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Abstract

Recommendation systems have grown in popularity over the last few years,

with the rise of big data and development of computing resources. Compared

to simple rule based methods or content based filtering methods used for rec-

ommendation during the early development stage of recommendation systems,

recent methodologies try to implement much more complex models. Latent

factor models and collaborative filtering methods were developed to find simi-

larities between users and items without actually knowing their characteristics,

and gained popularity. Various item domains, mainly movie and retail, have

extensively used these recommendation algorithms.

With the development of deep learning architectures, various deep learning

based recommendation systems emerged in recent years. While a lot of them

were focused on generating the predicted item ratings when given a big data

comprised of user ids, item ids, and ratings, there were some efforts to generate

next-item recommendations as well. Next-item recommendations receive a

session or sequence of actions by some user, and try to predict the next action

of a user. NVIDIA recently used Transformers, a deep learning architecture

in the field of Natural Language Processing (NLP), to build a session based

recommendation system called Transformers4Rec 1. The system showed state

of the art performances for the usual movie and retail domains.

In the music domain, unfortunately, advanced models for session-based

recommendations have been explored to a small extent. Therefore, this thesis

will attempt to apply Transformer based architectures to session-based recom-

1https://github.com/NVIDIA-Merlin/Transformers4Rec/
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mendation for music streaming, by utilizing a dataset from Spotify and frame-

work from NVIDIA. In this thesis, unique characteristics of music data that

validates this research’s purpose are explored. The effectiveness of Transformer

architectures on music data are shown with next-item prediction performances

on actual user streaming session data, and methods for feature engineering

and data preprocessing to ensure the best prediction results are investigated.

An empirical analysis that compares various Transformer architectures is also

provided, with models further analyzed with additional feature information.

Keywords: Transformers, Recommendation Systems, Music Streaming Ses-

sions

Student ID: 2020-25184
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1 Introduction

1.1 Research Topic

This thesis’s topic is on developing a recommendation system (RecSys) for

music streaming session data with Transformer architectures. Unlike traditional

RecSys which attempt to recommend the most likeable item to a certain user,

our aim will be a session-based RecSys (Ludewig et al. 2020), which uses session

data; sequence of actions made by users (items bought, movies watched, music

listened, etc.). Based on numerous sequences, a session-based RecSys tries to

recommend the next item in a certain user’s session (Wang et al. 2021). This is

illustrated in Figure 1.1 with songs as items. We have a certain user’s previous

sequence of items interacted with timestamps (t− 4 to t− 1), and attempt to

predict the next item at timestamp t. Therefore, it is important for the RecSys

to know which parts of the sequence to pay attention to.

Figure 1.1 Session-based Recommendation.
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Transformer, a model developed in the Natural Language Processing (NLP)

domain, aims to learn which parts of a sentence to pay attention to for various

tasks (Vaswani et al. 2017). Among those various tasks, language modeling is

a task that seems to align to the next-item recommendation task for session-

based recommendation. Language modeling is the task of predicting the next

word to appear in a sentence.

Acknowledging the similarities between next-item recommendation and

language modeling, this thesis applies Transformer architectures to music

streaming session-based recommendation. Traditional words and sentences

will be replaced with songs and sequences of songs to feed into Transformer

architectures, to predict the next song to appear in a streaming session.

1.2 Purpose of Research

The purpose of this research is to 1) Produce a novel RecSys in the field of

session-based recommendation for music streaming sessions, 2) Thus providing

a baseline model for deep learning based music streaming session RecSys, and

3) Explore the compatibility between Transformer architectures and music

streaming sessions data.

The RecSys in this research is novel in the domain of next-item recommen-

dation for music streaming sessions data, compared to traditional collaborative

or content-based approaches. Due to the use of Transformer architectures, item

and user information is no longer necessary (although is good to use as side

information), and deep neural architectures are utilized. To our knowledge,

less research has been done on utilizing music streaming session data and

modern Transformer architectures on session-based recommendation. This
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status quo will be explored later in Section 2. The plausibility of this attempt

is demonstrated by the use of Transformer architectures for recommendation

of items from different domains (Chen et al. 2019; Fang 2021; Luo et al. 2020).

Not just settling on a novel system, this research created a high performing

system that displays significant recommendation performance. In order to do

this, our research used specific training methods for music streaming sessions

and also utilized metadata of song sessions and feature information.

The idea of simply switching words/sentences in language modeling and

songs/streaming sessions in next-item recommendation seems straightforward,

but is expected to have many obstacles. The characteristics of language and

music obviously do not align. For example, words inside a sentence follow

common grammar rules while songs inside a streaming session do not. In

addition, there is no guarantee that Transformer architectures, which were

successful in capturing information within language data, will be successful

in capturing information within music streaming sessions data. This research

explored this unsure compatibility and developed the most compatible model by

first comparing various Transformer based models, and then further fine-tuning

and adding feature information.

1.3 Need for Research

1.3.1 Recent Trends

Music consumption culture has changed significantly over the past few years.

After the monumental shift from physical CDs to online downloads, the recent

shift from online downloads to online streaming introduced huge changes in

the market (Datta, Knox, and Bronnenberg 2017). Major music streaming

3



platforms like Spotify and Apple Music have emerged, and session-based rec-

ommendation has gained importance in the music industry to provide more

accurate recommendations to users.

In search of improved RecSys, numerous competitions have been held online.

A huge amount of data is normally needed to improve recommendation, so the

size of music data made available to the public has continuously increased as

well. The music streaming sessions dataset released by Spotify (Brost, Mehrotra,

and Jehan 2019), which will be used in this research, clearly shows that there

is a need for more advanced RecSys, and firms are not afraid to open up their

data for this.

1.3.2 Dataset Characteristics

In terms of session-based recommendation, attention based architectures like

Transformers and BERT have been previously explored and proven superior

performances than its competitors (Sun et al. 2019a). However, these projects

were mostly on retail and movie data, which is totally different from music

streaming data. Music streaming data has numerous subtle features to be inves-

tigated, like user actions while listening, how a song was played, etc. Therefore,

whether these subtleties can be explained by Transformer architectures needed

research.

To dive deeper into a the uniqueness our dataset, the Music Streaming

Sessions Dataset (MSSD), Table 1.1 is shown, with dataset statistics of MSSD

and 4 other datasets that were tested with session-based recommendation in

BERT4Rec (Sun et al. 2019a). The comparison will mainly be conducted

with the MovieLens (ML-1m, ML-20m) dataset, since movies would mostly

likely be deemed best similar to music. The differences probably stem from

4



Datasets No. Users No. Items No. Actions Avg. Length Density

MSSD 39,582,988 2,377,710 271,053,259 19.2 < 0.01%

Beauty 40,226 54,542 0.35m 8.8 0.02%
Steam 281,428 13,044 3.5m 12.4 0.10%
ML-1m 6040 3416 1.0m 163.5 4.79%
ML-20m 138,493 26,744 20m 144.4 0.54%

Table 1.1 Datasets Statistics.

the innate difference in average runtime of a song and a movie. While vast

majority of movies show a runtime between 80 and 120 minutes (Jarzabek

2018), the average length of songs are known to be around 3 minutes and 30

seconds (Sanchez 2019). Thus, many aspects in consumer behaviour will vary.

For instance, watching a full movie and listening to a full song would not always

be the same amount of positive feedback, since watching a full movie takes

much more commitment. This means that the methods for distinguishing if

a user actually gave positive feedback to an item will be different for movie

and music datasets. It is actually easier for the MovieLens dataset since they

have an explicit feedback information with the ratings user gave to items. For

MSSD, we do not have any explicit feedback, just an implicit feedback that

the user listened to the songs and extra session information to help predict a

user’s preference. These session information will be mentioned in later sections,

and are information like ‘how a user played this track’ and ‘the length of pause

before this track’, which are not included in movie datasets.

The length of sessions will also vary, since more songs will be listened to

than movies watched. In MSSD however, all sessions are cut to length 20, and

since past work also cuts maximum session length to 20 (Sun et al. 2019a),

session length itself is not expected to cause differences during experiments. In

5



Figure 1.2 Distribution of Session Lengths.
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Figure 1.3 Distribution of Skip Rate.

Table 4.1, average length of the movie datasets (ML-1m, ML-20m) is the length

before truncation and that of MSSD is the length after truncation. Luckily,

from the authors of MSSD, we can see the rough distribution of session lengths

in Figure 1.2 (Brost, Mehrotra, and Jehan 2019). It shows that most sessions

were truncated since they were over length 20. Apart from length of sessions, we

can evidently observe the incomparable number of users, items and interactions,

thus resulting in extreme sparsity for MSSD. This is not just compared movie

datasets, it is also for other datasets in the field of online reviews (Beauty) and

eCommerce (Steam).

The most unique features about MSSD would be track metadata. Track

metadata are numeric audio features like acousticness, energy, tempo, etc. that

will be explained deeply in later sections. These are innate content-based

characteristics from music that are different from the ones for movies, and

information that makes MSSD interesting. In addition, the users in MSSD are

from the streaming platform Spotify, and are sometimes exposed to hindrances

7



like advertisements if they are free users, a.k.a. ‘Non-premium’ users. This

would result in skipping a track even if the user likes it, and need to be

acknowledged. In terms of skipping, this information also plays a big part

in explaining user preferences. MSSD contains information on the length a

user listened to a track before skipping. From Figure 1.3, provided to us by

MSSD authors (Brost, Mehrotra, and Jehan 2019), we can see that the rate

of skipping is mainly centered around 0.5 and is indeed relevant. There is also

a phenomenon named ‘Sleeping Sessions’. They are sessions where the user

mindlessly turns on a playlist and listens to all songs regardless of preference.

These sessions need to be filtered out so that they do not disrupt the training

process.

Due to the above trends and differences, the need for this research of

this thesis certainly seems to exist. This research will match the trend in

RecSys with Big Data, and also provide deeper understandings about the

relationship between various unique characteristics of streaming data and next-

song recommendation.

8



2 Related Works

2.1 Overview of NLP and RecSys

In this section, we will discuss related works to look at how the field of

NLP developed and effects of those developments in the field of session-based

recommendation.

Before Transformers, there were several architectures that attempted to

model sequences/sessions in the field of NLP. Before Transformers came out,

Recurrent Neural Networks, or RNN, had prevalence. It took timestamps of

items into account and tried to predict the next item in a sequence by learning

information from all the past items. However, it had a vanishing gradient

problem as sequences got longer, and failed to successfully model long-term

dependencies. Therefore, RNN based architectures that tried to solve RNN’s

vanishing gradient problem gained popularity afterwards. Some examples were

Long Short-Term Memory (LSTM), which utilized a new cell state that would

keep long term memory, and Gated Recurrent Units (GRU) (Chung et al. 2014)

which made LSTM simpler and used gates that would control the amount of

past information to keep and new information to accept.

Some researchers attempted use RNN for recommendation, specifically

GRU in session based recommendations, and this produced the best results

in the field at that time (Hidasi et al. 2016). There were previous attempts

9



to utilize NLP approaches like Word2Vec (Mikolov et al. 2013) to RecSys,

like Prod2Vec (Grbovic et al. 2015) and Doc2Vec (Le and Mikolov 2014).

However, these only aimed to learn product representations using the Word2Vec

model. GRU4Rec developed a session-based RecSys, and attempted to solve

the problem of large vocabulary in RecSys due to high number of items by

using a loss function similar to Bayesian Personalized Ranking. This way, the

authors succeeded in only comparing scores of two items (positive, negative)

and not comparing scores of all items in the vocabulary.

Then Transformers and BERT appeared and changed the field of NLP

completely. Transformers was a model based on encoder-decoder architectures

and introduced self-attention (Vaswani et al. 2017), building from the Attention

paper (Bahdanau, Cho, and Bengio 2016). Self-attention allows words at each

position to learn which positions to pay attention to and learn information

from. Bidirectional Encoder Representations from Transformer, or BERT,

improved Transformers by only taking the encoder part and applying masked

language modeling to train the model (Devlin et al. 2019). This way, words

at every position learned bidirectional representations, an improvement from

unidirectional representations in RNN architectures. GPT-2 (Radford and

Narasimhan 2018) was also a model that utilized Transformers but unlike

BERT, it only used a stack of Transformer decoder blocks using a causal

language modeling approach.

Researchers in the recommendation systems field reacted to this change

and came up with a few architectures that used Transformers architecture.

There was SASRec (Kang and McAuley 2018), which utilized the Transformers

decoder like GPT-2 to produce sequential recommendation. Then BERT4Rec

(Sun et al. 2019a) came out, which showed improvements from SASRec by

10



using BERT. The reasoning behind BERT4Rec’s superior performance was no

different than why BERT showed state of the art performances at that time.

It was because BERT utilized bidirectional information while Transformers

decoder only utilized unidirectional information.

Recently, modern Transformer architectures like XLNet (Yang et al. 2020)

and ELECTRA (Clark et al. 2020) tried to fix BERT’s drawbacks like the dis-

crepancy between pre-training and fine-tuning, and showed better performances.

They achieved this by introducing different pre-training methods like permuta-

tion language modeling and replace token detection. Consequently, it seemed

natural to try to implement the new models to session based recommendation

systems due to the success of BERT4Rec, and NVIDIA recently released the

paper Transformers4Rec that introduced a framework able to utilize modern

Transformer architectures like the ones mentioned above to produce session-

based recommendation models (Souza Pereira Moreira et al. 2021). By using

models in the HuggingFace (HF) library, Transformers4Rec can produce models

fit for next-item recommendation. HuggingFace is an open-source library

that contains code implementations for various state of the art Transformers

architectures like BERT, XLNet and ELECTRA (Wolf et al. 2020). It is

contributed by more than 400 developers, and allows continuous model uploads

from the general public. Transformers4Rec with XLNet showed great results

on movie and retail data, and the authors experimented further with news

datasets. The model from this thesis is based on Transformers4Rec, but is

modified in order to learn relationships in music streaming data. Our model is

presumably one of the initial researches on Transformers for music streaming

session-based recommendation, containing unique challenges as mentioned in

Section 1.3.

11



2.2 Past Works on Incorporating Features

There has been past works on incorporating features to RecSys, but most of

them were not in the field of session-based recommendation. Early development

in RecSys has been in the field of collaborative filtering and matrix factorization,

without the use of content-based features (Cremonesi, Koren, and Turrin 2010;

Gemulla et al. 2011; Jin, Chai, and Si 2004; Koren 2008). They were focused on

learning patterns inside a matrix of users, items and the magnitude of preference

based on numeric ratings. The main datasets used were movie datasets, like

MovieLens and Netflix. Later on, the systems started to consider context like

time and characteristics of users and movies (Karatzoglou et al. 2010; Koren

2009). Although these were attempts to incorporate features, they were not

solving next-item recommendation for sessions.

Past researches on session-based recommendation mentioned above mostly

involve simple item ID embeddings only, without any feature incorporation.

GRU4Rec and BERT4Rec explicitly mentions feature incorporation in the

future works (Hidasi et al. 2016; Sun et al. 2019a), and SASRec attempted

item embeddings but removed them due to impaired performance (Kang and

McAuley 2018). Transformers4Rec is one of the few papers that attempted

extensive feature incorporation with item context and achieved a small increase

in performance (Souza Pereira Moreira et al. 2021). Another paper that used

attention for next-item recommendation attempted context embedding for

transaction data (Wang et al. 2018). This thesis aims to join this small group

of research on extensive feature incorporation for next-item recommendation,

and will specifically be on music streaming sessions data.

12



3 Methodology

3.1 Music Streaming Sessions Dataset

The Music Streaming Sessions Dataset (MSSD) was released in late 2018 by

Spotify, with around 160 million listening sessions and associated user actions

(Brost, Mehrotra, and Jehan 2019). In addition, metadata and audio features

for approximately 3.7 million unique songs are included. It is one of the biggest

datasets of song metadata and streaming sessions, and was intended to aid

tasks like music information retrieval and session-based recommendations.

Spotify acknowledged the fact that while the need for improvements in

music streaming session recommendation continuously increased, there weren’t

any publicly available user log data to help design recommendation systems and

learn information between sequence of interactions. One of the main ambitions

listed by the authors was sequentially recommending items for users since they

deemed it was important to music streaming services as well as other services

like movie and retail. This thesis conducted research to fulfill this ambition by

developing a novel recommendation system for the MSSD.

Ideally, it would be best to have a dataset that contains sessions of songs

that users approved they liked. In other words, this would be a dataset with

explicit feedbacks. However this is highly unlikely, which makes creating RecSys

from large interaction datasets hard (Oard and Kim 1998). MSSD helps solve

13



Figure 3.1 Model Pipeline.

with a large number of implicit feedbacks. Sadly, just the fact a user listened

to a song does not equal to positive feedback. Therefore later on, adequate

preprocessing with information about the streaming sessions will be mentioned

to develop a dataset with stronger feedbacks.

3.2 Music Recommendation Model

The end-to-end recommendation system framework from NVIDIA, Transform-

ers4Rec, will be used as the music streaming session-based recommendation

model. Transformers4Rec was intended to be seamlessly integrated with the

NVTabular 1 library, in order to allow fast preprocessing for large size datasets.

Therefore, this thesis will utilize the NVTabular library for the preprocessing

of MSSD. The entire model pipeline is shown in Figure 3.1.

1https://github.com/NVIDIA-Merlin/NVTabular
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3.2.1 NVTabular

NVTabular supports both common and advanced feature engineering with

GPU acceleration. It also has specialized operations for session-based recom-

mendation, like sorting interactions by time then grouping them together by

user or item. Truncating sequences are also possible. Due to these convenient

functions and compatibility with Transformers4Rec, NVTabular will be used

in this research for data preprocessing, like shown in the top part of Figure

3.1.

When preprocessing is done, NVTabular saves the data into Parquet format.

NVTabular can load these files directly into GPU memory, allowing faster

training and evaluation.

3.2.2 Transformers4Rec

Transformer4Rec works in the following way. With the given preprocessed

dataset and chosen Transformer architecture in Figure 3.1, a model is trained.

All songs in every session are transformed into embedded representations. In

this section, the user can decide to which features to use. We can only use

item id like past architectures like GRU4Rec and BERT4Rec (Hidasi et al.

2016; Sun et al. 2019a), or all the audio features of every track. Then the

session sequences are masked based on pre-training procedures for the model

chosen, and sent into the main training blocks of the model. Lastly, the model

is trained by comparing the prediction to the ground truth.

The Transformer architecture can be any model in the HuggingFace (HF)’s

Transformers library, implemented in either TensorFlow or PyTorch. Transform-

ers4Rec inherits HF’s optimized training and evaluation pipeline for NLP tasks,
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controlled by the Trainer class. Then the Trainer class is modified to fit session-

based recommendation. Transformers4Rec also provides numerous traditional

evaluation metrics for use, such as NDCG@N, Recall@N and Precision@N.

In this thesis, only BERT, XLNet and ELECTRA will be used. BERT is

chosen due to its previous success with movie and retail data in BERT4Rec

(Sun et al. 2019a). XLNet is chosen because it showed great results with

not only retail, but also with news data which is relatively under explored

(Souza Pereira Moreira et al. 2021). ELECTRA is chosen because its size is

relatively smaller than most Transformer architectures, making it seem suitable

for fast computation that is needed with real-time next song recommendation

on streaming platforms (Clark et al. 2020).

The final trained models will output evaluation metrics for performance

measurement.

3.3 Feature Embeddings

track id duration release year
popularity acousticness beat strength
bounciness danceability dyn range mean

energy flatness instrumentalness
key liveness loudness

mechanism mode instrumentalness
speechiness tempo time signature

valence acoustic vector

Table 3.1 Track metadata features.

Table 3.1 shows all the track metadata provided to us from MSSD (Brost,

Mehrotra, and Jehan 2019). There are 23 features in total. Descriptions and

distributions of the audio feature values are on the MSSD website. Using these
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audio features, a few features that seem to distinguish tracks best are added as

extra information in the initial feature embedding stage of Transformers4Rec

described in Section 3.2.2. Simple embedding measures like only using item id

or simple soft one-hot encoding will be experimented as well. Then, performance

differences resulting from different embedding methods will be investigated to

provide insight on whether to use feature information or not, and if so, which

features to use.

The some possible questions addressed at this stage are: Do similar features

with high correlations both need to be included? Do some features disrupt

actual representations of tracks? For example, ‘energy’ and ‘liveness’ seems

redundant at face value. In addition, maybe not all songs with fast tempo should

be considered similar, since there might be genre differences, and difference in

methods measuring beats per minute.

Positional embedding, another important part of Transformers embeddings

that learns from position of items in a sequence, is reviewed in the works

by ATRank (Zhou et al. 2017). The authors of ATRank found out that it is

difficult to learn good embedding on a continuous time feature, and decided

on using log scale to discretize the elapse time between session sequences, and

then represent it as categorical feature embeddings. However in our case, tracks

occur right after each other with no time gaps, therefore simple sine cosine

positional embeddings used for sentences are deemed satisfactory.

3.4 Session Information

Session information of MSSD is shown in Table 3.2 (Brost, Mehrotra, and

Jehan 2019). Using this information, this research will try to experiment with
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Column name Column description Example value

session id unique session identifier 57 55129e3f-29bf-4ef6-aa72-d140333eac9c
session position position of track within session 18
session length length of session 20

track id unique track identifier t aae12819-de17-4dd3-97b0-cad4dd7b9a56
skip 1 whether the track was only played very briefly false
skip 2 whether the track was only played briefly false
skip 3 whether most of the track was played true

not skipped whether the track was played in its entirety false
context switch whether the user changed context between the previous row and the current row true

no pause whether there was no pause between playback of the previous track and current track false
short pause whether there was a short pause between playback of the previous track and current track true
long pause whether there was a long pause between playback of the previous track and current track true

num seekfwd the number of times the user scrubbed forward during playback 0
num seekbk the number of times the user scrubbed backward during playback 3

shuffle whether the track was played with shuffle mode activated false
hour of day hour of day (integers between 0 and 23) 18

date date in YYYY-MM-DD format 2018-09-10
premium whether the user was on premium or not true

context type what type of context the playback occurred within catalog
reason start cause of this track play starting forward button
reason end cause of this track play ending track done

uniform random whether shuffle would be uniformly random for this session false

Table 3.2 Session information.

various criteria when selecting interactions inside sessions to be deemed as

feedback. In other words, some listening actions by uses may be discarded,

since they should not be deemed as actual positive feedback. For example, if

a track was only played very briefly then skipped, the model might probably

have to learn that the user does not prefer this track. If the track was not

skipped at all, which means ‘not skipped’ column would be ‘true’ in session

metadata, it may have to concerned as stronger positive feedback than other

interactions. Another interesting example to point out is that the track might

have been played during ‘shuffle’ mode, where songs are played at random.

This might mean that the user has no preference over this song.

Therefore, this research aims to figure out how to weight track interac-

tions inside sessions based on their session metadata shown in Table 3.2, by

experimenting based on several hypotheses like the ones mentioned above.

3.5 Transformer Architectures

The following Transformer architectures will be implemented to compare per-

formances on MSSD.
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• GRU4Rec (Hidasi et al. 2016): Not exactly a Transformer based model

but a RNN based RecSys that had superior performances before Trans-

former based systems came out. Included to serve as a comparison with

non Transformer models.

• BERT (Devlin et al. 2019): A deep Transformer based model which

utilizes stacked Transformer encoders and masked language modeling

task for pre-training.

• XLNet (Yang et al. 2020): A deep Transformer based model which

utilizes permutation language modeling task for pre-training.

• ELECTRA (Clark et al. 2020): A deep Transformer based model which

utilizes replacement token detection task for pre-training.

GRU4Rec is a RNN based method is included to compare with Transformer

based methods in our research. Although simpler baseline models like POP

(choosing the most popular item) and BPR-MF (Matrix factorization method

with implicit feedback and pairwise ranking loss) Rendle et al. 2009 do exist,

they are omitted since they already showed worse performances than GRU4Rec.

Along with these GRU4Rec, the three models (BERT, XLNet, ELECTRA) will

be experimented, making a total of four models compared.

3.6 Metrics

Related works mentioned in Section 2 utilized several evaluation metrics,

including Hit Ratio (HR), Normalized Discounted Cumulative Gain (NDCG)

and Mean Reciprocal Rank (MRR). In this thesis, for comparison with other

works, only HR and NDCG will be used. The two are selected due to their

popularity among related works.
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HR is reported with k = 10, 20. HR@1 means it is a hit if the desired

ground truth is in the top 1 predicted items, and HR@5 means it is a hit if

the desired ground truth is in the top 5 predicted items, and the same logic

applies for HR@10. HR is the same as recall if there is only one relevant item

in the recommendation list. The formula for calculating HR is as below:

Hit Ratio =
number of hits

number of hits + number of misses

NDCG is a measure of ranking quality, and asserts that very relevant results

are more useful than somewhat relevant results which are more useful than

irrelevant results (cumulative gain). It is a more complex metric than HR, and

is expected to help measure performances more finely.
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4 Experiments

4.1 Data Preprocessing

Since the dataset size is bigger than 300 gigabytes, it is hard to only use NVTab-

ular. Therefore, initial data preprocessing was done by PySpark1, which is an

interface for Apache Spark in Python. PySpark makes big data preprocessing

possible even with limited GPU memory.

MSSD in its entirety contains session csv data from 2018 July 15th to

2018 September 18th. Each row contains an interaction, meaning an instance

where the user listened to a song. For each row, there are columns containing

information about the interactions, mentioned in Section 3.4. Multiple rows

from the same user session would then form a single streaming session. Due to

the limit of available computing resources, only sessions from 2018 August 1st

to 2018 August 31st are used, which is about half of the entire dataset. After

loading the data with PySpark, the following preprocessing is done.

(a) Non-premimum interactions are eliminated, and sleeping sessions are

discarded.

• When a user doesn’t use Spotify premium, they are bound to adver-

tisements and other hassles that may affect their listening behavior.

Therefore, interactions by non-premium users are discarded.

1https://spark.apache.org/docs/latest/api/python/
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• Sleeping sessions do not inform us about users’ preferences, since

they are mindlessly listening. Sleeping sessions are distinguished by

filtering out sequences that do not have any user actions throughout

the whole session.

(b) Create datetime for each interaction.

• For each interaction, information about the date and time of its

occurrence is converted into a datetime object for future grouping.

(c) Merge different session features in to one column

• In section 3.4, we can see that columns like ‘skip 1’, ‘skip 2’ can be

merged into one categorical column, since collectively they form a

one hot vector showing how long a song was listened before being

skipped.

• Therefore, columns ‘long pause before play’, ‘short pause before play’,

‘no pause before play’ are combined into one column named

‘pause before play’.

(d) Only keep songs listened to fully.

• To gain more confidence for each interaction being a positive feed-

back, only songs listened to the end without skipping are kept.

(e) Using NVTabular, all rows interactions are then grouped to a single

session by their session ID, with information like track IDs and categorical

features grouped as lists ordered by time.

(f) Resulting sessions with length 1 will be ignored. All session lengths will

be capped at length 20, which already seems to be the case with MSSD.

Statistics of the final preprocessed version of our dataset are shown in Table

4.1. The dataset is saved as Parquet files ready for training with Transform-

ers4Rec.
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Dataset days users items interactions Avg. length Density

MSSD 31 39,582,988 2,377,710 271,053,259 19.2 < 0.01%

Table 4.1 MSSD statistics only.

4.2 Embedding

4.2.1 No features

For most of the experiments with the chosen Transformer architectures, a

simple embedding just by using item IDs is used. This means that the initial

embedding vector to be fed into the model will be equal to the list of track IDs

for each session that we obtained at the end of preprocessing in Section 4.1.

Of course, the list of track IDs will be transformed into the embedding vector

dimension set during training parameter settings, and be added with traditional

positional embedding information in the form of sine and cosine functions.

When the embedding vector is finally ready, the four models (GRU4Rec,

BERT, XLNet and ELECTRA) will be trained and evaluated to find the best

performing model.

4.2.2 Session features

Our experiments will then extend from a simple embedding with no features to

incorporating session information. This experiment will show if certain session

information can prove its correlation with a user’s preference on a track, by

enhancing performance. In addition, models will have different capacities in

learning rich feature information, so this experiment will show if our Trans-

former based models are capable of learning music related features.
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The four models to be tested, GRU4Rec, BERT, XLNet and ELECTRA,

will all be added session features from Section 3.4 to test the effect of additional

features. The session features selected are as follows:

(a) Reason for track start

(b) Reason for track end

• The above two features are chosen due to the possible connections

with user preference of the track. If the reason for track start is

forward button, it may imply that the user skipped tracks and

stopped at this one, since it was the track the user wanted. If

implications like these are meaningful, it would be a good idea

to make the model pay attention to these features as well.

(c) Pause before play

• If there was no pause between the previous track and the current

track, it may infer that the current track was simply played due to

being the next track on the playlist. If there was a long pause, on

the other hand, it might mean that the user searched for this track

after the previous track ended. If these possible implications are

true, they may be meaningful to seeing which track the user prefers

more.

The features selected above will test if the hypotheses on the relationship

between session information and user preference is indeed meaningful. Although

there are a lot of features in Table 3.2, only the above features are selected for

simplicity and possible relevance to user preference. After feature information

is added, their statistics like minimum and maximum values are provided in a

schema file to be read by Transformers4Rec framework before training. With
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the schema file provided, similar to the experiments with no features, all models

with experiments will be evaluated to find the best performing model. This

will show which model out of the four is able to take maximum advantage from

additional feature information.

4.2.3 Song features

In addition to the session information, track metadata, or song features, will

be utilized to produce an even more rich embedding vector. Track metadata

is shown in Table 3.1. When we use track metadata for embeddings, we

are basically implementing a content-based method into our RecSys. This is

because now songs will be represented by features that are directly correlated

with their content. For example, if a song’s tempo is 160 beats per minute and

energy value is 90 and we decide to only use tempo and energy for embeddings,

the song’s embedding vector will be [160, 90]. This type of embedding method

places songs with similar content closer. A song with 170 beats per minute

and 95 energy, ([170, 95] embedding vector) will be deemed much similar to

the [160, 90] song than a 100 beats per minute, 50 energy ([100, 50] embedding

vector) song.

This way, songs with similar track metadata to the previous songs played

may have a higher change of getting recommended, if our model learns that

this algorithm is beneficial. For example, if the train data shows that when

users listen to generally high tempo songs, they do indeed listen to high tempo

songs for the next sequence, the model will learn this pattern and infer based

on information.

There are many track metadata available, but only four were finally chosen

to use in training. The reason is because some features were too skewed or
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Figure 4.1 Distributions of feature values across songs for audio features.
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had almost no variance, and didn’t prove useful in distinguishing tracks. This

analysis was done by first normalizing all feature values to fit in 0 1 range, and

then drawing a plot to see how they are distributed. The plots are shown in

Figure 4.1 (Brost, Mehrotra, and Jehan 2019). You can see that some of them

actually have very similar distributions, and including all of them would be

redundant in distinguishing songs. For example, beat strength, bounciness and

danceability shows similar plot shape, and it seems like only one of them need

to be included.

After this analysis, energy, danceability, organism and valence were chosen.

The four values will go through the process that session information went

through in the above section to have statistics on a schema file and be added

in the embedding vectors for training and evaluation.

4.3 Hyperparameters

Since four models had to be experimented over a huge dataset, it was hard to

perform extensive hyperparameter tuning on all the models. Therefore, based

on experiments on the Transformers4Rec paper, initial hyperparameter settings

were done. Out of the four datasets in that paper, our dataset best resembled

REES46 eCommerce 2, which contains user sessions from a multi-category

online store. The resemblance came from the size of the dataset, with the most

number of items and interactions, and the fact that it was also spanned for

a month. The exact hyperparameter settings are mentioned in this appendix

3 provided by the authors. From the starting points for each model, minor

2https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store
3https://github.com/NVIDIA-Merlin/publications/blob/main/2021_acm_recsys_

transformers4rec/Appendices/Appendix_C-Hyperparameters.md
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changes are made to improve performances. The models are all trained from

scratch on a single NVIDIA TITAN RTX GPU.

4.4 Training

4.4.1 Problem Statement

The problem statement is equal to that of previous session based RecSys.

U = {u1, u2, ..., u|U |} will denote the set of users, and V = {v1, v2, ..., v|V |}

will denote a set of items, and Su = [vu1 , ...v
u
t , ..., v

u
nu

] will denote the session

sequence for user u, where vut is the item that user u interacted with at time

step t. nu is the length of given session Su. Our model’s goal is to predict what

item user u will interact at the next time step, nu + 1, based on Su. This can

be seen as probability:

p(vunu+1 = v|Su)

4.4.2 Pipeline

Training will be done with the Transformers4Rec library which utilizes the

HuggingFace Transformers library, as mentioned in Section 3. The pipeline

follows the one shown in Figure 3.1, where we use the preprocessed dataset in

Parquet file form, load to Transformers4Rec framework and train the model.

Inside the framework, we choose the Transformer model of our choice (BERT,

XLNet, ELECTRA), and set its hidden dimension, number of heads, embedding

dimension, etc. Once our chosen model is ready solve the problem of next item

prediction, data is loaded from the Parquet file in batches and trained.
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4.4.3 Incremental Training, Evaluation

An interesting difference between session-based recommendation and other

forms of recommendations, is that session-based recommendations receive a

larger dataset every day due to the increasing number of user-item interactions

every day (Zhang et al. 2020). Therefore, it is important for the RecSys to adapt

to this large increasing dataset with a training method named incremental

training, which is a norm seen in past works (Moreira, Jannach, and Cunha

2019; Souza Pereira Moreira, Ferreira, and Cunha 2018; Sun et al. 2019b).

Incremental training works by setting a sliding window with a single time unit,

and training and evaluating the model at every time unit. All sessions are split

into time windows T based on the unit size, and evaluation is performed for

each next time window Ti+1, where i ⊆ [1, n − 1], using model trained until

the current time window Ti.

For our experiment, the time unit is a single day. Since the dataset spans 31

days, the sessions are split into 31 parts, and trained incrementally. To provide

an example, the model will be trained with only the training set of the first day,

and then evaluated with the evaluation set of the second day. Then the model

will be trained on the training set of the second day, and then evaluated with

the evaluation set of the third day. Evaluation is done with metrics described

in Section 3, and the final performances of models are calculated as an average

of all time windows, to see if the model performs well over time.
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Dataset Metric GRU BERT XLNet ELECTRA Density

MSSD HR10 0.2706 0.2767 0.2642 0.2680 < 0.01%
HR20 0.3344 0.3734 0.3215 0.3291

NDCG10 0.1833 0.1803 0.1764 0.1709
NDCG20 0.1994 0.2003 0.1901 0.1897

Beauty HR10 - 0.3025 - - 0.02%
NDCG10 - 0.1862 - -

Table 4.2 Performance with simple item embeddings.

4.5 Results

4.5.1 Simple item IDs

Table 4.2 shows the final results of the experiments. We can first see the

surprising competence of GRU4Rec, with performances of no big difference with

Transformer-based architectures. BERT was the best performing Transformer-

based model. This can be explained by XLNet and ELECTRA needing more

hyperparameter tuning for better performance, since they are more complex

architectures. Another explanation that seems more probable is that BERT

and masked language modelling might just be of better fit for MSSD, since

even after extensive hyperparameter tuning, BERT still performed best.

BERT showed the best performance with NDCG20 at 0.2003 and HR20

at 0.3734. The small gap showed some superiority of a Transformer-based

method. Comparing to some past experiments in BERT4Rec (Sun et al. 2019a)

and Transformers4Rec (Souza Pereira Moreira et al. 2021), this result shows

significance. The Beauty 4 dataset shown in BERT4Rec is similar with our

dataset in terms of density, which calculates the fraction of interactions seen

4http://jmcauley.ucsd.edu/data/amazon/
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and interactions possible from our users and items. In fact, our dataset is much

lower than Beauty in density, which has a density of 0.02%. It is known from

BERT4Rec and other works that datasets with lower densities are harder to

show good performances, and our dataset even has more items and users, which

makes it harder. Considering this, out model performed extremely well, with

a HR10 and NDCG10 similar with Beauty’s, shown in Table 4.2.

A more important fact is that our dataset was not comprised of explicit

feedback or even strong implicit feedback. Streaming might be done mindlessly

by turning on a playlist or while driving a car, which hinders the aspect of

positive feedback. The results show that the extensive preprocessing to make

this dataset work with a session-based RecSys actually did a good job in keeping

the sessions with stronger positive signs. Overall, even with just simple item

ID embeddings, our model performed reasonably well despite the sparsity and

coarseness of the music streaming session dataset.

4.5.2 Item IDs + Session Information

In addition to simple item IDs, session information was taken into account

by incorporating them into embeddings before training. From this point on,

only Transformer models were experimented. The results in Table 4.3 showed

a slight increase in overall performance, but not for all metrics for all mod-

els. This means that the hypotheses mentioned in Section 4.2 had a bit of

significance, although not incredibly strong. In terms of increase due to adding

session information, XLNet did show the highest value, but was still lower in

performance than BERT. However, since the gap between gains for all models

are very small, so it would be hard to firmly conclude that XLNet has a better
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capacity for incorporating rich feature information. It may have been that since

XLNet was lower in performance, it had more capacity to improve.

Dataset / Features Metric BERT XLNet ELECTRA Density

MSSD HR10 0.2799 0.2745 0.2723 < 0.01%
+ HR20 0.3680 0.3271 0.3322

Session Information NDCG10 0.1888 0.1858 0.1737
NDCG20 0.2005 0.1905 0.1919

Table 4.3 Performance with added session information.

4.5.3 Item IDs + Session Information + Track Metadata

To utilize all the feature information given for our dataset, track metadata was

incorporated after session information. The results are shown below in Table

4.4. There was no evident increase from the results in Table 4.3 with only

session information. We can interpret this result in several ways. One is that

song preferences of users do not depend a lot on strictly similar numeric audio

feature values. This can make sense since we usually listen to songs that match

our taste, and a human’s taste is hard to quantify. Another explanation is that

after incorporating session information, our models’ capacity in learning more

patterns have saturated. This seems plausible since Transformer based models

are already learning extremely complex patterns from sequences without any

additional feature embeddings. The second explanation seems more likely, since

even with session information added, there wasn’t much increase in performance.

It seems that in the future, there needs to be research on how to incorporate

rich feature information in a way other than adding them to embedding vectors.

Overall, all these results seem to have significance in that this is a pioneer in

this field of music streaming session based recommendation with Transformer
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architectures. Future research can now base their comparison on this research,

and gain insights on aspects like data preprocessing and feature engineering

specifically for music streaming session datasets.

Dataset / Features Metric BERT XLNet ELECTRA Density

MSSD HR10 0.2849 0.2701 0.2756 < 0.01%
+ HR20 0.3615 0.3489 0.3293

Session Information NDCG10 0.1812 0.1795 0.1756
Track Metadata NDCG20 0.2010 0.1870 0.1889

Table 4.4 Performance with added session information and track metadata.
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5 Conclusion and Future Works

Transformer architectures have shown success in session-based recommendation

for various domains. In this thesis, we dove into a yet unexplored domain of

music streaming sessions. Various preprocessing stages were performed to turn

an unrefined data into a dataset with somewhat strong implicit feedbacks,

and be ready in a format for session-based RecSys. Feature information were

also refined to categorical columns, and added to help train the model. For

training, the Transformers4Rec framework was used with incremental training

procedures. The final experimental results on popular metrics show that despite

the extreme sparsity and coarseness of our dataset, our best model with features

are in competence with other datasets with more density.

Overall, this thesis contributed a novel model in the field of music streaming

session-based recommendation with Transformer architectures. It investigated

MSSD’s unique characteristics to show differences with other datasets, and

performed a comparison of different Transformer architectures to show com-

patibility with music data. Future researchers can refer to our methodology

regarding data preprocessing, feature engineering, etc. as a starting point or a

method to compare with.

There is still room for improvement in the future. Extensive hyperparameter

tuning with increased computing resources is expected to boost the perfor-

mance, since the experiment settings for this thesis did not allow much room
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for increased epochs, dimensions, etc. In addition, the features chosen in this

thesis were based on hypotheses that seemed plausible. It might be beneficial

in the future to test all the features empirically to see which feature contains

the most information on user preference for songs.
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초 록

최근 트랜스포머 기반 추천시스템들이 다양한 분야에서 높은 성능을 보여

왔다. 하지만 음악 스트리밍 분야에는 적용되지 않았었고, 이 논문을 통해 음악

스트리밍 분야에 트랜스포머 기반 세션 추천시스템이 어떤 성능을 보여주는지

탐색해 보았다. 데이터 전처리를 통해 유저들이 음악을 실제로 좋아해서 들었을

법한 세션들만 남기려 노력했고, 세션 기반 추천시스템에 맞게 데이터를 정제했

다. 음악과 관련된 다양한 정보들도 모델 훈련에 반영하기 위해 카테고리 형태로

바꿔주었고, 훈련 자체는 세션 기반 추천시스템에서 자주 쓰이는 점진적 훈련법

을 활용했다. 최종 실험 결과에서는 데이터의 비정제성과 비밀집성을 극복하고

비슷한 데이터셋과 경쟁력을 갖추는 성과를 보여주었다. 이 연구를 통해 음악

스트리밍 세션 추천시스템에 트랜스포머 기반 모델이라는 새로운 가능성을 보여

주었고, 추후 연구자들이 참고할 수 있는 시작점을 제공하였다.

주요어: 서울대, 석사, 자연어처리 연구실

트랜스포머, 추천시스템, 음악 스트리밍 세션

학 번: 2020-25184
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