22 + o(|δ2|2) + δb3 (2.87)
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By Equations (2.74)-(2.76),

⟨∆Y, F3(Ŵ + δW )− F3(Ŵ )⟩ =
1

2
(w3 + δw3)(1 + δw2)

2δ2w1
⟨∆Y, σ′′(σ(X))σ′(X)2X2⟩

+
1

2
(w3 + δw3)(1 + δw2)δw2δ

2
w1
⟨∆Y, σ′′(σ(X))σ(X)σ′′(X)X2⟩

+
1

2
(w3 + δw3)(1 + δw2)

2δ2b1⟨∆Y, σ
′′(σ(X))σ′(X)2⟩

+
1

2
(w3 + δw3)(1 + δw2)δw2δ

2
b1⟨∆Y, σ

′′(σ(X))σ(X)σ′′(X)⟩+ o(|δ|2) > 0 (2.88)

for sufficiently small δ.

So far, we construct a local minimum point for 1−1−1 and 1−1−1−1 neural

network. In the next section, we stretch the existence of local minima to the larger

network using the method called the local minimum embedding.

2.6 Local Minimum Embedding

Consider a neural network and a neuron n(l, r) with index r in layer l. Let [ur,i]i

be incoming weights into n(l, r) and [vs,r]i be outgoing weights of n(l, r). Consider

the larger network by adding a new neuron n(l,−1) with new weights [u−1,i]i and

[vs,−1]i. Then define the local minimum embedding function γrλ mapping the param-

eters ([ur,i]i, [vs,r]i, w̄) of the smaller network to the parameters ([u−1,i]i, [vs,−1]i, [ur,i]i, [vs,r]i, w̄)

of the larger network, where w̄ denotes the collection of all remaining parameters

γrλ([ur,i]i, [vs,r]i, w̄) := ([ur,i]i, λ[vs,r]i, [ur,i]i, (1− λ)[vs,r]i, w̄). (2.89)

Lemma 2.28 (Hessian [84]). Let L denote the loss function of the larger network
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and ℓ be the loss function of smaller network. Let λ = β
α+β . Then the Hessian of the

loss L with respect to the basis B = [u−1,r+ur,i, vs,−1+vs,r, w̄, αu−1,i−βur,i, vs,−1−

vs,r] is given by:

H =



∂2ℓ
∂ur,i∂ur,j

2 ∂2ℓ
∂ur,i∂vs,r

∂2ℓ
∂w̄∂ur,i

0 0

2 ∂2ℓ
∂ur,i∂vs,r

4 ∂2ℓ
∂vs,r∂vt,v

2 ∂2ℓ
∂w̄∂vs,r

(α− β)[Dr,s
i ] 0

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂w̄′ 0 0

0 (α− β)[Dr,s
i ] 0 αβ[Br

i,j ] (α+ β)[Dr,s
i ]

0 0 0 (α+ β)[Dr,s
i ] 0


(2.90)

where

Bi,j =
∑
α

∑
k

∂ℓα
∂n(l + 1, k;xα)

· vk,r · σ′′(n(l, r;xα))act(l − 1, i;xα)act(l − 1, j;xα)

(2.91)

and

Dr,s
i :=

∑
α

∂ℓα
∂n(l + 1, s;xα)

σ′(n(l, r;xα))act(l − 1, i;xα). (2.92)

Lemma 2.29 (Conditions on Dr,s
i = 0, [84]). Suppose for the outgoing weights vr,s

of n(l, r;x), we have
∑

s vs,r ̸= 0. Then Dr,s
i = 0 if one of the following holds.

• The layer l is the last hidden layer.

• For all t, t′, α, we have

∂ℓα
∂n(l + 1, t;xα)

=
∂ℓα

∂n(l + 1, t′;xα)
. (2.93)
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• For each α, t,

∂ℓα
∂n(l + 1, t;xα)

= 0. (2.94)

Remark 2.30. Lemma 2.29 holds for 1 − 1 − 1 neural network. In other words,

Dr,s
i = 0 for the case dX = d1 = dY = 1.

Let Hsmall =


∂2ℓ

∂ur,i∂ur,j
2 ∂2ℓ
∂ur,i∂vs,r

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂ur,i∂vs,r

4 ∂2ℓ
∂vs,r∂vt,v

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂ur,i

2 ∂2ℓ
∂w̄∂vs,r

∂2ℓ
∂w̄∂w̄′

 be the smaller matrix of Hes-

sian H.

Theorem 2.31. Suppose dX = dY = 1, d1 ≥ 2, N ≥ 7, ℓ is L2 function and the

activation function σ(x) satisfies Assumption 2.19. Then there exists the network

1− d1 − 1, which has a bad local minimum.

(proof) Consider the small 2-layer network with dX = d1 = dY = 1. Then by

Proposition 2.21, there exists a local minimum Ŵ withR(Ŵ ) > 0. In this situation,

we have

B1,1 =
∑
α

∂ℓα(xα, yα)

∂f(xα)
· vs,r · σ′′(n(1, r;xα))x2α,1 (2.95)

=
∑
i

[∆Y ]iw2σ
′′(xi)x

2
i (2.96)

= w2

∑
i

[∆Y ]iσ
′′(xi)x

2
i (2.97)

= w2⟨∆Y, σ′′(X)X2⟩. (2.98)

Now, we consider the local minimum embedding on the hidden layer with λ. We

add a new neuron using embedding function. Denote W (1) be parameters of the

larger network at the first step. By Lemma 2.28, we have the Hessian matrix H
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and Dr,s
i = 0 by Lemma 2.29. Without loss of generality, suppose w2 > 0. Pick

λ ∈ (0, 1). Since Ŵ is the strict local minimum, Hsmall is strictly positive definite,

and αβ[B1,1]
r is positive. On the last axis [vs,−1 − vs,r] of B, the loss of the larger

network is constant on the last axis by direct calculation. Therefore, we conclude

W (1) is a local minimum of the larger network.

Consider the path λ from (0, 1) to (−∞, 0) ∪ (1,∞). Note that the loss is con-

stant along the path. Additionally, αβ[B1,1]
r becomes positive to negative along

the path, hence we conclude that the point become saddle finally. Because there

exists a decreasing path from W (1), W (1) is not global minimum, i.e. the bad local

minimum.

We add a new neuron every step. At step t, we have

B
(t)
1,1 =

∑
α

∂ℓα(xα, yα)

∂f(xα)
· (1− λ)t−1vs,r · σ′′(n(1, r;xα))xα,1xα,1 (2.99)

= w2(1− λ)t−1⟨∆Y, σ′′(X)X2⟩ > 0. (2.100)

Therefore by similar argument, we conclude that W t is a local minimum.

Finally, we construct sufficiently wide neural network (1-(t+1)-1) which has a bad

local minimum for each t. □

Theorem 2.32. Suppose dX = dY = 1, d1 ≥ 2, d2 ≥ 2, N ≥ 29, ℓ is L2 function

and the activation function σ(x) satisfies Assumption 2.23. Then there exists the

network 1−d1−d2−1, which has a bad local minimum. Moreover, constructed bad

local minimum is non-attracting.
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Chapter 3

Self-Knowledge Distillation via

Dropout

3.1 Introduction

Deep neural networks (DNN) have achieved a state-of-the-art performance in many

domains, including image classification, object detection, and segmentation [92, 42,

41]. In designing models that are deeper and more complex for a higher perfor-

mance, model compression is essential in delivering a deep learning model for prac-

tical application. To develope lightweight models, many previous attempts have

been made, including an efficient architecture [46, 97], model quantization [31],

pruning [38], and knowledge distillation [44].

Although knowledge distillation is a popular DNN compression method, con-

ventional offline knowledge distillation methods have several limitations. To distill

the knowledge from a teacher network to a student network, two main steps are

required. First, we train a large teacher network, followed by a student network
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using distillation. Fully training the teacher model with massive datasets requires

considerable effort. Second, it is difficult to search for an appropriate teacher model

that correspond to the target student model. In addition, The common belief in

traditional knowledge distillation is to expect a larger or more accurate teacher

network to be a good teacher. However, a teacher network with a deeper structure

and higher accuracy does not guarantee an improved performance of the student

network [13, 122].

Self-knowledge distillation is a solution to these limitations. In a self-knowledge

distillation, a teacher network becomes a student network itself. Knowledge is ef-

ficiently distilled in a single training process in a single model without the guid-

ance of other external models. Several self-distillation methods have been proposed

[115, 125, 131, ?]. However, these methods also have the following drawback: 1)

Some methods require subnetworks with additional parameters. 2) Some methods

request additional ground-truth label information, which means that the model

depends on the class distribution of the training datasets.

Inspired by these observations, we propose a simple self-knowledge distillation

using a dropout (SD-Dropout). Our method generates ensemble models with identi-

cal architecture, but different weights through a dropout sampling. After all feature

extraction layers, we sample the global feature vector to obtain two different fea-

tures with different perspectives. These two feature vectors are then passed to the

last fully connected layer, and two different posterior distributions are generated.

We then match these posterior distributions using Kullback-Leibler divergences

(KL-divergences). Dark knowledge between these two internal models can improve

their performance through knowledge distillation [44]. The proposed method does

not require any additional parameters nor does it require additional label infor-
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mation. Furthermore, the SD-Dropout method is a model-agnostic and a method-

agnostic, meaning it can be easily implemented with various backbone models and

other self-distillation methods.

For more effective distillation, we consider the way to use KL-divergence. In

most of the other methods, the gradient of the reference distribution in the KL-

divergence is not propagated through model parameters. However, we theoretically

demonstrate that the gradient of the reference distribution is greater than that

of the other distribution, and we empirically verify the effectiveness of using the

gradient of both distributions in the KL-divergence.

We conduct extensive experiments to verify the effectiveness and generalization

of our method on various image classification tasks (i.e., CIFAR-100 [55], CUB-

200-2011 [102], and Stanford Dog [54]). In addition, when acquiring two different

sampled feature vectors, only a dropout layer is used after obtaining the feature

vectors; thus, the proposed method can be easily applied to any network archi-

tecture structure and any knowledge distillation methods. Experimental results

demonstrate that our simple and effective regularization method improves the per-

formance of various model architectures (i.e., ResNet [42], and DenseNet [49]) and

is in good agreement with other knowledge distillation methods [115, 131, 125, 133].

Furthermore, our experiments show that our method improves the calibration per-

formance and adversarial robustness.

Our contributions are summarized as follows:

• We present a simple self-knowledge distillation methodology using dropout

techniques.

• Our self-knowledge distillation method can collaborate easily with other knowl-
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edge distillation methods.

• We describe experimental observations regarding the forward and reverse

KL-divergence commonly used in knowledge distillation.

• Extensive experiments demonstrate the effectiveness of our methodology.

3.2 Related work

3.2.1 Knowledge Distillation

Knowledge distillation [44] is one of the most popular compression methods for

transferring knowledge from a large and complex network (known as a teacher

network) into a small and simple network (known as a student network). Most of

these methods assume that they have a pre-trained teacher network. Thus, these

methods are referred to as offline knowledge distillation.

Offline methods are simple and easy to apply. Offline methods focus on im-

proving student networks by matching the features or distributions. An attempt

at achieving knowledge distillation by matching the probability distribution was

proposed by [83]. In addition, some researchers used training samples generated by

adversarial attack methods close to the decision boundary of the teacher network

[43], and [77] proposed a teacher assistant network to bridge the gap between the

teacher and student networks.

The offline knowledge distillation methods are simple and effective. However,

there are several limitations to offline distillation [77]. These limitations are caused

by the gap between small students and large teacher networks. Thus, an online

knowledge distillation method, which simultaneously trains the teacher network
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and student network, is proposed. In addition, [133] introduced a method in which

a teacher network and a student network distill the knowledge from each other

using KL-divergence. Moreover, [6] proposed the use of multiple auxiliary peers

and a group leader with an attention-based mechanism. An adversarial mechanism

was used to discriminate the feature map distributions from each network [14].

3.2.2 Self-Knowledge Distillation

Self-knowledge distillation is a method in which a teacher and student network are

by themselves the same. Self-knowledge distillation methods can be considered a

special case of online knowledge distillation methods. Several knowledge distillation

methods differ in their methodologies for generating KL-divergences [115, 125, 131].

Specifically, [115] proposed a method for matching predictions from different

distorted data of the same training data. In addition, [131] distilled from the

knowledge between its deeper and shallower layers. A matching of the posterior

distributions of a model between intra-class data was introduced by [125].

3.2.3 Semi-supervised and Self-supervised Learning

Several semi-supervised and self-supervised learning methods are investigated. Con-

currently, several semi-supervised and self-supervised methods [10, 11, 30, 34, 40,

58, 99, 127] have a similar idea with our work. There are several works on distilling

via model ensemble for uncertainty estimation [26, 65, 73, 74].
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Figure 3.1: Self-Knowledge Distillation Methods

3.3 Self Distillation via Dropout

Throughout this study, we focus on supervised classification tasks. We denote x ∈ X

as the input data and y ∈ Y = {1, 2, ..., N} as its ground-truth label class. Let f(x)

be a global feature vector of the input data x, and let h(·) be the last fully connected

layer in a network. Now, we define z = Mθ(x) = h(f(x)) as the logit of the

output layer, whereMθ is the neural network parametrized by θ. In classification

tasks, neural networks typically use a softmax classifier to produce class posterior

probability. Thus, we can consider that the posterior probability of class i is as

follows:

p(y = i|x; θ, T ) = exp(zi/T )∑N
j exp(z

j/T )
, (3.1)

where zi as the logit of class i and T > 0 is the temperature, which is usually

set to 1. In knowledge distillation, the temperature T is set to greater than 1.
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3.3.1 Method Formulation

In this section, we introduce a new self-knowledge distillation method called SD-

Dropout. We use the dropout layer after all feature extraction layers. We define

Mu
θ (x) = h(u⊙ f(x)) where uj ∼ Bernoulli(β) (3.2)

where ⊙ is the element-wise product, and β is the dropout rate. Now, Mu
θ

is the neural network using a dropout and it produces the posterior probability

p(y|x;u, θ, T ). For brevity, we denote puθ (y|x) := p(y|x;u, θ, T ). Similarly, we can

also extract an additional feature vector v⊙ f(x), where vj ∼ Bernoulli(β). Thus,

we can define pvθ (y|x).

We propose a new regularization loss to distill knowledge by reducing the KL-

divergence between two logits Mu
θ (x) and Mv

θ (x). Our method is visualized in

Figure 3.1. This method has computational advantages because, unlike conventional

methods, it uses a single existing model, does not require additional modules, shares

an encoder, and only requires post fully connected layer operations. Because the

two features have no superior relationship with each other, we use this loss in a

symmetric manner.

As a result, we use the forward and reverse KL-divergence of both instances.

Further discussion on this matter is provided in Section 3.3.3. Formally, given an

input data x, label y, and randomly dropped operations u,v, the loss of the SD-

Dropout method is defined as follows:

LSDD(x;u,v, θ, T ) := DKL(p
u
θ (y|x)||pvθ (y|x))

+DKL(p
v
θ (y|x)||puθ (y|x)).

(3.3)
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Our method matches the predictions of different dropout features from a single

network, whereas the conventional knowledge distillation method matches predic-

tions from a teacher and a student network. Thus, the total loss LTotal is defined

as follows:

LTotal(x, y;u,v, θ, T ) = LCE(x, y; θ)

+ λSDD · T 2 · LSDD(x;u,v, θ, T )
(3.4)

where LCE is the cross-entropy loss and λSDD is the weight hyperparameter of

the SD-Dropout method.

3.3.2 Collaboration with other method

We visualize other self-knowledge distillation methods in diagram forms in Figure

3.1. Self-knowledge distillation methods use the KL-divergence of logits as a loss

function. All knowledge distillation methods differ in their methodologies used to

obtain their KL-Divergences. Data-Distortion Guided Self-Distillation (DDGSD)

[115] is a method for distilling knowledge between different distorted data. DDGSD

utilizes distorted instances of the same training data to minimize the KL-divergence

between the two distorted data. The distortion data can be generated through a

horizontal flip and random crop augmentation. In addition, Be Your Own Teacher

(BYOT) [131] is a self-distillation method that distills knowledge between its deeper

and shallow layers. First, the network is divided into several blocks. The knowledge

of the deeper block is then transferred to the shallow portion. Thus, additional

modules are required to extract intermediate posterior distributions. Class-wise

self-knowledge distillation (CS-KD) [125] is a method of matching the posterior

distributions of a model between intra-class instances. In the training procedure, an
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instance is randomly sampled, which is the same class as the training instance, and

KL-divergence is measured between two instances. Deep Mutual Learning (DML)

[133] is an online knowledge distillation method in which a teacher network and a

student network distill the knowledge from each other. The DML method trains

two networks from scratch.

Our method can easily collaborate with various self-knowledge distillation meth-

ods because it has no additional module or training scheme constraints. In col-

laboration, the loss can be described as Eq. (3.5), where LKD is an additional

self-knowledge distillation loss for collaboration.

LTotal(x, y;u,v, θ, T ) = LCE(x, y; θ)

+ λSDD · T 2 · LSDD(x;u,v, θ, T )

+ λKD · T 2 · LKD(x; θ, T )

(3.5)

where λKD is the weight hyperparameter of the other distillation methods. The

discussion of the appropriate λKD value is detailed in Table 3.1.

3.3.3 Forward versus reverse KL-Divergence

Let pθ(x) and qθ(x) be the probability distributions. Let N denote the size of input

vector x. Then, two kinds of KL-divergences, forward and reverse KL-divergence,

are defined as follows:

Dfw.
KL(pθ, qθ) = DKL(p||qθ) +DKL(q||pθ) (3.6)

Dbw.
KL(pθ, qθ) = DKL(pθ||q) +DKL(qθ||p). (3.7)
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Note that the absence of θ in p indicates that p is considered constant with respect

to θ, meaning that the gradient is not propagated.

In the field of knowledge distillation, it is widely accepted that the forward

KL-divergence is based on a similarity with the Cross-Entropy loss. That is, the

features of the teacher network are considered as the ground-truth, and the features

of the student network are considered as logits that approximate the features of

the teacher networks. However, we also adopt a reverse KL-divergence direction

to further reduce the divergence between the two distributions. According to the

proposition below, we can see that the derivative of reverse divergence is stronger

than that of forward divergence. Therefore, by adding reverse divergence, we expect

stronger self-knowledge distillation.

First, we observe the representation of the derivatives of forward and reverse

KL-divergence.

Lemma 3.1. The derivatives of forward and reverse divergence is represented as

follows:

∇θD
fw.
KL (pθ, qθ) =

N∑
i=1

(1− p(x)i
q(x)i

)∇θq(x)i +

N∑
i=1

(1− q(x)i
p(x)i

)∇θp(x)i (3.8)

∇θD
bw.
KL(pθ, qθ) =

N∑
i=1

log(
p(x)i
q(x)i

)∇θp(x)i +

N∑
i=1

log(
q(x)i
p(x)i

)∇θq(x)i (3.9)

(Proof) Let Zq =
∑N

i=1 q(x)i. Because
∑N

i=1 q(x)i = 1,

we have Zq = 1 and qθ = qθ
Zq

. Then, we can calculate the forward derivative as

∇θDKL(p, qθ)

= ∇θ(
N∑
i=1

p(x)i(log p(x)i − log qθ(x)i + logZq))

=
N∑
i=1

p(x)i(−
∇θqθ(x)i
qθ(x)i

+
∇θZq

Zq
)

=

N∑
i=1

−p(x)i
q(x)i

∇θqθ(x)i +
∇θZq

Zq

N∑
i=1

p(x)i (3.10)
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Because Zq = 1,
∑N

i=1 p(x)i = 1, and ∇θZq =
∑N

i=1∇θq(x)i, we finally obtain

∇θDKL(p, qθ) =

N∑
i=1

∇θq(x)i(−
p(x)i
qθ(x)i

+ 1). (3.11)

Similarly, we can calculate the following reverse derivative:

∇θDKL(pθ, q)

= ∇θ
N∑
i=1

pθ(x)i(log pθ(x)i − logZp − log q(x)i)

=

N∑
i=1

∇θpθ(x)i(log pθ(x)i − logZp − log q(x)i)

+
N∑
i=1

pθ(x)i(
∇θpθ(x)i
pθ(x)i

− ∇θZp
Zp

)

=
N∑
i=1

∇θpθ(x)i(log
pθ(x)i
q(x)i

− logZp)

+

N∑
i=1

∇θpθ(x)i −
∇θZp
Zp

N∑
i=1

pθ(x)i

=
N∑
i=1

∇θpθ(x)i log
pθ(x)i
q(x)i

. (3.12)

Before beginning the main proposition, we make the following assumptions.

Assumption 3.2. If |p(x)i| > |q(x)i|, then |∇θp(x)i| > |∇θq(x)i|. If |p(x)i| <

|q(x)i|, then |∇θp(x)i| < |∇θq(x)i|. i.e., (|p(x)iq(x)i
| − 1)(|∇θp(x)i

∇θq(x)i
| − 1) > 0.

Assumption 3.3. Let r = log(|p(x)iq(x)i
|) and ρ = |∇θp(x)i

∇θq(x)i
| > 1. Then r ≤ r1 where

r1 = | log(ρ) + log(log(ρ+ (e− 1)))|.

Assumption 3.2 implies that if |p(x)| is greater than q(x)|, then the derivative

∇θp(x) is also greater than ∇θq(x). Assumption 3.3 implies that the ratio |p(x)q(x) |
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is not significantly different from the ratio |∇θp(x)
∇θq(x)

|. We empirically validate that

Assumptions 3.2 and 3.3 hold in probability during the experiment. Now, we posit

the main proposition indicating that the reverse derivative is greater than the

forward derivative under Assumptions 3.2 and 3.3. In other words, we can demand

a stronger connectedness (or bond) between logits p(x) and q(x) in the training

process by adding reverse derivatives.

Proposition 3.4. Under Assumptions 3.2 and 3.3, let:

(Di,θ) = | log(
p(x)i
q(x)i

)∇θq(x)i|+ | log(
q(x)i
p(x)i

)∇θp(x)i|

−( |(1− p(x)i
q(x)i

)∇θq(x)i|+ |(1−
q(x)i
p(x)i

)∇θp(x)i| ). (3.13)

Then we have:

(Di,θ) > 0. (3.14)

Moreover, (Di) has a maximum value at r = | log(ρ)|. Here, (Di) implies the differ-

ence between the L1 norm of the reverse derivatives and the L1 norm of the forward

derivatives.

(Proof) For i ∈ [N ], without a loss of generality, we set |p(x)i| ≥ |q(x)i|, that is, r ≥

1. By Assumption 3.2, we take |∇θp(x)i| = ρ|∇θq(x)i| for ρ > 1. Then,

|(log(p(x)i
q(x)i

)∇θq(x)i|+ |(log(
q(x)i
p(x)i

)∇θp(x)i|−

|(1− p(x)i
q(x)i

)∇θq(x)i|+ |(1−
q(x)i
p(x)i

)∇θp(x)i| =

[(1 + ρ)r − {(er − 1) + ρ(1− e−r)}]|∇θq(x)i|. (3.15)
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Let

k(r) := (1 + ρ)r − {(er − 1) + ρ(1− e−r)}. (3.16)

Then, we have k′(r) = (1 − er) + ρ(1 − e−r) = −e−r(e2r − (1 + ρ)er + ρ) =

−e−r(er−1)(er−ρ). Thus, k′(r) has roots at r = 0 and r = log(ρ). Because k(0) =

k′(0) = 0, k(r) increases in r ∈ (0, log(ρ)). Furthermore, k(r) has a maximum value

k(log(ρ)) = (1 + ρ) log(ρ)− 2ρ+ 2 at r = log(ρ).

Now, we show k(log(ρ)+log(log(ρ+(e−1)))) ≥ 0. Let l(ρ) = k(log(ρ)+log(log(ρ+

(e− 1)))), and

l(ρ) = (ρ+ 1)(log(ρ) + log(log(ρ+ (e− 1))))

− ρ(log(ρ+ (e− 1)) + 1) + log(ρ+ (e− 1))−1 + 1. (3.17)

The derivative of l(ρ) is :

l′(ρ) = −((ρ+ (e− 1)) log(ρ+ (e− 1))2)−1

− (ρ log(ρ+ (e− 1)))−1 − ρ(ρ+ (e− 1))−1

+ (ρ+ 1)(ρ+ (e− 1))−1 log(ρ+ (e− 1))−1 + 1

+ ρ−1 − log(ρ+ (e− 1))− 1 + log(ρ)

+ (ρ log(ρ+ (e− 1)))−1 log(log(ρ+ (e− 1))). (3.18)

Then, we shall prove the following lemma:

Lemma 3.5. l′(ρ) has local minimum at ρ = 1 with l(1) = 0.

(Proof) Because l′′(ρ) > 0 for ρ ≥ 1, l′(ρ) is convex for ρ ≥ 1. In addition,

because l′(1) = 1, l′(ρ) has a local minimum at ρ = 1 with l(1) = 0. Therefore,
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l′(ρ) ≥ 0 for ρ ≥ 1. Since l(0) = 0, we can conclude that l(ρ) ≥ 0 for ρ ≥ 1.

3.4 Experiments

In this section, we present the effectiveness of the proposed network. We demon-

strate our method on multiple datasets, various backbone models, the adversarial

robustness, and expected calibration error.

3.4.1 Implementation Details

Dataset To validate the general performance of our method, we test various

datasets including CIFAR-100 [55], CUB-200-2011 [102], and Stanford Dogs [54].

CIFAR-100 is composed of 100 classes with large contextual differences between

classes. By contrast, CUB-200-2011 and Stanford Dogs are composed of 200 and

120 fine grained classes, and unlike CIFAR-100, there are smaller contextual dif-

ferences between classes. The Performance in various dataset domains can be used

to evaluate the overall performance of the model.

Hyperparameters For a fair comparison, we use the same hyperparameters in

all experiments unless specifically mentioned. We use a stochastic gradient descent

optimizer (learning rate=0.1, momentum=0.9, weight decay=1e-4) and train 200

epochs during all experiments. The learning rate is scheduled for decay 0.1 on 100

and 150 epochs. As a common setting for CIFAR-100, we set a batch size of 128 and

use ResNet, which modifies the first convolution layer with a 3 × 3 kernel instead

of a 7 × 7 kernel. We set input image sizes of 224 × 224 and batch sizes of 32 on

CUB-200-2011 and Stanford Dogs. All results are the average values obtained by

repeating the experiment three times.
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Table 3.1: Accuracy (%) comparison of ResNet-18 on CIFAR-100 dataset over
various hyper-parameters β and λSDD. Best result is indicated in bold.

λSDD

β
0.1 0.3 0.5 0.7

0.1 76.31 76.47 75.58 76.91
0.5 75.83 76.31 76.88 76.43
1.0 75.72 76.75 77.10 76.82
2.0 76.86 76.79 77.07 76.91
5.0 76.92 76.79 76.57 69.47

Training Procedure The training procedure of SD-Dropout is summarized

as PyTorch-like style pseudo code, as described in Algorithm 1. It should be noted

that we do not use the .detach() method to calculate the KL-divergence terms to

maintain both directions of KL-divergence.

3.4.2 Results

Classification results

While using the fixed backbone model (ResNet-18), we compare the accuracy of the

methods and datasets. Table 3.2 shows the accuracy on CIFAR-100, CUB-200-2011,

and Stanford Dogs in comparison with distillation and regularization methods, i.e.,

Cross-Entropy, CS-KD, DDGSD, BYOT, DML, and label smoothing (LS). More-

over, the [+ SD-Dropout] column is the result of a collaboration between exist-

ing methods. The dropout collaboration improves the performance for all datasets

and self-distillation methodologies. Compared to previous self-distillation methods,

although simply applicable, the SD-Dropout method performs best on the CUB-

200-2011 dataset at 66.6%. Furthermore, the largest increase in the performance
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Algorithm 1: Pseudo code of SD-Dropout in a PyTorch-like style.

# x: input image
# y: ground-truth label
# backbone : feature extractor composed of convolutions
# classifier : fully connected layer
# lambda: weight hyperparamter of knowledge distillation method
for (x, y) in Batches:

# extract the feature
feat = backbone(x)
# the values of the logits
output = classifier(feat)
# calculate cross-entropy loss
loss_ce = ce_loss(output, y)
# sampling two features by dropout
feat_dps = [dropout(feat) for _ in range(2)]
# the logits of two dropout sampled feature
output_dp1, output_dp2 =

[classifier(feat_dps[i]) for i in range(2)]
# Foward reverse KL-divergence between two logits
loss_kd1 = kl_div_loss(output_dp1, output_dp2)
loss_kd2 = kl_div_loss(output_dp2, output_dp1)
loss_kd = loss_kd1 + loss_kd2
# total loss
loss_total = loss_ce + lambda*loss_kd
# update
loss_total.backward()

showed that the compatibility with BYOT is the best (0.5% on CIFAR-100, 8.1%

on CUB-200-2011, and 2.5% on Stanford Dogs).

Backbone Network

Our self-distillation method is easily adaptable to various backbone models. We

compare several backbone networks with and without SD-Dropout. We apply SD-

Dropout to ResNet-18, ResNet-34, and DenseNet-121. Table 3.3 shows that the SD-

Dropout method can improve the network performance regardless of the backbone

networks. In particular, our SD-Dropout improves the accuracy of the baseline

networks from 74.8% to 77.0% for ResNet-18, and from 75.7% to 77.2% for ResNet-

34 on the CIFAR-100 dataset. For DenseNet-121, the accuracy increased by 1.1%.

ImageNet Classification and Object Detection

To verify our method on large-scale dataset, we evaluate the classification tasks on

ILSVRC 2012 dataset [19].

55



Table 3.2: Accuracy (%) of ResNet-18 with self-knowledge distillation methods on
various image classification tasks.

CIFAR-100 CUB-200-2011 Standford Dogs

Base +SD-Dropout Base +SD-Dropout Base +SD-Dropout

Cross-Entropy 74.8 77.0 (+2.2) 53.8 66.6 (+12.8) 63.8 69.9 (+6.1)
CS-KD 77.3 77.4 (+0.1) 64.9 65.4 (+0.6) 68.8 69.3 (+0.5)
DDGSD 76.8 77.1 (+0.3) 58.3 62.9 (+4.6) 66.9 68.1 (+1.3)
BYOT 77.2 77.7 (+0.5) 60.6 68.7 (+8.1) 68.7 71.2 (+2.5)
DML 78.9 78.8 (-0.1) 61.5 65.7 (+4.2) 70.5 72.0 (+1.6)
LS 76.8 76.9 (+0.1) 56.2 67.6 (+11.5) 65.2 70.1 (+4.9)

Table 3.3: Accuracy (%) comparison with different backbone networks on CIFAR-
100.

Base +SD-Dropout

ResNet-18 74.8 77.0
ResNet-34 75.7 77.2

DenseNet-121 77.3 78.4
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Table 3.4: Robustness comparison against the adversarial attack. Accuracy (%) of
ResNet-18 on various datasets.

Dataset Base +SD-Dropout

CIFAR-100 37.9 47.1
CUB-200-2011 17.0 24.8
Stanford Dogs 19.2 22.6
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Figure 3.2: Adversarial robustness with collaborate cases. the blue bar denotes
model accuracy when attacked by a model learned by the base self-KD method.
The red bar denotes model accuracy when attacked by a model that trained with
SD-dropout.

In addition, to verify our method on the objection task, we conduct the exper-

iment on the Faster R-CNN [89] object detection model using the COCO dataset

[67].

Out-of-Distribution Task

We verify our method on out-of-distribution tasks. We utilize ODIN detector [66]

on LSUN [120], iSUN [114], DTD [15], and SVHN [80] datasets. The experimental

results are shown in Table 3.8.
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Table 3.5: ECE comparison results of SD-Dropout combined with various KD
methodologies. Lower is better.

Method Base +SD-Dropout

CrossEntropy 0.120 0.075
DDGSD 0.067 0.034
CS-KD 0.068 0.046
BYOT 0.117 0.056
DML 0.058 0.039

Table 3.6: Results on object detection. mAP@0.5 denotes mean average precision
with IOU threshold 0.5. mAP denotes COCO-style mAP. Best results are indicated
in bold.

Method 0.5 × Schedule 1 × Schedule

mAP / mAP@0.5
Cross-Entropy 31.2 / 50.6 39.4 / 60.1
SD-Dropout 32.5 / 52.8 39.8 / 60.7

Robustness to adversarial attack

To evaluate the robustness to adversarial attacks [23], in Table 3.4, we compare

the accuracy of the baseline models with accuracy of the models learned through

the SD-Dropout method. An adversarial attack approach is the Fast gradient sign

method [33] that exploits the gradient of network with respect to the input image

to increase the loss, where the maximum perturbation size is (ϵ = 0.2).

As shown in Figure 3.2, we demonstrate the adversarial robustness with collab-

orate cases. The blue bar denotes the accuracy when attacked by a model learned

using the original self-knowledge distillation method. The red bar denotes the ac-

curacy when attacked by a model trained using SD-Dropout. All results show an
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Table 3.7: Results on object detection. mAP@0.5 denotes mean average precision
with IOU threshold 0.5. mAP denotes COCO-style mAP. Best results are indicated
in bold.

Method 0.5 × Schedule 1 × Schedule

mAP / mAP@0.5
Cross-Entropy 31.2 / 50.6 39.4 / 60.1
SD-Dropout 32.5 / 52.8 39.8 / 60.7

Table 3.8: Result on the out-of-distribution dataset. The CIFAR-100 dataset is
used as an in-distribution dataset. ↑ means larger is better, and ↓ means lower is
better. The trained network is ResNet-18. Best results are indicated in bold.

Dataset
FPR Detection

AUROC
AUPR AUPR

(at 95% TPR) Error (in) (out)
↓ ↓ ↑ ↑ ↑

Cross-Entropy/SD-Dropout (%)
LSUN 74.7/63.5 25.0/22.9 82.0/84.9 84.5/84.8 78.5/83.4
iSUN 76.0/63.8 25.3/23.0 82.0/84.8 85.9/85.6 76.0/81.9
DTD 82.7/77.5 28.6/27.4 77.3/77.2 86.3/83.7 59.8/64.0
SVHN 82.6/75.2 22.7/27.4 82.9/79.1 86.6/78.3 75.5/76.7

Average 79.0/70.0 25.4/25.1 81.1/81.5 85.8/83.1 72.4/76.5

increase in the robustness of the adversarial attacks. We conjecture that the SD-

Dropout method has an effect to similar to that of adversarial training.

Calibration Effect

The expected calibration error (ECE) [78] is a metric that shows the difference

between the confidence of the model predictions and the actual accuracy. The ECE
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Table 3.9: Accuracy (%) comparison between dropout and SD-Dropout of ResNet-
18.

Base +Dropout +SD-Dropout

CIFAR-100 74.8 75.4 77.0
CUB-200-2011 53.8 64.6 66.6
Stanford Dogs 64.1 69.5 69.8

can be calculated as

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (3.19)

where M , n, Bm, acc(Bm), and conf(Bm) denote the number of bins, the number

of total samples, the number of samples in the m-th bin, the average accuracy of

samples in the bin, and the average model confidence of samples in the bin. We set

the number of bins to 10. The results shown in Table 3.5 and Figure 3.3 indicate

that SD-Dropout suppresses overconfidence and improves confidence calibration.

Comparison to conventional Dropout

The dropout technique plays the most important role in the SD-Dropout method.

To demonstrate the importance of dropout distillation with our method, we com-

pare it to networks using conventional dropout methods. Table 3.9 compares the

experimental results of the conventional dropout and our SD-Dropout methods on

the CIFAR-100, CUB-200-2011, and Stanford Dogs datasets. It is observed that our

SD-Dropout method outperforms the conventional dropout method on all datasets.

For CIFAR-100, the SD-Dropout method increases by 2.2% over the baseline net-

work ResNet-18, whereas the conventional dropout method increases by 0.6%. Fur-
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Figure 3.3: Reliability diagrams ([82]). The x-axis is confidence bin and the y-axis
is average accuracy on bin. The blue and red line show average accuracy w/ and
w/o SD-dropout method.

Table 3.10: Accuracy (%) comparison between the forward, reverse, and both di-
rections (forward and reverse) of KL-divergence on ResNet-18. Best results are
indicated in bold.

Dataset Base Forward Reverse Both Directions

CIFAR-100 74.8 76.6 76.3 77.0
CUB-200-2011 53.8 65.4 63.8 66.6
Stanford Dogs 64.1 69.6 69.7 69.8

thermore, the SD-Dropout method increases the accuracy by 12.8% and 5.7% for

the CUB-200-2011 and Stanford Dogs datasets, whereas the conventional dropout

method increases by 10.6% and 5.3%, respectively.

Experiment on the direction of KL-divergence

We empirically verify through experiments that Assumptions 3.2 and 3.3 in Section

3.3.3 are convincing (see Table 3.11). We use ResNet-18 on the CIFAR-100 dataset

in the experiment. The probability that Assumption 3.2 holds is greater than 0.5

in all epoch. L1 norm of r in Assumption 3.3 is smaller than r1 in all epochs. In

addition, as shown in Table 3.10, the model using both directions of KL-divergence

achieves the higher performance.
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Table 3.11: Verification of assumptions in Section 3.3.3

Epoch P (Assumption 3.2) r r1

0 0.638 0.0681 0.1368
100 0.653 0.1403 0.2799
200 0.594 0.1292 0.2662

3.5 Conclusion

We propose a new and simple self-knowledge distillation method. This method

samples different models through a dropout and distills the knowledge of both.

Because they were sampled using a dropout, the sampled model does not have

superiority over the other models, and knowledge is shared among them using for-

ward and reverse KL-divergence. We also experimentally and analytically show

the characteristics of reverse KL-divergence. We demonstrate that the proposed

method improves generalization, calibration performance, and adversarial robust-

ness. From the perspective of the regularization domain, our method is superior to

the conventional label smoothing method through multiple datasets. Thus, we ex-

pect our method to be used as a regularization method that can effectively improve

the performance of a single network in various domains.
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Chapter 4

Membership inference attacks

against object detection models

4.1 Introduction

Over the past few years, deep neural networks have been widely adopted in various

computer vision tasks such as image classification, object detection, and semantic

segmentation. Many deep learning models in various fields have been developed us-

ing a wide variety of data. These data often contain privately sensitive information

such as medical records, personal photos, personal profiles, and financial infor-

mation. If designed without considering adversarial threats, the model can leak

sensitive information of the dataset it has trained. In [91], it was demonstrated

that even with black-box access, an adversary can conduct a membership inference

attack that determines whether a data record is a part of the training set.

Early studies on membership inference attacks have focused on classification

tasks [2]. Several other adversarial attacks against the object detection model have
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been studied, the results of which indicate the potential leakage of the model[113,

111]. Through this study, we have begun extending the membership inference attack

to object detection tasks.

Datasets used in an object detection model can also be subject to privacy leaks.

Examples of such data include outdoor pedestrian data, photos with sensitive text,

and video data for autonomous driving. The membership inference of detection

models can be helpful to assess whether data are collected illegally for training

purposes, and attack vulnerability can be viewed as a gateway to further attacks.

Compared to classifiers, there are difficulties in attack detection models: 1) In

classification tasks, only the last logit of the same size is regarded, whereas in object

detection tasks, all predictions based on the location of the objects are of concern.

2) Object detection tasks may have multiple objects in a single image, whereas

a usual image classification task has a single object. To address these issues, we

propose the canvas method for attacking an object detection model and tracing

the differences in the views among the trained and test data.

In summary, this paper makes the following contributions:

• We first propose a new membership inference attack on object detection mod-

els with black-box access. We describe the proposed canvas method, which

draws a predicted bounding box distribution on an empty canvas for convolu-

tional neural network (CNN) classification networks. Using this method, we

can achieve a higher performance than conventional machine learning meth-

ods on the PASCAL VOC dataset.

• We found experimentally that our attack method is robust to various types

of object detection models. In addition, we showed that membership infer-
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ence attacks are also successful on privately sensitive data with seemingly

little difference between accuracy of the training and test datasets. We also

conducted a transfer attack between different models and datasets.

• We suggest the use of defense methods applying a differentially private algo-

rithm. Experiment results show that the differentially private (DP) algorithm

can defend against a membership inference with a calculated amount of pri-

vacy loss.

4.2 Background and Related Work

4.2.1 Membership Inference Attack

The end of a membership inference attack is to determine whether the given data

record is in the training dataset of the target model. A membership inference attack

is based upon the assumption that the target model has a different view of the

training data than that of test data that was not seen before. Although overfitting

is considered to be a root cause of this membership disclosure, it cannot be the

only cause [70]. The attack model may have black-box and white-box access to the

target model. Under the white-box access scenario, the attack model has access to

certain versions of input data or intermediate layers as well as trained parameters

of the target model. White-box knowledge is powerful but not realistic because

the target model may not provide detailed information. In a black-box setting, the

attacker does not have direct access to the target model parameters. The attack

model can only access the input data and the model output predictions. The attack

model should identify the difference between the inferred predictions of the training

and test samples of the target model. To achieve this aim, shadow models trained
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using the same algorithm are built on shadow datasets sampled from a similar

distribution as the target datasets but do not contain the target training data.

The attack model queries the shadow model and learns to distinguish whether the

shadow model output comes from the training set.

Shokri et al. shokri first presented the first membership inference attack against

machine learning models. Ahmed et al. ml-leaks enhanced an attack by relaxing

some of the assumptions. Hayes et al. hayes2019logan describes a membership

inference attack against generative models. To mitigate the risk of a membership

inference, Rahman et al. rahman2018membership and Nasr et al. nasr2018machine

designed differentially private models and devised an adversarial regularization,

respectively.

4.2.2 Object Detection

Object detection is a widely used computer vision task that deals with detecting an

instance of a semantic objects in images or videos. There are mainly two types of

methods for object detection using deep learning, namely, one-stage and two-stage

detection.

One-Stage Detection One-stage detectors such as YOLO [87] or SSD [69]

treat an object detection problem as an end-to-end simple regression problem. The

one-stage model directly predicts the class scores and bounding box coordinates

concurrently.

Two-Stage Detection A two-stage detection model such as Faster R-CNN [89]

is divided into two stages. The model first generates region proposals by narrowing

down the number of possible object locations by filtering out most of the back-

66



ground samples on a region proposal network (RPN). The model then passes the

proposals through the CNN head to classify the labels and regress the bounding

boxes.

4.2.3 Datasets

PASCAL VOC Dataset (2007,2012) [27] PASCAL VOC datasets have been

widely adopted as benchmark datasets in basic object detection tasks. The PAS-

CAL VOC datasets consist of VOC2007 and VOC2012. The datasets contain 20

object categories including people, bicycles, birds, bottles, dogs, etc.

INRIA Pedestrian Dataset [18] The INRIA Pedestrian dataset is popular

for pedestrian detection, which consists of 614 images for training and 288 images

for testing.

SynthText [36] The SynthText dataset is a synthetically generated text dataset

in which several words are placed in imgaes of natural scenes. The dataset consists

of approximately 800 thousand images and 8 million synthetic word instances in

various languages.

4.3 Attack Methodology

In this section, we propose a membership inference attack for object detection

models. An overview of the membership inference attack is illustrated in Figure

5.1. The setting of our membership inference attack is as followes:

Assumption We assume that the adversary has black-box access to the tar-

get model. The adversary can obtain final logit values but no other specific in-

termediate layer weight information of the target models. For the given target
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Figure 4.1: Overview of membership inference attack on object detection model.
The target and shadow datasets are sampled from the same dataset space. The
target model trains using its target dataset and the shadow model, which has a
similar structure as the target model, trains using its shadow dataset. The predicted
values of the target and shadow models are expressed as bounding boxes and their
prediction scores along with their membership status labels (”in” for the training
set ”out” for the test set). Finally, the attack model which trains using the shadow
model’s prediction and membership status, attacks the target model by passing the
target records, and estimates their membership status probabilities for each target
example.

object detection model ftarget and input image sample xi the target model re-

turns the proposed bounding boxes bboxj = ((x0j , y
0
j ), (x

1
j , y

1
j )) and prediction scores

sj , (j = 1, 2, ..., Nb) where (xj , yj) and Nb denote the corner of the bounding box

and the number of proposed boxes, respectively. In addition, the adversary can set

a score threshold θscore and non-maximum suppression (NMS) thresholds( θnms

for one-stage, { θrpnnms, θheadnms } for two-stage detectors) to customize the personal

preference of the attacker. In addition, it is assumed that the target and shadow

data do not overlap, i.e., Dtrain
shadow ∩Dtrain

target = ∅.
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Figure 4.2: Predicted bounding boxes in training and test examples. The first row
shows the training examples and their predicted boxes. Below are test examples
and their predicted boxes.

4.3.1 Motivation

The basic idea of a membership inference attack is that the model has a different

view on the trained data and unseen data. For a classification task, the model tends

to achieve a high prediction score on the training samples over the test samples.

Therefore, the attack model is able to classify the membership status using the

last posterior logit value of a given sample. Similarly, as shown in Figure 4.2, the

object detection model tends to achieve consistent box predictions on the training

samples while showing an uncertainty regarding the test samples.

4.3.2 Gradient Tree Boosting

Gradient tree boosting is a widely used classification algorithm for numerous ap-

plications. Specifically, we use XG-BOOST [9], a popular algorithm applied feature

classification, to distinguish whether a given example is in the training sample.
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Figure 4.3: Examples of bounding box drawn canvas images using the proposed
canvas method. The first row is the training data and the second and third-row
images are the test data.

For the predicted bounding box coordinates and prediction scores (bboxj , sj), we

concatenate them in a long 1-D vector: (x01, y
0
1, x

1
1, y

1
1, s1, ..., x

0
Nb
, y0Nb

, x1Nb
, y1Nb

, sNb
),

and pad them with zero values to allow all vectors to have the same length. Using

these vectors, we proceed with the membership classification using XG-BOOST.

4.3.3 Convolutional Neural Network Based Method

The next method applied to the attack model is CNN based approach. An object

detection task differs from a classification because the model predicts 1) the box

location information and 2) the bulk of the bounding boxes, most of which may

be unhelpful. Therefore, we propose a new approach, called the canvas Method, to

adequately process a predicted array for a CNN-based attack model.

Canvas Method In the object detection model, the model extracts numerous

candidate boxes. Even for only a single object, the model predicts many predicted

boxes. The NMS algorithm used in an object detection task is designed to filter
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out messy boxes that are predicted for a single object and predict them as a single

proposed box. Using NMS, the box with the highest score is first chosen and boxes

that overlap above the threshold are filtered out. To see the clear distribution of

predicted boxes before the NMS, the threshold of the NMS is set to be a high value

during the prediction. Because the detection model shows a different positional

variance in predicting the training and test samples, this location information is

important in a CNN-based attack model. In addition, similar to a classification

model, the model also shows a high prediction score in the trained samples, which

is crucial to a membership inference.

To facilitate this information, we propose the use of the canvas method, which

draws a predicted bounding box distribution on an empty canvas for a CNN clas-

sification network. The canvas is initially set to an image of 300×300 pixels in size,

where every pixel has a value of zero and the boxes drawn on the canvas have

the same center as the predicted boxes and the same intensity as the prediction

scores. Regarding the size of the boxes drawn on the canvas, we applied two design

approaches. The first one is drawing a box equal in size as the predicted box, and

the other is to draw all boxes with an identical size on the canvas regardless of

the original size of the predicted box. We call the first approach the original box

size, and the second the uniform box size. We use the uniform box size to make

objects of all sizes detected achieve the same effect on the canvas. We set the size

of a uniform box at 10% of the canvas size. Figure 4.3 shows the examples of the

canvas methods.

Augmentation Because a bounding box distribution in a canvas image should

be robust to rotations and flipping, we adopt rotation and flipping when training

the attack model. We do not apply other augmentation methods such as ran-
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dom cropping or perspective transformation because these augmentations generate

transformed bounding box distribution which might distract the target model’s

view on the training or test samples.

Score Rescaling The prediction score of the detection model’s predicted bound-

ing box refers to how confident the model is with the objectness of bounding boxes.

Because the score values are calculated after the softmax layer, the values are be-

tween zero and one. With the canvas method, bounding boxes are drawn on the

canvas at the same intensity as the prediction score, and the confidence of the model

might not be fully represented. For example, if the model predicts two bounding

boxes with scores of 0.9 and 0.9999 respectively, it indicates that the model is

much more certain that the latter is an object. However, these values do not them-

selves represent a significant difference on the canvas. To emphasize the model’s

prediction scores of the model, we utilize a score rescaling function.

srescale = − log(1− s). (4.1)

In a Taylor expansion, this function is represented as −log(1−s) = s+ s2

2 + s3

3 + ....

Therefore in the case of an extremely small s, a rescale function is an approximate

identity function, which means the rescaling has little effect on small scores. Using

this function, the minuscule difference between the two scores (i.e. 0.0999 from

0.9 and 0.9999) is changed to 6.91 (from 2.30 and 9.21), which can be seen as

significant.
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4.3.4 Transfer Attack

We mitigate the assumption that the distribution of the target training data is

similar to that of the shadow training data. In a realistic situation, it could be

difficult or even impossible to secure a sufficient number of shadow data having the

same distribution as the target data. Under this scenario, in [2], a transfer attack

was proposed, which composes a shadow model with relatively common and similar

object detection dataset. Although a shadow model has difficulty mimicking the

target model’s behavior owing to different statistics and appearances between two

data distributions, the attack model is still expected to be able to capture the

membership status of the given data.

On the other hand, the target model structure may be different. We also con-

ducted another style of transfer attack, the shadow model structure of which differs

from that of the target model.

4.4 Defense

To mitigate a membership inference against machine learning models, we propose

several defense techniques.

4.4.1 Dropout

Because overfitting is a dominant reason why the target models leak their training

data information, generalization techniques that prevent overfitting can help defend

models against membership inferences. We adopt Dropout [95], to obtain a well-

generalized model.
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4.4.2 Differentially Private Algorithm

Differential privacy [24] offers a strong standard of privacy guarantees for computa-

tions involving aggregate datasets. It requires that any change to a single data point

should reveal statistically indistinguishable differences from the model’s output. A

formal definition of differential privacy is described below: [(ϵ, δ) - Differential Pri-

vacy]

Given two neighboring datasets D and D′, differing by only one record, a ran-

domized mechanism A provides (ϵ, δ) - Differential Privacy if for ∀S ⊆ Range(A),

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ. (4.2)

We call this (ϵ, δ)-DP for short. If δ = 0 , A provides a stricter ϵ-DP. ϵ is called

a privacy loss. To create a differentially private deep learning model, a differentially

private stochastic gradient descent (DP-SGD) [1, 76, 93] is adopted to optimize the

model. Compared to a conventional SGD optimizer, DP-SGD optimizer has two

main changes to achieve the required privacy guarantee: adding Gaussian noise to

gradient and gradient clipping for each minibatch sample. The specific algorithm

is presented in Algorithm 2. Abadi el al. abadi2016deep showed a way to track

a tight differential privacy bound of DP-SGD using moments accountant (MA).

According to Yu et al. dp-publish, however, MA assumes random sampling with

replacement which is impractical and is outperformed by random reshuffling [37].

Assuming sampling batches by random reshuffling, Yu et al. dp-publish showed

that realistic privacy loss bound for DP-SGD is (ρ +
√
ρ log(1/δ), δ)-DP for ρ =

k
2σ2 where σ is noise scale and k is the number of epochs.
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Algorithm 2: Differentially Private SGD

Input: Training examples {x1, . . . , xN}, loss function L(θ) = 1
NΣiL(θ, xi),

learning rate ηt, group size L, noise scale σt gradient norm bound C
1 Initialize θ0 randomly ;
2 for t = 1 : T do
3 data batching:
4 Take a random batch of data samples Bt from the training dataset;
5 B = |Bt|;
6 Compute gradient:
7 For each i ∈ Bt, gt(xi)←▽θtL(θt, xi);
8 Clip gradient:

9 ĝt(xi)← gt(xi)/max
(
1, ||gt(xi)||2

C

)
;

10 Add noise:

11 g̃t ← 1
B

(∑
i ĝt(xi) +N (0, σ2

tC
2I)

)
;

12 Descent:
13 θt+1 ← θt − ηtg̃t ;

14 end
15 Output : θT ;

4.5 Experiments

In this section, we describe the application of our method to several object detec-

tion tasks. To reduce confusion, we call the training dataset and test dataset of

target and shadow models ”in” and ”out” data respectively. We used the Chainer

framework for the object detection modules and Pytorch for the membership attack

modules.

4.5.1 Target and Shadow Model Setup

Models To build target models, we train several object detection models includ-

ing SSD and Faster R-CNN. For one-stage detection, the base SSD300-VGG16 and

SSD512-VGG16 models use the VGG16 network as a backbone and have 300×300

images and 512×512 images as the inputs, respectively. The SSD300-Res50 model
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uses ResNet50 network as a backbone. For two-stage detection, the Faster R-CNN

model uses the VGG16 network as a backbone and receives images with a scale of

between 600 and 800.

Datasets During the experiments, we used the datasets described earlier, i.e.,

VOC dataset, INRIA Pedestrian Dataset, and SynthText. According to Ahmed et

al. ml-leaks, one shadow dataset is sufficient. For each dataset, D=(Dtrain, Dtest),

we split them by half into (Din
target, D

out
target) and (Din

shadow, D
out
shadow) to separate the

target and shadow datasets. For SynthText dataset, we use the first 5,000 images

with Latin characters for the target dataset and next 5,000 images for the shadow

dataset.

Training To train the SSD model, we used an SGD optimizer with an initial

learning rate 10−3, 0.9 momentum, 0.0005 weight decay and batch size 8. We trained

the model 500k iterations and dropped the learning rate by 0.1 in the 200kth,

400kth iterations. During training, we used data augmentation including horizontal

flipping, color distortion, random expansion and cropping. To compare the effect

of the augmentation, we also trained models that only applied flipping. To train

the Faster R-CNN model, we used the same optimizer and learning rate as in the

SSD and batch size 1.

Prediction In the case of a one-stage model, to see the overall distribution of the

predicted bounding boxes, NMS threshold was set to 1.0. In the case of a two-stage

model with two NMS layers, the RPN-NMS and the head-NMS thresholds were

set to 0.7 and 1.0 respectively, because the high threshold value of RPN-NMS can

cause a huge number of box proposals. The score threshold was set to 0.01.
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Attack Attack Method SSD FR
Model Aug BT SR Acc AR Acc AR

XGB 66.09 67.64 60.47 60.48
shallow (O) 62.62 62.66 58.72 58.67
AlexNet (O) 64.28 64.26 62.74 62.62
AlexNet ✓ (O) 67.55 67.55 64.30 64.22
AlexNet ✓ (O) ✓ 68.30 68.24 66.59 66.49
AlexNet ✓ (U) 69.34 69.31 66.69 66.59
AlexNet ✓ (U) ✓ 71.07 71.02 67.42 67.34

Table 4.1: Comparison of various attack methods. FR and XGB denote Faster
R-CNN and XG-Boost. Aug, BT, SR and AR denote augmentation, box style of
canvas method, score rescaling and average recall, respectively. (O) and (U) denote
original and uniform box size, respectively.

4.5.2 Attack Model Setup

To perform a black-box membership inference attack, we built several attack models

as presented above. For XG-Boost model, we used Python XG-Boost package1.

XG-Boost classifier takes vectorized bounding boxes and scores as inputs and has

5 maximum depth of a tree and 450 estimators as model parameters. For CNN-

based classifiers with canvas method, we built two CNN models, a simple shallow

CNN model and AlexNet [56]. For Shallow CNN model, we used two convolutional

networks having 64 and 128 channels and two fully connected networks having 128

and 2 units. CNN based attack model takes drawn canvas images with predicted

boxes as input. For balanced training, the attack model uses the almost same

number of predicted results of ”in” data and ”out” data of the shadow model.

We applied vertical and horizontal flipping for augmentation and score rescaling

presented above. We compared various canvas methods to find the most optimal

attack model.

1https://github.com/dmlc/xgboost
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Target Model Attack Model
Model Dataset iters test mAP train mAP Attack Acc Ave. Recall Val Acc

SSD300-VGG16(LA.) VOC 400k 59.27 92.27 89.92 89.90 91.16
SSD300-VGG16 VOC 250k 73.88 89.30 67.88 67.92 72.20
SSD300-VGG16 VOC 500k 74.25 90.27 71.07 71.02 72.20
SSD512-VGG16 VOC 500k 76.53 91.09 71.03 70.10 73.04
SSD300-Res50 VOC 700k 66.04 85.43 73.86 73.82 75.97
Faster R-CNN VOC 200k 72.71 88.00 62.50 62.44 64.44
Faster R-CNN VOC 400k 71.80 90.20 67.42 67.34 64.44
SSD300-VGG16 INRIA 100k 88.20 90.90 71.40 62.95 73.21
SSD300-VGG16 SynthText 400k 88.45 90.84 66.90 66.90 68.49

Table 4.2: Attack performance on various models and datasets. LA. refers little
augmentation which indicates training with only horizontal flipping. Attack Acc
and Ave. recall refer attack accuracy and average recall on target models. Val Acc
refers attack accuracy on shadow models.

Figure 4.4: Membership inference attack results on various target models.

4.5.3 Experiment Results

Table 4.1 depicts the results of the comparisons of various attack methods. In gen-

eral, AlexNet with augmentation, score rescaling and the uniform canvas method

is successful on both the SSD and Faster R-CNN models. Therefore, we adopted

the best performing method as the attack method in the next experiments.

To demonstrate the relationship between the membership inference and overfit-

ting, we conducted experiments using different numbers of iterations in the model.

Figure 4.4 shows that the overall attack performance increases with an increases
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Model SSD300 SSD512 FR

SSD300 74.25 68.84 61.73
SSD512 66.87 71.03 62.94
FR 60.19 57.28 67.42

Dataset VOC INRIA SynthText

VOC 74.25 68.36 48.72
INRIA 74.28 71.40 50.85
SynthText 53.92 51.91 66.90

Table 4.3: Results of transfer attack over various object detection models and
datasets. The x-axis represents the structure and dataset of the target models
attacked and the y-axis represents that of shadow models for transfer attacks re-
spectively. FR denotes Faster R-CNN.

in the number of iterations.

Table 4.2 shows the results of the membership inference attacks of various object

detection models and datasets. The attack model is the best performing model in

table 4.1. The mAP scores of the detection models are slightly smaller than their

original performance because they train only half of the dataset. The evaluation

metrics for the attack model are the accuracy and average recall of ”in” and ”out”

labels. The attack model achieves a similar attack performance against the target

and shadow models because the distributions of dataset and model structure are

similar. Overall, the attack models achieve a high accuracy for most detection of

the models and datasets. In general, large generalized errors are related to the high

performance of the attack models. In the case of target models trained using the

INRIA and SynthText datasets, test mAP is relatively high because the tasks are

easy, although the attack models still obtain a high attack accuracy.
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Defense test mAP train mAP A-acc. p-loss

Base 74.25 90.27 71.07 ∞
Dropout 74.20 89.84 70.94 ∞
DP(σ=10−4) 74.32 88.15 68.68 2.42× 1010

DP(σ=10−3) 67.30 78.45 50.45 3.87× 108

Table 4.4: Comparison of various defense methods. A-acc and p-loss denote the
attack model accuracy and privacy loss respectively.

4.5.4 Transfer Attacks

Setup During the transfer attack, we used the same setup as mentioned in Section

4.5.3. We conducted a transfer attack over the SSD300, SSD512 and Faster R-CNN

models and VOC dataset. We also conducted transfer attacks over VOC, INRIA,

and SynthText datasets and SSD300 model.

Results Tables 4.3 list the results of the model and dataset transfer attacks.

The attack model trained using the same model structure or distribution dataset

showed the highest accuracy. Transfer attacks on different detection models seemed

to work well. The usage of the VOC dataset to attack the INRIA dataset and vice

versa achieved a good performance. This might be because these two datasets have

the same common label(”person”) and had a few objects per image. However, a

transfer attack between SynthText and the other datasets did not perform well.

This could be because SynthText had little in common with VOC and INRIA

and had many objects per image. Transfer attacks tend to be successful when the

datasets or models are similar to each other.
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4.5.5 Defense

Setup We tested the proposed defense methods against membership attacks. For

the dropout, we added two dropout layers with a ratio of 0.5 before the two layers

of the model. For the differentially private algorithm, we set noise scale σ=10−3 ,

10−4, gradient bound C = 50, and minibatch size 2. We set up a relatively small

noise because the object detection model has a large number of parameters [75].We

trained the SSD300 model 800k iterations for σ=10−3, and 500k iterations for the

others. We obtained the privacy loss with fixed δ=10−5.

Results Table 4.4 shows the results of the defense methods. Dropout shows

a slight drop in the attack accuracy, but it does not show a large difference. The

DP(σ=10−4) shows little difference from the original model with mAP, but it lowers

attack accuracy meaningfully. The larger noise scale DP(σ=10−3) shows some loss

in accuracy, but its good defense against the attack model compensates for this.

4.6 Conclusion

In this study, we introduced new membership inference attacks against object detec-

tion models. Our proposed CNN-based attack model using the canvas method per-

formed better than a traditional machine learning regression method. We showed

that sufficiently overfitted object detection models are vulnerable to privacy leak-

age. A generalization error is not a guarantee of safety against an inference attack.

Transfer attacks are also efficient when the models or datasets are similar. To mit-

igate the privacy risks, we proposed defense mechanisms that are able to reduce

such risks. We showed that membership inference risks in object detection models

need to be considered.
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Chapter 5

Single Image Deraining

5.1 Introduction

Adverse weather conditions such as rain, haze, and snow can produce complex

visual effects on natural images and videos. In particular, rain streaks, which is one

of the most commonly occurring phenomena in outdoor imaging, can potentially

degrade the performance in several computer vision applications. Therefore, it is

imperative to develop algorithms that effectively remove rain streaks and restore

pristine background scenes in vision-related tasks.

Over the past few decades, several research works have studied the removal

of rain streaks from captured images. Several traditional deraining methods have

suggested separating rain streaks from the clean background image based on the

physical characteristics or texture appearance patterns of the rain streaks. Recently,

convolutional neural network (CNN)-based methods have achieved great success in

solving this problem [51, 61, 63, 88, 103, 106, 116, 117, 121, 129].

Many of the CNN-based methods utilize encoder-decoder structures, and for the
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most part, they add subnetworks without fully utilizing the information generated

during the encoding-decoding process. For example, to remove fine-grained rain

streaks and recover rain-free backgrounds more clearly, Yu et al. [121] consider the

encoder-decoder as a coarse deraining stage and use an additional simple network

as a fine deraining stage. Wang et al. [103] add a residual learning branch parallel

to the encoder part to form a better conditional embedding and eventually generate

a much better deraining result in the decoder part. Adding these subnetworks can

easily improve performance, but there is a limitation that a model becomes heavier

without leveraging enough information of an original model.

There is also an effort to utilize the information that is generated within the

model. In order to obtain and leverage information from other pixels for the de-

graded background pixels, Li et al. [61] and Yu et al. [121] exploit non-local op-

erations. These models use a square grid with the same aspect ratio in non-local

operations. However, the operations with the square grid lack an understanding of

the unique properties of the rain streaks because of their vertical distribution in

the rainy image, which we explore (see Figure 5.3). Consequently, these methods

have difficulties in recovering details in extremely adverse weather conditions.

To address these limitations of the prior works, we present a multi-level con-

nection and wide regional non-local block network (MCW-Net) to carefully remove

rain streaks and recover background details efficiently leveraging information gen-

erated during the encoding-decoding process. The proposed MCW-Net is based on

an encoder-decoder structure consisting of down-sampling and up-sampling com-

ponents as depicted in Figure 5.1.

We construct multi-level connection (MLC) between multiple-scale features to

efficiently utilize information across various scales without additional subnetworks
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Figure 5.1: Overview of the proposed MCW-Net structure.

in the recovery of the background. We implement an interactive multi-connection

that considers the interconnections between different scales. Because the features at

multiple levels show different scale characteristics, direct connections rather cause

adverse effects in the model. To adaptively rescale the channel-wise features in

MLC, we apply a channel-wise attention layer [47] after MLC, which helps the

network to focus on the useful channels. We demonstrate the importance of the

channel-wise attention, and we validate that MLC plays an effective role by com-

paring the qualitative and quantitative results of models with and without MLC

in Section 5.4.4.

In addition, we implement a non-local operation [107] to capture long-range

spatial dependencies between distant pixels. We propose a wide regional non-local

block (WRNL), which divides feature maps into grids of wide regions (see Figure

5.2) before performing the region-wise non-local operation. This wide grid provides

a relatively more even distribution of the rain streaks by region, which facilitates
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the retrieval of rich long-range background information during the recovery of the

original rain-free image (see Section. 5.3.2).

Additionally, as described in [116], to prevent information loss during the sam-

pling operation, we adopt the discrete wavelet transform (DWT) and inverse DWT

(IWT) in place of the simple pooling and de-convolution operations. Unlike the

pooling operation, the DWT operation is invertible via IWT, which helps to avoid

information loss. In addition, rain streaks can be captured with rich frequency

information via wavelet transform.

We evaluate the proposed MCW-Net on various synthetic and real-world derain-

ing datasets and compare its performance with existing state-of-the-art methods.

In particular, for real-world images, we measure the performance of the proposed

method using B-FEN [112] metric dedicated to deraining quality measurement. We

conduct an experiment on raindrop data, another degradation phenomenon caused

by rain from the perspective of the generalization ability of the model. In addition,

we validate in RainCityscape experiments that the proposed method can also help

with other vision tasks such as semantic segmentation.

In summary, the contributions of this work may be summarized as follows.

1)We propose MLC to fully leverage information generated in encoding-decoding

process for detail recovery without additional subnetworks. Feature information of

all the scales in the down-sampling part is aggregated at each stage of the up-

sampling part of the network, so it helps to recover details by preventing informa-

tion loss that occurs during the sampling process. We also analyze that channel-wise

attention plays an key role in the MLC.

2) We propose the WRNL, which effectively restores the background by using

sufficient rain-free information in each region of widely divided grids in the input
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feature maps. We experimentally demonstrated that the distribution of even rain

streaks by grid helps the deraining performance.

3) We perform experiments on both synthetic and real-world rain datasets and

demonstrate that the proposed method significantly outperforms existing state-of-

the-art methods. We also demonstrate the excellence of the proposed method for

real-world images using B-FEN, a metric dedicated to measuring deraining quality.

4) We construct joint image deraining and semantic segmentation models on

the RainCityscape dataset. In addition to conventional comparisons such as the

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM),

we comprehensively evaluate the contribution of the deraining model to other vision

tasks.

5.2 Related Work

The single image deraining problem begins with the assumption that a rainy image

consists of a background layer and a rainy layer. Several traditional training meth-

ods based on single images and videos have been proposed. Barnum et al. [4] recon-

struct rainy images by combining the appearance model with the streak model. The

appearance model identifies individual rain streaks and the streak model utilizes

the statistical characteristics of rain. Chen and Hsu [12] use the low-rank model

to separate the layers in a rainy image. As noted by Yang et al. [118], sparse cod-

ing is applied during this process to separate the rainy layer from the rainy image

[20, 52, 72, 108, 135]. Further, Li et al. [5, 64] approach this problem using the

Gaussian mixture model.

Because of the remarkable performance exhibited by deep learning-based meth-
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ods, especially CNN-based ones, the potential use of deep learning in deraining has

been extensively researched. Yang et al. [117] apply a CNN-based method for the

first time and express natural images by adding atmospheric light as a component

to rainy images. Fu et al. [29] and Fan et al. [28] use a single primary network that

restores input images using the residual network. Based on the residual network,

Li et al. [63] attempt to further eliminate overlapping rain streaks by organizing

the context aggregate network into multiple stages. Shen et al. [90] consider rain

streaks to be high-frequency and attempt to remove rain streaks by utilizing DWT.

Yang et al. [116] divide the deraining process into several stages and reconstruct

the image recurrently, beginning with a small portion of the image to eventually

obtain the entire image.

Wang et al. [106] capture the spatial contextual information using a four-

directional recurrent neural network with the identity matrix initialization model.

Ren et al. [88] propose progressive ResNet to effectively remove the rain via recur-

sive computation. Yu et al. [121] propose GraNet, which is designed to identify rain

masks in the coarse stage using a region-aware non-local block. Subsequently, the

process uses the rain masks to create the final image using another reconstruction

network. To achieve pixel-wise deraining in image recovery, encoder-decoder struc-

tures have been used in certain methods. Wang et al. [103] propose the residual

learning branch as a component of the encoder. Li et al. [61] enhance the perfor-

mance by introducing non-local blocks into the encoder-decoder network. Among

the methods that reconstruct the rainy layer to be identical to the background

layer, the generative adversarial network is widely used to remove raindrops and

rain streaks [62, 86, 129].

Yang et al. [119] propose the fractal band learning network based on frequent
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band recovery. Wang et al. [104] propose an interpretable deep network based on

a convolutional dictionary network. Jiang et al. [51] use the images of various sizes

as the input to the model. A multi-scale pyramid structure is used to promote

cooperative representation. Deng et al. [21] propose two-branch parallel networks,

in which one branch performs rain removal and the other branch detail recovery. In

[109], newly formulated rain streaks transmission maps, vapor transmission maps,

and atmospheric lights are respectively learned by three different networks. Zhang

et al. [130] propose a paired rain removal network, which exploits both stereo images

and semantic information. Zamir et al. [126] propose a multi-stage progressive

architecture with a supervised attention module for image restoration.

Chen et al [7] present an image processing transformer (IPT). IPT covers dif-

ferent several tasks such as super-resolution, denoising, and deraining based on

the transformer method. The authors augment ImageNet images to low-resolution,

noised, and rainy images via corresponding filters and then pre-train the IPT with

each set. Yue et al [123] propose a dynamic rain generator to mimic the rain streaks

in the video. The rain streaks in generated videos are removed by a deep learning-

based model called derainer.

Zhang et al [132] exploit the low to high-level features and attention operation to

restore the hazed images. Their intuition is that the low-level features contribute to

recovering finer details and the high-level features represent the shape of the object

or abstract semantic information. The utilization of hierarchical features and the

attention mechanism are similar to one of our strategies, multi-level connection.

However, their work fuses the lower-level features only in the most-down-sampled

features, whereas we consider all the features captured in the down-sampling phase

on every up-sampling phase.
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5.3 Proposed Network

In this section, we describe the architecture of the proposed MCW-Net, which is

is based on a U-Net-like structure whose overview is depicted in Figure 5.1. As is

apparent from the figure, we divide the levels according to the size of the feature

map and define a set of blocks as a stage.

The proposed MCW-Net consists of an encoder part and a decoder part. The

first three stages form the encoder part, and the remaining four stages the decoder

part. We propose MLC, which connect all outputs of the encoder to all inputs

of the decoder. MLC enables more diverse scale features to be used during the

restoration process. Each stage of MCW-Net is composed of two densely connected

residual (DCR) blocks, each of which consists of three convolution layers followed

by PReLU [100] (refer Figure 5.1(b)) and one WRNL block. To adaptively rescale

channel-wise features after concatenating the multi-level features, a squeeze-and-

excitation (SE) block is added in front of each decoder stage. A 1×1 convolutional

layer follows the SE block to adjust the number of channels.

5.3.1 Multi-Level Connection

In the usual U-Net-like network, connections exist only between features corre-

sponding to the same level. Such a structure cannot make use of multiple scale

information during the recovery of low-level features in the decoder. However, sin-

gle image deraining is a low-level vision task that requires richer range scale features

to restore the details in the image. Inspired by [96, 98, 105], we formulate MLC to

aggregate the features of all the levels. At each stage of the up-sampling part of the

network, features from all scales in the down-sampling part is aggregated. These
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multi-scale features provide a wider range of information from simple patterns (e.g.,

corners or edge/color conjunctions) in its lower-level to more complex high-level

features (e.g., significant variation and object-specific features). They encourage

more delicate deraining because rainy pixels in the image are recovered referenc-

ing semantic context and details from other intact pixels. However, simply fusing

various features might cause necessary information weighted insufficiently in con-

junction with more weight on less helpful information at the current up-sampling

stage. The attention mechanism allows the model to focus more on significant chan-

nels among several channels, and for this reason, it is essential when connecting

features of multiple levels.

Formally, let Elout be the output features at level l (l = 1, 2, 3) in the encoder

part. At each level l (l = 1, 2, 3, 4) in the decoder part, the input feature Dl
in is

given as:

Dl
concat = (

3⊕
i=1

H l
i(E

i
out))⊕Hup(D

l+1
out ) (5.1)

Dl
in =W1×1(fSE(D

l
concat)) (5.2)

where ⊕ denotes the concatenation operation, Hup(·) denotes the up-sampling op-

eration,Dl
out denotes the output feature of the decoder part at level l,W1×1 denotes

the 1×1 convolution layer, and fSE(·) denotes the SE block discussed above. H l
i(·)

denotes the sampling operation from level i to l. In other words, H l
i is the down-

sampling by l− i times, identity, and up-sampling by i− l times operations if l > i

, l = i, and l < i, respectively. We set D5
in = 0 for convenience.

Without MLC, high-level features cannot be used during the processing of low-

level features and vice versa. This approach helps the network to exploit various
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(a) (b)

Figure 5.2: Examples of patches of the input feature of the regional non-local block.
(a) Square patch, (b) Wide rectangular patch. Every pixel in a patch refers to every
pixel in the patch.

(a) Rain200H [117] (b) Rain200L [117] (c) SPA-data [106]

Figure 5.3: Analysis of rain streak distributions in various region types. The x-
axis represents the standard deviation between the number of rain pixels in the
patches in each image. The y-axis represents the number of images and vertical bars
are the means of each dataset standard deviation. The distribution of the images
according to the standard deviation is represented by histograms. We approximate
the probability density function of the histogram by using kernel density estimation.
As can be seen in the figures, the wide region has the smallest standard deviation
mean on all the datasets, so it can be interpreted that each patch of the wide region
has the evenest background information.

scale representations in recovering large-scale features. To find the correct corre-

spondence between the feature shapes at different scales, we apply discrete wavelet

transforms (DWT or IWT), as described in Section 5.3.3, for the down-sampling

and up-sampling operations.
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5.3.2 Wide Regional Non-Local Block

We denote the input feature to the WRNL as X ∈ RH×W×C . We divide X into a

a× b grid of patches {Xk}, (k = 1, ...,K = ab) where K is the number of patches.

The grid division is illustrated in Figure 5.2. The linear embedding processes for

Xk to generate the output Zk are formulated as follows.

Φ(Xk)ji = ϕ(Xk
i , X

k
j ) = exp{θ(Xk

i )ψ(X
k
j )
T } (5.3)

θ(Xk
i ) = Xk

i Wθ, ψ(X
k
i ) = Xk

i Wψ, G(X)ki = Xk
i Wg (5.4)

where Xk
i denotes the feature Xk at position i = 1, ...,HW/ab. The learnable

weight matrices Wθ, Wϕ, and Wg have the dimensions of C×L, C×L, and C×C,

respectively. In practice, L = C/2 is used. The regional non-local operation can be

expressed as follows:

Zki =
1

δi(Xk)

∑
j∈Si

Φ(Xk)ji G(X
k)i , ∀i , (5.5)

where δi(X
k) =

∑
j∈Si

ϕ(Xk
i , X

k
j ) denotes the correlation between Xk

i and each Xk
j

in Si, and Z
k
i denotes the output feature Zk at position i. Si denotes a set of patch

positions. If a > b, then the patch is wider than when a = b. Therefore, we call

the patch a wide rectangular patch, a square patch, and a tall rectangular patch if

a > b , a = b, and a < b, respectively. In the WRNL block, we set the a × b grids

to 16× 4 , 8× 2, 4× 1, and 4× 1 at levels 1, 2, 3, and 4, respectively.
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Analysis

Given that the non-local block recovers a specific pixel based on the information

of other pixels in the patch, it is necessary to have sufficient background informa-

tion in each patch. The regional non-local block uses the background information

sufficiently if the rain streaks are evenly distributed between the patches. How-

ever, we observe that the rain streaks are not evenly distributed between square

patches in the images used in the previous deraining research [61, 121]. Because

of the predominantly vertical distribution of rain steaks, we expect that wide rect-

angular patches have a more even distribution of the streaks than square and tall

rectangular patches.

The distribution of the rain streaks is confirmed through experiments. Wide

rectangular, square, and tall rectangular patches are prepared by dividing the

height and width of the image into 16 × 4, 8 × 8 and 4 × 16 grids respectively. It

should be noted that (a) in Figure 5.2 contains an 8 × 8 grid of patches, and (b)

in Figure 5.2 contains 16 × 4 grid of patches. We consider pixels as rain streaks

if the difference between the pixels in xinput and xgt exceeds a certain threshold.

The standard deviation between the number of rain pixels in the patches included

in each image is depicted in Figure 5.3. Wide rectangular patches are observed to

exhibit smaller standard deviation values compared to square and tall rectangular

patches, which implies an even distribution of rain across all patches. This results

in the effective recovery of the image because the usable background information

within each patch is also distributed evenly as shown in Table 5.7.
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5.3.3 Discrete Wavelet Transform

To prevent information loss, we adopt the discrete wavelet transform for the sam-

pling operation. In particular, We use 2D Haar wavelet which is widely used in

image processing.

The proposed network uses DWT and IWT for down-sampling and up-sampling,

respectively. In particular, we adopt the Haar transform, which is simple and widely

used method in image processing [35, 68, 85, 90, 116]. The Haar transform is

calculated based on the filter fLL, fLH , fHL and fHH as follows:

fLL = 1
4

1 1

1 1

 , fLH= 1
4

−1 −1
1 1

 , fHL= 1
4

−1 1

−1 1

 , fHH= 1
4

 1 −1

−1 1

 . (5.6)

Given that fLL is identical to average pooling, LL achieves local translation

invariance by reducing the size of the feature map (Equation 5.6). LH, HL, and

HH contain edge information. In particular, as LH contains vertical edge informa-

tion, the features of the rain streaks can be effectively obtained from it. The IWT

operation during the up-sampling process is the inverse operation of the DWT.

5.3.4 Loss Function

We define the loss function L as follows.

L = ∥xgt − f(xinput)∥1 + ∥xgt − f(xinput)∥2 (5.7)

where xinput denotes the input rainy image, xgt denotes the corresponding rain-

free image, and f denotes the return of the MCW-Net output with respect to

xinput. We use L1+L2 loss because it shows the slightly better performance, but
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our method does not appear to be sensitive to the loss.

5.4 Experiments

In this section, we present the dataset used in this study and describe the details

of the experimental setting. We present two versions of the proposed MCW-Net: a

small model and a large model. The architecture of the two models is same except

for the number of channels. The small model has eight times fewer channels than the

large model. We conduct a quantitative and qualitative evaluation of the proposed

method and compare its performance with state-of-the-art methods. An ablation

study is conducted to confirm the significance of each component introduced in

Section 5.3.

5.4.1 Datasets and Evaluation Metrics

Table 5.1: Synthetic and real-world datasets

Datasets Train Test Type

Rain200L [117] 1,800 200 synthetic
Rain200H [117] 1,800 200 synthetic
Rain800 [129] 700 100 synthetic
Rain1200 [128] 12,000 1,200 synthetic

RainCityscapes [16, 48] 9,432 1,188 synthetic
SPA-Data [106] 640k 1,000 real-world
Yang et al. [117] - 15 real-world

DQA [112] - 206 real-world
Raindrop [86] 861 58 (A)/249 (B) real-world

Five synthetic datasets (Rain200H, Rain200L, Rain800, Rain1200, RainCityscapes)

and three real-world datasets (SPA-Data, Yang et al. [117], DQA [112]) are used
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to evaluate the performance of the proposed method. As pointed out by Ren et al.

[88], certain overlaps of background exist between the training and test datasets

in the Rain100H and Rain100L datasets. Therefore, we evaluate our model using

the updated Rain200H and Rain200L datasets, which do not share backgrounds

with the corresponding training datasets. Because the absence of ground truth

data makes quantitative evaluation impossible, the real-world dataset of [117] is

evaluated qualitatively using the Rain200H-trained weights. In addition, Raindrop

[86] dataset is used to evaluate the raindrop removal performance of the proposed

method. We compare the performance of the proposed method with nine state-of-

the-art single-image deraining methods.

We employ PSNR and SSIM [110] metrics for quantitative quality assessment. All

the PSNRs reported in the following experimental results are calculated for RGB

channels. Some previous works filter the derained RGB images into YCbCr space

and then evaluate PSNR only for the Y channel to focus on the luminance. However,

because most of the high-level vision algorithms commonly receive the RGB image

as an input, we consider evaluation of well-recovered rainy image in RGB space

is more appropriate and helpful for other vision tasks. Additionally, we employ

the dedicated B-FEN metric [112] to measure the deraining quality of deraining

algorithms.

5.4.2 Datasets and Experiment Details

For all the datasets, we randomly crop 256 × 256 patch from each input image.

During the training, we set the batch size to 4 and use the Adam optimizer. For

the large model, we set the learning rate to be 10−4 and train our model for

200 epochs on the Rain200H, Rain200L, and Rain800 datasets, 100 epochs on the
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Table 5.2: Average PSNR and SSIM comparison on the synthetic datasets
Rain200H [117], Rain200L [117], Rain800 [129], Rain1200 [128], and real-world
dataset SPA-Data [106]. The highest values are indicated in red and the second-
highest values are indicated in blue. Note that IPT uses rainy-augmented ImageNet
pre-trained weight, but proposed methods and other comparable models do not.
So we manually train the IPT from sketch only with the provided dataset.

Method JORDER [117] RESCAN [63] SPANet [106] PReNet [88] ReHEN [118] RCDNet [104]
(CVPR’ 2017) (ECCV’ 2018) (CVPR’ 2019) (CVPR’ 2019) (MM’ 2019) (CVPR’ 2020)

Rain200L 36.95/0.979 36.94/0.980 35.60/0.974 36.28/0.979 38.57/0.983 35.28/0.971
Rain200H 22.05/0.727 26.62/0.841 26.32/0.858 27.64/0.884 27.48/0.863 26.18/0.835
Rain800 22.24/0.776 24.09/0.841 24.37/0.861 22.83/0.790 26.96/0.854 24.59/0.821
Rain1200 24.32/0.862 32.48/0.910 32.38/0.920 30.40/0.891 32.64/0.914 32.23/0.910
SPA-Data 35.72/0.978 36.99/0.967 38.53/0.987 35.68/0.942 38.65/0.974 41.47/0.983
Params 4,169,024 499,668 283,716 168,963 298,263 3,166,355

Method DRD-Net [21] MPRNet [126] IPT [7] IPT [7] MCW-Net MCW-Net
(CVPR’ 2020) (CVPR’ 2021) (CVPR’ 2021) (w/ pretraining) (Ours-small) (Ours-large)

Rain200L 37.15/0.987 37.87/0.983 37.08/0.980 40.32/0.989 39.19/0.986 39.92/0.988
Rain200H 28.16/0.920 27.63/0.872 27.03/0.955 - 29.31/0.901 30.70/0.922
Rain800 26.32/0.902 25.93/0.832 25.64/0.833 - 28.39/0.876 28.42/0.876
Rain1200 - 32.91/0.916 20.12/0.691 - 33.17/0.922 33.70/0.928
SPA-Data - 44.89/0.989 17.75/0.515 - 42.81/0.986 46.88/0.991
Params 5,230,214 3,637,303 115,333,723 115,333,723 2,158,586 129,539,018

Rain1200 and the RainCityscapes datasets, 3 epochs on the SPA-Data dataset, and

500 epochs on the Raindrop dataset. For the small model, we set the learning rate

to be 5×10−4 and train our model for 500 epochs on the Rain200H, Rain200L, and

Rain800 datasets, 100 epochs on the Rain1200 and the RainCityscapes datasets, 5

epochs on the SPA-Data dataset, and 750 epochs on the Raindrop dataset.

5.4.3 Evaluations

Results on Synthetic Datasets

As mentioned in Section 5.4, the proposed MCW-Net is evaluated on four synthetic

datasets, and the performance is compared to eight state-of-the-art methods. The

quantitative results on the synthetic datasets are presented in Table 5.2.

97



For other models to be compared, if a metric is not provided in the original

paper, we train the models with their default settings and report the results to

the comparison table. Otherwise, we report the better result between the provided

metric in the original paper and the result obtained by our re-trained model. If

reproduction is not possible, we directly copy the provided result to the comparison

table.

As is evident from the data, the proposed MCW-Net (large) achieves remarkable

improvement over existing state-of-the-art methods with respect to the PSNR and

SSIM metrics across all synthetic datasets, and MCW-Net (small) follows right

behind.

The original inputs, the ground truth, and the qualitative results for Rain200H

are shown in Figure 5.4. As shown in the yellow boxes of Figure 5.4, MCW-Net

(small) clearly restores the number compared to other methods, and MCW-Net

(large) restores the digits surprisingly similar to ground truth. In the red boxes of

Figure 5.4, MCW-Net (small) restores the sky and spokes of the windmill cleanly

compared to other methods but failed to recover lines, while MCW-Net (large)

restores some of the lines.

Results on Real-world Datasets

For further general verification of the proposed method, additional experiments are

conducted on two real-world datasets. To estimate the performance of the other

state-of-the-art models, we employ the same way as quantitative evaluation of

synthetic data. On the SPA-Data, MCW-Net exhibits quantitatively outstanding

performance compared to the other state-of-the-art methods.

To confirm the effectiveness of the method trained using synthetic rainy images
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(a) Rainy image (b) JORDER [117](c) RESCAN [63] (d) SPANet [106] (e) PReNet [88] (f) ReHEN [118]

(g) RCDNet [104] (h) MPRNet [126] (h) IPT [7] (i) MCW-Net(small)(j) MCW-Net(large) (k) GT

(a) Rainy image (b) JORDER [117](c) RESCAN [63] (d) SPANet [106] (e) PReNet [88] (f) ReHEN [118]

(g) RCDNet [104] (h) MPRNet [126] (h) IPT [7] (i) MCW-Net(small)(j) MCW-Net(large) (k) GT

Figure 5.4: Results obtained via several state-of-the-art methods on the Rain200H
[117] images. The outputs of MCW-Net exhibit no traces of rain streaks on both
image samples. MCW-Net also recovers the most detailed images.
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(a) Rainy image (b) JORDER [117] (c) RESCAN [63] (d) SPANet [106] (e) PReNet [88]

(f) ReHEN [118] (g) RCDNet [104] (h) MPRNet [126] (i) MCW-Net (small)(j) MCW-Net (large)

(a) Rainy image (b) JORDER [117] (c) RESCAN [63] (d) SPANet [106] (e) PReNet [88]

(f) ReHEN [118] (g) RCDNet [104] (h) MPRNet [126] (i) MCW-Net (small)(j) MCW-Net (large)

Figure 5.5: Results obtained via several state-of-the-art methods on the Yang et
al. [117] images. Among state-of-the-art methods, MCW-Net is the only one that
restore the detail of the images while removing the rain streaks.
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in removing real rain streaks, qualitative experiments are conducted on images

presented by Yang et al. [117]. To compare the model performances under fair

conditions, only Rain200H is used during the training process. As shown in Figure

5.5, MCW-Net generates satisfactory results with respect to both the removal of

the rain streaks and the restoration of the details in the background. The small

and large versions of MCW-Net recover the details of the columns in the red box

and remove the rain streaks in the yellow box better compared to other models.

Although detail recovery and rain removal are the trade-off for other models, MCW-

Net succeeds in both. MCW-Net also recovers the cleanest background for another

image sample. The yellow box shows the output of MCW-Net exhibits no traces of

rain streaks while they are left in the result of the other models.

Results on Authentic Rain Images with the Dedicated Metric

PSNR and SSIM estimate how the recovered output image closes to the target

image. Therefore, several low-level vision tasks (e.g , denoising, super-resolution,

deraining) conventionally exploit these metrics as an evaluation tool. Nonetheless,

one might argue that PSNR and SSIM are general-purpose quality metrics so they

are limited to concentrating only on the deraining ability. Besides, they need tar-

get images to be calculated and thus cannot be applied on target-absent authentic

rainy images.

To handle this issue, we additionally evaluate the proposed method via a measure-

ment called B-FEN [112], which accurately evaluates the deraining quality using

a bi-directional feature embedding network. A higher B-FEN score represents bet-

ter perceptual quality, which indicates that the model not only effectively removes

rain streaks but also well preserves the original rain-free image. We train all the
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Table 5.3: Comparison results of the various methods on DQA dataset in B-FEN
[112] metric (higher is better).

Methods B-FEN

original 0.2997
MPRNet 0.3051
RCDNet 0.3101
PreNet 0.3139
SPANet 0.3154

MCW-Net (ours-small) 0.3287
MCW-Net (ours-large) 0.3222

comparable models and the proposed method on SPA-Data and evaluate the DQA

dataset [112]. Since DQA is a real-world testing image set, real-world SPA-Data

can guide the model to capture the properties of authentic rain streaks.

As shown in Table 5.3, our model achieves the highest B-FEN score. One thing

to note is that the small version of MCW-Net has a higher B-FEN score than

the large version of MCW-Net. B-FEN is a subjective opinion-aware metric, and

opinion-making participants may tend to focus more on rain streaks removal than

background restoration. From this point of view, it may lead to possible inconsistent

results different from that of other objective opinion-unaware metrics.

Results on Raindrop data

Raindrops, which are a commonly observed phenomenon in conjunction with rain,

also might degrade the performance in computer vision applications. Even though

we design the proposed method to remove rain streaks in images, we explore the

model’s generalizability with the raindrop image dataset. The experimental results

are reported in Table 5.4 and Figure 5.7. In the evaluation, we use the weight of

the AGAN model provided by the author. We calculate PSNR and SSIM metrics

102



(a) Rainy image (b) MPRNet [126] (c) RCDNet [104] (d) PReNet [88]

(e) SPANet [106] (g) MCW-Net (small) (j) MCW-Net (large)

Figure 5.6: Results obtained via several state-of-the-art methods on the DQA im-
ages. Among state-of-the-art methods, MCW-Net is the only one that restore the
detail of the images while removing the rain streaks. Based on the area of left-most
person in (g) and (j), the small version removed rain better than the larger version,
consistent with the results of the B-FEN score. However, the small version remove
all the wrinkles on clothes, and the large version preserve them, so the large version
achieves a better restoration of details.
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Table 5.4: Average PSNR and SSIM comparision on Raindrop dataset.

Dataset Testset A Testset B
PSNR SSIM PSNR SSIM

Eigen13 [25] 23.74 0.788 - -
Pix2Pix [50] 28.15 0.855 - -
PreNet [88] 28.58 0.913 - -
AGAN [86] 30.55 0.910 24.43 0.795

MCW-Net (ours-small) 29.96 0.906 24.91 0.800
MCW-Net (ours-large) 30.77 0.918 25.17 0.809

(a) Rain drop image (b) AGAN [86] (c) MCW-Net (small)(d) MCW-Net (large) (e) GT

(a) Rain drop image (b) AGAN [86] (c) MCW-Net (small)(d) MCW-Net (large) (e) Clean

Figure 5.7: Results obtained via several state-of-the-art methods on the Raindrop
images. Images in the first ans second rows are from testset A and testset B,
respectively.

in RGB channels as in other experiments.

5.4.4 Ablation Study

We conduct an ablation study to demonstrate the significance of all the methods

used in the MCW-Net architecture. MCW-Net (large) and Rain200H dataset are

used for the ablation study. We conduct three experiments and report the average

values. All the evaluations are dedicated to the proposed method without Cutmix.

Because Cutmix is the data augmentation strategy and hence is not directly related
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Table 5.5: Ablation study on the various strategies presented in Section 5.3.

WRNL DWT MLC Cutmix PSNR SSIM

28.12 0.906
✓ 29.49 0.911
✓ ✓ 30.22 0.917
✓ ✓ ✓ 30.62 0.921
✓ ✓ ✓ ✓ 30.70 0.922

to ablation about the model structure.

Ablation study on strategies employed

An ablation investigation is conducted to evaluate the performance of the proposed

strategies. The baseline model is constructed with two DCR blocks corresponding

to each stage and the 2×2 max pooling and pixel shuffle operation are adopted

as the down-sampling and up-sampling operations, respectively. As evident from

Table 5.5, each strategy contributes to the performance improvement.

Ablation study on MLC

To show the importance of channel-wise attention to MLC, we evaluate the perfor-

mance using MLC with channel-wise attention and MLC with other commonly used

fusing operations, addition and concatenation. As shown in Table 5.6, MLC with

addition or concatenation rather degrade the performance. We analyze that this re-

sult occurs because additional information which is messy and unorganized rather

interferes with the decoding process. Considering channel-wise attention serves as

an indication of which information should be referenced more importantly at the

current level decoding process, so MLC with channel-wise attention improves the

performance of the model.
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Table 5.6: Ablation study on MLC, where C.A. denotes channel-wise attention.
The experiments are conducted on the proposed method without Cutmix.

PSNR SSIM

No MLC 30.22 0.917
MLC with concatenation 30.07 0.913

MLC with addition 30.26 0.916
MLC with C.A. (SE) 30.62 0.921

(a) Input (b) MCW-Net (w.o. MLC)(c) MCW-Net (w. MLC) (d) GT

Figure 5.8: Qualitative ablation study on MLC. MCW-Net (large) is used for the
study. In the first row, we can see that the zebra pattern in the red and green box
is not well restored without MLC. However, model with MLC restored the pattern
in the red and green box well. In the second row, we can also see that the model
with MLC better restored the tone and texture of the tree than the model without
MLC. As a result, we can confirm that MLC plays a certain role in recovering detail
as intended.

In addition, we conduct a qualitative ablation study to see if MLC actually

helps to restore the details as intended, and the results are shown in Figure 5.8.

The results confirm that MLC effectively does detail recovery as well as quantitative

improvement. Details of the results are described in the caption of Figure 5.8.
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Table 5.7: Ablation study on types of regional non-local blocks.

Dataset Region Type PSNR SSIM

Tall Rectangle 30.08 0.916
Rain200H Square 30.14 0.915

Wide Rectangle 30.62 0.921

Tall Rectangle 39.86 0.987
Rain200L Square 39.87 0.988

Wide Rectangle 39.92 0.988

Tall Rectangle 42.78 0.987
SPA-DATA Square 42.96 0.987

Wide Rectangle 43.05 0.987

Ablation study on non-local block region types

We evaluate the performance using square, tall, and wide-type regional non-local

blocks on Rain200H, Rain200L, and SPA-DATA datasets. The results presented

in Table 5.7 demonstrate that the wide-type regional non-local block achieves the

best performance.

Ablation study on various sampling operations

To compare the performance of various sampling operations, we evaluate the per-

formance using mean pooling, 1x1 convolution, and the discrete wavelet transform.

The results presented in Table 5.8 demonstrate that the discrete wavelet transform

has the best performance.

5.4.5 Applications for Other Tasks

We investigate the effect of the deraining model on improving the performance of

high-level vision applications such as semantic segmentation. Because rain streaks
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Table 5.8: Ablation study on various sampling methods. Note that three different
sampling operations are compared on the proposed method without MLP and
Cutmix.

Sampling Operation PSNR SSIM

Mean Pooling 29.50 0.909
1×1 conv. 29.80 0.911

DWT & IWT 30.62 0.921

Table 5.9: Comparison results of joint deraining and semantic segmentation on
RainCityscape dataset comprising three rain intensities (α ∈ {0.01, 0.02, 0.03}
where α denotes the intensity of the rain streaks). We use DeepLabV3+ [8] for
semantic segmentation. We compare the models that show an improvement in the
semantic segmentation performance which is measured as mIOU metric. avg. in
the metric column denotes average value of all α.

Metric Rainy ReHEN PReNet RCDNet MPR-Net MCW-Net MCW-Net (Large) Clean

PSNR 15.55 23.47 28.88 25.51 25.91 33.94 35.82 ∞
SSIM 0.826 0.916 0.972 0.958 0.964 0.981 0.987 1.000

mIOU (avg.) 0.6254 0.4833 0.7636 0.7402 0.7516 0.7679 0.7728 0.7810
mIOU (α=0.01) 0.5528 0.6724 0.7765 0.7641 0.7626 0.7743 0.7773
mIOU (α=0.02) 0.4816 0.6284 0.7652 0.7439 0.7509 0.7703 0.7750
mIOU (α=0.03) 0.4171 0.5777 0.7492 0.7140 0.7414 0.7590 0.7663

can degrade the visibility of objects under complex weather conditions, the incor-

poration of effective image enhancement would be helpful in several vision models.

To this end, we apply the public semantic segmentation model DeepLabV3+ [8] on

the Cityscape dataset [16]. Hu et al. [48] synthesized rain streaks on the Cityscape

dataset with different rain intensities α (α ∈ {0.01, 0.02, 0.03}). Quantitative re-

sults for the improvement of the semantic segmentation accuracy in addition to

the deraining performance are reported in Table 5.9. The qualitative comparison

is shown in Figure 5.9.

108



(a) Rainy (b) PReNet (c) RCDNet (d) MPR-Net (e) Ours (small)(f) Ours (large) (g) Clean

Figure 5.9: Examples of joint deraining and semantic segmentation. The first row
denotes the deraining results on the RainCityscape dataset. The second row denotes
the semantic segmentation results obtained by DeepLabV3+ [8].

5.4.6 Analysis on multi-level features

To achieve insight as to how much each level contributes in deraining process for

each connection, we measure the feature importance of channel-wise attention in

SE layer at each connection.We measure the feature importance as follows:

As presented in Section 5.3.1, the features of each level in the encoder part are

aggregated at level l in the decoder part,

Dl
concat = (

3⊕
i=1

H l
i(E

i
out))⊕Hup(D

l+1
out ) (5.8)

= D̃l
1 ⊕ D̃l

2 ⊕ D̃l
3 ⊕ D̃l

normal, (5.9)

where D̃l
i and D̃l

normal are the results of H l
i(E

i
out) and Hup(D

l+1
out ), respectively.

Note that Dl+1
out means the output of previous layer. Afterwards, Dl

concat is fed into

SE layer fSE as
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fSE(D
l
concat) = fSE([D̃

l
1, D̃

l
2, D̃

l
3, D̃

l
normal]) (5.10)

= [D̂l
1, D̂

l
2, D̂

l
3, D̂

l
normal], (5.11)

where, each D̂l
i can be considered as corresponding output of D̃l

i because fSE

is channel-wise attention operation. Now, we obtain the feature importance by

applying L2 norm and normalization to each of them.

λ̃li =
∥D̃l

i∥2∑
j ∥D̃l

j∥2
, i = 1, 2, 3, normal (5.12)

λ̂li =
∥D̂l

i∥2∑
j ∥D̂l

j∥2
, i = 1, 2, 3, normal, (5.13)

where λ̃li and λ̂
l
i denote the feature importance before and after SE layer, respec-

tively.

We calculate the feature importance before and after the SE layer for Rain200H

and SPA-DATA datasets as described above, and we report the results in Figure

5.10. We find that feature importance is evenly distributed before the SE layer,

but more diversely distributed after the SE layer. Combining such results with

Table 5.6 and Figure 5.8, we assume that the channel-wise attention guided via

SE operation has a crucial contribution to deraining. Furthermore, unspecified

distribution of feature importance before the SE layer could cause performance

degradation, implying that simple connections such as addition and concatenation

could be detrimental to the performance. In this respect, we suggest that the SE

layer emphasizes more meaningful features for recovering rainy images at each level.
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(a) (b)

(c) (d)

Figure 5.10: Intensity analysis of channel-wise attentions at each MLC on Rain200H
and SPA-DATA datasets.

5.5 Conclusion

In this study, we present the multi-level connections and an adaptive regional atten-

tion network structure for single-image deraining. The proposed MCW-Net adap-

tively aggregates features via connections between multiple levels and the SE block

in the background recovery. To utilize rich long-range rain-free background infor-

mation in the deraining process, we propose a novel WRNL. The proposed method

outperforms existing state-of-the-art methods. In particular, the network restores

the details of the input image and almost completely removes rain streaks on both

the synthesized and the real-world datasets. Furthermore, additional experiments

demonstrate that MCW-Net contributes to other vision tasks by enhancing images

degraded under bad weather conditions.
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국문초록

본학위논문은심층신경망의손실표면에대하여다룬다.심층신경망의손실함수는

볼록 함수와 같이 나쁜 국소점을 가지는가? 조각적으로 선형은 활성함수를 가지는 경

우에 대해서는 잘 알려였지만, 일반적인 매끄러운 활성함수를 가지는 심층 신경망에

대해서는 아직까지 알려지지 않은 것이 많다. 본 연구에서는 나쁜 국소점이 일반적인

매끄러운 활성함수에서도 존재함을 보인다. 이것은 심층 신경망의 손실 표면에 대한

이해에 부분적인 설명을 제공해 줄 것이다. 추가적으로 본 논문에서는 학습 이론, 사

생활 보호적인 기계 학습, 컴퓨터 비전 등의 분야에서의 심층 신경망의 다양한 응용을

선보일 예정이다.

주요어휘: Deep learning, neural network, local minimum

학번: 2015-22567
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