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Development of a process-based model 

with higher applicability using deep learning 

for hydroponic sweet peppers 

 

Taewon Moon 

Department of Agriculture, Forestry, and Bioresources 

The Graduate School of Seoul National University 

ABSTRACT 

Many agricultural challenges are entangled in a complex interaction between 

crops and the environment. As a simplifying tool, crop modeling is a process of 

abstracting and interpreting agricultural phenomena. Understanding based on 

this interpretation can play a role in supporting academic and social decisions 

in agriculture. Process-based crop models have solved the challenges for 

decades to enhance the productivity and quality of crop production; the 

remaining objectives have led to demand for crop models handling 

multidirectional analyses with multidimensional information. As a possible 

milestone to satisfy this goal, deep learning algorithms have been introduced to 

the complicated tasks in agriculture. However, the algorithms could not replace 

existing crop models because of the research fragmentation and low 
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accessibility of the crop models. This study established a developmental 

protocol for a process-based crop model with deep learning methodology. 

Literature Review introduced deep learning and crop modeling, and it 

explained the reasons for the necessity of this protocol despite numerous deep 

learning applications for agriculture. Base studies were conducted with several 

greenhouse data in Chapters 1 and 2: transfer learning and U-Net structure were 

utilized to construct an infrastructure for the deep learning application; 

HyperOpt, a Bayesian optimization method, was tested to calibrate crop models 

to compare the existing crop models with the developed model. Finally, the 

process-based crop model with full deep neural networks, DeepCrop, was 

developed with an attention mechanism and multitask decoders for hydroponic 

sweet peppers (Capsicum annuum var. annuum) in Chapter 3. The methodology 

for data integrity showed adequate accuracy, so it was applied to the data in all 

chapters. HyperOpt was able to calibrate food and feed crop models for sweet 

peppers. Therefore, the compared models in the final chapter were optimized 

using HyperOpt. DeepCrop was trained to simulate several growth factors with 

environment data. The trained DeepCrop was evaluated with unseen data, and 

it showed the highest modeling efficiency (=0.76) and the lowest normalized 

root mean squared error (=0.18) than the compared models. With the high 

adaptability of DeepCrop, it can be used for studies on various scales and 

purposes. Since all methods adequately solved the given tasks and underlay the 

DeepCrop development, the established protocol can be a high throughput for 
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enhancing accessibility of crop models, resulting in unifying crop modeling 

studies. 

 

Additional keywords: artificial intelligence, crop simulation model, machine 

learning, multitask learning, Transformer 

 

Student number: 2019-35122 
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LITERATURE REVIEW 

Deep learning as an accelerator  

for process-based crop modeling 

ABSTRACT 

Agriculture has to undergo an intensification for sustainable production. In this 

regard, crop models are a versatile tool for obtaining a sense of future crop 

production. However, the relevant studies have been fragmented because of the 

differences in research scales and purposes. This disjunction interrupts the 

productive cooperation and progress of agricultural systems. Therefore, a deep-

learning-based crop model would provide a breakthrough in solving the 

fragmentations of crop modeling research. From this perspective, the current 

status of the crop production and crop models, the advantages and requirements 

of the deep learning, deep learning applications in the other fields, deep learning 

applications for crop production research, and the limitations and reasons for 

the applications in crop production were discussed. Finally, what the crop 

model with deep learning should be was outlined. Deep-learning-based crop 

models will derive standardization and cooperation from heterogenous crop 

modeling groups based on the accessibility and applicability of the deep 

learning algorithms. 
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Additional keywords: agricultural system model, crop simulation model, 

climate change, horticulture, sustainability 

  



 

3 

Background 

Plant production has been inextricable from humanity since the 

agricultural revolution 10,000 years ago. Diverse plants have been 

domesticated as crops, and their productivity and quality have significantly 

increased with several agricultural innovations (Evenson and Gollin 2003; 

Bisbis et al. 2018; Eshed and Lippman 2019). Therefore, crop production has 

been able to meet global demand. However, agriculture has faced some future 

challenges: overpopulation, climate change, and degradation of arable lands. 

According to a recent report, climate change is inevitable, and global 

environmental conventions are boosting the demand for sustainability (UN 

2019; IPCC 2021). Agricultural innovations also strain Earth, similar to other 

industries, although they significantly improved crop productivity and quality 

(FAO 2018). Therefore, agriculture is required to achieve intensification for 

sustainability. 

Horticultural crops, such as fruits and vegetables, are also the mainstays 

in agricultural production (Dohlman et al. 2022). The horticultural industry has 

improved productivity and quality by introducing diverse technologies and 

expanding the cultivational area, so fruit and vegetable production has also been 

sufficient to meet global demand. However, the consumption of fruits and 

vegetables was reported to increase steadily through 2050: the ratio of fruits 

and vegetables in diet per capita will increase because of improvements in the 

national limits, such as undernourishment and economic status (FAO 2018). At 
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the same time, irrigated area and greenhouse gas emissions should be reduced 

according to the recent necessity of sustainable production; therefore, high-

level intensification is required to simultaneously accomplish sustainable 

horticulture and sufficient supply. 

Greenhouse horticulture has been studied and developed as an 

intensification methodology for horticultural crop production. Greenhouse 

productivity can be significantly higher than that in open fields; greenhouse-

grown crops could have higher resource footprints (Fig. 1). Greenhouses have 

high variances in productivity and resource use efficiency (RUE) according to 

cultivation conditions such as local climate, introduced technology, and 

cultivating crops. With an improper cultivation strategy, high energy and carbon 

use worsen global warming, and increased water use could cause salinization 

and desertification in nearby ecosystems (Thomas and Middleton 1993; Singh 

2009; Shi et al. 2009). The productivity and RUE of greenhouses could be 

improved with adequate technologies and strategies for cultivational conditions. 

Therefore, a suitable cultivation strategy should be selected to improve 

greenhouse production that can vary with cultivation conditions. 
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Fig. 1. Crop yield and resource footprints of open fields (OF) and greenhouses 

(GH). The data of eight vegetables from 18 scientific reports from 2005 to 

2022 were meta-analyzed. The boxes and markers represent quantiles and 

outliers, respectively. Black solid line in the box represents the median. 

Refer to Appendix for the analyzed references. 
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Improving greenhouse production involves many study fields (Fig. 2). 

Greenhouse production is a multifactorial optimization problem that 

accompanies engineering, biological, chemical, and economic considerations 

(Gijzen et al. 1998; Vanthoor et al. 2012; Gruda et al. 2019; Ahn et al. 2021). 

The properties of greenhouse structure are restricted, and the exchange of 

energy and materials in greenhouse environments is relatively immediate; 

however, crops change by their environment in the long term, and the response 

of crops can be diverse according to genotype and management (Hajjarpoor et 

al. 2018; Peng et al. 2020). High planting density and semiclosed microclimate 

in greenhouses can drastically change the internal environment (Vanthoor et al. 

2011; van Beveren et al. 2015). Therefore, optimal control of greenhouse 

environment for better crop productivity should be based on understanding crop 

growth (Katzin et al. 2022). Crop modeling would be an adequate tool for the 

analysis. 
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Fig. 2. Word clouds of study fields covering greenhouse horticulture. Topics 

from 1,845 journals were analyzed. The font sizes were determined by 

multiplying the number of related papers published after 2018 and the SJR 

factor on a log scale. The searching keywords for those papers were “crop 

greenhouse −gas −gases.” The minus sign represents that the keywords 

have not to be included in the search results. Note that the relevant papers 

covering climate change could also be excluded because of the search term. 
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A system can be condensed into a model as necessary; the model can be 

used for mathematical analysis and simulation to explain the target 

phenomenon. In agriculture, agroecological research covers interactions of 

agricultural production, environmental resources, and human factors; therefore, 

agricultural system modeling was introduced to understand and evaluate the 

performance of the overall agroecosystem (Jones et al. 2017). Among the 

specialized agricultural system models, crop models have been developed to 

analyze crop growth (Muller and Martre 2019). Crop models can quantify the 

influence of crops, agricultural management, and the environment based on 

adequate information (Hoogenboom et al. 2020). 

Crop models were also developed for various horticultural crops by 

miscellaneous research groups; however, horticultural crop models have low 

accessibility and fragmentation problems (Gary et al. 1998; Marcelis et al. 1998; 

Vos et al. 2010; Altes-Buch et al. 2019; Katzin et al. 2022). Some accessible 

crop models seemed not to be suitable for current greenhouse cultivation. 

DSSAT has major vegetable models, such as tomatoes and cabbages, but the 

models have outdated parameters calibrated for open field data (Jones et al. 

2003; Antle et al. 2017). Detailed information about advanced horticultural crop 

models such as HORTISIM and KASPRO are not available to the public, and 

relevant reports on formulas and parameters are decades old (Gijzen et al. 1998; 

Altes-Buch et al. 2019; Katzin et al. 2022). Newly modeling a crop requires 

nontrivial efforts and resources, and the existing modeling processes are 
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fragmented according to the research purpose and scale (Antle et al. 2017; 

Janssen et al. 2017). Cultivars and managements could be diverse with 

locations and purposes even for the same crop (van Straten et al. 2000; van 

Ploeg and Heuvelink 2005; Muller and Martre 2019; Wang et al. 2019b; Peng 

et al. 2020). Therefore, horticultural crop models were not successful in 

adequately keeping up with technological advances in greenhouses. 

Since high technologies have been introduced to greenhouse cultivation, 

the collected information and data have become diverse (Wolfert et al. 2017; 

Kamilaris et al. 2017; Misra et al. 2020). Recently, data-driven cultivations in 

high-tech greenhouses were not able to be predicted with advanced greenhouse 

climate model and crop model (Hemming et al. 2019, 2020). That is, cultivation 

management out of the reasonable simulated range achieved higher 

productivity and benefits than existing model-based inference and green-thumb 

intuition. Therefore, it can be said that existing crop models for greenhouse 

horticulture failed to deal with the data accumulations of high-tech greenhouses. 

The fragmentation problem is not limited to horticulture; it is prevalent in 

general crop modeling studies. Researchers at various scales have recognized 

that fragmentation is the common cause of tardy updates in crop models. The 

fragmentation resulted in unspecified uncertainty of crop model outputs. The 

independent models were studied in various growths, managements, and local 

conditions; therefore, the cause of uncertainty is rarely distinguishable (Li et al. 

2015). Crop models should be evaluated with multiscale conditions rather than 
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a single season and crop for a better understanding of uncertainty (Rötter et al. 

2018). Cooperation through diverse scales and fields is necessary to solve the 

common challenges of crop models (Hammer et al. 2019; Peng et al. 2020). 

Numerous improvements for food and feed crop models have been suggested 

based on problem recognition; however, fragmentation has not yet been solved 

(Wang et al. 2017a; Roberts et al. 2017; Rötter et al. 2018; Müller et al. 2021; 

Schierhorn et al. 2021). Therefore, the accessibility to crop models should be 

improved first to foster global cooperation and mutual development. 

Based on this background in greenhouse horticulture and crop models, this 

chapter reviewed current status of deep learning applications and introduced a 

possible approach to use deep learning for improving the accessibility of crop 

models. Since deep learning was introduced a sufficient number of years ago, 

plant and agricultural applications of deep learning have been surveyed, and 

advanced technologies, including deep learning as a partial section, have been 

reviewed in high quality (Table 1). The articles emphasized the potential of 

deep learning algorithms for crop production; however, the innate advantages 

of deep learning and the way to make the most of it for crop production were 

not discussed clearly. Therefore, this chapter outlined the strength of deep 

learning according to advancement in the other fields and how to improve the 

accessibility of the crop models utilizing that strength of deep learning. 
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Table 1. Ranges of environmental data used for the experiment. 

 Summary References 

Comprehensive Machine learning and deep learning have promising potential to handle challenges in agriculture. 

Most of them were conducted for research purposes. Deep learning outperformed existing techniques, 

but additional technology is required to address agricultural specificity. 

Kamilaris and Prenafeta-

Boldú 2018 

Benos et al. 2021 

Osinga et al. 2022 

Crop yield prediction 

and fruit detection 

Yield prediction and fruit detection can help achievement of optimum crop yield. Deep learning is 

suited for studies requiring future predictions from raw data, but the best model is uncharacterized. 

The choice of features depends on availability and quality of the dataset and research purposes. 

Models with more features did not always provide the best performance for the yield prediction. The 

research changed to modify existing deep learning models suitable for a specific application. 

Koirala et al. 2019 

van Klompenburg et al. 2020 

Bali and Singla 2022 

Phenotyping Genome engineering exceeded the capacity to measure the effects of genetic changes on plant traits. 

Plant phenotyping is also essential to select stress-resistant varieties and develop better stress-

management strategies. Genomics-assisted breeding has become a popular approach to food security. 

Machine learning is a promising solution for improving image-based phenotyping. High-throughput 

crop phenotyping could help standardize crop traits, and the growing capabilities of the methodology 

can extract new insights across varied crops. 

Singh et al. 2021 

Jin et al. 2021 

Sarić et al. 2022 

Plant diseases and 

pest detection 

Plant diseases and pests are essential factors determining the yield and quality of plants. Detecting 

and monitoring them over vast areas could also enhance plant protection. Machine learning plays an 

important role in modeling diseases and pest detection; especially, deep learning has made 

breakthroughs in digital image processing. Deep learning has great development potential, although 

practical production and application are still unrealizable. A large number of labeled samples is the 

main challenge of the application. Therefore, collecting big data for plant diseases and pests should be 

a priority for applying deep learning methods. 

Zhang et al. 2019b 

Liu and Wang 2021 

Weed detection Weeds are one of significant factors that could diminish crop productivity. Deep learning has enabled 

rapid detection, localization, and recognition of objects from vision. With technological advances, 

image processing techniques have become a promising tool for precise real-time weed and crop 

detection in the field. Most studies achieved high accuracy by fine-tuning pre-trained models and 

availability of labeled big data. The future is promising, although some challenges still exist. 

generalized large datasets and tailored machine learning models in weed-crop settings are necessary 

for future research. 

Wang et al. 2019a 

Hasan et al. 2021 
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Remarkable applicability and accessibility of deep learning 

Deep learning algorithms show state-of-the-art performance in broad 

engineering and scientific fields (Goodfellow et al. 2014; LeCun et al. 2015; 

Aloysius and Geetha 2017; Shinde and Shah 2018; Pan et al. 2019; Liu et al. 

2020; Dhillon and Verma 2020; Gm et al. 2020; Otter et al. 2021; Wang et al. 

2021; Tan et al. 2021; Han et al. 2022). Before the introduction of deep learning, 

diverse algorithms competed in computer vision, such as classification and 

object detection (Liu et al. 2020); however, existing algorithms have been 

overwhelmed since 2012, and deep learning has been applied by all teams 

(Huang 2016). Natural language processing, such as voice recognition and text-

to-speech, requires data processing technology based on the target languages' 

linguistic and cultural backgrounds; however, deep learning's abstraction 

capability enables the use of unprocessed raw data (Otter et al. 2021; Tan et al. 

2021). This resulted in higher accessibility that nonspecialized institutions can 

develop and improve the models (Tan et al. 2021). Generative models have 

rarely been created because of the innate complexity of analyzing the 

generation task (Gm et al. 2020), and the research field is booming with the 

introduction of deep learning (Goodfellow et al. 2014; Pan et al. 2019; Gm et 

al. 2020; Wang et al. 2021). Deep learning models have also been broadly 

applied in other fields (Shinde and Shah 2018; Dhillon and Verma 2020). High 

performances and increasing study groups ensure that deep learning is superior 

to existing methods in many studies. 
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A famous reason for the high performances is enormous data accumulation 

in a specific field (Fig. 3). The data related to human activity, such as images, 

text, and gameplays, are sufficiently accumulated and powered by global 

internet networks and storage, and the data have high integrity in nature: that is, 

big data with sufficient common features and a similar distribution space can 

be utilized. In addition, the advent of computation powers to deal with big data 

is also a core of the model performance. The concepts of deep learning are 

decades-long, but the computing power and data amount to realize the 

methodology were recently satisfied (McCulloch and Pitts 1943; Rosenblatt 

1958; Fukushima 1988; Hochreiter and Schmidhuber 1997). 

Another well-known strength is a high performance in generalizing big 

data: automated feature extraction (LeCun et al. 2015). With conventional data 

science, humans should extract features of the target data based on domain 

knowledge and empirical data analysis skills. Deep learning can autonomously 

extract necessary features for a given task with sufficient data (Lee et al. 2009; 

Siegel et al. 2016). Therefore, more complicated data relations, such as images 

of gameplays and required actions for high scores, can be interpreted from the 

raw data (Mnih et al. 2015), and the background knowledge becomes less 

important (Silver et al. 2018; Schrittwieser et al. 2020). 
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As mentioned above, big data, progress in computation power, and high-

level abstraction are often noted to explain deep learning performance. 

However, the explanations are a perspective of computer science and 

engineering, and the prevalent application and utilization of deep learning 

regardless of the research fields could be more derivative: the high accessibility 

and adaptability of the developed deep learning model with less domain 

knowledge. Many areas where deep learning stands out have been organically 

connected and developed faster than before based on high accessibility to the 

algorithms (Fig. 4). Scientific reports, including deep learning applications for 

complicated tasks, are frequently published, although the technologies were 

studied exclusively by private institutions and companies before. Deep neural 

networks, a core structure of deep learning, are an assembly of many linear 

calculations; therefore, deep learning models have shown high adaptability 

regardless of the input and output types. (Yoon et al. 2018; Shu et al. 2019; 

Brown et al. 2020; Wang et al. 2021; Ramesh et al. 2021). Algorithms that are 

in completely different fields influence and develop each other based on 

adaptability. Based on accessibility and adaptability, deep learning has 

increased opportunities for scientific and engineering contributions; therefore, 

deep learning algorithms have led to unprecedented progress in that field. 
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Fig. 3. Numbers of datasets used to train machine learning or deep learning 

models. 
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Fig. 4. A brief timeline of progress in computer vision, sequence modeling, and 

generative models after the deep learning introduction. Solid arrows 

represent the structural and motivational reuse of the previous algorithm. 

Note that some remarkable inventions were omitted for convenience of 

depiction. Refer to Appendix for the used references. 
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Deep learning applications for crop production 

Since scientific reports covering deep learning applications for crop 

models are infrequent, pros and cons can be inferred from those for the broader 

topic: crop production. Advanced technologies, including deep learning 

applications in agriculture, have been actively studied and reviewed. Diverse 

applications have also been frequently tried over the last decade, although the 

topic of crop production is a relatively narrow scope (Table 1). Computer vision 

such as fruit, pest, and weed detection and classification was relatively 

favorable because the data were easily collectible and relevant pre-trained 

models were affordable; meanwhile, the cases of hyperspectral imaging and 

external phenotyping suggested securing data first because collecting adequate 

output data is challenging. 

Studies commonly remarked that deep learning is a promising tool because 

of its abstraction ability; however, they also indicated that firm infrastructure, 

such as standardized data collection and accessible tools for popularization, 

should precede the application for stable model training. The necessity of 

hyperparameter tunning and specialized model structures for agricultural 

purpose was also mentioned. However, most of the studies still concentrated on 

improving the end-to-end model accuracies for limited dataset with existing 

deep learning structures. Unlike the high-tech fields that have made great 

strides in a decade after the introduction of deep learning, the applications for 

crop production are still in infancy. The results in crop production can be 
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regarded as preliminary experiments, and they did not show reportable 

advantages that can substitute for crop models except for high accuracy in 

specific and partial conditions. Inactivated research in crop model applications 

could also be explained with these thresholds. 

 

Thresholds to apply deep learning to crop models 

Deep learning applications for crop models share challenges with those for 

crop production: lack of infrastructure. The obvious infrastructure to make the 

most of the deep learning is the securement of standardized and generalized 

dataset. As previously discussed, deep learning algorithms established 

superiority in the fields where various datasets with high data integrity were 

affordable. That is, establishing standards for data collection and feature 

selection can solve the majority of the challenges; however, crop cultivation 

data have some distinctive characteristics. 

1. Cultivation takes relatively long time than other famous tasks such as 

playing games or autonomous driving. Crop productivity and quality 

change with crop developmental stages and cumulative influences of 

crop environments; therefore, high quality data should be collected in 

long-term periods with various locations. It makes space and time 

constraints for constructing datasets. 

2. Features of agricultural data are scattered. Standardized agricultural data 

should include crop genotypes, climatic impacts, crop management, 
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cultivation scales, etc. Standardizing anthropogenic features such as 

management could be impractical because they can differ by crop, 

farming scale, and farmer; therefore, recording every feature from 

microscopic to macroscopic would require unaffordable funding. Even 

if a standard for the data collection is established, labeling the data will 

be a second hurdle. Providing answer sheets for an ambiguous target is 

difficult unlike sentiments in texts, facial expressions, and moves in the 

game of Go. 

3. Agricultural research groups using crop models have different research 

scales and objectives; therefore, necessary datasets and mainstream crop 

models are also varied (Jones et al. 2003; Steduto et al. 2009; Wang et 

al. 2017; de Wit et al. 2019). Several interdisciplinary academic 

meetings will have to be held, and relevant research groups should agree 

(Antle et al. 2017; Janssen et al. 2017; Jones et al. 2017). However, crop 

production involves various fields, from genetics to classical mechanics. 

This breadth makes it challenging to understand studies of each other 

group and assemble datasets together for a single purpose, such as object 

detection or classification. Therefore, making a common dataset could 

require a long time unlike other fields where the deep learning 

algorithms have taken a leading role. 

Therefore, an immediate and practicable way is required. To make the 

most of deep learning as an accelerator, it must be applied to the distinctive 
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infrastructure of agriculture. Rather than simply applying the end-to-end model 

to increase the accuracy following the precedent, we need to find a way to make 

modeling convenient by focusing on the accessibility and applicability of the 

deep learning algorithms. 

 

Necessity to prioritize deep-learning-based crop models 

In this regard, the disseminating accessible tools should be solved first. 

Deep-learning-based crop models can be shared on any scale and for any 

purpose with their strengths. Deep learning models can be retrained with 

semantically different input unless the dimension of the input tensor change. 

Moreover, well-trained deep learning models can be retrained with different 

input and output tensors by eliminating some layers, called transfer learning 

(Pan and Yang 2010; Weiss et al. 2016; Zhuang et al. 2020). If the amount of 

crop data increases, relations of crop data can be embedded into another vector 

space (Mikolov et al. 2013; Rong 2016). Therefore, the features of the datasets 

will converge to optimized items with the common deep crop model. 

Progress in the deep crop model can also improve in agricultural data 

science. In the case of games and driving, space and time constraints can be 

alleviated with a simulation. Data shortage for model training could be 

complemented with an imperfect simulation like autonomous driving (Chao et 

al. 2020; Huang and Chen 2020; Kiran et al. 2021). Similarly, neural networks 

are a function approximator; therefore, deep crop models can be trained with 
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data from existing crop models. However, simulation and reality are not 

completely equal, so sim-to-real methodology should be introduced to avoid 

overfitting to the simulation condition. 

 

Requirements of the deep-learning-based crop models 

While end-to-end models with a direct structure from input vectors to 

output vectors can yield higher accuracy than existing models, they are not 

sufficient to share and maintain the developed model in the current stage. It can 

easily be an isolated study in which the models are robust only for the private 

data, and follow-up studies are rarely conducted. The deep crop model should 

have a structure similar to existing crop models. 

As a warming-up step, the high-level abstraction property of deep learning 

should be utilized. Human intervention and manual feature extraction can be 

replaced. For example, simplified input such as daily maximum temperature or 

cumulative radiation can be conducted with some neural layers (Jones et al. 

2003; Steduto et al. 2009; Mikolov et al. 2013; de Wit et al. 2019). However, 

only using the deep learning for the feature extraction with conventional crop 

models cannot solve the fragmentation of the related studies. A deep crop model 

that is fully structured with deep neural networks is adequate for using, 

maintaining, and developing by anyone. In this manner, explainable parameters 

with the target output should be encouraged. Above all, the developed model 

must be competitive to the existing crop models. 
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Opening remarks and thesis objectives 

In this chapter, crop modeling and deep learning applications were 

reviewed. Then, a practical way to develop a deep-learning-based crop model 

was suggested. The deep-learning-based crop model can accelerate crop 

modeling research, which can provide insights into sustainable production in 

agriculture. It would result in the progress in agricultural data science like other 

cases. However, the agricultural distinctiveness is also a hurdle for the practical 

way. Partial solutions could cause more fragmentations, so a complete protocol 

for the model development from scratch can be an example for new other deep 

learning applications. 

This study focused to establish a developmental protocol for a process-

based crop model with full deep learning architecture. Base studies were 

conducted with several greenhouse data in Chapters 1 and 2. In Chapter 1, 

transfer learning and U-Net structure were utilized to construct an infrastructure 

for the deep learning application. In Chapter 2, HyperOpt, a Bayesian 

optimization method, was tested to calibrate crop models to compare the 

existing crop models with the developed model. In Chapter 3, the process-based 

crop model with full deep neural networks, DeepCrop, was developed with an 

attention mechanism and multitask decoders for hydroponic sweet peppers. The 

established protocol expected to be a high throughput for enhancing 

accessibility of crop models. 
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CHAPTER 1-1 

Knowledge transfer for adapting deep neural models  

to a different greenhouse with a low quantity of data 

ABSTRACT 

Deep learning is a state-of-the-art application in many fields, and this 

methodology has also been applied in agriculture. Deep learning algorithms 

require a large quantity of data in the model training; however, sufficient data 

may not be provided when considering agriculture applications. Transfer 

learning, a learning strategy for rapid and easy adaptation of a pre-trained model, 

can be a solution for limited agricultural data. The objective of this study was 

to verify the adaptability of a pre-trained model that predicts the greenhouse 

environment factors. The pre-trained models were retrained with data from new 

cultivation conditions, using transfer learning. Five greenhouse environment 

factors from twenty-seven greenhouses (14 sweet peppers and 13 tomato 

cultivations) in various regions of South Korea were predicted. Before the 

transfer learning procedure, some layers from pre-trained models were replaced 

with new layers; then, the models were retrained with unseen test dataset. The 

best model showed the highest training accuracy (R2=0.69) was BiLSTM. 

BiLSTM also adequately predicted the transfer dataset showing the highest 
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accuracy of an average R2 of 0.78 and 0.81 for sweet pepper and tomato datasets, 

respectively. The accuracies of most transferred models are higher than those 

of the corresponding deep learning models. Therefore, transfer learning can be 

used to predict the microclimates of a greenhouse with scarce data adapting 

previously trained deep learning models. Furthermore, the models can be 

adapted to heterogeneous tasks based on the high applicability and adaptability 

of deep learning algorithms. 

 

Additional keywords: long short-term memory, machine learning, multilayer 

perceptron, sweet pepper, tomato 

 

*Chapter 1-1 was previously published by Computers and Electronics in 

Agriculture [Moon T, Son JE (2021) Knowledge transfer for adapting pre-

trained deep neural models to predict different greenhouse environments based 

on a low quantity of data. Comput Electron Agric 185:106136]. 
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INTRODUCTION 

The data amount is increasing in agriculture, and methodologies for data 

analyses are diversifying (Muangprathub et al. 2019; Sarker et al. 2019). 

Wireless networks with IoT applications are the main cause of increasing data 

accumulation (Kochhar and Kumar, 2019). Novel data types, such as 

hyperspectral imaging, have also been utilized in previous research for yield 

prediction (Hassanzadeh et al. 2020). Collecting and monitoring 

multidimensional data have continuously been studied due to the improvements 

in sensors and computers (Wolfert et al. 2017; Khanna and Kaur 2019). Many 

methodologies have been adapted in agriculture with an expectation to 

understand phenomena from accumulated and new data. 

As deep learning represents state-of-the-art performances in many areas, 

it has also been applied to solve problems in agriculture, such as fruit 

segmentation, autonomous greenhouse control, and crop environment 

estimation (Barth et al. 2019; Hemming et al. 2019; Moon et al. 2019a). Deep 

learning became prevalent because of its adaptability for diverse tasks; a same 

deep learning model can be retrained with different input and output without 

domain knowledge. 

However, the data amount of agriculture could be insufficient for deep 

learning. Greenhouses generally have high temperature and humidity, and 

sensors are vulnerable to these conditions resulting in data loss (Moon et al. 
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2019b). The limited number of crops could also restrict the sufficient data 

collection (Lee et al. 2020). Moreover, differences in crop environment and 

growth due to target species, season, and cultivation strategy lead to the 

requirement of more diversified data (Jones et al. 1991; Van Henten and Van 

Straten 1994; Wubs et al. 2012). Collecting sufficient data for deep learning is 

a difficult task in agriculture. Deep learning models could not show the state-

of-the-art performances like other fields, resulting in fragmented studies of the 

applications (Kamilaris and Prenafeta-Boldú 2018). 

Therefore, the adaptability of the deep learning models for the distinctive 

agricultural conditions are verified. Transfer learning, one of the machine 

learning studies, may be a means to identify the performance, as it can be 

applied to limited available data. In machine learning, In the transfer learning 

methodology, the knowledge derived from data can be transferred from some 

previous tasks (Pan and Yang 2009). 

As a result, pre-trained models have been actively adopted, by varying the 

structure of the network, and, afterward, retrained with a new dataset (Shin et 

al. 2016; Gómez-Valverde et al. 2019; Thenmozhi and Reddy 2019). Moreover, 

this methodology has improved the performance of the model (Devlin et al. 

2018). Therefore, the deep learning model can perform better if the pre-trained 

models can be adapted to a new cultivation condition. 

In this regard, greenhouse environment data can be utilized for transfer 

learning of deep learning models. The environment data relatively abundant 
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and diverse. In addition, the environment is worth to predict for greenhouses 

studies. Active control of the internal environment improves crop quality and 

yield when analyzing phenomena in greenhouses. The active control of the 

environment surmounts the regional limitations of plant growth (Sethi et al. 

2013; Shamshiri and Ismail, 2013). As a result, optimal control of the internal 

environment is considered an important goal regarding greenhouse cultivation. 

Therefore, the target task for deep learning models was set to predict 

greenhouse environment. This chapter aimed to verify the adaptability of a pre-

trained model of a greenhouse environment by retraining it using transfer 

learning with a new cultivation condition.  
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MATERIALS AND METHODS 

Deep learning models 

The transfer learning methodology was applied in this work based on five 

common deep learning models, as indicated in Fig. 1-1-1: Feedforward neural 

network (FFNN), long short-term memory (LSTM), bidirectional long short-

term memory (BiLSTM), and LSTMs with autoencoder (AE-LSTM and AE-

BiLSTM). FFNN is a basic neural network architecture that is the core structure 

of deep learning algorithms (Schmidhuber 2015). LSTM is commonly used to 

analyze sequence data (Hochreiter and Schmidhuber 1997). Meanwhile, 

BiLSTM is a countermeasure model applied when the LSTM outputs are highly 

influenced by a backward context (Graves et al. 2005). Autoencoder (AE) is an 

algorithm that can reduce the dimension of the data (Wang et al. 2014). AEs 

have the same input and output with a narrow hidden layer in the middle of the 

architecture. Meaningful information could be encoded in the middle layer, so 

the other models can be easily trained with the encoded vector. AEs were 

coupled with the LSTM (AE-LSTM) and BILSTM (AE-BiLSTM), as this 

combination has generated models with higher performance in comparison with 

the original version (Fan et al. 2018; Mirsky et al. 2018). In this case, the LSTM 

and BiLSTM predicted the encoded values of the five environment factors, and 

AEs encoded and decoded the five factors. 

The architectures of the models differed in evaluating the influence of the 
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depth of the model on transfer learning, as shown in Table 1-1-1. The nodes in 

the layer represent the number of neurons in the layer. Encoders and decoders 

had the same structures as the first four and the last three layers of the AE, 

respectively. Layer normalization is a normalizing method for the stability of 

neural networks (Ba et al. 2016). The extracted features were supposed to be 

located in the middle of the hidden layer, so the first and the last layers were 

replaced and retrained. 

In contrast, the batch size (32) and learning rate (0.001) were the same in 

all experiments. Furthermore, the mean square error (MSE) was set as the 

variable to be optimized by the models. All deep learning models were 

requested to predict the behavior of five environmental factors in the next 24 h 

based on the data collected from the previous 24 h. This task was a kind of 

regression procedure, so the training results were compared considering the R2 

and root mean square error (RMSE) as a performance indicator and the model 

accuracy, and the TensorFlow (v. 2.0) software was used to build the model 

(Abadi et al. 2016). 
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Fig. 1-1-1. Deep learning models used in this study: feedforward neural 

network (A), long short-term memory (B), bidirectional long short-term 

memory (C), and autoencoder (D). The encoded vector from the 

autoencoder was used as inputs and outputs of combined long short-term 

memory. All common forms of the models were coupled with batch or layer 

normalization for impartial comparisons. 
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Table 1-1-1. Model architectures. The layers were represented as the ‘type of 

layer’-‘number of nodes in the layer’ (‘number of parameters’). A dense 

layer represents the basic-form of a fully-connected layer, and LayerNorm 

indicates layer normalization. FFNN, LSTM, BiLSTM, and AE mean 

feedforward neural network, long short-term memory, bidirectional long 

short-term memory, and autoencoder, respectively. 

FFNN LSTM BiLSTM AE-LSTM AE-BiLSTM AEz 

Dense-256y 

(1,536) 

LSTM-256 

(268,288) 

BiLSTM-128 

(35,840) 

Encoder 

(1,912) 

Encoder 

(1,912) 

Dense-32y 

(192) 

LayerNorm LayerNorm LayerNorm LSTM-256 

(271,360) 

BiLSTM-256 

(140,288) 

Dense-32 

(1,056) 

Dense-256 

(65,792) 

Dense-5y 

(1,285) 

BiLSTM-128 

(98,816) 

LayerNorm LayerNorm Dense-16 

(528) 

LayerNorm  LayerNorm Dense-8 

(2,056) 

BiLSTM-256 

(394,240) 

Dense-8 

(136) 

Dense-5y 

(1,285) 

 Dense-5y 

(645) 

Decoder 

(853) 

LayerNorm Dense-16 

(144) 

    Dense-8 

(2,056) 

Dense-32 

(544) 

    Decoder 

(853) 

Dense-5y 

(165) 
zEncoded values were used for the input of AE-LSTM and AE-BiLSTM. 

yThese layers were replaced and retrained for transfer learning. 
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Experimental greenhouse environment data 

The data collected from greenhouses, where sweet peppers (Capsicum 

annuum L.) and tomatoes (Solanum lycopersicum L.) were cultivated, in 

various regions of South Korea, were used as the experimental dataset. The 

covering materials were arch-type plastic or glasses. The minimum and 

maximum sizes of the greenhouses where sweet peppers were cultivated were 

7 W × 80 L × 5 H (m) and 100 W × 110 L × 5.7 H (m), respectively, while those 

of the greenhouses where tomatoes were cultivated were 7 W × 53 L × 3 H (m) 

and 66 W × 100 L × 4.5 H (m), respectively. 

As the growth strategies used for the cultivation were diverse, the 

microclimates and the cultivation periods also varied (Figs. 1-1-2, 1-1-3). The 

dataset was divided into two groups that were used in the training procedure 

and transfer learning tests, respectively. The deep learning models could be 

transferred for different crops, but greenhouses with the same crop can have 

distinct microclimates because of the management. Therefore, transfer learning 

was supposed for two cases: transferring models for similar and different 

conditions. The condition was set by cultivated crop. Therefore, the deep 

learning models were trained and validated only using the data collected from 

10 selected sweet pepper cultivations. The remaining data, collected from four 

sweet pepper greenhouses and 13 tomato greenhouses, were used in the transfer 

learning tests. 

The data were collected from Jan 1st, 2017 to May 4th, 2019, at intervals 
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of 1 h using complex sensors (GreenCS, Daejeon, Korea; Shinhan A-Tec Co., 

Ltd., Changwon, Korea). The total days of the dataset were 9,054. The days of 

datasets for model training (10 sweet pepper greenhouses) were 2,461. The days 

of datasets for transfer learning from four sweet pepper greenhouses and 13 

tomato greenhouses were 1,344 and 5,249, respectively. The monthly solar 

radiation and external temperature values showed a similar tendency in this 

period (Fig. 1-1-3). 

The target environmental variables were internal temperature, internal 

relative humidity, internal CO2 concentration, external temperature, and 

radiation (Fig. 1-1-4). The range of each variable is shown in Table 1-1-2. These 

data were randomly separated into training and validation datasets, which did 

not overlap, at ratios of 7:3 and 2:8 for the model training and transfer learning 

tests, respectively. This ratio was deliberately reduced in the transfer learning 

test when compared to the model training procedure to simulate the short 

quantity of data commonly collected from greenhouses. Therefore, the number 

of training data for transfer learning tests was approximately 269 d for sweet 

pepper greenhouses and 1,050 d for tomato greenhouses, which were 20% of 

the whole data. 
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Fig. 1-1-2. Cultivation periods of sweet pepper (A) and tomato (B) based on 

the data collected from the corresponding greenhouses. The broken and 

solid lines represent the data used in the training and transfer learning tests, 

respectively. 
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Fig. 1-1-3. Daily radiation based on average, minimum, and maximum daily 

temperatures (°C) per month for 14 sweet pepper (A) and 13 tomato (B) 

greenhouses. The blue and red solid lines represent the data used in the 

training and transfer learning tests, respectively. 
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Fig. 1-1-4. Box plot of five environmental variables. The whole data were 

normalized in a range from 0 to 1. The outliers were not represented. 

 

 

Table 1-1-2. Range of input data. 

Input data (unit) Range 

Inside temperature (°C) 5.32-54.88 

Inside relative humidity (%) 19.38-100.00 

Inside CO2 concentration (μmol mol-1) 101.67-2999.00 

Outside temperature (°C) −21.18-37.35 

Radiation (W m-2) 0.00-1027.70 
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Transfer learning 

In the transfer learning tests, some layers of the pre-trained models were 

replaced, depending on the similarity between the trained and transferred 

objectives, with new layers, which were retrained considering the test dataset 

(Tan et al. 2018). However, as the input and output of the dataset for transfer 

learning test were similar, one or two layers were replaced to use most parts of 

the trained models (Table 1-1-1). The trained layers and the new layers can be 

trained at the same time, but a sufficient number of datasets are required to 

compare to the original datasets. In this study, it was supposed that the models 

have to be retrained with small agricultural data. The weights of the trained 

layers were locked and the weights of the new layers were trained when transfer 

learning was conducted with the small datasets. Therefore, only the new layers 

were retrained for transfer learning in this study. R2 and RMSE were also used 

to evaluate the accuracy of the transferred models. The transferred models were 

compared with pre-trained models, which were trained with previous data and 

were not used in the transfer learning, and raw-trained models, which were only 

trained with new datasets. 
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RESULTS 

Accuracies of the deep learning models 

Five models showed adequate test accuracies after the model training 

procedure; however, their performances varied for each target factor (Fig. 1-1-

5). The model with the highest accuracy was BiLSTM, with an average R2 of 

0.69. The accuracy of each environmental variable was different based on the 

model. Furthermore, the highest and lowest accuracies for each model were 

always attributed to the external temperature and CO2 concentration, 

respectively. The increased complexity of the models, particularly when 

evaluating the AE-BiLSTM model, which was the most complex model based 

on its architecture, did not contribute to the accuracy. 

After the model training, for the situations in which the lowest RMSE 

values were obtained, some models generated highly accurate results when 

predicting the behavior of environmental variables in the future 24 h (Fig. 1-1-

6). Furthermore, when comparing these models, relatively low accuracies were 

obtained from models coupled with AE in external temperature and relative 

humidity, even in the best cases. In contrast, the output had a similar timestamp 

for situations where the highest RMSE values were obtained. Each predicted 

variable was underestimated for these models, except the internal temperature 

estimated by AE-BiLSTM. However, all models grasped the tendencies of each 

environmental variable. 
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Fig. 1-1-5. R2 and RMSE of the trained models used to predict the behavior of 

environmental variables of 10 sweet pepper cultivations. 
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Fig. 1-1-6. Comparison models with lowest (A) and highest (B) RMSE values 

in the model training procedure. Tempin, Tempout, RH, CO2, and Rad 

represent internal temperature, external temperature, relative humidity, 

internal CO2 concentration, and radiation, respectively. The solid black line 

represents the measured values. 
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Fig. 1-1-6. (Continued from the previous page) 
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Performance of the transfer learning methodology 

Regarding the models that used the transferred dataset, the most accurate 

deep-learning model was the transferred BiLSTM, with an average R2 of 0.78 

and 0.81, followed by the transferred LSTM, with an average R2 of 0.76 and 

0.79, when considering the environmental variables of sweet pepper and tomato 

greenhouses, respectively (Fig. 1-1-7). Among the trained FFNNs, the 

transferred FFNN was not the model that generated the most accurate results 

(raw-trained FFNN), as its average R2 was 0.72; however, its accuracy was 

satisfactory. The accuracies of the transferred models were largely higher than 

those of the pre-trained and raw-trained models, except those of FFNN and AE-

BiLSTM. In particular, the trained AE-LSTMs and AE-BiLSTMs could not 

predict the dataset used in the transfer test corresponding to sweet peppers. In 

addition, an accuracy lower than those obtained from other trained models was 

achieved; therefore, the increase in the model complexity due to AE did not 

improve the performance of the corresponding model in this case. Furthermore, 

higher accuracies were obtained from the models trained with the data collected 

from tomatoes than those trained with the data collected from sweet peppers, 

despite the low training/test ratio. 

For each environmental variable, the prediction accuracy of the CO2 

concentration and relative humidity were the lowest, considering the sweet 

pepper and tomato greenhouses, respectively (Fig. 1-1-8). The AE coupled with 

pre-trained models did not effective the accuracy when the models predicted 

the transfer dataset. In contrast, the accuracy of the FFNN was similar to those 
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of the other models. In some cases, the raw-trained FFNN was relatively highly 

accurate, although the training data of the transfer dataset were scarce. However, 

most transferred models were highly accurate. 
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Fig. 1-1-7. Average test R2 and RMSE of the models in which the transfer 

methodology was applied. Results obtained from predicting the environmental 

variables of four sweet pepper (A) and 13 tomato (B) greenhouses. R2 and 

RMSEs were averaged by each model output. Pap and Tom represent sweet 

peppers and tomatoes, respectively. Black bars represent the R2 and RMSEs of 

the raw-trained model, in which only a transfer test dataset was used. Light-

color bars represent pre-trained models trained with the previously used dataset. 

Gray bars represent RMSE exceeding the axis scale. Negative R2s were not 

depicted in the graph for the legibility. 
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Fig. 1-1-8. Test R2 and RMSE of the transfer models, considering the dataset 

of four sweet pepper (A) and 13 tomato (B) greenhouses. The black bars 

represent the R2 and RMSEs of the raw-trained models, while Light-color bars 

represent pre-trained models. Gray bars represent RMSE exceeding the axis 

scale. Negative R2s were not depicted in the graph. 
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Fig. 1-1-8. (Continued from the previous page) 
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DISCUSSION 

The accuracies obtained from the deep-learning models were relatively 

low, although the models generated by some methodologies resulted in highly 

accurate results in comparison with those obtained from canonical methods 

(Zhou et al. 2016; Fischer and Krauss 2018; Khan and Yairi 2018). The CO2 

concentrations influenced the accuracy of the predictions, resulting in a low 

average R2 (Fig. 1-1-5). As a high CO2 concentration can enhance crop 

production, most sweet pepper greenhouses adopted CO2 fertilization (Del 

Amor 2007; Serret et al. 2018). As a result, the measured CO2 concentration 

exceeded the concentration during daytime (approximately 400 μmol mol-1), as 

shown in Table 1-1-2. This fertilization strategy could also vary for each 

greenhouse; therefore, the predictions of CO2 concentrations were affected, as 

the data were collected from several greenhouses with different control 

strategies. Furthermore, the greenhouse microclimate may differ based on the 

implemented strategies to adapt to the weather, even though the same crop is 

cultivated (Villarreal-Guerrero et al. 2012; Choi et al. 2019). Since the data 

were gathered from several greenhouses having different control strategies, the 

CO2 fertilization could be hard to predict. However, the models predicted the 

tendencies of the environmental variables, indicating that they were adequately 

trained, and their performance during the transfer learning process could be 
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evaluated. 

Furthermore, the difference in the accuracies of the results generated based 

on the data from sweet pepper and tomato cultivations in transfer learning was 

due to the accuracy of CO2 concentration (Fig. 1-1-7). For models with the 

lowest accuracy, the CO2 concentrations were underestimated (Fig. 1-1-6). 

Although the accuracies obtained from the transferred models were the highest, 

the predictions of relative humidity in tomato greenhouses were relatively 

discrepant from the other predictions (Fig. 1-1-8). Nederhoff et al. (1992) 

reported the different tendencies in transpiration between tomatoes and sweet 

peppers, which induced the different relative humidities when comparing this 

cultivation (Jolliet 1994). Furthermore, the ventilation strategy adopted by the 

greenhouse was different for each crop (Boulard et al. 2004). As a result, 

universal control parameters are required to increase the accuracy of 

microclimate prediction, enabling an integrated multi-crop prediction. 

The application of the transfer learning methodology was successful, as 

the accuracies of most transferred models were the highest among those 

obtained from different training methods (Fig. 1-1-7). Only the most common 

form of transfer learning was conducted in this study. As a result, the application 

of advanced variations of transfer learning, which have already been studied, 

would increase the adaptability of the model and, therefore its accuracy (Pan 

and Yang 2009; Zhang et al. 2019). 

Coarse fitting may also influence the high deviations of the environmental 
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variables (Fig. 1-1-4). In this study, a parameter fitting commonly used was 

conducted, as the objective of this research was to compare different deep-

learning models. Comprehensive search or hard fitting of these parameters 

could improve the accuracies due to overfitting; however, the overfitting could 

reduce the generalization of the models, harming the impartial comparison 

between them. Most trained models resulted in adequate accuracies, indicating 

that they could be equally compared. 

Among the analyzed deep-learning models, the results obtained by 

BiLSTM were the most accurate, considering the training and transfer datasets. 

Furthermore, this model had a suitable architectural complexity. The trained 

LSTM also generated results with relatively high accuracies; however, more 

parameters were used than in BiLSTM (Table 1-1-1). 

In some transfer tests, the raw-trained FFNN was the most accurate, 

despite the scarcity of the data used to train the models (Fig. 1-1-8). In fact, a 

form of attention is being developed that eliminates recurrent structures for easy 

parallelization (Vaswani et al. 2017; Lan et al. 2019). Predicting the 

environment is relatively simple, so extensive data and complex models are not 

required for predicting a stable environment. Therefore, in some scenarios, 

minimized models do not demand a high computation cost, enabling in-field 

applications of deep-learning models without a cloud service or a high-

performance workstation. However, a complex model is required for long 

prediction periods or if more variables, such as control factors, must be 
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predicted (Jung et al. 2020). 

The most complex model, AE-BiLSTM, was not the most accurate among 

all the experiments conducted in this research (Fig. 1-1-5), probably owing to 

the low complexity of data used in this study. AEs compress and restore their 

input as an abstractor (Baldi 2012). When an AE is coupled with a predictor, it 

reduces the data dimension, supporting the improvement of the predictor. The 

AE module could generate benefits for situations in which complex data are 

used, such as natural language processing (Li et al. 2015). However, in this 

research, the input and output dimensions were five, which may not be 

sufficient to improve the predictor. In addition, the raw-trained models with 

AEs could not predict the environments in transfer tests. It could represent that 

the AEs were overfitted to the original data, and the overfitting could not be 

resolved by replacing some layers. However, AEs could be helpful for 

complicated tasks, so AE complex models should be tested when the data with 

more input and output features are learned. 

The instability in the accuracy of transferred models could be caused by 

the optimized parameters of the training dataset composed of data from the 

cultivation of sweet pepper. This complex and large model is not necessary for 

a simple task, such as aerial environmental prediction, but will be helpful if 

both the control and growth factors are considered. 
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CONCLUSION 

To improve the adaptability of deep-learning models using the transfer 

learning technique, deep-learning models were trained and transferred using 

sweet pepper and tomato datasets obtained from 14 sweet pepper and 13 tomato 

greenhouses. The objective of this study was to analyze and predict the aerial 

environment of greenhouses. As a result, BiLSTM was the most accurate model, 

resulting in an R2 of 0.69 for the training dataset, 0.78 considering the data 

collected from sweet peppers in transfer learning and 0.81 considering the data 

collected from tomatoes in transfer learning. As a basic fitting strategy was 

conducted, the accuracy obtained from the models was relatively low; however, 

the trained models could be compared to the transfer learning methodology 

because the overfitting was deliberately avoided. The accuracies of most 

transferred models were higher than those of the corresponding methods with 

different training strategies. As a result, transfer learning can be used to adapt 

trained deep learning models to predict the greenhouse microclimate with scarce 

data; it was verified that the deep learning models have high adaptability and 

applicability to the agricultural data. 
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CHAPTER 1-2 

Imputation of missing greenhouse environment data  

utilizing two-dimensional convolutional neural networks 

ABSTRACT 

Greenhouses require accurate and reliable data to interpret the microclimate and 

maximize resource use efficiency. However, greenhouse conditions are harsh 

for electrical sensors collecting environmental data. Convolutional neural 

networks (ConvNets) enable complex interpretation by multiplying the input 

data. The objective of this study was to impute missing tabular data collected 

from several greenhouses using a ConvNet architecture called U-Net. Various 

data-loss conditions with errors in individual sensors and all sensors were 

assumed. The U-Net with a screen size of 50 exhibited the highest coefficient 

of determination values and the lowest root-mean-square errors for all 

environmental factors used in this study. U-Net50 correctly learned the changing 

patterns of the greenhouse environment from the training dataset. Therefore, 

the U-Net architecture can be utilized for the imputation of tabular data in 

greenhouses if the model is correctly trained. Growers can secure data integrity 

with imputed data, increasing crop productivity and quality in greenhouses. 
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INTRODUCTION 

Agricultural systems and their models vary across spatial and temporal 

scales (Jones et al. 2017). Greenhouses, which represent a small agricultural 

system, increase the yield and quality of crops (van Straten et al. 2010). The 

greenhouse microclimate is manipulated to reduce energy input and increase 

crop yield and quality (Aaslyng et al. 2003; van Beveren et al. 2015; Graamans 

et al. 2018). Growers’ strategies make distinctive microclimates to maximize 

resource use efficiency. Therefore, the microclimate is partly or totally 

anthropogenic in any form of greenhouses. 

Since the greenhouse environment should be monitored for precise control, 

multidimensional information is accumulated and interpreted differently (Wang 

et al. 2006; Köksal et al. 2019; Xie and Yang 2020). The collected data can 

explain the interactions between the environment and the crops (Zhao et al. 

2011; Wolfert et al. 2017). Recent developments in sensors and algorithms have 

also allowed machine learning and deep learning to be applied to agricultural 

data (Kamilaris and Prenafeta-Boldú 2018). 

However, the internal environment of a greenhouse can be harsh for 

electrical sensors. The greenhouse may be close to water,   and high solar 

radiation could heat the sensors (Mobtaker et al. 2019). Root-zone sensors 

could also be blocked by irrigational problems (Cho et al. 2018). In this case, 

sensors cannot obtain complete data without errors, resulting in low data 
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integrity. In addition, sensors in greenhouses are likely to lose their connection 

because of various external causes, such as blackouts or floods. Under such 

conditions, relatively long-term datasets could be lost, distorting the 

accumulated environmental data (Moon et al. 2019). Because past 

environments cannot be inferred from distorted data, a method to restore lost 

data is required. 

Because environmental factors in greenhouses influence each other 

interactively and temporally, complex interpretation should be considered in 

interpolating environmental data. Convolutional neural networks (ConvNets) 

enable complex interpretation by multiplying the input data (Rawat and Wang 

2017). ConvNets are mainly used for image processing, but they also exhibit 

high performance in extracting interactive features within inputs (Silver et al. 

2017; Senior et al. 2020). Therefore, data imputation using a two-dimensional 

ConvNet can be performed for the obtained greenhouse environmental data. 

The objective of this study is to impute missing tabular data collected from 

several greenhouses using a ConvNet. 
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MATERIALS AND METHODS 

U-Net model architecture and prediction workflow 

A fully convolutional network architecture called U-Net was used for data 

imputation (Fig. 1-2-1). From the original input size, N, the size was 

compressed to one-quarter, and the abstracted features were restored in stages. 

U-Net is often used for image segmentation tasks in medical image datasets 

where the output has similar features and the same size as the input 

(Ronneberger et al. 2015). The architecture was the same as that of vanilla U-

Net, which has a skip connection. 

Every layer in a neural network algorithm is expected to abstract the 

relationship between the input and output hierarchically (LeCun et al. 2015). 

However, the layers could become short-sighted and learn only the relation 

between the previous and subsequent layers. This can reduce the model 

performance, especially when the model should restore the original input size. 

The skip connection architecture directly delivers the previous abstraction to 

the deeper layers (Orhan and Pitkow 2017). In this study of data imputation, 

not only did the output have to be the same size as the input, but also, the output 

was largely related to the original input. Therefore, the U-Net architecture was 

expected to be effective for the data imputation. Zero padding was added to 

sustain even-numbered inputs for the convolutional layer. The cost function 

was the mean square error. 
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Fig. 1-2-1. U-Net structure used in this study. N was 5, 10, 20, or 100, the same 

as screen and input sizes. The numbers with horizontal writing represent the 

dimensions of the relevant vectors. Black and gray arrows represent max 

pooling and skip connection. 
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Experimental greenhouse environmental data 

Greenhouses cultivating sweet peppers (Capsicum annuum L.) and 

tomatoes (Solanum lycopersicum L.) in various regions of South Korea were 

used to obtain the experimental datasets. The covering materials varied from 

arch-type plastic to Venlo-type glasses. The minimum and maximum sizes of 

the sweet pepper greenhouses (width × length × height) were 7 m × 80 m × 5 

m and 100 m × 110 m × 5.7 m, respectively; those of the tomato greenhouses 

were 7 m × 53 m × 3 m and 66 m × 100 m × 4.5 m, respectively. The data 

collection periods varied according to the greenhouses (Fig. 1-2-2A). 

The data interval was one hour, and the collected environmental factors 

were internal temperature (Tin), external temperature (Tout), internal relative 

humidity (RH), CO2 concentration (CO2), and radiation (Rad). The collected 

data included erroneous values (Table 1-2-1). 
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Fig. 1-2-2. Cultivation periods of the greenhouses (A) and an example of 

manipulated data loss (B). Solid and dashed lines represent tomato and 

sweet pepper greenhouses, respectively. Each color from the top represents 

five target factors of internal temperature, external temperature, internal 

relative humidity, internal CO2 concentration, and radiation. Black blanks 

represent the data loss. Refer to Table 1-2-1 for the units of environmental 

factors. 

 

Table 1-2-1. Ranges of environmental data used for the experiment. 

Environmental factor Abbreviation Range 

Internal temperature (°C) Tin 5.3-60.3 

External temperature (°C) Tout −21.2-38.0 

Internal relative humidity (%) RH 19.4-101.3 

Internal CO2 concentration (μmol mol−1) CO2 1.7-2999.0 

Radiation (W m−2) Rad 0.0-1669.9 
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Manipulation of the data-loss conditions and data preprocessing 

In this study, incomplete data with errors and short-term losses were used. 

Outliers of the measured data were deleted, and short-term missing data were 

linearly interpolated. After processing, the data were considered intact. The data 

loss was manipulated with the collected environment factors for the 

experiments (Fig. 1-2-2B). The random seed for generating random numbers 

was fixed for the comparisons. Various data-loss conditions with errors in 

individual sensors and in all sensors were assumed. Losses in all sensors can 

result from electrical malfunctions such as a blackout, making it impossible to 

refer to other sensor values at the current loss time. The error rates of the 

individual sensors and all sensors were 30%. Because all-sensor losses usually 

accompany long-term loss, all-sensor loss times were set to two days (48 data 

indices). All losses were randomized using a random number generator. 

The input matrices had specific screen sizes of 5, 10, 20, and 100 to ensure 

they were rectangular (Fig. 1-2-3). The screen sizes are represented as 

subscripts. Five input features were used; therefore, the input features were 

duplicated to increase the input size to match the screen size when needed. 

Consequently, the output also followed the screen sizes, and the duplicated 

outputs were averaged, except for two outliers in both extremes, expecting a 

similar effect to the model ensemble. To make the U-Net consider adjacent data, 

the tabular data in the previous and next date time from the target were used as 

the input. A mask matrix representing missing values was also added to the 



 

80 

input. Intact and missing data were 1 and 0 in the matrix, respectively. Similarly, 

the prediction ranges were also the same as the screen sizes. The data were 

normalized in the range of 0-1. Missing values were replaced with −1, which is 

outside the normalized range. ConvNets usually receive images in gray or RGB 

scale, but the networks can interpret other data types such as go board, shogi 

board, or chessboard (Silver et al. 2017). The ConvNets mathematically 

calculate the input, whatever the input is, it acts just a series of numbers. 

Therefore, rather than images, the input of the U-Net used in this study 

consisted of target tabular data with the specific screen size, previous and next 

data of the target, and a masking matrix for missing data of the target. The 

number of data input channels was four. Considering it as images, this input 

becomes an image with N × N pixels and one more dimension than RGB. It 

was expected that each feature and dimension was considered complex by 

convolution. 
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Fig. 1-2-3. Diagram of data preprocessing for U-Net. Each color represents 

each environmental factor. Each color from left to right represents the five 

target factors of internal temperature, external temperature, internal relative 

humidity, internal CO2 concentration, and radiation. Black cells are missing 

data. The values in a mask were 0 and 1 for black and white, respectively. 
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Model evaluation 

To compare the U-Net architecture with existing methodologies, linear 

interpolation (LI), a feedforward neural network (FFNN), and long short-term 

memory (LSTM) were selected. LI is a simple approach to imputing missing 

data; it simply linearly connects intact data. The FFNN is a basic architecture 

of a neural network algorithm (Schmidhuber 2015). LSTM is often used for 

sequence data and exhibits state-of-the-art performance (Greff et al. 2016). 

Since FFNN and LSTM showed reliable accuracies for predicting 

environmental changes and microclimates in greenhouses, they were selected 

as comparable models. Owing to structural limitations, the FFNN and LSTM 

could not have the same input matrices as U-Net (Table 1-2-2). The 

environmental factors corresponding to Target, Previous, and Next screen and 

the loss mask were linearly arranged for the FFNN input. 

The most accurate U-Net and existing models were tested with different 

all-sensor losses from 10% to 95% to determine the limits of the model 

robustness by loss percentage (Fig. 1-2-2B). All losses were randomized using 

a random number generator with the same random seed. The U-Net and existing 

models were trained with 30% data loss. Ablation tests with input matrices were 

also conducted to verify the efficiency of each input component. In all 

evaluations, the coefficient of determination (R2) and root-mean-square error 

(RMSE) were used as indicators of accuracy. 
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Table 1-2-2. Architectures of the compared models. Layer parameters are 

denoted as a type of layer and the number of nodes in the layer (number of 

trainable parameters). FFNN and LSTM represent a feedforward neural 

network and long short-term memory, respectively. 

Model FFNN LSTM 

Input size 1 × 20 100 × 20 

Layers Dense 64 (384) BiLSTM 64 (43,520) 

 Dense 64 (4160) BiLSTM 64 (98,816) 

 Dense 5 (325) Dense 5 (645) 

Output size 1 × 5 100 × 5 
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RESULTS 

Imputation accuracies of U-Nets and other methods 

U-Net50 exhibited the highest R2 values (Table 1-2-3) and the lowest 

RMSEs (Table 1-2-4) for all environmental factors. Among them, the R2 value 

for Tout was the highest, while that for CO2 was the lowest. In particular, the 

prediction ability for the missing CO2 data was relatively poor, given that the 

R2 values for predicting other environmental factors were near 0.8. 

The accuracies of the trained U-Nets increased with screen size, but U-

Net100 exhibited lower accuracy than U-Net50. The values imputed by U-Net100 

tended to be biased, which could indicate overfitting (Fig. 1-2-4). Aside from 

the U-Nets, LI had the highest accuracy for imputation of the missing data. 

Similar to the U-Nets, the highest prediction accuracy was obtained with Tout, 

while the lowest was obtained with Rad. This result contrasts with the high 

imputation accuracy for radiation obtained by the trained U-Net50. The FFNN 

and LSTM did not exhibit competitive accuracies, although they are deep 

learning methodologies. According to the R2 values, they could not relate the 

remaining intact data with the missing data. 
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Fig. 1-2-4. Linear comparison of measured and imputed values. FFNN, LSTM, 

and LI represent the feedforward neural network, long short-term memory, 

and linear interpolation, respectively. The subscript represents the screen 

size. Refer to Tables 1-2-1 and 1-2-4 for the abbreviations of environmental 

factors and the coefficients and intercepts of regression lines, respectively. 
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Fig. 1-2-4. (Continued from the previous page.) 
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Table 1-2-3. R2 values of the models. The boldface values are the highest R2 

values for each factor. FFNN, LSTM, and LI represent the feedforward neural 

network, long short-term memory, and linear interpolation, respectively. The 

subscript represents the screen size. See Table 1-2-1 for the abbreviations of 

environmental factors. 

 U-Net5 U-Net10 U-Net20 U-Net50 U-Net100 FNNN LSTM LI 

Tin 0.32 0.45 0.67 0.80 0.66 −3.34 0.13 0.71 

Tout 0.49 0.69 0.87 0.92 0.85 −14.81 0.07 0.88 

RH 0.33 0.49 0.75 0.81 0.57 −1.74 −0.04 0.76 

CO2 0.23 0.23 0.21 0.66 0.23 −85.32 0.03 0.62 

Rad 0.22 0.41 0.69 0.79 0.68 −14.25 0.01 0.17 

 

Table 1-2-4. Root-mean-square error (RMSE) values of the models. The 

boldface values are the lowest RMSE values for each factor. FFNN, LSTM, and 

LI represent the feedforward neural network, long short-term memory, and 

linear interpolation, respectively. The subscript represents the screen size. Refer 

to Table 1-2-1 for the abbreviations of environmental factors. 

 U-Net5 U-Net10 U-Net20 U-Net50 U-Net100 FNNN LSTM LI 

Tin 5.44 4.90 3.79 2.95 3.88 13.82 6.18 3.57 

Tout 7.16 5.57 3.61 2.81 3.83 39.98 9.69 3.54 

RH 11.02 9.63 6.75 5.91 8.77 22.25 13.70 6.58 

CO2 141.33 141.61 143.00 93.19 141.17 1,494.73 158.64 99.42 

Rad 210.03 182.91 132.40 109.40 134.71 927.42 238.57 216.69 
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Model robustness as ascertained by the loss percentages 

Because U-Net50 exhibited the highest accuracy among the U-Nets, it was 

used to compare the models by their losses. The accuracy of the trained U-Net 

decreased sharply in the case of CO2 (Fig. 1-2-5). For factors other than CO2, 

U-Net sustained its accuracy at loss rates of <50%. LI sustained its accuracy 

even with losses of >50%. The RMSE values of the FFNN and LSTM were 

also changed, although they could not correctly impute the missing data. 
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Fig. 1-2-5. R2 and RMSE values ascertained by the loss rates. Colors with low 

alpha values represent RMSE values. R2 values less than zero are depicted 

as 0.0. FFNN, LSTM, and LI represent the feedforward neural network, 

long short-term memory, and linear interpolation, respectively. Refer to 

Table 1-2-1 for the abbreviations of environmental factors and the units of 

RMSE values. 
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Ablations for critical components of the input 

Because the R2 values decreased by almost 0.6 without the previous and 

next matrices, these matrices were the most influential input components (Fig. 

1-2-6). The absence of the mask matrix barely reduced the accuracy. 

Unexpectedly, the current matrix was the next least influential, after the mask 

matrix. Although the current matrix was the target, the decrease in accuracy 

was relatively lower compared to other input components. In contrast, the 

trained U-Net could not correctly impute the missing data with only current and 

mask matrices, although the screen size of 50 included a long-term dataset (>2 

days). The magnitude of the decrease could be small, but the exclusion of each 

component resulted in a reduction in accuracy. 
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Fig. 1-2-6. Average R2 and RMSE values of the trained U-Net50 by ablation of 

each input component. “Original” represents as intact input component. 

“Mask” represents the mask matrix. “Prev,” “Current,” and “Next” 

represent the Previous, the Current, and the Next matrix in input matrices. 

The minus symbol represents ablation. 
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DISCUSSION 

U-Nets 

Various screen sizes were compared to evaluate the U-Net architecture for 

data imputation, and U-Net50 exhibited the best performance (Fig. 1-2-4). That 

is, U-Net was optimized with a screen size of 50. U-Nets usually handle an 

image size of >500×500 because the input should be compressed and abstracted 

in multiple layers (Ronneberger et al. 2015; Du et al. 2020). However, the 

optimal size was 50 for tabular data, which was 10% of the usual input size of 

U-Nets. The columns in the images are independent of their size. The small 

optimal screen size could be due to the strong relationship between duplicated 

columns. Likewise, the low accuracy of the trained U-Net100 could result from 

overfitting because the five features of tabular data were too few for this 

architecture. This could also be due to receptive fields. ConvNet has specific 

receptive fields according to its architecture, and this could change the way of 

recognizing input (Lue et al. 2016). In this study, all U-Nets had the same 

receptive fields for model comparison. The same receptive fields could be too 

small for U-Net100, resulting in a narrow view of the inputs. Changing the 

hyperparameters could improve the performance of the U-Nets. However, U-

Net100 with the same architecture could be used in other conditions. 

Environmental factors that can be used for microclimate monitoring have more 
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than five features (Kochhar and Kumar 2019; Zellweger et al. 2019). The 

optimal screen size could be >50 when more features are in the tabular dataset. 

In the ablations, the absence of each input component caused different 

decreases in accuracy (Fig. 1-2-6). A mask with 0 and 1 can train non-image 

inputs using a ConvNet (Silver et al. 2017a; Silver al. 2017b). However, the 

mask was ineffective for U-Net50, as shown by the barely changed accuracy. In 

this study, missing values were marked as −1 in the tabular data, which is 

outside the normalization range. Therefore, U-Net50 could recognize the 

missing values without the mask matrix. Unlike in the positioning of hostile 

and friendly markers as in a board game, empty data could be marked as −1. In 

the case where target positioning is necessary with fully existing real data (e.g., 

proofreading of tabular data), the mask matrix could be helpful. 

For the other input components, the trained U-Net50 imputed the missing 

data with comparable accuracy, even without the current matrix. In the case of 

the current matrix only, U-Net50 exhibited the lowest accuracy. The imputation 

performance was determined by patterns in the previous and next data, not 

adjacent data. Greenhouse environments exhibit 24-hour patterns, although 

they may vary by season (Baille and Baille 1994; Ma et al. 2019). Therefore, a 

screen size of 20 can yield high accuracy. However, all-sensor losses were 

designed to be 48 h. It seems that the screen size of 50 exceeded the length of 

all-sensor losses; therefore, it could be the optimal length. In generalizing the 

U-Net, high accuracy will be obtained only when it matches the appropriate 
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pattern range of tabular data. 

However, because the accuracy slightly decreased without the current 

matrix, the current matrix was not inoperative. The U-Net somewhat weighted 

existing values adjacent to missing values, like LI. Although it could be a slight 

decrease, all components were likely used correctly because ablation of all 

components resulted in a decreased accuracy. 

For U-Net50, even when almost half of the data were missing, the accuracy 

was maintained to some extent (Fig. 1-2-5). Compared to the intact data, the 

imputation was also reasonable (Figs. 1-2-7, 1-2-8). The sustained accuracy of 

the U-Net could be due to the nature of machine learning (Liakos et al. 2018). 

The trained U-Net learned patterns from the given data, and it can fill the 

missing data correctly. Therefore, more data could improve the model 

robustness unlike the conventional interpolation methods. 
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Fig. 1-2-7. Long-term examples of a recovered environmental dataset (GH24  

in Fig. 1-2-2A; 50% data loss). Gray and colored lines represent intact raw 

data and imputed data, respectively. Refer to Table 1-2-1 for the units of 

environmental factors. 
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Fig. 1-2-8. Short-term examples of a recovered environmental dataset (GH24; 

50% data loss). Gray and solid lines represent intact raw data and imputed 

data, respectively. Refer to Table 1-2-1 for the units of environmental 

factors. 
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Other models 

LI is a method used to splice the nearest intact data. Although it was 

evident that LI did not properly interpret the two-day-long loss condition, it 

yielded comparable accuracy (Table 1-2-3). Therefore, a new metric is needed 

to compare models in missing data imputation. 

The low accuracies of the FFNN and LSTM could result from clumsiness 

in the input (Kim et al. 2016). They exhibited comparable accuracies for 

agricultural estimations or predictions (Panda et al. 2010; Taki et al. 2016; 

Moon et al., 2019a). The inputs of the FFNN and LSTM included the previous, 

next, and mask matrices for comparison with the U-Nets. The matrices were 

expected to provide more information about the missing values and the data 

pattern, but FFNN and LSTM could not interpret the relations between the input 

features. Since the data imputation task was not a simple prediction, it seemed 

to require a more complicated interpretation of the input and the output. U-Nets 

extracted the importance of each ‘pixel,’ but FFNN and LSTM seemed biased 

by missing values. 

Because the FFNN and LSTM are machine learning methodologies, 

changes in their accuracies yielded by different loss rates imply that the models 

learned something from the training (Fig. 1-2-5). However, the FFNN could not 

interpret a long period of the previous and next data. LSTM cannot convolute 

tabular target data because it reads the data sequence by sequence. Therefore, a 

wide range of the datasheet should be considered, and all tabular data should 
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be calculated beyond the sequences. 

 

Variation in input environmental factors 

U-Net50 and LI exhibited the highest accuracy for Tout among the five input 

factors. Tout was also less affected by the loss percentages. That is, Tout could 

be a simple factor to impute. The chosen greenhouses were in the same climate 

conditions; thus, the individual datasets could share a tendency with respect to 

Tout. Most importantly, Tout was not a factor controlled by the grower. 

Therefore, the pattern could be easily extracted by the models. 

Meanwhile, the imputation of missing Tin did not exhibit as high an 

accuracy as in the case of Tout. The models could not impute Tin, although this 

factor also has somewhat constant patterns because the internal environments 

of greenhouses are controlled to be within specific ranges (van Beveren et al. 

2015). Neural network algorithms yielded high performance in previous studies 

(Ferreira et al. 2002; Manonmani et al. 2018). Unlike Tout, Tin could be affected 

by different grower strategies (Shamshiri et al. 2018). Therefore, the datasets 

did not seem to share the changing patterns; thus, the models could not impute 

the missing Tin with as high an accuracy as for Tout. 

U-Net50 exhibited a higher variance when imputing the RH than other 

environmental factors, even though the measured RH was sustained at almost 

100% (Fig. 1-2-7). In greenhouses, the RH can be sustained at 100%, but it 

tends to drop and be restored immediately after sunrise because of thermal 
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screens and ventilation (Stanghellini 1992; Boulard et al. 2004). RH sensors 

have been reported to have high error and failure rates (Liu and Tang 2014). 

Therefore, the measured values could be incorrect. Consequently, it seems that 

U-Net50 can be used for proofreading error data, as well as for the imputation 

of missing data. Based on the flexibility of the deep learning algorithm, the U-

Nets could be remodeled with only a few input and output changes. 

Regarding CO2, the control strategy barely showed a pattern (Fig. 1-2-7). 

In particular, the imputation accuracy of CO2 declined with an increase in the 

loss rate (Fig. 1-2-5). The relationship between CO2 and other environmental 

factors could be weak. This could be due to the control strategies of CO2. CO2 

fertilization is usually conducted empirically (Ting et al. 2015; Yang et al., 

2020). In this study, greenhouses used manual CO2 fertilization, except for 

some advanced farms. Therefore, the models could not find definite patterns of 

CO2 changes. In this case, control data could improve robustness (Choi et al. 

2019). However, U-Net50 exhibited adequate accuracy for CO2 imputation, 

although it was relatively lower than the accuracy for other environmental 

factors. 

LI failed to impute Rad, but U-Net did so adequately (Table 1-2-3). This 

seems to be due to nighttime data, as LI simply splices the intact values; thus, 

the zero Rad at nighttime could cause high errors in imputing Rad. U-Nets 

could distinguish day and night regardless of the position of the input screen, 

although Rad was somewhat overestimated or underestimated. It can be said 
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that U-Net could learn specific patterns in tabular data that LI could not, as LI 

does not have model training 
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CONCLUSION 

In this study, U-Net architectures were evaluated from the perspective of 

data imputation based on missing tabular data from 27 greenhouses. The trained 

U-Net exhibited an acceptable accuracy (average R2 = 0.80), and the highest 

accuracy was obtained with a screen size of 50. Among the other models tested, 

LI exhibited comparable performance. The FFNN and LSTM could not be 

properly trained. Based on the accuracies for imputing five environmental 

factors, U-Net seemed to sufficiently learn the change patterns in the tabular 

data, although U-Nets are usually used for images. The trained U-Nets 

sustained their robustness with increasing loss rate, demonstrating their 

usefulness for tabular data imputation with short-term and long-term losses 

simultaneously. 
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CHAPTER 2 

Bayesian optimization method to calibrate 

food and feed crop models for sweet peppers 

ABSTRACT 

Crop models are tools to analyze the interaction of crops and the environment. 

Since crop models can be applied to diverse research scales and purposes, 

models and their modifications vary. Therefore, the parameters of a crop model 

could be biased for unseen data; thus, crop models should be calibrated for the 

adequate simulation of the given data. This chapter aimed to calibrate food and 

feed crop models for sweet peppers (Capsicum annuum var. annuum) using 

Bayesian optimization. The algorithm does not require domain knowledge 

because it only considers input and output distributions based on Bayesian 

probability. For implementation of Bayesian optimization, HyperOpt, an 

algorithm for optimizing high-dimensional hyperparameters, was used. The 

target growth factors were fruit yield and leaf area index (LAI), and the loss 

function was mean squared error (MSE). As a result, the calibrated crop model 

showed the highest evaluation modeling efficiency (EF) of 0.53. The 

methodology showed adequate performance with reasonable ranges of 

convergence. The optimization method can be used for unknown distribution 
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spaces of parameters because it does not require an initial status. Among the 

selected food crops, the groundnut model was suitable for sweet pepper. Since 

the optimized crop models yielded reasonable simulations, Bayesian 

optimization could be introduced for horticultural purposes. 

 

Additional keywords: crop simulation models, HyperOpt, sweet pepper, 

calibration 
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NOMENCLATURE 

AMAXTB Maximum leaf CO2 assimilation rate as a function of 

development stage 

CVL Conversion efficiency of assimilates into leaves 

CVO Conversion efficiency of assimilates into storage organs 

DTSMTB Daily increase in temperature sum as a function of average 

temperature 

DVS Developmental stage 

DVSI Initial development stage at the start of the simulation 

EFFTB Initial light-use efficiency of CO2 assimilation of single leaves as 

a function of mean daily temperature 

FLTB Fraction of above-ground dry mass increase partitioned to leaves 

as a function of the developmental stage 

FOTB Fraction of above-ground dry mass increase partitioned to storage 

organs as a function of the developmental stage 

FRTB Fraction of total dry mass increase partitioned to roots as a 

function of the developmental stage 

FSTB Fraction of above ground dry mass increase partitioned to stems 

as a function of the developmental stage 

KDIFTB Extinction coefficient for diffuse visible light as a function of the 

developmental stage 

RFSETB Reduction factor for senescence as a function of the 

developmental stage 

RGRLAI Maximum relative increase in LAI 

SLATB Specific leaf area as a function of the developmental stage 

SPAN Lifespan of leaves growing at 35 Celsius 

SSATB Specific stem area as a function of the developmental stage 

TBASE Lower threshold temperature for the aging of leaves 
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TBASEM Base temperature for the emergence 

TEFFMX Maximum effective temperature for the emergence 

TSUM1 Temperature sum from the emergence to the anthesis 

TSUM2 Temperature sum from the anthesis to the maturity 

TSUMEM Temperature sum from the sowing to the emergence 
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INTRODUCTION 

Crop and environment interact from farm to global scale (Jones et al. 2017). 

Since crops both immediately and cumulatively respond to the environmental 

changes, the cause and result of the interaction are entangled (Marcelis et al. 

1998). Given the complexity, crops are also a target of interpretation and 

quantification; and crop models are used to analyze the complicated 

interactions (Muller and Martre 2019). 

Crop models are a versatile tool to describe crop growth and development 

in a certain condition; and they can simulate crop growth and potential yield by 

calculating agricultural variables based on the climatic data (Van Diepen et al. 

1989; Brisson et al. 2003; Jones et al. 2003; Steduto et al. 2009; Holzworth et 

al. 2014). Crop models have been modified and applied in various studies, so 

they have to cover broad scales with the same parameter set. Therefore, the 

parameters of a crop model are usually calibrated for the new data to adequately 

simulate the given condition (Ceglar et al. 2019; Chaki et al. 2022). 

Crop models have also been developed for horticultural purposes (Gijzen 

et al. 1998; Marcelis et al. 2006). Horticultural crops do not necessarily 

prioritize food security, unlike food and feed crops, so the target crop growth 

and resource calculation may vary (De Corato et al. 2018; Kumar et al. 2020; 

Swallah et al. 2020). In addition, horticultural crops frequently accompany rigid 

management and controlled environment such as greenhouses. Since the given 
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condition differs from the open field, the crop models should be adequately 

modified or calibrated. 

For adequate calibration, background knowledge about the target crop, 

such as the role of the parameters, should be required. However, the advanced 

models for horticultural targets are exclusive, and the related information has 

rarely been released. In the case of transferring food and feed crop models to 

the horticultural crops, they are based on different physiology of horticultural 

crops; therefore, background knowledge is also required. Moreover, since crop 

models have been updated in decades, the parameter space is too big to search 

randomly. An efficient way to calibrate significant parameters can help apply 

crop models to horticultural purposes. 

Bayesian optimization is a class of machine-learning-based optimization 

methods focused on solving the problem to find the extrema of objective 

functions based on given input and a model (Frazier 2018). The optimization 

process changes the input to minimize or maximize the objective function based 

on the probability distribution of the input and the objective function output. 

Therefore, the method does not require domain knowledge of the target 

function. 

One of the Bayesian optimization methods, HyperOpt, is a tool for tunning 

hyperparameters of deep neural networks (Bergstra et al. 2015). The high 

dimensional parameter sets of crop models would not exceed the neural 

networks, so the method could be applied to optimize crop model parameters. 
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The objective of this study was to calibrate existing crop models for sweet 

peppers with a Bayesian optimization approach for the high dimensional target, 

HyperOpt. 
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MATERIALS AND METHODS 

Data collection 

Crop environment and growth data collected by Rural Development 

Administration (RDA, South Korea) were used to fit crop models. The 

environment data were collected with various sensors in that location. Growth 

data were collected by selected inspectors, and the values were measured 

manually every week. 

The target crops were sweet peppers (Capsicum annuum var. annuum) 

grown in greenhouses. Eleven greenhouses in various regions of Gangwon-do, 

South Korea were chosen for this study. Cultivation areas varied from 3,300 to 

21,450 m2. Cocopeats were used for the substrate. Sweet pepper cultivars were 

seven species, which made growth variations. Most of the crops were cultivated 

for a year (Fig. 2-1). Their average environments were similar, while their target 

growth factors differed (Fig. 2-2). The environment and growth data were 

collected at 1-h and 1-week intervals, respectively. 
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Fig. 2-1. Cultivation periods of sweet peppers in the 11 target greenhouses. 

Solid and dashed lines represent the dataset used for the crop model 

calibration and test, respectively. 

 

 

Fig. 2-2. Cultivation conditions of the 11 greenhouses: greenhouse environment 

(A) and crop growth (B). Daily averages of inside and outside temperatures, 

inside radiation, LAI, and cumulative fruit yield were depicted. The caps of 

each point represent the daily maximum and minimum temperatures. 
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Crop model implementation 

To simulate and calibrate crop models, Python Crop Simulation 

Environment (PCSE, Wageningen UR, Wageningen, Netherlands, v. 5.5.0) was 

used. PCSE provides WOFOST crop models in the Python environment (de Wit 

et al. 2019). WOFOST 7.2 of potential production was selected for a base model 

of PCSE simulation. All 21 accessible food crops were used for this experiment. 

For the WOFOST simulation, the input and output need to be converted to 

relevant forms. The 10-min interval environment data were converted to daily 

irradiation, minimum and maximum temperatures, and vapor pressure deficit. 

Considering the controlled environmental conditions of greenhouses, some 

factors were set to zero: wind velocity, precipitation, and snow depth. The CO2 

concentration was fixed for WOFOST, so the value was set to 360 µmol mol−1. 

The target growth factors for the calibration were crop yield and leaf area index 

(LAI). 

WOFOST does not distinguish between immature fruits and harvest yield; 

therefore, the total dry weight of storage organs (TWSO) was regarded as crop 

yield. The dry weight of the yield was calculated using an empirical ratio of dry 

weight to fresh weight of 0.075. Since LAIs were not directly measured in RDA 

data, leaf area per plant was estimated using leaf length, leaf width, and the 

number of leaves first; then, LAI was calculated by multiplying planting density. 

A regressor from a previous study (Lee et al. 2018) was used for the leaf area. 

Among the 90 crop parameters, the parameters that can change leaf 
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dynamics and crop yield were selected, and broad ranges were set for each 

parameter (Table 2-1). Some definite parameters were fixed. Since the 

simulation was conducted with a potential production model, water- and 

nutrient-related parameters were excluded. 
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Table 2-1. Ranges of search spaces for parameter calibration. 

Type Parameters Search space 

Fixed TEFFMX 100 

 TBASEM 0 

 TSUMEM 0 

 SPAN 400 

Single-point DVSI 0.0-1.0 

 TBASE 5-30 

 RGRLAI 0.0-5.0z 

 TSUM1 500-1200 

 TSUM2 1200-2000 

 CVO 0.0-2.0z 

 CVL 0.0-1.0z 

Table-form SLATB 0.001-0.005 

 SSATB 0.0-0.1z 

 KDIFTB 0.0-0.9z 

 AMAXTB 10-50 

 RFSETB 0.0-1.0z 

 FRTB 0.0-0.5 

 EFFTB 0.1-2.1 

 DTSMTB 0-100 
zSet not to be zero.  
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Parameter calibration method 

The crop models were calibrated to minimize errors between the observed 

and simulated crop yield and LAI using Bayesian optimization. The mean 

squared error (MSE) was normalized and set to the error. HyperOpt was used 

to conduct the Bayesian optimization (Bergstra et al. 2015). HyperOpt is a 

hyperparameter optimization tool for machine learning model selection. It 

provides an optimization interface that distinguishes a configuration space as a 

probability distribution and includes an evaluation function that assigns real-

valued loss values to points within the configuration space. The tree-structured 

Parzen estimator approach was used to avoid local minima (Bergstra et al. 2011). 

WOFOST has single-point parameters and table-form parameters. The 

probability distributions for single-point parameters can be set normally; 

however, each table-form parameter requires several points for the relevant 

developmental stage or environment factors, similar to a matrix. For the tables, 

relevant values were divided into three or four; each search space was added. 

For example, a table-form parameter AMAXTB had to be optimized at three 

points for the relevant DVS of 0.0, 1.0, and 2.0. The parameters related to 

partitioning required additional manipulation because the summation of the 

partitioning ratio must be one, and HyperOpt cannot consider external 

conditions, such as the fixed ratio. In the WOFOST calculation, the root-to-

shoot ratio for total assimilation is determined first, and the rest is allocated to 

stems, leaves, and storage organs. In this study, HyperOpt optimized the 
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parameter for root partitioning in the same manner as the table-form; then, leaf 

allocation was determined. For the FSTB and FOTB, the stem-to-storage organ 

ratio was optimized in the range of 0-1. 

 

Evaluation method  

The optimization method HyperOpt was compared with a nonlinear 

optimization methodology used in the PCSE manual (Rowan 1990; de Wit et 

al. 2019). The Random walk, a randomized grid search, was used as a baseline. 

The data were divided into optimization, validation, and evaluation sets (Fig. 

2-3). Each crop model was optimized based on the loss of the optimization set. 

The parameter set that showed the lowest loss for the average of the 

optimization and validation sets was selected as the best parameter set. The 

methods were compared with the evaluation set. Original parameter sets were 

compared using the same fixed parameters. 

As metrics for the comparison, modeling efficiency (EF) and normalized 

root mean squared error (NRMSE) were used (Nash and Sutcliffe 1970). 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑜𝑏𝑠,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)

2

𝑛
𝑛
𝑖=1                   (1) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑜𝑏𝑠,𝑚𝑎𝑥−𝑦𝑜𝑏𝑠,𝑚𝑖𝑛
                    (2) 

𝐸𝐹 = 1 −
∑ (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑜𝑏𝑠,𝑚𝑒𝑎𝑛)
2𝑛
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                   (3) 
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where yobs and ypred represent observed and simulated target values, respectively. 

EF = 0 represents that the evaluated model yields the same performance as 

simply averaging the observed data would. Since LAI and fruit yield, the target 

growth factors, could be similar in all greenhouses, EF can emphasize 

differences in calibrated models. 

  



 

123 

 

Fig. 2-3. Workflow of the calibration process and parameter set selection. Blue-

colored greenhouses represent the data for calibration and validation, and 

red-colored greenhouses represent those for evaluation. The datasets were 

randomly divided. With the same datasets, HyperOpt optimized the 

parameter sets for all crop models in WOFOST; then, the crop models with 

the top three performances were selected based on the modeling efficiency. 
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RESULTS 

Output of optimized models 

Original parameter sets were unsuitable for sweet peppers (Fig. 2-4). 

HyperOpt showed the highest average EF of 0.74 for the calibration and 

validation dataset compared to −1.91 and 0.62 from NLopt and Random walk, 

respectively (Fig. 2-5). The top three crop models of HyperOpt that showed the 

highest accuracy were groundnut, barley, and potato; their evaluation EFs were 

0.44, 0.53, and 0.36. The calibrated parameters by HyperOpt converged 

regardless of the crop species. Every optimized parameter set could follow the 

growth tendency for the HyperOpt result, but the simulations with low accuracy 

were unstable on unobserved days, such as those at the beginning of the 

cultivation periods (Fig. 2-6, 2-7). 

NLopt could calibrate the parameters only for the LAI, although all the 

crops converged to a specific result. The crop yield was significantly 

underestimated by parameter sets from NLopt. Unobserved values were also 

unstably simulated by NLopt parameter sets, showing less fluctuation than 

HyperOpt results. The parameters could be optimized to some degree with 

Random walk in the fixed linear spaces; however, the results did not show a 

converging tendency. 
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Fig. 2-4. Simulated LAIs and cumulative fruit yields using original parameter 

sets. All crop models in the Python Crop Simulation Environment (PCSE) 

were depicted. Solid lines and circle symbols represent the simulated and 

observed growth factors. All the simulated and observed values from the 11 

greenhouses are depicted. 
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Fig. 2-5. Modeling efficiency (EF) and normalized root mean squared error 

(NRMSE) from the optimization methods: HyperOpt, NLopt, and Random 

walk. For the readability, solid lines were added between the symbols. The 

best crops were selected based on the EF of calibration and validation set. 

The top three crops were groundnut, barley, and potato. 
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Fig. 2-6. Comparisons of observed and simulated LAIs. Each row represents 

the same target greenhouse. All simulation results from 21 calibrated crop 

models were depicted. Colored solid lines and gray dashed lines represent 

simulated results using the top three calibrated crop models from each 

method (HyperOpt, NLopt, and Random walk) and the others, respectively. 

The top three calibrated parameters of each model were selected based on 

modeling efficiency. Black markers represent observed LAIs. 
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Fig. 2-7. Comparisons of observed and simulated fruit yields. Each row 

represents the same target greenhouse. All simulation results from 21 

calibrated crop models were depicted. Colored solid lines and gray dashed 

lines represent simulated results using the top three calibrated crop models 

from the calibration methods (HyperOpt, NLopt, and Random walk) and 

the others, respectively. The top three calibrated parameters of each model 

were selected based on modeling efficiency. Black markers represent 

observed fruit yields. 
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Calibrated parameters 

The calibrated parameters resulted in different variances according to the 

parameter and applied method. The single-point parameters converged to 

specific values by NLopt, and the table-form parameters showed few variations 

(Figs. 2-8, 2-9). For HyperOpt, both single-point and table-form parameters 

showed somewhat randomized distributions similar to the Random walk. 

However, the calibrated parameter sets with low losses showed convergence, 

although the values were not substantially close. 

Every top-ranked single-point parameter from HyperOpt converged except 

TBASE and TSUM2. NLOpt had some convergence variations, and the values 

were located at both the boundaries and average of the search spaces. Some 

parameters, such as the RGRLAI from Random walk, significantly showed a 

converging tendency. The table-form parameters did not yield the same 

optimization results in all ranges but converged in a specific DVS or 

temperature. The HyperOpt results showed some patterns such as a decrease at 

the latter part, a V-shape, and an average all-time. 

For the partitioning parameter sets from HyperOpt, the stem parameter was 

suspended in a low ratio (Fig. 2-10). The leaf and fruit parameters showed 

opposite patterns similar to the original parameter sets. Overall, calibrated 

parameters by HyperOpt showed a tendency to converge to specific values 
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Fig. 2-8. Optimized single-point parameters. All parameters from 21 calibrated 

crop models were depicted. Black cross on colored markers represents the 

calibrated parameters of the top three crop models from the calibration 

methods (HyperOpt, NLopt, and random walk). Gray dashed lines represent 

the range of the search spaces. For the original parameter sets, the values 

too far from the search spaces were not depicted. 
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Fig. 2-9. Optimized table-form parameters. All parameters from 21 calibrated 

crop models were depicted. Black cross on colored markers represents the 

calibrated parameters of the top three crop models from the calibration 

methods (HyperOpt, NLopt, and Random walk). Gray dashed lines 

represent the range of the search spaces. 
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Fig. 2-10. Optimized parameters determined the dry mass allocation of leaves, 

stems, and storage organs. All parameters from 21 calibrated crop models 

were depicted. Black cross on colored markers represents the calibrated 

parameters of the top three crop models from the calibration methods 

(HyperOpt, NLopt, and Random walk). 
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DISCUSSION 

Evaluation of optimization methods 

HyperOpt showed adequate performance in calibrating existing crop 

parameter sets in WOFOST. However, HyperOpt results from non-top-

accuracy crops were unstable on the days after transplanting (DATs) without 

observed data. Since the other methods were also unstable at the relevant DATs, 

this could be due to problems in the data. HyperOpt was able to calibrate the 

parameters with problematic conditions. Therefore, HyperOpt is adequate for 

the crop model calibration, but it should be carefully applied to avoid overfitting 

a given dataset. In addition, the data from the early stage should be collected to 

optimize the parameters of the crop model. 

NLopt failed to find adequate parameters that satisfied both growth factors. 

The results of NLopt converged to the boundary or mean values because the 

method could not find the optimum parameters; and the low fluctuation with 

low accuracy seems to result from a weak parameter fitting. It can be inferred 

that NLopt could not handle the local minima. Local minima are usually not 

problematic for a few parameters (Gori and Tesi 1992). The optimizer had to 

calibrate approximately 40 parameters, including table-form parameters, 

simultaneously. NLopt appeared inadequate to calibrate this many parameters. 

The NLopt algorithm used gradient descent, but it seemed unable to support a 

means of escaping local minima. Therefore, NLopt could not find the global 



 

134 

optimum, although all the crops converge to a specific point. However, 40 

parameters are not large compared to the original target of HyperOpt: neural 

network hyperparameters. HyperOpt uses Tree-structured Parzen Estimator to 

avoid local minima in high dimensions (Bergstra et al. 2011). Therefore, 

HyperOpt could optimize approximately 40 parameters. 

Original crop models could not simulate sweet peppers correctly because 

of infinite growth. Sweet peppers are a fruit vegetable that can grow for almost 

a full year with undergoing several harvests throughout the growth period by 

crop management (Del Amor 2006; González-Real et al. 2008; López-Marín et 

al. 2013). Crop models in WOFOST target food and feed crops, and the crop 

harvest generally terminates cultivation. With this discordance, sweet pepper 

models are often developed based on crops with similar physiologies (Jones et 

al. 2003). However, the top three optimized crop models in this study were 

groundnut, barley, and potato, which have a single harvest in their cultivation 

period, although WOFOST includes crops with periodical harvest, such as 

maize. Therefore, developing a variant of a crop model may not accurately 

reflect the target crop. In this experiment, only WOFOST was used for the 

convenience, but HyperOpt can be applied to find the most suitable crop for 

variants of existing models. 

 

Semantic analysis of the parameter values 

After the calibration ended, major and minor parameters could be 
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distinguished through the distribution of optimized parameters. In single-point 

parameters, optimized parameters distributed in a narrow range can be 

considered indicators with a strong influence. 

The RGRLAI converged for all of the applied methods, including Random 

walk. Since the value converged even though the value was randomly selected, 

this parameter could be the most influential factor. In WOFOST, RGRLAI 

regulates the maximum growth of the leaves in the early stage. Since the leaves 

of sweet pepper vertically distribute compared to those of food and feed crops, 

a high-value convergence is reasonable (Asrar et al. 1984; Delfine et al. 2001; 

Xie et al. 2017; Lee et al. 2020). CVO and CVL are the conversion efficiency 

of the assimilate; therefore, these parameters would be related to the target 

growth factors, LAI and fruit yield. The dry weight ratio of fruit to the other 

organs in fruit vegetables is higher than that in food crops (Marcelis et al. 2004; 

Marcelis et al. 2006); therefore, the CVL was lowered. TSUM1 and TSUM2, 

the parameters determining the development stage, were similar to the 

empirical cumulative temperatures (Sánchez-Molina et al. 2015). 

For the table-form parameters that showed a converging tendency, the 

SSATB can affect the small crop in the early stage, so the decreasing tendency 

is reasonable. AMAXTB decreased by the DVS. The portion of old leaves can 

gradually increase because of the semi-infinite growth, and the overall 

performance of photosynthesis could diminish. KDIFTB showed a somewhat 

unusual move that decreased in the early stage and improved in the later stage. 
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This could be due to management such as pruning. However, the value is 

somewhat high, so the parameter could be overestimated because of the 

interruption of CVL and RGRLAI. To calibrate the interacting parameters, 

realistic parameters can be obtained by determining the empirical parameters 

in advance. In addition, each table-form parameter was correlated, but 

HyperOpt regarded them as independent parameters. Exponential or sigmoidal 

changes could be more suitable for calibration. However, the table-form 

parameters were calibrated in reasonable ranges, so the proposed protocol can 

also be adequate for calibrating table-form parameters. 

In the best cases from HyperOpt, complicated partitioning parameters could 

be interpreted. The optimized partitioning parameters showed a similar 

tendency to the original parameters (Fig. 2-9); However, some details differed. 

For example, FOTB increased in the latter part of the DVS change, which 

seemed to be due to the target value because the target was fruit yield, not the 

dry mass, of the storage organs. Since fruits appear several weeks before 

harvest, using unmatured fruit could make parameters more realistic. 

The calibrated parameters converged in reasonable ranges, WOFOST, 

which targets food and feed crops, can be calibrated for horticultural crops with 

adequate data collection and HyperOpt. However, the target growth factors only 

used total fruit yield and LAI. The other growth factors could fail to reflect the 

real values. A wider data collection can help to calibrate crop parameters more 

suitably.  
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CONCLUSION 

In this chapter, the food and feed crop models were calibrated for sweet 

pepper using Bayesian optimization. The HyperOpt algorithm does not require 

domain knowledge because it only considers input and output distribution 

based on Bayesian probability. The target growth factors were fruit yield and 

LAI. As a result, HyperOpt showed the highest performance, followed by 

Radom walk and NLopt with reasonable convergence ranges. Since many 

optimization methods require the initial value of parameters, a randomized 

search can be more valuable than the inappropriate use of optimization methods. 

In this regard, HyperOpt can be adequate for use when there are unknown 

distribution spaces of parameters. Using other target growth factors such as 

organ dry weights can improve the calibration results to be more reasonable. 

  



 

138 

LITERATURE CITED 

Antle J, Basso B, Conant RT, Godfray HCJ, Jones JW, Herrero M, Howitt RE, 

Keating BA, Munoz-Carpena R, Rosenzweig C, Tittonell P, Wheeler TR 

(2017a) Towards a new generation of agricultural system data, models and 

knowledge products: Design and improvement. Agric Syst 155:255–268. 

Antle J, Jones JW, Rosenzweig CE (2017b) Next generation agricultural system 

data, models and knowledge products: Introduction. Agric Syst 155:186–

190. 

Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating Absorbed 

Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in 

Wheat1. Agron J 76:300–306. 

Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for Hyper-

Parameter Optimization. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, 

Weinberger KQ (eds) Advances in Neural Information Processing Systems. 

Curran Associates, Inc. 

Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD (2015) Hyperopt: a 

Python library for model selection and hyperparameter optimization. 

Comput Sci Discov 8:014008. 

Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra 

J, Bertuzzi P, Burger P (2003) An overview of the crop model STICS. Eur 

J Agron 18:309–332. 



 

139 

Campbell GS, Norman JM (1989) The description and measurement of plant 

canopy structure. In: Marshall B, Russell G, Jarvis PG (eds) Plant Canopies: 

Their Growth, Form and Function. Cambridge University Press, Cambridge, 

pp 1–20. 

Ceglar A, van der Wijngaart R, de Wit A, Lecerf R, Boogaard H, Seguini L, van 

den Berg M, Toreti A, Zampieri M, Fumagalli D, Baruth B (2019) 

Improving WOFOST model to simulate winter wheat phenology in Europe: 

Evaluation and effects on yield. Agric Syst 168:168–180. 

Chaki AK, Gaydon DS, Dalal RC, Bellotti WD, Gathala MK, Hossain A, 

Menzies NW (2022) How we used APSIM to simulate conservation 

agriculture practices in the rice-wheat system of the Eastern Gangetic Plains. 

Field Crops Research 275:108344. 

de Wit A, Boogaard H, Fumagalli D, Janssen S, Knapen R, van Kraalingen D, 

Supit I, van der Wijngaart R, van Diepen K (2019) 25 years of the WOFOST 

cropping systems model. Agric Syst 168:154–167. 

Del Amor F m. (2006) Growth, photosynthesis and chlorophyll fluorescence of 

sweet pepper plants as affected by the cultivation method. Ann Appl Biol 

148:133–139. 

Delfine S, Loreto F, Alvino A (2001) Drought-stress Effects on Physiology, 

Growth and Biomass Production of Rainfed and Irrigated Bell Pepper 

Plants in the Mediterranean Region. J Am Soc Hortic Sci 126:297–304. 

Frazier PI (2018) A tutorial on Bayesian optimization. arXiv preprint 



 

140 

arXiv:1807.02811. 

Gijzen H, Goudriaan J (1989) A flexible and explanatory model of light 

distribution and photosynthesis in row crops. Agric For Meteorol 48:1–20. 

González-Real MM, Baille A, Liu HQ (2008) Influence of fruit load on dry 

matter and N-distribution in sweet pepper plants. Scientia Horticulturae 

117:307–315. 

Gori M, Tesi A (1992) On the Problem of Local Minima in Backpropagation. 

IEEE Trans Pattern Anal Mach Intell 14:76–86. 

Hackett C, Rawson HM (1974) An Exploration of the Carbon Economy of the 

Tobacco Plant. II. Patterns of Leaf Growth and Dry Matter Partitioning. 

Funct Plant Biol 1:271–281. 

Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, 

Chenu K, van Oosterom EJ, Snow V, Murphy C (2014) APSIM–evolution 

towards a new generation of agricultural systems simulation. Environ 

Model Softw 62:327–350. 

Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HCJ, 

Herrero M, Howitt RE, Janssen S, Keating BA, Munoz-Carpena R, Porter 

CH, Rosenzweig C, Wheeler TR (2017) Brief history of agricultural 

systems modeling. Agric Syst 155:240–254. 

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, 

Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping 

system model. Eur J Agron 18:235–265. 



 

141 

Lee J, Moon T, Nam DS, Park KS, Son JE (2018) Estimation of Leaf Area in 

Paprika Based on Leaf Length, Leaf Width, and Node Number Using 

Regression Models and an Artificial Neural Network. Horticultural Science 

and Technology 183–192. 

Lee JW, Kang WH, Moon T, Hwang I, Kim D, Son JE (2020) Estimating the 

leaf area index of bell peppers according to growth stage using ray-tracing 

simulation and a long short-term memory algorithm. Hortic Environ 

Biotechnol 61:255–265. 

Liang H, Xu J, Chen L, Li B, Hu K (2022) Bayesian calibration and uncertainty 

analysis of an agroecosystem model under different N management 

practices. Eur J Agron 133:126429. 

López-Marín J, González A, Pérez-Alfocea F, Egea-Gilabert C, Fernández JA 

(2013) Grafting is an efficient alternative to shading screens to alleviate 

thermal stress in greenhouse-grown sweet pepper. Sci Hortic 149:39–46. 

Marcelis LFM, Elings A, Bakker MJ, Brajeul E, Dieleman JA, de Visser PHB, 

Heuvelink E (2006) Modelling dry matter production and partitioning in 

sweet pepper. Acta Hortic 121–128. 

Marcelis LFM, Heuvelink E, Baan Hofman-Eijer LR, Den Bakker J, Xue LB 

(2004) Flower and fruit abortion in sweet pepper in relation to source and 

sink strength. J Exp Bot 55:2261–2268. 

Marcelis LFM, Heuvelink E, Goudriaan J (1998) Modelling biomass 

production and yield of horticultural crops: a review. Sci Hortic 74:83–111. 



 

142 

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models 

part I — A discussion of principles. J Hydrol 10:282–290. 

Oliver YM, Robertson MJ, Wong MTF (2010) Integrating farmer knowledge, 

precision agriculture tools, and crop simulation modelling to evaluate 

management options for poor-performing patches in cropping fields. Eur J 

Agron 32:40–50. 

Rowan TH (1990) Functional stability analysis of numerical algorithms. Ph.D., 

The University of Texas at Austin. 

Sánchez-Molina JA, Pérez N, Rodríguez F, Guzmán JL, López JC (2015) 

Support system for decision making in the management of the greenhouse 

environmental based on growth model for sweet pepper. Agric Syst 

139:144–152. 

Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—The FAO crop 

model to simulate yield response to water: I. Concepts and underlying 

principles. Agron J 101:426–437. 

Van Diepen C van, Wolf J, Van Keulen H, Rappoldt C (1989) WOFOST: a 

simulation model of crop production. Soil Use Manag 5:16–24. 

Wallach D, Palosuo T, Thorburn P, Hochman Z, Gourdain E, Andrianasolo F, 

Asseng S, Basso B, Buis S, Crout N, et al. (2021) The chaos in calibrating 

crop models: Lessons learned from a multi-model calibration exercise. 

Environ Model Softw 145:105206. 

Wermelinger B, Baumgärtner J, Gutierrez AP (1991) A demographic model of 



 

143 

assimilation and allocation of carbon and nitrogen in grapevines. Ecol 

Modell 53:1–26. 

Xie Y, Wang P, Bai X, Khan J, Zhang S, Li L, Wang L (2017) Assimilation of 

the leaf area index and vegetation temperature condition index for winter 

wheat yield estimation using Landsat imagery and the CERES-Wheat 

model. Agric For Meteorol 246:194–206. 

  



 

144 

CHAPTER 3 

Process-based deep learning model  

of hydroponic sweet pepper with  

attention mechanism and multitask decoders 

ABSTRACT 

The crop model is an important tool to support grower decisions. However, 

studies on crop models have been fragmented due to the differences in research 

purpose and scale. Focusing on the relatively low versatility of crop models 

compared to the ranges of related research fields, the way to enhance 

accessibility and adaptability for unifying crop models was tried. Since deep 

neural networks have no conventional modeling parameters, they can have 

diverse input and output combinations with the same structure depending on 

the model training. Despite these advantages, no process-based crop model has 

been tested in full deep neural network complexes. This chapter aimed to 

develop a process-based deep learning model for hydroponic sweet peppers. 

The attention mechanism and multitask learning were selected to process 

distinct growth factors from the environment sequence. The developed crop 

model, DeepCrop, recorded the highest modeling efficiency (= 0.76) and the 
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lowest normalized mean squared error (= 0.18) compared to accessible crop 

models in the evaluation with unseen data. With the high adaptability of 

DeepCrop, the developed model can replace the existing crop models as a 

versatile tool that would reveal entangled agricultural systems with analysis of 

complicated information. 

 

Additional keywords: artificial intelligence, crop simulation model, DSSAT 

horticultural model, HyperOpt, WOFOST 
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INTRODUCTION 

Process-based crop models have been developed and improved to support 

agricultural decisions on many scales and purposes (Gijzen et al. 1998; Jones 

et al. 2017; Peng et al. 2020; Katzin et al. 2022); with the process-based 

approach, the genotypic, environmental, and management influences on crops 

can be quantified (Muller and Martre 2019). Food and feed crop models in open 

fields are representative process-based crop models (Jones et al. 2017), and 

horticultural crop models in greenhouses are also frequently reported (Gijzen 

et al. 1998; Katzin et al. 2022). These crop models have been modified and 

improved for decades by various research groups in various regions for diverse 

purposes (Newbery et al. 2016; Chenu et al. 2017; Wang et al. 2017; Holzworth 

et al. 2018; de Wit et al. 2019). 

Because of the variation in the crop models, they have become 

uncoordinated: a modification or an improvement in a crop model is not 

ensured for the applicability to another model. Regardless of the target crops 

and scales, studies on the models have redundancy problems in common (Wang 

et al. 2017; Peng et al. 2020; Chapagain et al. 2022; Katzin et al. 2022). In the 

decades-long course of the crop modeling progression, the methodology has 

been torn into pieces due to the differences in objectives and research scales, 

and the disjunction has resulted in more fragments and redundancy. In addition, 

some advanced models have been exclusively developed, so some 
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improvements have low accessibility (Antle et al. 2017; Altes-Buch et al. 2019; 

Katzin et al. 2022). 

As a potential solution, deep learning algorithms were selected to mitigate 

fragmentation and redundancy. Deep learning has high applicability to broad 

target tasks as well as remarkable abstraction ability for enormous sets of data 

(LeCun et al. 2015; Koirala et al. 2019; Yang and Xu 2021). With its 

applicability, a complicated task conducted at the enterprise became accessible 

with a personal computer (Tan et al. 2021). A developed model can be adopted 

for heterogeneous tasks with entirely different inputs and outputs (Chorowski 

et al. 2015; Vaswani et al. 2017; Zhang et al. 2019), and a core algorithm in a 

model can be shared regardless of the research fields (He et al. 2016; Silver et 

al. 2017). Therefore, the crop model based on deep learning could be versatile 

and prevalent. 

The objective of this chapter was to develop a deep-learning-based crop 

model with a full deep neural network structure, DeepCrop. DeepCrop could 

be applied for various purposes and scales based on the applicability of deep 

neural networks. The development protocol included model development and 

evaluation processes, so a similar methodology can conveniently be developed, 

resulting in higher accessibility. 

From the perspective of relating the natural environment and crop growth, 

deep learning can be considered and used in many directions because of its high 

applicability (Kamilaris and Prenafeta-Boldú 2018; Benos et al. 2021; Osinga 
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et al. 2022). However, the high applicability of DeepCrop necessitates some 

requirements in practice: (1) the model should be constructed only with neural 

networks; (2) DeepCrop has to calculate growth changes internally, but the 

input for crop simulation after the model training should only be the crop 

environment; (3) The developed DeepCrop can interpret sequence data with 

process-based calculations; and (4) DeepCrop should be competitive compared 

to the existing crop models. 
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MATERIALS AND METHODS 

Overall workflow 

To satisfy the requirement, the attention mechanism was used for the core 

algorithm of DeepCrop (Vaswani et al. 2017). Attention mechanisms have 

showed high performance for the sequence data; and it can also be applied to 

various data types (Niu et al., 2021; Han et al., 2022). Therefore, the mechanism 

could be suitable for application to crop growth that is highly affected by time. 

The model was trained with data from sweet pepper (Capsicum annuum var. 

annuum) data. Crop environment and growth data were fed to the model for 

training, and the trained DeepCrop obtained daily environment and initial 

growth factors for a simulation (Fig. 3-1). To interpret each organ, the model 

had multiple decoders (Fig. 3-2). The model included some rules for a stable 

simulation (Fig. 3-3). 

The model was designed to predict the growth and harvest per plant from 

the crop environment (Table 3-1). For the simulation, target crop growth and 

morphology were abstracted as big organs. Since sweet peppers have several 

organs for a long time, average growth factors could be diluted with the fully-

grown organs; therefore, the simulation was based on the total values, not on 

the average ones. The average growth factors can be calculated with total values 

and the number of organs. Some growth factors, such as plant height, that 

cannot be inferred from the total values were from the original plant (Fig. 3-4). 
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Four cultivation periods in 2020–2021 were used for the model training, 

validation, and test. DeepCrop was trained and validated using the 2020 data, 

and the sufficiently trained model was test with the 2021 data. The 2020 data 

were randomly divided into the training and validation set. Detailed 

cultivational conditions were explained in Cultivation and crop management 

section. 

The attention mechanism can interpret complex sequence data with faster 

computation (Niu et al. 2021). DeepCrop was mostly based on Transformer, 

and the core algorithms such as positional encoding, look-ahead mask, and 

multi-head attention were the same (Vaswani et al. 2017); however, since the 

main task for Transformer was classification, some structures had to be 

modified (Fig. 3-5). The modified structures were inspired by the difference 

that the object is not linguistic sentences but sets of concrete numerical values. 

The data in this study can be calculated with each other if necessary; therefore, 

embedding is designed not to reduce the dimension of the input, but to expand 

it to contain diverse features. In this regard, input and output embedded by 

concatenating convolutional layers with different receptive fields to mimic the 

window in Word2Vec (Mikolov et al. 2013). The embedding layers were 

required to match the dimension of internal data processing. Therefore, input 

and output embedding layers had the same number of nodes. A gate for residual 

calculation was added because raw input before the encoding is also important 

for the target output. 
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Multitask decoders were added to predict each target group. The decoders 

had the same structure for applicability. Transformer can deal with the 

sequences regardless of the input and output length; however, the number of 

cultivations was limited, so the model should partially receive and predict the 

environment and growth. Therefore, the input and output length were fixed with 

a parameter named as memory length. The output dimensions of the multitask 

decoders were set to be same with the memory length. The unit of the memory 

length supposed to be days, so the input length was determined as 24 times of 

the memory length. The dimension of the datasets was matched to be same 

based on the batch size and the memory length. Therefore, DeepCrop always 

processed the same dimension of data, so the padding mask of the attention 

mechanism were not used in this study. Meanwhile, the positional encoding was 

required to mark the position of each input and output vector, although the data 

dimension was fixed. 

The reasoning of DeepCrop was tested after the model training using two-

dimensional t-distributed stochastic neighbor embedding (t-SNE) and attention 

weights. Both methods are generally used to explore black-box condition of the 

deep learning models (Mnih et al., 2015; Medina and Kalita, 2018). Some 

physiological tendencies, such as developmental stages, were verified. 

The loss function was set to the mean squared error (MSE). The MSE of 

each decoder was independently calculated. To maintain the relationships 

among the decoders, the total fresh weights (FWs) and dry weights (DWs) of 
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vegetative organs were also compared. All MSEs were averaged and traced in 

the model training session. 
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Fig. 3-1. Simulation procedure of the trained DeepCrop. 
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Fig. 3-2. Simulation model structure. In this study, multitask decoders and an 

input gate were added to the original encoder and decoder of the original 

Transformer algorithm. Refers to Fig. A3-1 for the detailed structure of the 

embedding layer. 
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Fig. 3-3. Target loss objective of the model training. In this study, the loss 

function was mean squared error. 
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Table 3-1. Ranges of environmental data used for the experiment. 

Group Factor 

Input Internal temperature (°C) 

 Internal relative humidity (%) 

 Radiation (W m−2) 

 Daily difference between the day and night temperature (°C) 

 Daily cumulative radiation (kJ m−2 d−1) 

 Cumulative growing degree days 

 Calculated daily vapor-pressure deficit (kPa) 

Status output Total Cumulative radiation (MJ m−2) 

 Cumulative growing degree days 

Property output Plant height (m) 

 Maximum number of nodes per stem 

Organ output Leaf area (m2) 

 Total summation of node lengths (cm) 

 Total summation of node diameters (mm) 

 Total summation of harvested fruit heights (cm) 

 Total summation of harvested fruit widths (cm) 

 Number of organs 

 Organ fresh weights (g) 

 Organ dry weights (g) 
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Fig. 3-4. Modeling concept. Target crop growth and morphology were 

abstracted as big organs. Averages can be calculated with total values and 

the number of organs. 
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Fig. 3-5. Embedding layer for DeepCrop and residual block used for the 1D 

ConvNet model. Parameters for Conv are denoted as “{type of 

layer}{kernel size}-{number of filters}.” N was set before the training as a 

hyperparameter. k1 to k4 for input were 1, 12, 24, and 48; those for output 

were 1, 2, 3, and 4. 
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Data preprocessing for the model training 

Since the training process of DeepCrop was based on supervised learning, 

daily growth data in the cultivation periods had to be secured as labels; therefore, 

scarce growth data should be augmented. Using the output of regression or an 

existing formula is a way to augment the data, but it could affect the model 

results and lower the model accessibility. In this study, the scarce growth data 

and their standard deviations were interpolated linearly, and the daily output 

was randomly augmented (Fig. 3-6). The start date of the cultivation was set to 

50% of the first growth data. 
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Fig. 3-6. Distribution of noised growth factors for the model training. Red and 

blue colors represent the first half and the second half of 2020, respectively. 
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Training, validation, and evaluation process. 

The core algorithm of DeepCrop was the attention mechanism, so the 

model training and evaluation process were separated. At the training session, 

DeepCrop was fed sets of environment data, previous growth factors, and the 

target output. Since the previous growth factors do not simultaneously exist in 

a practical simulation, DeepCrop output recursively replaced previous growth 

factors. The last output vector of the output sequence was selected as the daily 

predicted output. The data from 2020 were used for the training and validation 

datasets, and those from 2021 were used for the test datasets. Cumulative 

temperature and radiation can be calculated with the environment data. The 

cumulative input factors were replaced by the measured data in practice to 

guide the trained DeepCrop; however, the values were not replaced to prevent 

training failure in the model training. 

 

Existing crop models and deep learning models for comparison 

Some accessible crop models were compared as an existing method: a 

simple generic crop model (SIMPLE, Zhao et al. 2019), a sweet pepper growth 

model for a decision support system (SW-DSS, Sánchez-Molina et al. 2015), 

food and feed crop models from World Food Studies (WOFOST, de Wit et al. 

2019), and a sweet pepper model of Decision Support Systems for 

Agrotechnology Transfer (DSSAT, Hoogenboom et al. 2019). Some models 

were modified for comparison. The SIMPLE model yields total dry mass, 
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including reproductive organs; in this study, the value was changed to 

vegetative dry mass with a harvest index of >1. SW-DSS had an ambiguous 

LAI equation, so the equation changed to Eq. (3-1) based on the definition of 

the Gompertz growth function (Scaife and Jones 1976). 

𝐿𝐴𝐼𝑡 = 𝐿𝐴𝐼𝑚𝑎𝑥exp(log (
𝐿𝐴𝐼𝑖𝑛𝑖𝑡

𝐿𝐴𝐼𝑚𝑎𝑥
) exp(−𝐶𝑝𝐿𝐴𝐼 × 𝑇𝑆))       (3-1) 

where LAImax is the maximum LAI, LAIinit is the initial LAI, CpLAI is a tuning 

parameter of the Gompertz function, and TS is the thermal time of the plant (°C 

d−1). SW-DSS originally had a temperature-dependent gamma star for the 

photosynthesis calculation, but it was also calibrated as a coefficient in this 

study.  

EF and NRMSE were selected to compare DeepCrop and the other crop 

models (Nash and Sutcliffe 1970; Wang et al. 2017). Since no model could 

cover every output of DeepCrop, the performance was calculated with the 

partial output, and the units of model output were converted as per plant similar 

to DeepCrop. Petiole FW and DW were aggregated to those of stems when the 

crop models could not calculate petioles independently. The leaf area index was 

converted to the leaf area using planting density for the models that calculated 

only the leaf area index. Planting density was adjusted for the crop models that 

were completely biased because of the conversion (Table 3-2). All models 

assumed sufficient irrigation without water stress. 

The crop models were calibrated using the data from 2020 that were the 

same as the training and validation data of DeepCrop (Tables A3-1, A3-2, A3-
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3, A3-4). The sweet pepper model of DSSAT was calibrated using Generalized 

Likelihood Uncertainty Estimation (GLUE), a built-in coefficient calibrator 

(He et al. 2010), and a recently calibrated model was also compared (Lee et al. 

2021); the other models were calibrated using a hyperparameter optimizer 

algorithm, HyperOpt (Bergstra et al. 2015). 

As a shallow deep learning model, a feedforward neural network (FFNN), 

long short-term memory (LSTM), and convolutional neural network (ConvNet) 

were compared. The models are representative structures of deep learning 

algorithms. Since the shallow models cannot efficiently interpret the same 

DeepCrop input and output, the optimal data structure for each model was 

applied (Table A3-5). The deep learning models were set as a predictor, not a 

process-based model; therefore, the growth factors were not recursively 

reprocessed by the models. Hyperparameters for the model construction and 

training were empirically selected (Table A3-6). The average of the growth 

factors in 2020 was used as a baseline. 
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Table 3-2. Adjusted planting density of 2020-2 for the compared crop models. 

Crop model Value 

Original 5.95 

DSSAT 2.00 

WOFOST 5.95 

Sánchez-Molina et al. (2015) 2.56 

SIMPLE 3.70 
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Cultivation and crop management 

Sweet peppers (Capsicum annuum var. annuum) were cultivated in a 

Venlo-type greenhouse at the experimental farm of Seoul National University, 

Suwon, Korea (37.3°N, 127.0°E). The cultivations were conducted twice a year, 

and the total number was four, under various conditions (Table 3-3). 

Open-loop hydroponic systems were used for all cultivations. Two or four 

cultivation lines from the total eight lines in the system were used for the 

experiment. A stone wool slab and cubes (Grodan GT Master, Grodan, 

Roermond, the Netherlands) were used as substrates for all cultivations. Two 

main stems of the crops were maintained with trellis strings. PBG nutrient 

solution from the Netherlands was used for irrigation. Electrical conductivity 

(EC) of the nutrient solutions was maintained between 2.6-3.1 dS m−1. The 

fruits were harvested two to three times a week when the surfaces of the fruits 

were mostly colored. 
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Table 3-3. Cultivation and management conditions. 

Condition 2020–1 2020–2 2021–1 2021–2 

Planting date Feb 26 Oct 26 Mar 8 Oct 23 

End date Jul 7 Jan 25 Jul 5 Jan 19 

Planting density (plants/m2) 4.08 3.06 5.95 3.06 

Number of plants 96 84 65 36 

Cultivar Scirocco Mavera & 

Florate 

Mavera & 

Florate 

Mavera 

Topping date Jun 15 Dec 5 - - 
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Data collection 

In this study, aerial environment data were used for the crop simulations. 

Temperature and relative humidity were measured using a complex sensor 

(AQ3020, Aosong Electronics, Guangzhou, China); radiation was measured 

using a pyranometer (SQ-110, Apogee Instrument Inc., Logan, UT, USA). The 

collected data were saved on a cloud platform (ioFarm, ioCrops Inc., Seoul, 

Korea). The missing environmental data were interpolated using linear 

interpolation and U-Net (Moon et al. 2021). 

The growth data were collected with the destructive investigation. The 

investigation was conducted five times for each cultivation except the 

cultivation in the latter half of 2021. At that time, the crops were investigated 

only at the end of the cultivation to exclude biases from crop population 

decrease. For organ DWs, destructive organs were dried for 72 hours at 80 °C 

in a forced-air drying oven (HB-503LF, Hanbaek Co. Ltd., Bucheon-si, 

Gyeonggi-do, Korea). Since by the destructive investigation varied the number 

of plants, the harvest data were normalized to fruits per plant using the total 

number of crops. 

Leaf area was measured from the image using Easy Leaf Area (Easlon and 

Bloom, 2014). Plant height was calculated from the higher value between 

summations of the node lengths of each stem. The other length factors were 

measured using a digital vernier caliper. 

For the processed input factors, growing degree days (GDD) were 
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calculated by daily average temperature and the base temperature (Tbase). 

GDD =  
∑ 𝑇𝑡

23
𝑡=0

24
− 𝑇𝑏𝑎𝑠𝑒                   (3-2) 

where Tt hourly temperature of the day. Tbase was set to 10. Vapor-pressure 

deficit (VPD) was calculated from saturation vapor pressure (SAP) using 

temperature and relative humidity (Eqs. 3-3, 3-4). 

SVP =  0.6113 × exp(5423 (
1

273.15
−

1

273.15+𝑇
))        (3-3) 

VPD =  SVP (1 −
𝑅𝐻

100
)                   (3-4) 

where T is greenhouse temperature (°C) and RH is relative humidity (%). 

 

Computation 

AdamOptimizer was used to train deep learning models (Kingma and Ba 

2017). Batch and layer normalizations were used for regularization (Ioffe and 

Szegedy 2015; Ba et al. 2016). A deep learning library in Python, TensorFlow 

(v. 2.6.0), was used to build the model (Abadi et al. 2016). All deep learning 

computations were conducted using a Linux server with one CPU 

(ThreadRipper 2990WX, AMD, Santa Clara, CA) and one GPU having 35.58 

TFlops (RTX 3090, NVIDIA, Santa Clara, CA). The existing crop models were 

simulated only with CPUs. 
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RESULTS 

Simulated crop growth from DeepCrop 

Trained DeepCrop was evaluated with the data from the first and the 

second halves of 2021, represented as 2021-1 and 2021-2, and it showed 

reasonable simulations for the test data (Figs. 3-7, 3-8). The output tendencies 

were varied, although the model shared the same encoder. Some simulation 

results showed a declining section in the middle of the cultivation. DeepCrop 

somewhat overestimated the vegetative growth factors after 100 DAT; the final 

predicted FW and DW of total vegetative organs were > 19% and > 30%, 

respectively. The tendency was evident for the FWs of 2021-1, although the 

final total FW in 2021-2 was overestimated with > 30%. For the tendency of 

harvested fruits, the simulated factors of 2021-1 were similar to the observed 

values, and those of 2021-2 were not. The value in 2021-2 was already saturated 

at > 0.2 kg per plant in DAT 130. However, the final FW and DW of harvested 

fruits could be accurately predicted in 2021-2. Overall, the simulation 

reasonably followed the tendency of the observed growth for the diverse target 

factors without considering the interactions of each factor and the relevant 

formula. 
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Fig. 3-7. Simulated physiology from DeepCrop. (A) Property output and leaf 

area. Leaf area was predicted by the Leaf decoder. (B) Simulated number 

of organs. (C) Total summation of node lengths, node diameters, harvested 

fruit length, and harvested fruit height. All data represent the value per plant. 
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Fig. 3-7. (Continued from the previous page). 
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Fig. 3-8. Simulated assimilation results from DeepCrop. (A) Fresh weights 

(FWs) and dry weights (DWs) of the vegetative organs. (B) cumulative 

FWs and DWs of the harvested fruits. All data represent the value per plant. 
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Fig. 3-8. (Continued from the previous page). 
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Model evaluation and comparison 

DeepCrop was compared with existing accessible process-based crop 

models and simple predictors based on deep learning algorithms. Modeling 

efficiency (EF) and normalized root mean squared error (NRMSE) showed 

different tendencies; however, DeepCrop recorded the highest EF (= 0.76) and 

the lowest NRMSE (= 0.18) compared to the other accessible models, although 

advanced horticultural models such as HORTISIM could not be listed (Fig. 3-

9). According to EFs, food and feed crop models were not effectively calibrated 

for sweet pepper showing lower EFs than the average of 2020, although the 

targets were limited to organ DWs; however, two calibrated models recorded 

the lowest NRMSE among the compared models. The crop models that initially 

targeted sweet pepper were also unable to simulate the given data except for the 

calibrated DSSAT models. SW-DSS showed the lowest EF of < 0.2 among the 

calibrated models, and the DSSAT models with original parameter sets seemed 

to be biased showing negative EFs. The calibrated DSSAT models showed 

competitive EF (= 0.67) and NRMSE (= 0.26); however, these models adjusted 

the planting density to two times higher value for the unit conversion from value 

per ha to value per plant. That is, the compared FWs, DWs, and leaf area were 

200% of the original simulation from the DSSAT models. 

For the deep learning models, long short-term memory (LSTM) showed 

the highest performance with the EF of 0.58 and NRMSE of 0.25, but it was 

not simply comparable because the deep learning models were not process-
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based. Specific results of the compared models are given in Supplementary 

Material. 

According to the ablation test showing the negative EFs, adequate 

selection of the input features was the most deterministic factor of DeepCrop 

performance (Fig. 3-10A). Not every input feature was adequate for the 

simulation; adding more information did not ensure higher performance. 

Providing cumulative input and manipulated input improved the model 

performance. For the loss objectives, dividing the loss for each decoder made 

the model converge because unified loss also showed the negative EF (Fig. 3-

10B). Domain knowledge, such as the loss of total FWs and DWs, was also 

enhanced the model robustness with increasing EF by 0.2. Similar to the input 

features, more loss objectives based on trivial plant physiology did not ensure 

model convergence. All structural ablations decreased the EF from 1.2 to 0.1, 

and the existence of the decoders was the decision factor increasing the EF the 

most (Fig. 3-10C). Excluding the original attention mechanism and modified 

algorithms also decreased model stability also showing negative EFs. 

Increasing the memory length that determined the output length for the 

decoders did not guarantee an improvement in model performance showing 

lower EFs and higher NRMSEs (Fig. 3-10D). 

The t-SNE results showed two distinctive clusters (Fig. 3-11A). 

Environment and growth factors did not perfectly reflect the division; however, 

the factors were primarily divided into high and low values. Four cultivations 
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did not have a completely different distribution, but the harvest decoder showed 

distinct distributions of harvested fruit DW for the first and second half of the 

year. The input sequences were utilized in balance according to the attention 

weights (Fig. 3-11B). The attention tendencies of the Leaf and Harvest decoders 

were different. In the latter part of the cultivation, both attentions were 

relatively narrowed according to the increased dark regions. 
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Fig. 3-9. Model performance of existing models. The modeling efficiency and 

normalized root mean squared error (normalized RMSE) were calculated 

using the 2021-2. FFNN, LSTM, and 1D ConvNet represent feedforward 

neural network, long short-term memory, and one-dimensional 

convolutional neural network, respectively; WOFOST, DSSAT, SIMPLE, 

and SW-DSS represent World Food Studies, Decision Support System for 

Agrotechnology Transfer, a simple crop model, and a sweet pepper model 

for a decision support system, respectively. For WOFOST, the top three 

calibrated models were depicted. The normalized RMSEs out of the axis 

boundary were omitted. 
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Fig. 3-10. DeepCrop with ablation. The dashed lines are the accuracy of the 

corresponding models. The ablation test was conducted for variations in (A) 

input, (B) training procedure, (C) model structure, and (D) memory length. 

The results outlying the depicted axis are not shown. 
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Fig. 3-10. (Continued from the previous page). 
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Fig. 3-11. Two-dimensional t-distributed stochastic neighbor embedding (t-

SNE) for the output of the last hidden layer (A) and attention weights (B) 

yielded by the Leaf and Harvest decoders. Fully-trained DeepCrop was 

used to yield the output. Two decoders were selected as representatives of 

the vegetative and reproductive representations. Attention weights were 

extracted from the DAT 20 and 80 to represent the early and later part of the 

cultivation, respectively. The columns of the attention weight yielded from 

each head in the attention mechanism. Only 2021-1 data were used for the 

attention weights. 
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Fig. 3-11. (Continued from the previous page). 
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DISCUSSION 

Attention mechanism with multitask decoders was able to interpret the 

interactions of crop and environment with high performance. It has been 

reported that sharing root layers and dividing the tasks that have similarities but 

differ in the final output can improve the performance (Caruana 1997; Ruder 

2017a). Therefore, multitask decoders could be the core structure. In this study, 

the neural network models with shallow structures also showed acceptable 

scores. Theoretically, it has been verified that one layer of neural networks can 

interpret all forms of functions (Hornik 1991). Crop growth is a relatively 

simple target for deep learning algorithms, so shallow models can achieve high 

performance if the models are technically well fitted. However, the compared 

deep learning models did not receive crop growth as input; the models were a 

predictor, not a process-based crop model. Therefore, shallow models cannot 

interpret large datasets with several differences in crops, scales, etc. In addition, 

Transformer is faster in calculation, and the model can have a deeper structure 

(Vaswani et al. 2017), and the performance gap between LSTM and DeepCrop 

could increase with the amount of data. 

Understandably, sweet peppers in greenhouses could have a significant 

disjunction with food and feed crop models for open fields. Crop models in 

WOFOST share the same physiology module (Van Diepen et al. 1989; de Wit 

et al. 2019), but it seems that the module significantly differs from sweet 
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peppers. However, the original sweet pepper models also failed to simulate the 

test data. The existing models without adjusted planting density were not 

compatible because they yielded the low accuracies despite the calibration. 

Therefore, it can be said that the functions in crop models are overfitted to their 

dataset and research scales. Crop model ensembles or simplified estimation 

factors could improve simulation performance (Wang et al. 2017; Müller et al. 

2021; Kimm et al. 2021); however, the methodologies cannot be a fundamental 

solution for overfitting, resulting in fragmentation of the crop models. 

For DeepCrop, the model selection and training did not require a 

meticulous understanding of the plant physiology and crop modeling; 

consideration of suitable functions and parameters was not essential. Existing 

crop models must modify the innate functions if the model robustness cannot 

be secured with calibration for new data (Xu et al. 2010; Hsiao et al. 2019; 

Kimm et al. 2021). On the other hand, the same deep learning models can be 

retrained for the new task in any case (Zhuang et al. 2020; Qiu et al. 2020); 

even if a model with better performance appears, that model also has the same 

properties under deep learning. For example, the developed DeepCrop did not 

include CO2 concentration as input, but the value can be added, similar to the 

ablation test (Fig. 3-10D). Therefore, DeepCrop can be retrained using the same 

methodology, including a new dataset such as CO2 fertilization, and it can 

improve the accessibility to crop models. 

DeepCrop simulation adequately followed the growing tendency from 
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scratch according to the high EF, but the model should be inspected because it 

could be potentially improved. Specifically, DeepCrop overestimated the test 

data despite the high score. This seems to be due to the difference in cultivation 

management, such as planting density and pruning. Crop growth was somewhat 

insufficient because of some inhibitory factors such as high planting density 

and unfavorable weather; therefore, fruiting was deliberately delayed, which 

resulted in an inverse tendency of cumulative harvested fruits. That is, the data 

were insufficient to interpret hidden physiological patterns perfectly, so 

DeepCrop depended too much on the last cultivation. However, the model was 

adequately trained according to the simulation result. This yielded different 

results for 2021-1 and 2021-2. The model recognized seasonal differences that 

were difficult to grasp with only a given input. Similar to the other models, it 

was impossible to fully comprehend the phenology of sweet pepper with four 

cultivation datasets. Nevertheless, the model was adequately trained with 

limited conditions; therefore, the simulation result concretely showed the 

potential of DeepCrop for the larger datasets. More types of data will enable 

the identification of clear growth patterns and an understanding of crops 

without human knowledge (Silver et al. 2017). In addition, DeepCrop is still a 

black box model, but the studies to reveal the reasoning process are ongoing 

(Wang and Yeung 2016; Angelov and Soares 2020); DeepCrop can learn the 

intermediate output such as assimilation from a sufficient number of data and 

features, and it can also make the model explainable (Newman and Furbank 
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2021). 

The t-SNE distribution also supports that the recognition of the growth 

pattern of DeepCrop can be analyzed out of the black box. DeepCrop could 

interpret the relationship between the environment and growth without being 

biased by a certain factor. Four cultivations did not show completely different 

distributions, and the developed model was not biased to a certain cultivation 

period. In particular, two clusters can be regarded as vegetative and 

reproductive stage divisions. The attention weights showed different tendencies 

by the crop development stage and the output decoder. Differences by input 

factors also showed, although it was relatively weak. The weights could include 

the detailed information about the environmental influences on crops. 

Therefore, more datasets would enable the analysis of DeepCrop reasoning. 

Currently, since the data are scarce because of the characteristics of the 

crop production, all processes, including input feature selection, model 

construction, model training, best model selection, and model test must be 

carefully conducted. For the input used in this study, growing degree days, 

vapor-pressure deficit, and the difference between the day and night 

temperature are often used for crop modeling (Xu et al. 2010; de Wit et al. 2019; 

Hammer et al. 2019). Therefore, utilizing domain knowledge with insufficient 

data could improve model convergence. However, careless repetition of 

redundant information can cause overfitting. According to the ablation test, 

excessive input features in the small dataset caused overfitting, although deep 
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learning can autonomously extract features from raw data. Applying an end-to-

end deep learning framework seems premature (Lischeid et al. 2022), so the 

balance should be kept in input feature selection. 

The training process was also able to influence the robustness of crop 

modeling. Dividing the loss function by the multitask learning was adequate for 

the model performance, but too many loss objectives resulted in counter effects. 

Gradient descent is linear-algebraically sophisticated (Panageas and Piliouras 

2016; Ruder 2017b). Better loss objectives should be found for obvious 

objectives such as the number of leaves equal to the number of petioles. 

Specializing tasks and trainable losses with more features can yield a stable and 

accurate model. For the output setting in the training process, guiding the output 

with known values also slightly improved the model performance. However, 

guiding only with Status output was not that effective, so more variations of 

guiding output should be identified. 

The discordance in metrics showed the necessity of diversified evaluation 

for deep learning models that are hard to analyze the reasoning process. The 

main problem could be a scarcity of labels. Finding adequate metrics for scarce 

data or continuous measuring devices to increase the number of labels should 

be introduced. 
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CONCLUSION 

In this study, a process-based crop model that was fully constructed with 

deep learning algorithms was developed and evaluated. DeepCrop consists of 

an attention mechanism and multitask decoders. Trained DeepCrop showed the 

highest accuracy in selected metrics, EF and NRMSE. With the precedents in 

the other research fields, the model can be trained only with raw data without 

domain knowledge. DeepCrop does not require consideration of the internal 

formula corresponding to the changes in input features, so the same structure 

can be applied to various studies unless the target task is identical. In this study, 

advanced horticultural models were not compared; since the model structure 

and the relevant workflow are explained, further studies that compare 

DeepCrop to those models can be conducted. Therefore, developed DeepCrop 

can improve the accessibility of crop models and mitigate fragmentation 

problems in crop model studies. 
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GENERAL DISCUSSION 

Summary of the chapters 

Chapter 1-1 explained the procedure to construct infrastructure before 

applying the deep learning approach to agriculture, which has insufficient data 

conditions. Verifying the performance of transfer learning with greenhouse 

environment and representative deep learning models showed the applicability 

of the deep learning models to the agricultural data. Based on transfer learning, 

the developed DeepCrop would be applied to the limited data condition, which 

is inevitable in agricultural systems. 

In Chapter 1-2, it was verified that the U-Net algorithm that processes 

medical images could be adapted to the tabular data having a greenhouse 

environment. With unfavorable conditions for the sensors in agriculture, data 

imputation helps the collected agricultural data to be utilized for the data 

science tasks. In addition, the application example of the U-Net structure also 

showed high applicability of the deep learning algorithms, which supports the 

ability of DeepCrop to be applied to various data types. 

The topic of Chapter 2 was crop model calibration for model comparison. 

HyperOpt was introduced as a tool to calibrate a crop model to the given data 

condition. The HyerOpt algorithm is derived from the Bayesian optimization 

method, so it does not require domain knowledge for the methodology. 

HyperOpt can calibrate many models with the same methodology, so the 
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calibrated models can be the baseline at least, which could be a factor in judging 

the model performance. In addition, the calculation of the Bayesian 

optimization can be parallelized, so the algorithm can use GPU acceleration. 

GPU-based HyperOpt would calibrate model parameters much faster. 

Chapter 3 verified the performance of DeepCrop and contained procedures 

to build a process-based crop model using deep learning in practice and to 

compare the performance with other models. The core invention of this study 

was Chapter 3; however, in addition to the specific model called DeepCrop, the 

whole protocol of constructing and evaluating DeepCrop in the limited 

conditions of agriculture will be a reference, contributing to another ‘realization 

of deep learning in the agriculture.’ 

 

Desirable future for DeepCrop 

For the dissemination of DeepCrop, a possible direction is to assemble an 

open-source-based community. The open-source strategy can become a robust 

infrastructure for technological progress in the current information age with 

global networks. The trained DeepCrop with partial crop data could not play a 

sufficient role of alleviating fragmentation of crop modeling. Relating 

environment and crop response with limited data is too easy for deep learning. 

DeepCrop would show remarkable performances for any scale, crop, and 

factors, similar to chapter 3. The data with various conditions are required for 

DeepCrop robustness. DeepCrop should be a means of uniting the crop 
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modeling research community. In the end, information sharing would be the 

most necessary for a comprehensive interpretation of crop physiology. If each 

research team conducts separate research, fragmentation will not be resolved, 

similar to existing end-to-end deep learning models. DeepCrop should be 

utilized for diverse inputs and outputs first; then, the consensus of DeepCrop 

will result in an open-source-based community of crop modeling research 

groups of various sizes. 

 

Empirical difficulties of crop modeling and deep learning application 

Crop modeling and deep learning have dissimilar research basis. In this 

section, empirical and subjective challenges within mixing two immiscible 

studies are shared. This practical example could help reduce trials and errors 

for applying deep learning; then, this paper would be completed as a reference 

protocol. Please note that all contents discussed in this section are based on 

personal experience and may be very misleading depending on the reader's 

research base. 

Unfortunately, using model was a main difficulty for the crop modeling. 

For example, open-source crop modeling programs like DSSAT have numerous 

add-ons, but the data processing is still in the 90s. The programs became 

inconvenient to handle the current big data. Individual research groups 

commonly customize the program partially, which could result in similar 

problems with the private models. 
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Using individual crop models required a ‘guesswork.’ Similar research 

groups periodically publish follow-up papers on those private models, but 

essential information to reproduce the model in practice is missing in many 

reports. Unclarified formula and parameters differed by the research scale, so a 

third person have to guess the proper formula. 

In this regard, the problem for using crop models was a lack of practical 

information. The accessibility of the crop models was set to a core problem as 

mentioned in Literature Review, and it was a fundamental reason for 

considering a full deep neural network crop model outside the existing models. 

Meanwhile, deep learning is in direct opposite: proper and correct 

information should be identified among too much information. Public materials 

are prevalent, including private blogs, lectures, and YouTubes in addition to 

scientific reports. It has made developing a new algorithm easier, that results in 

more deep learning models. Most of the models can be reproduced with the 

published information; if not, curious developers make and share a replica in 

no time. Therefore, finding adequate information for the own target task was a 

hurdle of deep learning. That is the reason that this thesis was aimed to write as 

a developmental protocol containing sufficient information as possible. 

Most of all, the biggest challenging hurdle for applying deep learning was 

different data types and amounts. General tasks for the crop production are 

regressions. Deep learning models have to be customized for the different data 

type, and it inevitably requires in-depth understanding for deep learning. When 
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exploring crop physiology and deep learning, balancing the two was a challenge. 

For the difficulty in data collection, growing crops and collecting necessary 

data were labor intensive, and the painstakingly collected data were insufficient 

to apply deep learning with ‘standard protocols’. The lack of data confuses 

whether training failures are caused by the model or the data. In this condition, 

wrong training process can also yield plausible results; the model robustness 

should be verified in multiple perspectives. In spite of the above challenges, 

this study tried to establish appropriate standards. We expect this thesis to be 

transformed, compared, and criticized as a baseline by new studies for deep 

learning applications. 
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GENERAL CONCLUSION 

In this thesis, a protocol to apply deep learning to process-based crop 

models was established. Fundamental studies for distinctive data condition 

were conducted before deep learning application. Finally, a process-based crop 

model with full deep learning algorithms, DeepCrop, was developed. DeepCrop 

recorded the highest model efficiency compared to the existing crop models. 

Since the same structure of deep neural networks can be retrained with 

heterogeneous inputs and outputs, DeepCrop can be widely applied regardless 

of the research scales and objectives. As a protocol, this thesis tried to set 

adequate criteria: deep learning models were trained using adequate datasets 

without data leakage; the developed and introduced models were compared 

with existing methods based on multiple perspectives; the reasonability of the 

training process was also inferred outside the accuracies. This thesis would be 

the first step to unifying fragmented crop models and reducing redundancy in 

crop model research using deep learning. DeepCrop does not require 

considering internal formula corresponding to the changes in input features, and 

its structure and the relevant workflow were explained; therefore, the model 

can easily be studied and improved with any purpose and dataset with the 

established protocol. 
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ABSTRACT IN KOREAN 

농업 시스템에서 발생하는 문제들은 작물과 환경의 상호작용 하에 복잡하게 얽혀 

있다. 작물 모델링은 대상을 단순화하는 방법으로써, 농업에서 일어나는 현상을 

추상화하고 해석하는 과정이다. 모델링을 통해 대상을 이해하는 것은 농업 분야의 

학술적 및 사회적 결정을 지원할 수 있다. 지난 수년 간 절차 기반 작물 모델은 

농업의 문제들을 해결하여 작물 생산성 및 품질을 증진시켰으며, 현재 작물 

모델링에 남아있는 과제들은 다차원 정보를 다방향에서 분석할 수 있는 작물 

모델을 필요로 하게 되었다. 이를 만족시킬 수 있는 지침으로써, 복잡한 농업적 

과제들을 목표로 딥러닝 알고리즘이 도입되었다. 그러나, 이 알고리즘들은 낮은 

데이터 완결성 및 높은 연구 다양성 때문에 기존의 작물 모델들을 대체하지는 

못했다. 본 연구에서는 딥러닝 방법론을 이용하여 절차 기반 작물 모델을 구축하는 

개발 프로토콜을 확립하였다. Literature Review에서는 딥러닝과 작물 모델에 대해 

소개하고, 농업으로의 딥러닝 적용 연구가 많음에도 이 프로토콜이 필요한 이유를 

설명하였다. 제1장과 2장에서는 국내 여러 지역의 데이터를 이용하여 전이 학습 및 

U-Net 구조를 활용하여 딥러닝 모델 적용을 위한 기반을 마련하고, 베이지안 

최적화 방법인 HyperOpt를 사용하여 기존 모델과 딥러닝 기반 모델을 비교하기 

위해 시험적으로 WOFOST 작물 모델을 보정하는 등 모델 개발을 위한 기반 

연구를 수행하였다. 마지막으로, 제3장에서는 주의 메커니즘 및 다중 작업 

디코더를 가진 완전 심층 신경망 절차 기반 작물 모델인 DeepCrop을 수경재배 

파프리카(Capsicum annuum var. annuum) 대상으로 개발하였다. 데이터 완결성을 위한 

기술들은 적합한 정확도를 보여주었으며, 전체 챕터 데이터에 적용하였다. 

HyperOpt는 식량 및 사료 작물 모델들을 파프리카 대상으로 보정할 수 있었다. 

따라서, 제3장의 비교 대상 모델들에 대해 HyperOpt를 사용하였다. DeepCrop은 환경 
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데이터를 이용하고 여러 생육 지표를 예측하도록 학습되었다. 학습에 사용하지 

않은 데이터를 이용하여 학습된 DeepCrop를 평가하였으며, 이 때 비교 모델들 중 

가장 높은 모형 효율(EF=0.76)과 가장 낮은 표준화 평균 제곱근 

오차(NRMSE=0.18)를 보여주었다. DeepCrop은 높은 적용성을 기반으로 다양한 

범위와 목적을 가진 연구에 사용될 수 있을 것이다. 모든 방법들이 주어진 작업을 

적절히 풀어냈고 DeepCrop 개발의 근거가 되었으므로, 본 논문에서 확립한 

프로토콜은 작물 모델의 접근성을 향상시킬 수 있는 획기적인 방향을 제시하였고, 

작물 모델 연구의 통합에 기여할 수 있을 것으로 기대한다. 

 

추가 주요어: 기계학습, 인공지능, 작물 시뮬레이션 모델, 다중작업 학습, 

트랜스포머 

 

학번: 2019-35122 
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APPENDIX 

Table A1. References, crops, and numbers of meta-analyzed data of Fig. 1. 

Reference Crop Number of analyzed data 

  Open field Greenhouse 

Maureira et al. (2022) Tomato 1 3 

Yuan and Zhang (2021) Tomato 1 1 

 Cucumber 1 1 

Angmo1 et al. (2021) Tomato 1 2 

Shen et al . (2021) Cherry 1 1 

Zhang et al. (2021) Various crops 2 2 

Ntinas et al. (2020) Tomato 0 2 

Yildizhan (2018) Strawberry 1 1 

Ntinas et al. (2017) Tomato 2 5 

Stanghellini (2014) Tomato 1 4 

Khoshnevisan et al. (2014) Strawberry 1 1 

Khoshnevisan et al. (2013) Strawberry 1 1 

Kuswardhani et al. (2013) Tomato 1 1 

 Chili 2 2 

 Lettuce 1 1 

Yousefi et al. (2012) Cucumber 1 1 

Page et al., (2012) Tomato 1 3 

Martínez-Blanco et al. (2011) Tomato 2 2 

Muñoz et al. (2008) Tomato 1 1 

Khah et al. (2006) Tomato 4 4 

Ozkan et al. (2005) Grape 1 1 
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Table A3-1. Calibrated coefficients of WOFOST. The coefficient values with colons represent the values for the corresponding 

variables such as development stage or temperature. 

Item Description Value 

  Wheat Mung bean Barley 

TEFFMX Maximum effective temperature for emergence 100 100 100 

TBASEM Base temperature for emergence 0 0 0 

TSUMEM Temperature sum from sowing to emergence 0 0 0 

SPAN Life span of leaves growing at 35°C 400 400 400 

DVSI Initial development stage at the start of simulation 0.48 0.63 0.89 

TBASE Lower threshold temperature for ageing of leaves 21.37 11.39 14.54 

RGRLAI Maximum relative increase in LAI 1.61 3.59 3.35 

TSUM1 Temperature sum from emergence to anthesis 676 733 713 

TSUM2 Temperature sum from anthesis to maturity 1402 1200 1274 

CVO Conversion efficiency of assimilates into storage organ 0.45 0.91 0.94 

CVL Conversion efficiency of assimilates into leaf 0.85 0.51 0.36 

SLATB Specific leaf area as a function of development stage 0: 0.026 

1: 0.014 

2: 0.019 

0: 0.030 

1: 0.043 

2: 0.014 

0: 0.035 

1: 0.021 

2: 0.023 
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SSATB Specific stem area as a function of development stage 0: 0.054 

1: 0.051 

2: 0.011 

0: 0.012 

1: 0.036 

2: 0.001 

0: 0.042 

1: 0.031 

2: 0.001 

KDIFTB Extinction coefficient for diffuse visible light as function of 

development stage 

0: 0.813 

1: 0.129 

2: 0.817 

0: 0.237 

1: 0.384 

2: 0.636 

0: 0.179 

1: 0.651 

2: 0.756 

AMAXTB Maximum leaf CO2 assimilation rate as a function of development stage 0: 35.66 

1: 19.10 

2: 34.54 

0: 29.55 

1: 33.08 

2: 30.26 

0: 39.95 

1: 22.18 

2: 24.45 

RFSETB Reduction factor for senescence as function of development stage 0: 0.085 

1: 0.903 

2: 0.044 

0: 0.532 

1: 1.000 

2: 0.840 

0: 0.448 

1: 0.713 

2: 0.906 

FRTB Fraction of total dry matter increase partitioned to roots as a function of 

development stage 

0: 0.28 

1: 0.40 

2: 0.07 

0: 0.20 

1: 0.18 

2: 0.43 

0: 0.39 

1: 0.03 

2: 0.01 

FLTB Fraction of above ground dry matter increase partitioned to leaves as a 

function of development stage 

0.0: 0.90 

0.5: 0.40 

1.0: 0.93 

1.5: 0.70 

2.0: 0.16 

0.0: 0.57 

0.5: 1.00 

1.0: 0.29 

1.5: 0.05 

2.0: 0.29 

0.0: 0.99 

0.5: 0.63 

1.0: 0.83 

1.5: 0.84 

2.0: 0.26 

FSTB Fraction of above ground dry matter increase partitioned to stems as a 

function of development stage 

0.0: 0.09 

0.5: 0.50 

1.0: 0.01 

1.5: 0.01 

2.0: 0.49 

0.0: 0.16 

0.5: 0.00 

1.0: 0.30 

1.5: 0.27 

2.0: 0.32 

0.0: 0.01 

0.5: 0.27 

1.0: 0.06 

1.5: 0.14 

2.0: 0.41 
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FOTB Fraction of above ground dry matter increase partitioned to storage 

organs as a function of development stage 

0.0: 0.01 

0.5: 0.10 

1.0: 0.07 

1.5: 0.29 

2.0: 0.35 

0.0: 0.27 

0.5: 0.00 

1.0: 0.41 

1.5: 0.68 

2.0: 0.39 

0.0: 0.00 

0.5: 0.10 

1.0: 0.11 

1.5: 0.02 

2.0: 0.33 

EFFTB Initial light-use efficiency of CO2 assimilation of single leaves as 

function of mean daily temperature 

0: 0.75 

10: 1.57 

20: 0.27 

30: 1.23 

40:1.99 

0: 0.22 

10: 1.32 

20: 0.92 

30: 1.78 

40:1.74 

0: 1.47 

10: 1.06 

20: 0.23 

30: 1.02 

40:0.76 

DTSMTB Daily increase in temperature sum as function of average temperature 0: 25.9 

15: 99.9 

30: 71.3 

45: 87.1 

0: 63.2 

15: 43.6 

30: 99.9 

45: 64.0 

0: 52.9 

15: 84.7 

30: 52.7 

45: 43.4 
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Table A3-2. Original and calibrated coefficients of DSSAT. 

Item Description Value 

  Biscayne Capistrano Lee et al. (2021) Calibrated 

EM-FL Time between plant emergence and flower appearance 22.0 37.0 40.0 21.99 

FL-SH Time between first flower and first pod 11.0 10.0 10.0 10.33 

FL-SD Time between first flower and first seed 15.0 15.0 15.0 15.64 

SD-PM Time between first seed and physiological maturity 100.0 100.0 330.0 95.80 

LFMAX Maximum leaf photosynthesis rate at 30°C, 350 vpm CO2, and high light 1.10 0.98 0.98 1.071 

SLAVR Specific leaf area of cultivar under standard growth conditions 250.0 275.0 275.0 299.3 

SIZLF Maximum size of full leaf 300.0 250.0 350.0 250.0 

XFRT Maximum fraction of daily growth that is partitioned to seed + shell 0.75 0.85 0.60 0.627 

SFDUR Seed filling duration for pod cohort at standard growth conditions 25.0 25.0 40.0 25.0 

SDLIP Fraction oil in seeds 0.050 0.050 0.050 0.051 

PM06 Proportion of time between first seed and physiological maturity 0.75 0.75 0.0 0.0 

FL-VS Time from first flower to last leaf on main stem 53.0 53.0 330.0 330.0 
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Table A3-3. Original and calibrated coefficients of a sweet pepper model from Sánchez-Molina et al. (2015). 

Item Description Value 

  Original Calibrated 

Vcmax Maximum carboxylation velocity 200 81.29 

fc Assimilation conversion factor 0.29 0.30 

Γ* CO2 compensation point Temp. dependent func. 36.03 

Tref Reference temperature 25.0 15.1 

rl Leaf ratio for maintenance respiration rate 0.030 0.004 

rs Stem ratio for maintenance respiration rate 0.015 0.004 

rr Root ratio for maintenance respiration rate 0.015 0.001 

rf Fruit ratio for maintenance respiration rate 0.010 0.002 

Tbase Base temperature for thermal time 10 13.86 

VS Days of vegetative stage 30 52 
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Table A3-4. Original and calibrated coefficients of SIMPLE. 

Item Description Value 

  Tomato (SunnySD) Calibrated 

Tsum Cumulative temperature requirement from sowing to maturity 2800 2931 

HI Potential harvest index 0.68 0.89 

I50A Cumulative temperature requirement for leaf area development to 

intercept 50% of radiation 

520 712 

I50B Cumulative temperature till maturity to reach 50% radiation 

interception due to leaf senescence. 

400 2717 

Tbase Base temperature for phenology development and growth 6 17.7 

Topt Optimal temperature for biomass growth 26 29.6 

RUE Radiation use efficiency (above ground only and without respiration) 1.00 0.56 

Theat Threshold temperature to start accelerating senescence from heat stress 32 39.6 

Text The extreme temperature threshold when RUE becomes 0 due to heat 

stress 

45 41 

SCO2 Relative increase in RUE per ppm elevated CO2 above 350 ppm 0.07 0.02 

fSolarmax The maximum fraction of radiation interception that a crop can reach 0.95 0.67 
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Table A3-5. Structure of FFNN, LSTM, and ConvNet. Dense and Conv are a 

fully connected layer and a convolution layer, respectively; Maxpool and 

Flatten represent the maximum pooling and flattening, respectively. 

Parameters for Conv are denoted as “{type of layer}{kernel size}-{number 

of filters},” and parameters for the other layers are denoted as “{type of 

layer}-{number of nodes in the layer}.” ResBlock represents a residual 

block. Refer to Fig. A3-1 for the detailed structure. 

Model FFNN LSTM 1D ConvNet 

Input size 216×7 

Layers Dense-256 BiLSTM-256 Conv7-32 

 BatchNorm LayerNorm BatchNorm 

 Dense-256 BiLSTM-256 MaxPool 

 BatchNorm LayerNorm ResBlock-16 

 Flatten Dense-32 ResBlock-32 

 Dense-19 Dense-19 ResBlock-32 

   ResBlock-64 

   ResBlock-128 

   Flatten 

   Dense-16 

   BatchNorm 

   Dense-16 

   BatchNorm 

   Dense-19 

Output size 1×19 
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Table A3-6. Parameters used for each model construction and training. 

Hyphens represent unused values for the corresponding model. 

Hyperparameter FFNN LSTM 1D ConvNet 

Nonlinearity function Tanh; Sigmoid Tanh; Sigmoid ReLU 

Normalization Batch Layer Batch 

Batch size 128 128 128 

Kernel initializer - - Glorot normal 

Padding - - Same 

Learning rate 0.001 0.002 0.0015 

Epsilon 1e-08 1e-08 1e-08 

β1 0.9 0.9 0.9 

β2 0.999 0.999 0.999 

Learning rate decay 0.1 0.1 0.1 
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Fig. A3-1. Simulated growth factors of calibrated WOFOST crop models for 

(A) 2020-1 and (B) 2020-2. Colored solid and gray dashed lines represent 

the calibrated models that showed top three performance and the others, 

respectively. Symbols represent observed growth factors. 
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Fig. A3-2. Simulated growth factors of sweet pepper model in DSSAT for (A) 

2021-1 and (B) 2021-2. Symbols represent observed growth factors. Gray 

dashed line represents the simulated 2021-1 without adjusted planting 

density. 
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Fig. A3-3. Simulated growth factors of (A) SIMPLE crop model and (B) a sweet pepper 

model for decision support Sánchez-Molina et al. (2015). 
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