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Abstract

In this paper, we propose a Neural SWAG Bandit algorithm that combines

a neural network-based bandit algorithm with Stochastic Weight Averaging

Gaussian (SWAG), a Bayesian deep learning methodology. Neural Bandit is

a bandit algorithm that uses the output of neural networks as an estimated

reward. SWAG is a Bayesian Deep Learning method that samples parameters

from the gaussian posterior distribution, which has been shown to have state-

of-the-art performance and robustness compared to benchmark algorithms. By

adapting SWAG into an online setting and combining it with Neural Bandit,

we can leverage efficient sampling from deep neural networks while learning

online. Our experiment results indicate that Neural SWAG Bandit benefits

from Bayesian deep learning as well as exhibits superior performance compared

to existing benchmark algorithms.

Keywords: Contextual Bandit, Bayesian Deep Learning, Neural Bandit, Stochas-

tic Weight Averaging Gaussian(SWAG)
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1 INTRODUCTION

1.1 Bandit Algorithm

This paper deals with the bandit algorithm that can be used for content

recommendation. Bandit is a term that refers to a slot machine, and the bandit

algorithm assumes a situation in which a single reward such as a prize is

received when a single slot machine is drawn. For example, suppose you play

slot machine games in a casino. Then, when there are multiple bandit machines

(= slot machines), you can win the most significant money (= rewards) if you

can find the best bandit machine that gives the most rewards on average.

This situation can be represented by the Multi-armed Bandit setting, one

of the situations assumed by the bandit algorithm. In a multi-armed bandit

situation, the bandit algorithm selects one bandit machine from among several

bandit machines and pulls the arm in a single trial. Then the algorithm

performs each trial several times to get every single reward. And it increasingly

learns the true parameter that creates the true reward. Finally, it can find the

optimal bandit machine.

Let’s assume that each bandit machine is web-based content such as news,

movies, or merchandise. Also, suppose that the reward you get when you pull

each bandit machine is satisfaction with the content. At this time, satisfaction

can be assumed in various ways. For example, it can be expressed by whether
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the recommended content is clicked (= 1) or not (= 0). Then, through the

bandit algorithm, it is possible to find the content (= bandit machine) that

can elicit the highest average satisfaction, the most clicks (= reward), and

recommend it to users.

1.2 Neural Bandit

In a simple research situation, it is assumed that the reward output from

each bandit machine is calculated from a linear function. This means that the

true reward output created by each bandit machine is calculated using a vector

xa containing the characteristics of each bandit machine and a certain true

parameter θ∗ that creates a true reward. It is equivalent to assuming that the

true reward model is a linear function such as r∗a = x⊤a θ
∗+b. Since it is assumed

that the true reward function is linear, we can solve the problem assuming that

the estimated reward function trained based on the reward output by each

bandit machine is also linear. This linear function is a good starting point for

research because it can model the bandit situation most simply.

However, in an actual situation other than a research environment, it is

much more likely that the true reward function is not constructed as simply as

a linear function. Above all, there is a problem in that it is difficult to determine

the format of the estimated reward function because the true reward function

is unknown. For example, suppose the estimated reward function is set as a

Neural Net model. In that case, it has the advantage that the true reward

function can be inferred from a linear function and other functions such as a

quadratic function and a logistic function. Zhou et al.(2020) proposed neural

contextual bandits with UCB-based exploration as this concept and showed the
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algorithm is empirically competitive. Therefore, in this paper, the estimated

function of the bandit was adopted as a Neural Net model to implement a

more realistic bandit algorithm.

1.3 Bayesian Deep Learning

It is important to understand what deep learning does not know and how

much it does not know. An example related to the idea that ’there may be things

that even deep learning does not know’ is the case of Tesla’s autonomous driving

accident. This is an example in which an autonomous vehicle erroneously

judged the side of a huge trailer to be the sky and collided with the trailer.

In this accident, the deep learning model had no idea what a trailer was. If

the deep learning model had known that the trailer was not well known, the

decision to boldly crash the vehicle into the trailer would not have been made.

This problem occurs because of the over-confidence in deep learning-based

decision-making. There are various reasons why this over-confidence problem

occurs. One of the causes is that the training data itself is made to over-

confidence. For example, if the result of the deep learning model for some input

data was a dog, it means a dog with a 100% probability or a cat with a 0%

possibility. However, if the deep learning model for some input data predicts

that this data is a dog with a 70% chance and a cat with a 30% probability, a

more sophisticated decision can be made. Such sophisticated decision-making

can prevent accidents and support better decision-making in systems that

are highly sensitive to uncertainty, such as autonomous driving, finance, and

healthcare.
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1.4 SWAG(Stochastic Weight Averaging Gaussian)

SWAG is a Bayesian Deep Learning method that samples deep learn-

ing model parameters θ from a Gaussian distribution N (θSWA,
1

2
· (Σdiag +

Σlow−rank)). SWAG, as the name suggests, is a method of creating a Gaussian

distribution that can sample model parameters by utilizing the stochastic

weight averaging technique. SWAG approximates the actual posterior distri-

bution well. In addition, compared to other benchmark methods such as MC

dropout, it has shown excellent performance in various tasks, including sample

detection, calibration, and temperature scaling.

1.5 Contributions

Our main contributions are as follows. By adapting SWAG into an online

setting and combining it with Neural Bandit, we can leverage efficient sampling

from deep neural networks while learning online. Since our algorithm samples

parameters of neural networks from the same Gaussian distribution, it is

possible to estimate parameters more efficiently than general methods. Our

experiment results indicate that Neural SWAG Bandit benefits from Bayesian

deep learning and exhibits superior performance compared to existing bench-

mark algorithms.
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2 BACKGROUND & RELATED WORK

2.1 Bandit Algorithm

2.1.1 Multi-armed Bandit

Multi-armed bandit algorithm A proceeds for trial t = 1, 2, 3, .... At this

time, in individual trial t, the situation proceeds as follows. First, the algorithm

observes the feature vector xt,a containing information about each user or arm

of the set At of the arms. Next, Algorithm selects one at ∈ At based on the

payoffs observed in previous trials and receives the payoff rt,at as a result.

At this time, unchosen arms a ̸= at do not receive feedback. Finally, the

algorithm improves the arm-selection strategy based on the new observations

(xt,at , at, rt,at).

In the above processes, the total T -trial payoff of A is defined as
∑T

t=1 rt,at .

Similarly, the optimal expected T -trial payoff is defined as E[
∑T

t=1 rt,a∗t ]. In

designing the multi-armed bandit algorithm, we aim to find an optimal arm-

selection strategy that minimizes regret. At this time, T -trial regret RA(T ) for

Algorithm A is defined as follows. First, each trial’s optimal true reward value

is calculated based on the true reward parameter θ∗. Next, based on the same

true reward parameter θ∗, the estimated reward value for the arm selected by

the algorithm in the trial is calculated. In this way, regret can be calculated
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by finding the expected values of the true reward and the estimated reward

for trial 1 ∼ T and the difference between them.

RA(T )
def
= E

[
T∑
t=1

rt,a∗t

]
− E

[
T∑
t=1

rt,at

]

2.1.2 Contextual Bandit

The algorithm observes the set At of the current user ut and arm at. We

then combine them to observe the feature vector xt,a for a ∈ At. At this time,

xt,a summarizes the information of both the user feature ut and the arm feature

a, called context. By using the context xt,a that compactly contains relevant

information about users and articles, the Bandit algorithm can make more

accurate recommendations to individual users and transfer relevant information

from one article or other users to another. It can be generalized by extending

it to articles or users.

2.1.3 Exploration & Exploitation tradeoff

The most fundamental difficulty in the bandit problem in balancing explo-

ration and exploitation. It is called exploitation to show only the articles that

a particular user will like the most. On the other hand, it is called exploration

to show other options that users do not like the most but are expected to

enjoy. Although exploration can increase short-term regret, Algorithm A can

be further refined by collecting reward information for other arms. This way,

we can better solve the bandit problem by mixing exploitation and exploration

properly.
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2.1.4 Existing Bandit Algorithms

ϵ-greedy

ϵ-greedy is a method of making a random choice with a small probability of

ϵ. Exploitation is performed with a chance of 1−ϵ, and exploration is completed

with a possibility of ϵ. Since the arm is randomly chosen with a probability of ϵ,

it is possible to prevent a situation in which only a specific arm is continuously

recommended. Therefore, if ϵ is large, more exploitation is performed, and if ϵ

is small, more exploration is performed.

UCB

UCB is an algorithm that searches using the upper bound of the confidence

interval. That is, an algorithm selects the arm with the highest upper confidence

bound among each arm. Usually, in the initial trial, arms with high uncertainty

have high upper bounds. Therefore, if a high upper bound is used as a standard,

it is possible to explore arms with high uncertainty, which can affect exploration.

In UCB, at = argmaxi(UCB) = argmaxi(µi+Pi) is selected from t every hour.

In this expression, various UCB algorithms such as UCB1 and UCB2 are

defined according to how the Pi term is defined.

Thompson Sampling

Thompson Sampling is a Bayesian method that samples θ while continu-

ously updating the posterior distribution for the model parameter θ. Because θ

is continuously sampled randomly from the posterior distribution, it can have an

effect of exploration. Outputs the output values for each arm using θt ∼ P (θ|D)

sampled from each trial t. Among them, arm at = argmaxaEr(r|xt, a, θt) which
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outputs the largest expected value is selected and the reward rt is received.

After that, the dataset is updated to D = D ∪ (xt, at, rt).

2.2 Neural Bandit

2.2.1 Neural Bandit

A neural Bandit refers to Bandit that uses Neural Net as a reward prediction

model. In Neural Bandit, θ is updated for every trial using the Neural Net

model f(x; θ) that can output the input x as the reward r. The method in

which the parameter θ is updated in Neural Bandit is basically the same as the

general bandit algorithm, except that the reward is calculated with a neural

net. Neural Bandit has the advantage that the true reward function can be

used even if it is not in a fixed form, such as a linear function or a logistic

function.

2.2.2 Existing Neural Bandit Algorithms

NeuralUCB

It is an algorithm that applies Neural Net to the UCB algorithm. In

NeuralUCB, we use a neural network to learn the unknown reward function

and then follow the UCB strategy for exploration.

NeuralTS

It is an algorithm that applies Neural Net to the Thompson Sampling

algorithm. In NeuralTS, we also use a neural network to learn the unknown

reward function and follow the TS exploration strategy. In the paper that
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proposed NeuralTS (Zhang et al., 2020), a normal distribution is used to con-

struct a posterior distribution for Thompson sampling. At this time, variance

is built using the neural tangent kernel using the neural tangent features of

the corresponding neural network.

2.3 Bayesian Deep Learning

2.3.1 Bayesian and Uncertainty

Bayesian deep learning is a method that grafts the Bayesian perspective

to deep learning and uses the Bayes rule to quantify the deep learning model

output as a probability distribution with uncertainty. In other words, quan-

tification of uncertainty in Bayesian deep learning is implemented through

variance, and the key to Bayesian is that the probability distribution containing

uncertainty is updated. In the context of finding parameters of a deep learning

model, frequentism aims to find a fixed set of optimal parameter values. On

the other hand, in Bayesian, the probability distribution that produces each

parameter value is found, and several parameter numerical sets derived from

it are considered.

2.3.2 Bayes Rule

The probability distribution that Bayesian deep learning is looking for can

be found using the Bayes rule, as shown below.

p(θ|D) = p(D|θ)p(θ)
p(D)

, p(D) =
∫

p(D|θ)p(θ)dθ, p(θ|X, y) =
p(y|X, θ)p(θ)

p(y|X)

p(θ) is a prior distribution and corresponds to a known distribution before

observing new data D. p(D|θ) is the likelihood, and a quantified value indicates

9



how well the current probabilistic model explains the data. p(D) is evidence and

means the probability of the newly given information D. p(θ|D) corresponds

to the posterior distribution and is the subject to be updated from the prior

distribution using the likelihood value. This way, it is possible to update the

posterior distribution of the deep learning prediction values.

2.3.3 Bayesian Neural Network

Existing neural networks have fixed weight parameters after training. On

the other hand, Bayesian neural networks are different in that each weight

parameter is also expressed as a probability distribution with uncertainty.

Since each weight parameter is a probability distribution with uncertainty, the

final output y also has uncertainty. As a result, uncertainty can be considered

in the final decision. From the perspective of Bayesian deep learning, it deals

with how to update the prior distribution to the posterior distribution for all

W and b, which are all θ values. In conclusion, Bayesian neural networks can

be inferred by calculating the posterior distribution of parameters.

2.3.4 Existing Bayesian Deep Learning methods

However, as mentioned above, there is a problem that the posterior distri-

bution cannot be accurately calculated because it is difficult to estimate the

integral of the evidence. There are various methods to solve this problem, and

there are two typical methods, one using variational inference and one using

Monte Carlo Dropout.
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Variational Inference

Variational inference means approximating the posterior distribution p(θ|D)

in the same way as p(θ|D) ≈ q(θ). In general, q(θ) uses the normal distribution

as the probability distribution. Variational inference is not a perfect approxi-

mation, but it can approximate the distribution to capture the characteristics

of the original posterior distribution well.

MC (Monte Carlo) Dropout

MC Dropout is a Bayesian technique that uses the dropout technique to

create a variance. Dropout is a technique to give the regularization effect

of deep learning by probabilistically disconnecting neurons temporarily when

feedforward in a neural network. Dropout is often used as a regularization

method to solve the problem of overfitting because a value is focused on a

specific weight during training, and dropout is intentionally excluded from

producing a consistent output during testing. However, suppose dropout is

used in the test. In that case, various output values can be created, and it was

induced to be approximated to the posterior distribution by finding the mean

and variance using these output values.

2.4 SWAG Algorithm

2.4.1 SGD (Stochastic Gradient Descent)

The Neural Network can basically find the weight θ of the model using

the SGD rule. SGD uses the gradient as follows to minimize the value of the

loss function that defines the difference between the output value of the deep

learning model and the actual value.
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2.4.2 SWA (Stochastic Weight Averaging)

In SWA, a new parameter θSWA is obtained by averaging all parameters

from SGD during a specific epoch. That is, the average θSWA of the parameter

θ values obtained in every epoch up to the time point T is updated to the

parameter at the time point T + 1 after that.

2.4.3 SWAG-Diagonal: θ̃ ∼ N(θSWA,ΣDiag)

SWAG-Diagonal constructs a normal distribution using θSWA and ΣDiag

and samples the parameter θ̃. The diagonal covariance ΣDiag can be obtained

from the diagonal components of a matrix which is created by subtracting

θ2SWA from the θ̄2.

θSWA =
1

T

T∑
i=1

θi, θ̄2 =
1

T

T∑
i=1

θ2i , Σdiag = diag(θ̄2 − θ2SWA)

The posterior distribution N(θSWA,ΣDiag) can be constructed using the

Σdiag obtained in this way and the θSWA obtained using the SWA. And this

distribution can be used to sample the model parameter θ.

2.4.4 SWAG: θ̃ ∼ N (θSWA,
1

2
· (Σdiag + Σlow−rank))

SWAG uses not only Σdiag but also Σlow−rank to generate the normal

distribution and sample θ from it. Estimating Σdiag is standard in Bayesian

deep learning, but it can be too restrictive. By adding Σlow−rank, we can

approximate covariance more flexibly.

Σlow−rank can be calculated by constructing a deviation matrix D̂ using

only i = T − K + 1, ..., T trials corresponding to the last part of the total

12



T trials. The deviation matrix D̂ can be obtained from D, which is a total

deviation matrix consisted of Di = (θi − θ̄i). Since we cannot access the value

of θSWA during training, we use θ̄i that estimates θSWA. θ̄i is an estimate of

the average of parameters during t = 1, ...i.

Σ =
ΣT
i=1(θi − θSWA)(θi − θSWA)

⊤

T − 1
≈ ΣT

i=1(θi − θ̄i)(θi − θ̄i)
⊤

T − 1
=

DD⊤

T − 1

Σlow−rank =
1

K − 1
D̂D̂⊤

Finally, we can construct the normal distributionN (θSWA,
1

2
(Σdiag +Σlow−rank)).

It is possible to sample θ from the distribution. In this way, the parameter θ̃

sampled by SWAG can be calculated as follows. d is the number of parameters

in the network.

θ̃ = θSWA +
1√
2
Σ

1
2
diagz1 +

1√
2(K − 1)

D̂z2, where z1 ∼ N (0, Id), z2 ∼ N (0, IK)
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3 THE NeuralSWAG ALGORITHM

The key idea of NeuralSWAG is to use a neural network f(x; θ) with

the Bayesian SWAG method to predict the reward of content x. As the

trial goes, NeuralSWAG can train the Gaussian distribution of SWAG. From

the distribution, the algorithm samples parameters of each neural network

layer to calculate the output value, which can reduce total cumulative regrets.

NeuralSWAG conducts the recommendation process in two steps: First, it

chooses the arm with the highest estimated reward value. Second it updated

its SWAG parameters through calculating θSWA and Σdiag. With these SWAG

parameters, it is possible to sample estimated parameters of neural networks

and reduce overall cumulative regrets.
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Algorithm 1 Neural SWAG Bandit
Input: Number of total rounds T ; Number of random sample rounds τ ; step

size η; base model fbase(x); SWAG model fSWAG(x)
Step1. Choose Arm
for t = 1, 2, 3, ..., T do

Observe features of all arms a ∈ At : xt,a ∈ Rd foreach a ∈ At do
if t < τ then

randomly choose at ∈ [K] for t ∈ [τ ]
end
else

if swag_started then
Compute ŷt,a = fSWAG(xt,a; θt−1)

Let at = argmaxa∈[K]ŷt,a
end
else

Compute ŷt,a = fbase(xt,a; θt−1)

Let at = argmaxa∈[K]ŷt,a
end

end
end

end
Step2. Update
Play at and observe reward rt,at
Train fbase(x)
if swag_started then

Train fSWAG(x)

θ̄ ← θo, θ̄2 ← θ2o

for i = 1, 2, 3, ..., T do

θi ← θi−1 − η∇θL(θi−1)

if MOD(i, c) = 0 then

n← i/c, θ̄ ← nθ̄ + θi
n+ 1

, θ̄2 ← nθ̄2 + θ2i
n+ 1

if NUM_COLS(D̂) = K then

REMOVE_COL(D̂[:, 1])
end

end
return

θSWA = θ̄, Σdiag = θ̄2 − θ̄2, D̂

end
end 15



4 EVALUATION METHODOLOGY

4.1 Cumulative Regret

In the bandit problem, the cumulative regret, which accumulates the regret

calculated in each trial, is used as the evaluation methodology. By checking

whether the cumulative regret gradually decreases sub-linearly, it can be judged

whether the bandit model is well trained, and the performance can be checked

by comparing it with benchmark models. Since the regret is calculated from

oracle rewards, if we don’t know all oracle rewards of each context vector, it is

impossible to calculate regret and cumulative regret. For real-world datasets,

sometimes there is no information about oracle rewards. Therefore we modified

real-world datasets of K-classification tasks to set true oracle rewards for all

context vectors.
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5 EXPERIMENTS

5.1 Dataset

5.1.1 Simulation Dataset

We consider the stochastic K-armed contextual bandit problem with the

total number of trials T . The agent observes the context vector consisting of K

feature vectors at round t ∈ [T ]. It can be notated like as follows: {xt,a ∈ Rd|a ∈

[K]}. Then the agent selects an action at which has the highest estimated

reward and receives the reward rt,a from trial t. {xi}TK
i=1 is same notation with

the collection of {x1,1, x1,2, ..., xT,K}. With those vectors, we make assumption

about reward generation: for any round t,

rt,at = h(xt,at) + ηt

where h is an unknown function including linear, logistic, quadratic and

trigonometric. ηt is -sub-Gaussian noise which satisfies E(ηt) = 0.

Specifically, a set of 20 article vectors with six features extracted from the

normal distribution were generated for each trial. Next, one true parameter

shared by arms was created. The true parameter was kept fixed during the

experiment. After conducting the dot product and any other calculation of the

article feature and the true parameter, the true reward functions were obtained.

For logistic rewards functions, the true temporary reward was obtained by

17



Table 5.1 Real-world dataset statistics

Dataset MNIST CIFAR10 CIFAR100

Feature Dimension 784 3072 3072

Number of Classes 10 10 100

Number of Instances 60000 50000 50000

taking the sigmoid function to the dot product of the article feature and the

true parameter. And then, by adding the value as Bernoulli’s parameter, true

feedback was calculated and used in the experiment.

xa = [f1, f2, ..., fd]a f ∼ N (0, 1)

θ∗ = [g1, g2, ..., gd] g ∼ N (0, 1)

true feedback = 1 or 0 ∼ Bernoulli(σ(x⊤a θ∗))

5.1.2 Real-world Dataset

We evaluate NeuralSWAG on real-world datasets too. The MNIST dataset

consists of handwritten digit numbers from 0 to 9. The size of each image

is 28x28. CIFAR10 dataset consists of 32x32 color images in 10 classes. It

contains images of airplanes, automobiles, birds, etc. The CIFAR100 dataset is

similar to CIFAR10, but it has 100 labels. It contains superclasses like aquatic

mammals, fish, flowers, etc. Each superclass has several sub-classes. Table 5.1

shows statistics of each real-world datasets. Since these datasets are for K-

classification tasks, we changed K-classification tasks to K-armed multi-bandit

tasks. We used each image’s features and labels as context features and rewards

of bandit settings.
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5.2 Model

For simulation, a straightforward Neural Net model was created. It is a

fully linked, L = 5 depth neural network.

f(x; θ) = WLσ(WL−1σ(...σ(W1x)))

where W1 ∈ Rm×d, Wi ∈ Rm×m, 2 ≤ i ≤ L − 1, WL ∈ Rm×1 and θ =

[vec(W1)
⊤, ..., vec(WL)

⊤]⊤ ∈ Rp with p = md + m2(L − 1) + m. σ(x) =

max{x, 0} is the rectified linear unit (ReLU) activation function. With p = 0.5,

dropout was applied to each layer. To simulate click or non-click with Bernoulli

distribution for logistic true reward setting, the last layer was created as a

sigmoid layer.

5.3 Experiments setting

5.3.1 Setting for Simulation Datasets

We use contextual bandits with context dimension d = 6, K = 20 actions.

The arm set is changed every trial to reflect the real environment in which

news article data is continuously updated. The number of rounds T = 5, 000.

The contextual vectors {x1,1, ..., xT,K} were randomly chosen from the N (0, 1).

The reward function h is one of the following:

h1(x) = x⊤θ

h2(x) =
1

1 + e−(x⊤θ)

h3(x) = (x⊤θ)2 − 2(x⊤θ)

h4(x) = (x⊤θ)2 − 3(x⊤θ) + 5
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h5(x) = cos(x⊤θ)

h6(x) = sin(x⊤θ)

The parameter θ ∈ Rd is randomly generated from N (0, 1). The reward is

generated by rt,a = hi(xt,a) + ϵt, where ϵt ∼ N (0, 1).

The algorithm randomly chooses arms for the first phase for Neural SWAG

experiments. And it conducts SGD till the SWAG starts epoch. After the

SWAG starts the epoch, Neural SWAG executes SWAG, which samples the

estimated parameter from the Gaussian distribution until the end of the process.

For example, the first 50 trials randomly choose the arm to prevent a case of

greedy choice of only one un-optimal arm. In the case of SWAG, scheduling

decreased the learning rate from 0.01 to 0.001.

To simulate the situation of online learning as much as possible, the learning

proceeds only when the arm displayed to the user is the same as the arm

recommended by the algorithm. For a quick experiment, the total trial occurred

3000 times, and the same event occurred about 200 times for the displayed

arm and the algorithm chosen arm. For more accurate learning, we plan to

gradually increase the total number of trials and proceed with the experiment.

5.3.2 Setting for Real-world Datasets

We used labels 0 and 1 of K labels of real-world datasets to set these two

labels as non-click and click feedback of the bandit setting. From train datasets,

we filtered out the image features of two labels. We constructed total context

vector sets for the bandit algorithm with these image features and labels. At

each trial, we sampled 20 context feature vectors and labels from the set and

used them as content information.
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5.4 Compared Algorithms

In this section, we evaluate NeuralSWAG empirically and compare it with

five representative baselines: (1) LinUCB, which is based on UCB but adopts

a linear representation. (2) LinTS is based on Thompson Sampling but adopts

a linear representation. (3) GLM(Logistic)-UCB (Filippi et al., 2010), which

applies a nonlinear link function over a linear function for the UCB method.

The logistic function is chosen as a link function for our experiment. (4)

GLM(Logistic)-TS applies a nonlinear link function over a linear function

for the TS method. The logistic function is chosen as a link function too. (5)

Neural ϵ-greedy, which uses neural networks for the epsilon greedy method.

5.5 Experimental Results

5.5.1 Results for Simulation Datasets

Figure 5.1 shows the results of experiments using simulation data. First and

foremost, 5.1(a) is the result of experiments using a linear true reward setting.

LinUCB and LinTS showed the lowest cumulative regret since they calculate

estimated parameters in closed form. Moreover, they showed lower cumulative

regrets than the neural ϵ-greedy algorithm. But neural SWAG showed almost

the same cumulative regrets as LinUCB and LinTS, although it does not use

the exact closed-form of estimated parameters.

Next, figure 5.1(b) is the result of experiments using a logistic true reward

setting that is non-linear. Unlike other regression experiments, classification of

click and non-click was conducted in these experiments. GLM(Logistic)-UCB

and GLM-(TS) showed the lowest cumulative regrets since they use logistic
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regression, which is the true reward setting for the experiments. LinUCB and

LinTS showed higher cumulative regrets than GLM(Logistic) bandits. The

neural ϵ-greedy offered the highest cumulative regrets. Neural SWAG showed

superior performance than GLM(Logistic)-TS even though it does not use

the logistic function. It showed higher cumulative regrets than GLM-bandits

for the first 200 trials, but it overtook the GLM(Logistic)-TS. It seems that

NeuralSWAG could take over GLM(Logistic)-UCB, too, because the overall

gradient after 200 trials of NeuralSWAG is lower than GLM(Logistic)-UCB.

Lastly, figure 5.1(c) (f) shows the result of experiments using other non-

linear true reward settings. These experiments contain two quadratic functions,

the cosine function, and the sine function. NeuralSWAG offered the lowest

cumulative regrets for each result. This suggests that NeuralSWAG can be

more competitive than other benchmark algorithms when the true reward

function is more complicated. Unlike other linear true reward settings, neural

ϵ-greedy showed lower cumulative regrets than LinUCB and LinTS. It suggests

that bandit algorithms based on the neural network can be more competitive

in a true reward environment with high complexity.

5.5.2 Results for Real-world Datasets

Figure 5.2 is the results of experiments using MNIST and CIFAR10 datasets.

NeuralSWAG showed the lowest cumulative regrets for MNIST and CIFAR

datasets both. For MNIST datasets, its cumulative regrets increased until less

than 100 trials and became almost flat. Neural ϵ-greedy showed the second-

lowest cumulative regrets. It offered better results compared to LinUCB and

LinTS. It suggests that the neural bandit algorithm has competitiveness on

real-world datasets, which has a complex relationship between context features
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(f) h6(x) = sin(x⊤θ)

Figure 5.1 Comparison of NeuralSWAG and baseline algorithms on
simulation datasets.
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Figure 5.2 Comparison of NeuralSWAG and baseline algorithms on real-
world datasets.

and rewards. Since LinUCB and LinTS hypothesize the true reward function as

linear, it is natural that these two methods are inferior to the neural network-

based model.

For CIFAR10 datasets, it showed similar results to MNIST datasets. Neu-

ralSWAG showed the most competitive outcome. It showed a sub-linear plot

correctly, and its gradient fell quicker than other benchmarks. Neural ϵ-greedy

also showed the sub-linear plot butt was inferior to NeuralSWAG. In contrast,

LinUCB and LinTS showed linear plots similar to the experiment results of

MNIST. It suggests again that the neural bandit algorithm has competitiveness

on CIFAR10 and MNIST datasets both.
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6 CONCLUSIONS

In this paper, we proposed NeuralSWAG, a new algorithm for contextual

bandits based on neural networks and Stochastic Weight Averaging Gaussian.

Using the bayesian SWAG method, we showed that our algorithm shows

superior cumulative regrets results than other state-of-the-art benchmarks,

including the linear bandits, the logistic bandits, and ϵ-greedy, especially for

the complex true reward function settings. Since it is possible to sample all

parameters of neural networks from the gaussian distribution, calculation costs

can be saved than general neural networks with lower cumulative regrets.

NeuralSWAG showed superior performance not only on simulation datasets

but also on real-world MNIST and CIFAR10 datasets.

In the future, we plan to find other optimal hyper-parameters for improving

cumulative regrets performance and conduct experiments on other real-world

datasets, not only image-classification datasets but also news datasets, customer

datasets, etc. Finally, since the contextual bandit problem is highly related to

a real-world situation, it is interesting to make a recommendation service with

our algorithm and improve the business performance of companies.
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