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Abstract

Machine Learning-based Asset Allocation
Strategy and Digital Asset Investment for
Portfolio Management

Hyungjin Ko
Department of Industrial Engineering
The Graduate School

Seoul National University

The core of portfolio management is asset diversification and risk management.
Asset diversification is to maximize the diversification effect for a multi-asset port-
folio based on asset allocation by estimating the correlation between assets. Risk
management is to minimize the downside risk for a given portfolio based on asset
allocation by estimating the potential risk and volatility of an asset. The essential
portfolio management procedure is twofold; (i) model improvement and implemen-
tation for appropriate model specifications and portfolio construction and (ii) asset
class selection for investment. The first part is necessary to implement the strategy
adequately to achieve the aim of that model, such as robust multi-asset portfolio
management via asset diversification and single asset risk management via robust
protection level maintenance. The second part is vital because a new asset class
uncorrelated to the traditional asset class has potential opportunities for efficient

portfolio construction. Accordingly, this dissertation focuses on research from two



perspectives dealing with the above two essential procedures. Regarding the perspec-
tive of asset diversification and risk management, the first is a study on addressing
and improving the existing portfolio strategy models’ limitations in model construc-
tion and estimation of input parameters for appropriate model specification. The
second is a portfolio analysis of new emerging asset markets.

The first aim of this dissertation is to improve the existing portfolio management
strategy in model construction for the Black—Litterman framework and input param-
eter estimation for the synthetic put strategy for the appropriate model specifica-
tion. The second aim is to investigate the empirical results using portfolio analysis in
the emerging digital asset markets, including Non-Fungible Tokens (NFTs) and the
cryptocurrency market, based on the mean-variance framework or portfolio insur-
ance framework. For the first aim, we propose to use machine learning-based models
to extract the meaningful pattern of external financial data for the Black—Litterman
model using firm characteristics. Furthermore, we propose to use machine learning-
based forecasting models to estimate the input parameters required for portfolio
insurance strategy to mitigate the difficulty of addressing complex financial data.
For the second aim, we examine the economic value of NFT in terms of diversifi-
cation effect on traditional asset-based portfolios and portfolio insurance strategy
results regarding various risk measures and investor’s utility in the cryptocurrency
market.

The main findings in this dissertation are summarized as follows. First, our empir-
ical results show that combining characteristics into view improves the distribution
of portfolio returns in the Black—Litterman approach. Furthermore, prediction via

machine learning affects improvement in the out-of-sample performance compared
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to using past information. Our study suggests that using the proposed model can
result in a more efficient and diversified portfolio of the Black—Litterman framework.

Second, our empirical results of portfolio analysis in the NFT market show ev-
idence of the hedge, safe haven, and diversification properties of NFTs, confirming
two main findings: (i) NFTs act as a hedge and safe haven for several country’s
stock markets and oil, bond, and USD indices and these effects in stock markets
fade as frequency changes, especially showing stronger safe haven benefits for bond
and USD indices during the COVID-19 periods, and (ii) NFTs are distinct from tra-
ditional assets, potentially resulting in portfolio diversification which is confirmed
by preliminary analysis including correlation, co-movement, and volatility spillover
and portfolio analysis based on Markowitz’s mean—variance framework, improving
the performance of equally weighted and tangency portfolio strategies in terms of
Sharpe ratio.

Third, our findings indicate that the adverse effect of volatility misestimation
exists in terms of protection level error in the synthetic put strategy. We surprisingly
find the protection error of insured portfolios directly linked to the precision of
volatility forecasting, implying that this misestimation issue can be mitigated by
employing more accurate volatility forecasting models. Another finding is that all
methodologies, including traditional and machine learning-type, are better than the
naive approach. Moreover, machine learning-type models, especially XGB, are the
best in terms of protection and forecasting error in implementing the synthetic put
strategy. This tendency supports the evidence that machine learning is better than
traditional models in capturing the complex fluctuation pattern of realized volatility

in highly volatile market conditions.
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Finally, our findings demonstrate the outperformance of portfolio insurance strate-
gies in terms of skewness and downside risks in the cryptocurrency market. It reveals
the lower-risk feature of these strategies compared to buy-and-hold. Moreover, we
surprisingly find that, in terms of curvature, the portfolio choice of prospect theory
investors is opposite to the expected utility theory investors. It implies the greater
impact of losses than gains on the prospect theory investors. The larger loss-aversion
propensity reinforces investors’ preference for portfolio insurance strategies. As the
most shocking result, we find portfolio insurance, when compared to the buy-and-
hold strategy, provides a better opportunity to offer a higher utility in the cryptocur-
rency market than the traditional stock market, regardless of the investor’s utility.
It implies that portfolio insurance strategies can provide greater economic value in
terms of risk management for a larger number of cryptocurrency investors.

By improving the portfolio management models in terms of asset diversification
of the multi-asset portfolio of the Black—Litterman model and risk management of
a given portfolio or a single asset of synthetic put strategy, and by examining the
portfolio analysis in new digital asset markets such as NFT and cryptocurrency mar-
ket based on mean-variance and portfolio insurance framework, this dissertation’s
overall findings can help investors achieve an improved portfolio strategy and obtain

a more efficient and well-diversified portfolio for the improved portfolio management.
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Chapter 1

Introduction

1.1 Background and motivation

Since Markowitz| (1952) ’s seminal study on the Modern Portfolio Theory (MPT)
explains how an investor selects an optimal portfolio, portfolio theory-related studies,
such as asset pricing and portfolio management, have developed as the main topic
in finance. In particular, based on Markowitz’s portfolio theory, asset pricing, which
is the most important topic in financial market research, has been studied. Above
all, as the first study to explain the price of an asset, the capital asset pricing
model (CAPM) was proposed by |Lintner| (1965), Mossin (1966)), Sharpe| (1964]),
and Treynor| (1961a,b) based on the Markowitz model. CAMP is an equilibrium
asset pricing model that seeks to answer how prices are determined so that markets
are clear in equilibrium. The model explains that the risk premium is determined
by a security’s risk as measured by beta on the market portfolio. Furthermore, as
extensions of CAPM theory, [Merton (1973) proposed Intertemporal CAPM, and
Lucas Jr| (1978)) proposed Conditional CAPM.

On the other hand, some researchers criticized the drawback of CAPM. Specif-
ically, Roll (1977) pointed out the limitation of not being testable, caused by the

unobservability of CAPM’s market portfolio. Accordingly, |Ross| (1976) proposed the



Arbitrage pricing theory (APT) to overcome this limitation based on the law of
one price. The APT is a factor model for asset pricing, conceptualizing that the
pricing of assets is related to numerous macroeconomic risk variables. Based on this
APT model, other researchers have introduced many factor models, such as [Famal
& French) (1992, 1993) ’s three-factor model and |[Fama & French| (2015) ’s five-factor
model. As such, the portfolio theory of Markowitz (1952)) has formed the basis of
modern finance. In other words, portfolio theory is the heart of financial assets and
financial market analysis.

Portfolio management is another vital topic that portfolio theory directly ad-
dresses. The core of portfolio management consists of two components; asset diver-
sification and risk management. Asset diversification can be defined as maximizing
the diversification effect of a multi-asset portfolio. It is achieved through asset allo-
cation based on precise estimation of the correlation among assets and the expected
return of each asset. Risk management can be defined as minimizing the downside
risk for a given portfolio. It is also attained through asset allocation by accurately
quantifying and estimating the potential risk and volatility of a risky asset.

Accordingly, including Markowitz (1952)’s modern portfolio theory, numerous
portfolio strategies have been researched and developed as asset diversification strate-
gies for a multi-asset portfolio and a single asset risk management. First, for multiple
assets portfolio management for diversification, there is the mean—variance portfolio
framework introduced in Markowitz’s portfolio theory. In the mean—variance frame-
work, the expected value of the asset return is calculated as the expected return. The
volatility, the squared root of the variance for the asset return, is also calculated as

the risk. By utilizing these, the mean—variance model provides an optimal portfolio



having the lowest risk level under the given fixed level of expected return or the maxi-
mum return level under the given fixed level of risk. It has the advantage of flexibility
in performing optimal asset allocation based on mathematical optimization, explain-
ing the investor’s asset allocation problem in terms of a trade-off between return and
risk. Another representative portfolio management model is the Black—Litterman
framework proposed by Black & Litterman| (1991)). The Black—Litterman model is
a Bayesian update-based methodology that calculates the optimal weight of a port-
folio by using an investor’s view. Using a new updated return distribution based
on the investor’s view is more explanatory than the portfolio of only using original
return information in estimating expected return and correlation matrix.

Second, researchers have proposed numerous portfolio strategies for risk man-
agement for a given portfolio or single asset from an asset allocation perspective.
In carrying out investment, after proper asset selection is performed, it should be
possible to properly manage risk for a risky position of the investor’s portfolio based
on the market condition. The portfolio insurance strategy is the most representative
model directly aiming at this concept. The portfolio insurance strategy is a hedg-
ing strategy through appropriate asset allocation based on market risk estimation.
Precisely, it is a methodology to protect an investor’s portfolio value by not falling
below a specific protection level through an algorithm that appropriately adjusts the
investment proportion between risk-free and risky assets. A large number of method-
ologies to implement this portfolio insurance, such as stop-loss (Bird et al., |1988;
Rubinstein), 1985), synthetic put (Leland & Rubinstein, [1988; Rubinstein & Leland),
1981)), and constant proportion (Black & Jones| (1987, 1988; Black & Perold, [1992;

Perold & Sharpe, [1988) portfolio insurance strategy, have been proposed. In this dis-



sertation, we conduct strategy improvement and portfolio analysis studies regarding
asset diversification for multi-asset portfolios and risk management for a given port-
folio or a single asset, which are the two perspectives introduced above. Therefore,
we focus on Markowitz’s mean—variance framework, Black—Litterman framework,
and portfolio insurance framework in terms of two perspectives.

The procedure of portfolio management can be divided into two parts; (i) model
improvement and implementation (how do you invest?) and (ii) asset selection (what
are you investing in?). First indicates the importance of the portfolio construction
model. Suppose an investor does not construct the portfolio properly using the
incorrect model specification. In that case, it fails to achieve a well-diversified weight
proportion of a multi-asset portfolio and maintain an appropriate level of risky
position for a given portfolio or a single asset. That is, it is impossible to obtain asset
diversification and accomplish a better level of risk management through appropriate
asset allocation. In order to perform the first procedure, choosing an appropriate
investment strategy model is crucial. Specifically, selecting a methodology that can
maximize the diversification effect by asset allocation is necessary, providing the
optimal weight of a multi-asset portfolio. Additionally, it is necessary to select a
methodology that can perform risk management of a given portfolio or a single
asset through appropriate estimation of risk measures for asset allocation. However,
it is widely known to be challenging to implement these for portfolio management
appropriately. As a result, model construction and input parameter estimation for
the appropriate model specification is key to achieving our aim in term of portfolio
management.

The second implies the importance of selecting the appropriate asset class, which



can offer a maximized diversification effect to the investor’s portfolio. In order to
conduct the second procedure, the risk of each asset and the correlation between
assets are utilized. Selecting an asset class with a low correlation between assets
makes a more efficient portfolio construction possible. In other words, if new assets
are uncorrelated with existing ones, they have economic value in that they are the
potential to expand the efficient frontier when the investment universe includes them.
In this respect, analyzing and selecting a new asset class is essential. Suppose a new
asset class can diversify the asset class contained in the existing investment basket.
In that case, building a more efficient portfolio will be possible, and we can expect
a greater return with less risk. In this dissertation, we focus on conducting research
from two perspectives dealing with the above two essential procedures. The first
is a study on how to address and improve the existing portfolio strategy models’
limitations in model construction and estimation of input parameters for appropriate
model specification, and the second is a portfolio analysis of new asset markets.
Regarding the first procedure of model improvement and implementation, ad-
dressing the limitations inherent in the portfolio model is crucial in portfolio man-
agement. Suppose an investor performs asset diversification using a portfolio model
in which the inherent problem is not mitigated. In that case, the desired objec-
tive will not be achieved, thus exposing the investor’s portfolio to greater risk. In a
multi-asset portfolio for the diversification effect, the estimation error of Markowitz’s
mean—variance model is a representative example. The problem in the mean—variance
portfolio model occurs because of the parameter estimation error for the expected
return of assets and the correlation matrix between assets which are input param-

eters required for model building (DeMiguel et al., 2009). It is about the problem



that the performance is not guaranteed because the estimated expected return or
the estimated correlation matrix using the in-sample are not accurate and robust
estimates for the out-of-sample. Since the optimal solution responds excessively and
sensitively to changes in the estimated value, the final portfolio weight changes sig-
nificantly even with minor changes in input parameters. In the end, the potential
problem with this misestimation is that it produces highly biased, incomprehensible,
and implausible portfolios. As a result, a portfolio construction that is difficult to
implement is accompanied by various intrinsic and extrinsic costs, resulting in an
inefficient portfolio. Such misestimation can be classified into two. The first is the
estimation error of the expected return, and the second is the estimation error of
the correlation matrix. The cause of the misestimation problem of expected return is
that the sample means of historical data used in the mean—variance framework is a
poor estimation method for out-of-sample. The cause of the misestimation problem
of the covariance matrix is that the estimated sample covariance is unstable similar
to the sample mean. In particular, when the number of assets exceeds the number
of observations, it may suffer from ill-conditioning. As a result, it can be a massive
problem because it causes significant economic capital loss.

Researchers have proposed numerous portfolio models to overcome these limita-
tions. Among them, the most representative successful model is the [Black & Litter-
man (1991)) model. The Black—Litterman model is a methodology that calculates the
weight of a portfolio based on market equilibrium and the investor’s view. It uses the
external information of the investor’s view to obtain accurate parameter estimation
with the new updated return distribution based on the Bayesian update method.

This new return distribution has more explanatory power than the original return



distribution that only uses information of return alone as in the mean—variance
framework. As a result, the Black-Litterman model requires structuring external
information to construct the investor’s view. However, the wrong view is reflected in
the model if an investor does not perform this structuring correctly. For this reason,
the advantage of the Black—Litterman model, which is the flexibility of the reflec-
tion of external information, can be a disadvantage because noise can be added to
the meaningful signal from data. In other words, it suffers from worse performance
than the market equilibrium portfolio due to incorrect estimation through incorrect
data processing procedures and noisy information reflection. Therefore, proper view
construction is a critical issue to be dealt with in portfolio management using the
Black-Litterman framework.

Similarly, the synthetic put strategy, an asset allocation strategy for risk man-
agement, also has an estimation error problem for input parameters required for
adequate implementation (Zhu & Kavee) |1988)). Among them, the most critical is-
sue is volatility misestimation. Due to the volatility estimation error, replication of
the put option is not performed correctly, so the protection error problem for the
insured portfolio can be fatal. In other words, it can completely fail the objective of
risk hedging that the strategy seeks to pursue. In order to mitigate this problem, var-
ious methodologies such as constant proportion portfolio insurance (Black & Jones|,
1987, 11988; [Black & Perold) [1992; |[Perold & Sharpe, [1988) and time-invariant port-
folio protection (Estep & Kritzman) [1988) bypass volatility estimation problem have
been proposed. However, to the best of our knowledge, no study directly deals with
this problem of synthetic put strategy.

In the financial field, machine learning models have attracted substantial atten-



tion from academia and practitioners due to their outstanding superiority in various
tasks such as information extraction, identifying complex data patterns, time-series
forecasting, and so on (Bucci, 2020; |D’Ecclesia & Clementi, 2021} |Sun & Yu, 2020;
Xia et al.} [2022). This versatility of machine learning models in traditional finance
tasks is provided by non-linear functional forms, which helps models implicitly learn
the relation between input and target data without taking into account explicit for-
mulations or assumptions about underlying processes. The ability to extract complex
patterns from raw data through high-dimensional data abstractions also offers this
versatility, revealing the outperformance of these machine learning models (Hornik
et al [1989)). Many empirical studies have shown that machine learning methodolo-
gies are suitable for capturing complex patterns in the correlation between cross-
sectional asset return and external data and are also suitable for forecasting financial
time series (Gu et al.l 2020; [Heaton et al., 2017; [Hutchinson et al., [1994)). The lim-
itations mentioned above in existing portfolio strategies are challenging to address
due to the complexity of financial data. For example, the view construction in the
Black—Litterman framework requires processing information and abstracting mean-
ingful signals from external financial data. Furthermore, the volatility estimation in
synthetic put portfolio insurance strategy also requires excellent forecasting accu-
racy based on the lagged asset volatility series. Hence, to address these problematic
issues, we propose employing machine learning models to perform the aforemen-
tioned financial tasks adequately. We expect that the proper application of machine
learning methodology successfully mitigates issues of the above limitations.
Ragarding the second procedure of selecting new asset markets, many researchers

have conducted numerous studies on various asset markets. These include portfolio



research on the stock (Chunhachinda et al., [1997; [Fernholz & Shayl (1982 [Konno|

& Yamazaki, 1991), the bond (Caldeira et all 2016), commodity (Chang et al.
2011} |Geman & Kharoubil [2008; Lean et al., 2015), currency (Jorion, 1994; Walker,

2008)), and derivatives (Bookstaber & Clarke, |1984; Holowczak et al., [2006)). In the

meantime, the cryptocurrency market has overgrown as an emerging asset class.
Cryptocurrency is a type of cryptographic-based digital asset using blockchain tech-

nology, a decentralized distributed ledger system. Since the development of Bitcoin

by Nakamoto (2008), tens of thousands of cryptocurrencies have been developed

in the past decade. Many cryptocurrencies, including Bitcoin and Ethereum, are
gaining enormous interest among investors, achieving market capitalization signifi-
cantly and establishing themselves as a financial investment asset. Researchers also
showed great interest in these cryptocurrencies and examined various studies, includ-
ing portfolio research on analyzes of diversified multi-asset investments based on a
mean—variance framework. However, studies on dynamic asset allocation for a given
portfolio or a single asset aimed at risk management for the cryptocurrency market
are limited. In particular, to the best of our knowledge, portfolio insurance strategy
has not been studied in the cryptocurrency market. Meanwhile, the NFT market, a
secondary market derived from cryptocurrency, has also recently received tremen-
dous interest from investors. NFT refers to a blockchain-based digital asset that
tokenizes non-fungible ownership using smart contracts. Although it has received
much attention from investors and achieved a significant market capitalization, even
basic but important portfolio research on NFT's, such as the mean—variance analysis,
has not been done.

The differences between digital assets such as cryptocurrencies and NFTs and
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traditional assets are four-fold. First, the traditional asset market is centralized in
that financial transactions are processed under the supervision of centralized insti-
tutions such as firms, banks, or governments. In contrast, the digital asset market is
decentralized in that financial transactions take place through a decentralized sys-
tem called blockchain in the digital asset market (Leel 2019). Second, traditional
assets have an intrinsic value that has been empirically researched and confirmed,
while digital assets have no economic consensus on the intrinsic value of the asset
yet. In this regard, the types of characteristics used in the valuation are different.
For example, for the valuation of a traditional asset, such as a stock, non-technical
financial information about a firm is used, whereas, for the valuation of digital as-
sets, additional blockchain-related technical information is used (Liu & Tsyvinskil
2021). Third, the propensities of main market participants are different (e.g., mis-
understanding of risk-return trade-off and risk-seeking investors), and accordingly,
the behavior of the asset is different (e.g., bubble behavior) (Hasso et al., 2019;
Pelster et al., [2019). Finally, the digital asset market is not yet mature compared
to the traditional asset market. Various regulations related to investor safety are
insufficient in the digital asset market (e.g., Fraud, laundry, Fonzi scheme, cross
trading), reinforcing an additional and unnecessary risk (Nabilou) 2019)). From a
portfolio management point of view, differences in the fundamental characteristics
of assets, methods of pricing the intrinsic value of assets, and behaviors as an asset
for investment imply the possibility of a lower level of interdependence between the
asset classes. That is, there is a high probability that the correlation between dig-
ital assets and traditional assets is low. Therefore, the potential for diversification

is high when new assets are incorporated into the existing asset portfolio. However,
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despite the possibility of such a diversification effect, research on new asset markets
is limited. Additionally, the fact that investors participating in each asset market
have different propensities implies that market participants’ degree of risk-averse is
different. Hence, even if the same portfolio methodology is applied, it suggests that
the portfolio’s optimal weights may differ in a new asset market. In other words,
the optimal specification of existing portfolio models providing maximum utility to
primary investors in the new asset market may be completely different from that in
the existing asset market. However, to our knowledge, related studies are limited.
Finally, as it is not a mature market, investors who invest in digital assets may suffer
a considerable loss due to insufficient regulations or irrational investment decisions
based on misinformation, such as fraud, the Fonzi scheme, and cross-trading. Despite
these enormous potential risks, research on portfolio management limits or protects
against these risks is lacking. Considering the above arguments, empirical research
on diverse portfolio management strategies is insufficient in the new digital asset
markets. Therefore, motivated by this, this dissertation focuses on the research on

portfolio management in the new digital asset markets.

1.2 Aims of the Dissertation

The aims of this dissertation are two folds. First, we attempt to improve the existing
portfolio management strategy in model construction and input parameter estima-
tion for the appropriate model specification. In order to mitigate the difficulty of
addressing the complex financial data, we propose to use machine learning-based
models to extract the meaningful pattern of external financial data and estimate

the input parameters required for asset allocation strategy. Second, we investigate
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the empirical results using portfolio analysis in the emerging digital asset markets.
To achieve this aim, we examine the economic value of a new asset in terms of diver-
sification effect on traditional asset-based portfolios and investigate empirical results
of portfolio insurance strategy implementation results in terms of various risk mea-
sures and investor’s utility. Through this, we uncover the risk and return trade-off
and optimal asset allocation decisions for portfolio management in the digital asset
markets. The specific aims of each chapter are as follows.

In Chapter 2] we first empirically investigate the effect of firm characteristics
on the Black-Litterman framework by proposing a novel dynamic Black—Litterman
model that incorporates firm characteristics into view distribution. To incorporate
such characteristics into the view, we propose the backward-looking view that re-
flects naively historical information, and the forward-looking view that reflects the
predicted information via machine learning.

In Chapter [3] we conduct an econometric analysis to test the hypothesis that
NFTs have a hedge and safe haven effects on major traditional asset markets in the
global financial system. Moreover, we investigate whether the inclusion of NFTs in
portfolio investing in traditional assets provides a significant diversification benefit
for constructing a well-diversified portfolio. For the test of a hedge and safe haven
effects, we investigate the daily and weekly estimates of these effects in times of
extreme market conditions and the COVID-19 crisis. For the test of a diversifica-
tion effect, we examine Pearson’s correlation, the Gerber Statistic for co-movement,
the spillover index for volatility transmission, and finally, mean—variance portfolio
analysis results.

In Chapter 4, we investigate the impact of volatility misestimation in synthetic
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put strategy and the comprehensive empirical results on portfolio insurance strategy
using various volatility forecasting models, including naive, GARCH-type, HAR-RV-
type, and machine learning-type models, to address the protection error problem
caused by this issue. To achieve this aim, we examine the performance evaluation
using Monte Carlo simulation based on the standard GBM and the GBM with jump
models and using S&P 500 index as real-world data.

In Chapter [5, we investigate the comprehensive empirical results of portfolio
insurance strategies in the cryptocurrency market. To achieve this aim, we exam-
ine the performance evaluation based on the various downside risks by comparing
portfolio insurance strategies and benchmarks under several pre-specified economic
conditions. Additionally, we explore the impact of the investor’s utility and corre-
sponding parameters of their nature based on expected utility and prospect theory.

Therefore, in the dissertation, by investigating the above research questions
about portfolio management in terms of asset diversification and risk management,
we can propose a novel machine learning-based asset allocation strategy and uncover
the effect of digital asset investment. As a result, we expect to achieve an improved
portfolio strategy and provide the asset diversification and risk management benefit
of a more efficient and well-diversified portfolio for improved portfolio management

objectives, as shown in Figure (1.1

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as shown in Table
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Portfolio Management
Figure 1.1: The roadmap of the dissertation.
Table 1.1: The outlines of the dissertation

Perspective  Research scope Market Content Chapter
Asset, ML-based Asset Allocation Strategy ~US Stock Black-Litterman model considering firm characteristic variables 2
Diversification  Digital Asset Investment NFTs Portfolio analysis for Non-Fungible Token market 3
Risk ML-based Asset Allocation Strategy US Stock Volatility forecasting for portfolio insurance strategy 4
Management Digital Asset Investment Cryptocurrency  Portfolio insurance strategy in the cryptocurrency market 5
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Chapter 2

Black—Litterman model considering firm
characteristic variables

2.1 Chapter overview

In the context of modern finance, a number of firm characteristics have been ad-

dressed to explain the cross-section of stock returns (Harvey et al., 2016; Hou et al.,

2015; Kogan & Papanikolaou, 2013} McLean & Pontiff, 2016). Banz| (1981]) demon-

strated a strong negative correlation between the average return and the size of

a firm. Rosenberg et al| (1985) reported the average return’s positive relationship

with the book-to-market ratio in the US market. Fama & French) (1992} 1993) intro-

duced the three-factor model using size and value in addition to the market beta.

Jegadeesh| (1990) presented empirical evidence of the predictability of stock returns

using momentum. Ang et al.|(2006); Baker & Haugen| (2012) revealed a low-volatility

anomaly in financial markets.

In an attempt to overcome the limitation of the traditional Markowitz (1952)

portfolio model, Black & Litterman| (1991) proposed the Black-Litterman model

(hereafter BL model). This model combines market equilibrium with an expert view
based on the Bayesian approach to mitigate the estimation error of covariance and

expected return. The construction of view distribution, as demonstrated by
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Eitterman| (2002), is at the heart of this framework. Accordingly, many studies have

attempted to propose an extension of the BL model in terms of constructing view

distribution (Beach & Orlov, 2007; |Chiarawongse et al., |2012; Fang et al., [2018;

Kara et al., |2019).

One way to generate the view distribution is through the application of firm char-

acteristics. Several studies have improved the BL model using a single characteristic.

[Fernandes et al.| (2018) implemented an autoregressive model to the BL approach

using the Price-to-Earnings ratio to estimate the conditional probability distribu-

tion of asset returns. Pyo & Lee| (2018) exploited the low-volatility anomaly of stocks

and applied this anomaly to the BL framework. These studies reveal strong evidence
that utilizing stock-level characteristics in constructing view distribution can cause
an improvement in the portfolio of the BL framework. However, to the best of our
knowledge, limited studies have applied a multitude of firm characteristics simulta-
neously for the generation of the view distribution of the BL model. Therefore, in
this study, we attempt to investigate utilizing a multitude of firm characteristics in

the construction of view distribution of the BL framework.

As demonstrated by Fama & French| (2008)); Green et al.| (2017)); Lewellen| (2015)),

the expected return of a stock is a function of the multitude of stock-level character-
istics. That is, the multitude of firm characteristics provides information explaining
the average stock returns. Based on these findings, the aim of our study is to exam-
ine the effect of utilizing a multitude of firm characteristics for the construction of
the view distribution of the BL framework and to scrutinize the empirical results ob-
tained for the US stock market. To this end, we propose two sets of view strategies,

comprising both backward-looking and forward-looking views.
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First, for the construction of the backward-looking view, we use the value ob-
tained from the 12-month average of the firm characteristics and expected returns
for estimation. Second, for the forward-looking view, we propose a novel dynamic BL.
model with machine learning to predict a multitude of characteristics and expected
returns. |Gu et al.| (2020) suggested that variables based on firm characteristics can
help improve the understanding of asset prices in the empirical context of return
prediction using various machine learning models. The authors empirically reveal
that Artificial Neural Networks (ANN) displays the best performance compared to
other methods. Following |Gu et al.| (2020), we propose to use ANN as a methodol-
ogy to predict firm characteristics and expected returns in the BL model to exploit
informative estimation]

Chapter [2]is organized as follows: Section [2.2] describes the data and the method-

ology used. Section [2.3] discusses the main empirical results.

2.2 Data and Methodology
2.2.1 Data

Our data sample covers the period from January 1965 to December 2021. We conduct
an empirical analysis of large-scale samples with an observed total time period of 57
years and obtain individual asset returns on a monthly basis from the CRSP for all
firms that are listed on the AMEX, NASDAQ, and NYSE. The average number of

stocks per year is 2,072, and the total number of firms is 29,863. The aforementioned

1Our main research question is how the prediction of a multitude of characteristics affects a port-
folio in the BL framework. According to|Gu et al.[(2020), ANN shows the highest explanatory power
among various machine learning models in measuring asset risk premiums using characteristics. In
other words, the ANN method is considered to be the most suitable machine learning methodology
to be used as a predictive model for estimating stock return distribution using characteristics in
this study. Therefore, in order to examine the research question clearly, this study proposes to use
the ANN model.
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stock-level characteristics were taken from data suggested by Gu et al. (2020). We
obtained the three-month treasury-bill (t-bill) rate as the risk-free rate proxy used
in |Welch & Goyal (2008]). We calculate individual excess returns using the log return
data taken from the WRDS database and the t-bill rate. For every month, we replace
the missing value with the cross-sectional median for each stock.

2.2.2 Methodology
Dynamic Black—Litterman Model

The basic assumption of the BL model is that the expected return and covariance
are constant over time (Harris et al., [2017)). However, as the financial market litera-
ture shows, the expected return and covariance of stock return are time-dependent
(Devpura et al., [2018; (Guidolin et al., [2013; Harveyl 1989; Ng, [1991; Rapach & Zhou,
2013)). To reflect this time-varying property, we first obtain the sequential implied

equilibrium expected return vectors of the CAPM market portfolio as follows:
Ty = At Wmkt t—1, (2.1)

where m, € RV is the conditional implied equilibrium expected return vector, \ is

RVXN g the conditional historical covariance

the coefficient of risk-aversion, Xt €
matrix of excess return vector at time ¢, and Wkt t—1 € RN is the weight of the
market capitalization of the assets at time ¢ — 1.

Assume that the prior distribution of the expected excess return is given by ug ~
N (7, 78¢), such that the conditional distribution of q¢ is qglus ~ N (Pug, ),

e REXN is the conditional matrix of experts’ view, q; € RY is the

where Py
conditional expected excess return vector for view, and Q¢ € RE*¥ is the diagonal

conditional covariance matrix of view. Then, following the Bayesian approach, the
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time-conditional marginal distribution for q¢ and the new combined expected excess

returns, fposterior,t, can be derived as in Pyo & Lee| (2018):

ai ~ N (Pyme, Q¢ + Pe(73¢) Py 1)
Hposterior,t ™~ N(MBL,ty ZBL,t)a
where

EBL,t = [(th)il + PtTQtilpt]il
(2.3)

pBLt = ZBLt L [(T3¢) 'me + Py Q¢ ).

Artificial Neural Networks

Output Layer

Hidden Layer

Input Layer

Figure 2.1: Architecture of ANN in the example of one hidden layer structure.

ANN is a widely used machine learning model in various fields such as processing
of natural language, computer vision, and finance. It consists of an input layer, hid-
den layers, and an output layer. The input layer is denoted by x = [1, 1, ...,x3] " €

RF+1 where the number of neurons in this layer represents the dimension of predic-
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tors. The hidden layers denoted by h = [hq, ..., hj]T € 3 is the nonlinear transfor-

mation of predictors. The output layer denoted by o(z;w) € R! is the aggregated

value of the hidden layers for the ultimate output, as illustrated in Figure The

input data are fed into the neurons in the input layer, and the aggregated value of
(0)

each neuron with parameter W€ RF+1 is passed through the nonlinear activation

function a(-) to obtain a j-th neuron in the hidden layer h;, as follows:

hy = a(Swa). (2.4)

To obtain the final output value in the output layer, the value of each neuron in the

hidden layer is linearly aggregated as follows:

(2.5)
Proposed Procedure

In this study, we propose methods to generate the view matrix reflecting a multitude
of characteristics. We use four established firm characteristics: size, book-to-market
ratio, momentum, and stock volatility. To incorporate each characteristic into the

BL framework, by sorting the i-th stock’s estimated values of the k-th characteristic

(k)

;¢ at time ¢ in the ascending order, we divide the stocks into three groups: first

decile, last decile, and the remainder. Depending on the economic implication of

. k k
each characteristic, wl( t), —wg t),

(k)

w, ; represents the weight of the relative view of the i-th stock’s k-th characteristic

or 0 are assigned to the stocks in each group, where

at time ¢. We use market weights for the weight values, verifying that the sum is

equal to zero.
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Table 2.1: The economic implication for the firm characteristics reflected on the view
matrix

Characteristic Abbreviation Econ. Implication View matrix (Py)
size size Small-cap it;;;l;(t::;dsst;(;koutperform [w%?t), wé%z, ...,0,0..., 7w7<l1—)1,t’ 711)5,12]
book-to-market bm SOk R ek that scoms expensive o T 0l 0,0 w®y )
Stock that outpertormed e bt 0 00,0, )
low-volatility lowvol Stock with low volatility tends to outperform [nglt), wész)’7 0,0, *“’51)1,17 7“’1(41)]

highly volatile stock

The economic implication of each characteristic reflected on the view and the
corresponding view matrix are presented in Table If a single characteristic is
reflected, the view matrix P; is constructed by using the matrix presented in Table
When a multitude of characteristics is reflected in the view matrix, P; is con-
structed by combining each row of the matrix in Table For example, we generate

the view matrix that reflects four characteristics simultaneously, as follows:

1 1 1 1

wit) wé} .. 00 .. _wz(—)l,t —wZ(’t)

(2) (2) (2) (2)
Wy —Woy 00 Wi ¢ w; ¢

b= 3) 3) (3) (3) .

Wy —Woy 00 Wi ¢ w; ¢

4 4 4 4

I wit) wéyt) .. 00 .. _wz(—)l,t —wgﬂt)_

We use the rolling-window architecture for an out-of-sample test to maintain
the ordering of the temporal data, rebalancing portfolio weight annually. For each
time step t, the proposed model for the forward-looking view consists of two phases.
The first phase is to train ANN models to predict the characteristic values and

(k)

expected return for the estimation of ézlz and 7; ¢, respectively, for Vk,7 by using the
training set. The second phase is to construct the BL portfolio by generating the
view distributions P¢, q¢, and €24, based on the predicted established characteristics

and expected return, and by solving optimization to obtain portfolio weight w¢. The
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overall procedure is shown in Figure
(k)
t

In the first phase, for the prediction of éi7 , each 10-year characteristic of each
firm is considered for training. For a subsequence of the 10-year characteristic at
each firm, the ANN is trained in batches, where the 12-month data point is used
as input data and the characteristic observed in the first month of the next year
is set as the target. If all the batches in a 10-year training set are consumed, one
fitted model is obtained for each firm. For the prediction of 7;;, a similar procedure
is conducted for the i-th stock return. For consistency, we also use the ANN trained
by the training set for prediction, inspired by various studies that show that ANN
yields more accurate forecasts compared to the traditional econometric model in the
forecasting return of stocks (Aras & Kocakog, 2016} |Ghiassi et al., 2005; [Nayak &
Misral, 2018; Zhang), 2003; Zhong & Enke, [2019).

In the second phase, this fitted model is used for the inference of a one-year
test sample to predict the value of the characteristics of each firm. We use these
predicted values éz(lz) to generate Py, as shown in Eq. Similarly, in order to build
a return view q¢, we use the predicted value for each firm’s expected return, having
a forward-looking return view. We get #¢ = [, ..., 7 ¢] from the fitted ANN model’s
inference of the predicted value, where 7;; is the predicted expected return of i-th
stock at time t. Thus, q¢ is calculated from q¢ = Py, and €2 is calculated from

(1)
t

K

Etp,(;)/, . ,TpSI;)Etp,(?/), where p,(ﬁ) is the k-th row of the view matrix Py.

diag(Tp

After obtaining 7, Py, q¢, and ¢, we get uprt and Xy ¢; thus, wy is obtained
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by solving the mean—variance optimization given by

A .
max w/ iy — ~w/] Siwy (2.7a)
Wit 2
subject to SN jwiy =1, (2.7b)

where fiy = ppr ¢ and 53»5 = XBLt. After obtaining optimal portfolio weight wj, we
apply this weight to the out-of-sample test.
(k)

In order to get the proposed model for the backward-looking view, éi,t and 7;
in the second phase are naively obtained from the 12-month average of the past
characteristics and the expected return of the training set, respectively.
Considering the ANN models for égﬁ), we have 13 neurons in the input layer
in our model, which implies that one of them is for the intercept, and the 12-
month historical characteristic data are used as predictors. We use rectified linear
unit (ReLU) as the activation function a(-) of the hidden layer, which is known to
have displayed the best performance in previous studies (Glorot et al., [2011; Nair
& Hinton, 2010). The model has a single hidden layer of 100 neurons, and all the
neurons are fully connected. We use the identity function as the activation function
of the output layer for the regression model and aggregated the hidden outputs

linearly into an ultimate output. Considering the ANN models for 7;;, the same

structure is used.
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¥

Conditional market equilibrium
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2.3 Empirical results

We use alpha and the annualized out-of-sample Sharpe ratio as the performance
measures for the proposed model. Sharpe ratio is calculated as E(R,)/o,, where
E(R,) is the expectation of the annualized excess return of the portfolio and o, is
the standard deviation of the annualized excess return of the portfolio. Table
reports the results of each strategy and benchmark.

Table 2.2: Results on the performance of each benchmark and the proposed model

Mean Ret.  Std.  Skew. Kurto. e t-stats SR

Panel A: Long-term (42-year) performance

S&P 500 0.083 0.15 -0.803  3.036 - - 0.239

Mkt equilibrium 0.103 0.152  -0.467 2.41 0.021  (3.52)** 0.364

Proposed Backward view 0.138 0.126 -0.232  3.296  0.079 (7.34)***  0.722

Proposed Forward view 0.2 0.18 1.996 20941 0.138 (6.27)***  0.85
Panel B: Short-term (5-year) performance

S&P 500 0.156 0.128 -3.16 16.19 - - 1.135

Mkt equilibrium 0.153 0.159 -0.592 2.508  0.018 (0.32)***  0.898

Proposed Backward view 0.194 0.147 -0.057  2.739  0.083  (1.48)***  1.242

Proposed Forward view 0.457 0.32  2.609 9.467 0.339 (2.3)***  1.394

Notes. This table reports the results of mean, standard deviation, skewness, kurtosis, alpha, t-
statistics, and annualized Sharpe ratios of the annualized returns of each strategy and benchmark
in the past 42-year (Panel A) and 5-year (Panel B) out-of-sample period. The abbreviations Mean
Ret, Std, Skew, and Kurto report the average of the annualized returns, the standard deviation of
the annualized returns, skewness of the annualized returns, and kurtosis of the annualized returns,
respectively. a and t-stats represent alpha and ¢-statistics, respectively. SR presents the annualized
Sharpe ratios. ** and *** indicate significance at the 5% and 1% level, respectively.

Panel A in Table shows the long-term performance result using past 42-year
data. The S&P 500 and the market equilibrium portfolio have out-of-sample Sharpe
ratios of 0.239 and 0.364, respectively, which are lower than that of 0.722 and 0.85 of
the proposed model with backward and forward-looking views, respectively. Addi-
tionally, the alpha of the proposed model with backward and forward-looking views

is 0.079 and 0.138, respectively, which is larger than that of the market equilibrium

portfolio; it is statistically significant. Panel B in Table presents the short-term
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performance result using past 5-year data. The short-term result is essentially simi-
lar to the long-term result. The proposed models dominate the market and market
equilibrium portfolio, as presented in Figure indicating that reflecting a mul-
titude of characteristics improves the performance of the BL portfolio. Especially,
the forward-looking view model outperforms the backward-looking view model. This
result suggests that the prediction via machine learning provides a significant im-

provement over naive estimation.

—— S&P 500-Rr

Mkt equilibrium
—— Proposed(Backward)
—— Proposed(Forward)

Cumulative Log Return

& ’~ 3 & I’ > &

g > N bp«, >
S
K
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Figure 2.3: Cumulative performance of the proposed model.

Notes. This figure shows the cumulative performance of the proposed model with the backward-looking view and the proposed
model with the forward-looking view; the cumulative market excess return and cumulative market equilibrium portfolio
return are benchmarks for all test periods. The shaded areas denote global recessions. By a huge margin, the proposed
models dominate the other benchmarks.

To sum up the empirical results in Table 2.2] our findings and implication are
twofold. First, our proposed procedure to construct the view distribution of the
BL model significantly improves the existing naive BL model by reflecting firm
characteristics to offer a better opportunity to adjust the subtle weight of allocation.
It is clearly demonstrated by the enhancement of the out-of-sample performance in
the proposed model compared to the benchmarks, such as S&P 500 and market
equilibrium portfolio. This finding implies that the market equilibrium portfolio
that is BL model without an investor’s view is not a fully efficient portfolio; thus,

reflecting four firm characteristics, especially size, book-to-market, momentum, and
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low-volatility, has a meaningful value of generating more efficient portfolio.

Second, the effect of prediction is clearly revealed by comparing the proposed
backward-looking view and forward-looking view model in that the out-of-sample
Sharpe ratio of the forward looking-view is larger than that of the backward-looking
view. Interestingly, the standard deviation of returns in portfolios built by the
forward-looking view tends to be higher on average, implying more aggressive invest-
ments. Despite this tendency, the average of the out-of-sample Sharpe ratio of the
forward-looking view model is consistently higher than that of the backward-looking
view model in all Panel A and Panel B. « shows a similar outcome, suggesting that
firm characteristic prediction via ANN provides an improvement in performance,
resulting in diversification benefit to portfolio. These results align with the fact
that the ANN as a universal approximator is inherently nonlinear and has a rich
functional form that adequately extracts the complex pattern of data (Hornik et al.,
1989)). Empirical studies report that the ANN methodology is suitable for the predic-
tion and estimation of complex financial time-series and cross-sectional asset return
data (Gu et al.l 2020; Heaton et al., 2017, [Hutchinson et al.l [1994). Therefore, our
results consistently reveal a strong hint that prediction through ANN played a key
role in allowing the proposed model to achieve to exploit the pattern of behavior of
characteristics in a future return. As a result, it indicates that our proposed model

can help construct a more efficient and well-diversified portfolio.
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Chapter 3

Portfolio analysis for Non-Fungible Token market

3.1 Chapter overview

Recently, the NFTs market, a new emerging market different from the existing cryp-
tocurrency market, was formed (Bao & Roubaud, [2022; Urquhart, 2021)). NFTs are
non-fungible ownership recorded on the blockchain by smart contracts (Dowling,
2021al). These tokens function like tradable rights to any assets. These include dig-
ital assets such as files and game items, and physical assets like artwork and real
estate (Kugler, 2021)). NFTs have been attracting public attention, including in-
vestors and practitioners, reaching a market capitalization of over $16 billion in
early 2022 (Karim et al., [2022a). This NFT market has also begun to receive the
attention of academia.

Accordingly, several studies related to NFT's have been conducted. Among these
studies, some focused on the behavior of NFT prices. Dowling| (2021al) explored the
behavior of NFTs in terms of price efficiency on Decentraland, an NFT platform
for virtual real estate trading, while Maouchi et al.| (2021)) investigated the behavior
of NFTs in terms of bubbles. Besides research on the behavior of NFT price, stud-
ies on the connectedness between NFTs and existing assets have been conducted.

Dowling| (2021b) investigated the volatility spillover and the wavelet coherence be-
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tween NFTs and cryptocurrencies, demonstrating that the asset pricing of NFTs is
different from the asset pricing of cryptocurrencies. Karim et al.| (2022a) looked into
the extreme risk spillover among NFTs, decentralized financial (DeFi) tokens, and
cryptocurrencies, implying the weak interaction between these asset classes with a
strong disconnection of NFTs. Aharon & Demir| (2021)) NFTs and traditional assets’
spillover effect of return, while Umar et al.|(2022) investigated the wavelet coherence
between NFTs and traditional assets. |Ante| (2021) confirmed that cryptocurrency
markets affect the growth of the NFT markets, but there is no opposite effect. These
studies indicate the existence of potential hedge and diversification benefits of NFT's
with respect to traditional assets.

Originally, NFTs were designed to be indivisible. However, the concept of divisi-
ble NFTs has recently emerged to reflect the demand for a more realistic character-
istic of traditional assets, such as shared ownership. The concept of divisible NFT's
or fractional NFTs (the so-called F-NFT) is that each unique NFT can be separated
into equal and fungible parts (Mazur, [2021). In other words, divisible NFTs are
designed for shared ownership of any assets, such as real estate, arts, and digital im-
ages (Frye, 2021)). Divisible NFTs divide the ownership of any asset into equal parts,
allowing the asset to function similarly to stock or shares in the company. In other
words, the rights to an asset can be converted into a type of partially investable
asset by using divisible NFTs.

If NFTs are divisible, investors can use divisible NFTs to manage their portfolios
by hedging or diversifying the assets invested. Therefore, we attempt to show the
possibility of portfolio hedge or diversification by including NFTs with traditional

assets. Although there are several studies on NFTs, the majority of them study only
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NFT price behavior (Dowling), 2021a; Maouchi et al., 2021) or the connectedness

between NFTs and existing assets (Dowling, 2021b; Aharon & Demir;, 2021} Karim|

et al., 2022a} [Umar et al., 2022)). To the best of our knowledge, however, there is no

study on the hedge or safe haven property of NFTs against traditional asset classes
and no research on portfolios investigating the diversification effect of NFTs as an

alternative asset class.

The aforementioned studies (Dowling, |2021b; Karim et al., [2022a; Umar et al.,

2022) demonstrate the distinctiveness of the NFT market over traditional markets,

implying NFTs have potential as a hedging, safe haven, and diversifying tool against

traditional assets. Furthermore, Aharon & Demir| (2021) revealed that the connect-

edness dynamic of NFTs is similar to that of goldH in terms of risk absorption during
the COVID-19 crisis. Therefore, motivated by these prior studies which suggest the
possibility of the hedge or safe haven property of NFTs, in this paper, we raise the
question of whether NFTs are a hedge or safe haven against traditional assets. After
that, we examine the diversification benefit of NFTs over traditional assets in terms
of correlation, co-movement, and volatility transmission. Then, using the Markowitz
mean—variance approach, we provide portfolio analysis to confirm better investment
opportunities.

Chapter [3] is organized as follows. Section describes the data. Section

presents the methodology. Section discusses the empirical results.

! According to |B0uri et al.l 42017[), gold has been generally demonstrated as a a hedge or safe
haven asset against traditional asset classes. See [Agyei-Ampomah et al. (2014); |Akhtaruzzaman
let al.| (2021)); Baur & Lucey| (2010); [Baur & McDermott| (2010); Bredin et al| (2015); |Capie et al.
(2005); |Giirgiin & Unalmis| (2014); Peng] (2020); |Reboredo| (2013alb); |Smiech & Papiez (2017).
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3.2 Data

Table 3.1: Summary statistics of the daily and weekly returns on each asset

Mean (%) Median (%) Std. (%) Min Max Skew. Kurto.
Panel A: Daily
NFT 0.847 0.295 24.3 —197.9 172.9 0.32 18.95
Us 0.083 0.143 1.43 —10.06 8.670 —0.66 8.650
Canada 0.039 0.104 1.27 —13.18 11.29 —1.78 31.78
Australia 0.025 0.091 1.21 —7.640 5.660 —0.67 7.250
Japan 0.023 0.050 1.55 —8.770 7.730 —0.13 5.060
UK —0.001 0.072 1.34 —11.51 8.670 —1.19 13.42
Germany 0.023 0.083 1.57 —13.05 10.41 —0.88 13.59
Switzerland 0.037 0.103 1.59 —11.50 12.13 —0.47 19.06
Italy 0.026 0.133 1.73 —18.54 8.550 —2.88 28.72
Finland 0.041 0.110 2.64 —30.25 27.88 —0.53 52.32
Netherlands 0.046 0.113 1.38 —11.38 8.590 —1.19 12.55
Austria 0.019 0.080 3.01 —39.60 37.15 —0.83 79.59
Belgium 0.002 0.039 1.55 —15.33 7.370 —1.76 17.80
Spain —0.022 0.004 1.62 —15.15 8.230 —1.53 16.71
China 0.017 0.002 1.58 —8.210 11.47 0.20 7.050
Russia 0.071 0.172 1.45 —8.650 7.430 —0.85 8.000
India 0.044 0.123 1.94 —13.12 9.520 —0.89 9.470
South Korea 0.018 0.114 1.49 —7.980 8.750 —0.32 5.670
World Index 0.064 0.135 1.37 —11.02 8.710 —0.86 11.22
Emerging Market Index 0.015 0.134 1.66 —10.55 7.580 —0.65 6.280
Commodity Index 0.048 0.120 1.32 —6.950 4.740 —0.78 3.040
Gold 0.044 0.061 1.13 —7.470 5.810 —0.49 6.230
Oil 0.042 0.207 3.59 —37.34 31.77 —0.64 33.10
Bitcoin 0.147 0.177 5.78 —46.47 26.72 —0.67 8.800
Ethereum 0.169 0.122 7.40 —55.07 32.50 —0.78 6.750
PIMCO Index 0.021 0.030 0.62 —5.080 8.150 1.08 62.16
USD Index 0.014 0.000 0.45 —1.900 2.340 0.24 2.470

Mean (%) Median (%) Std. (%) Min Max Skew. Kurto.
Panel B: Weekly
NFT 4.838 3.000 52.1 —202.2 187.9 0.23 2.060
Us 0.394 0.787 3.22 —23.19 14.50 —1.82 12.09
Canada 0.182 0.406 3.15 —29.38 17.52 —3.74 34.06
Australia 0.105 0.261 2.89 —24.58 11.04 —2.45 16.61
Japan 0.092 0.340 3.41 —22.67 14.23 —0.97 6.700
UK —0.016 0.214 3.09 —26.37 13.51 —2.31 20.16
Germany 0.103 0.417 3.78 —31.21 16.95 —2.13 17.43
Switzerland 0.174 0.461 2.87 —21.47 13.80 —1.58 12.81
Italy 0.106 0.444 4.26 —38.76 15.42 —2.80 22.65
Finland 0.193 0.476 4.14 —31.56 26.89 —1.64 16.80
Netherlands 0.214 0.566 3.40 —28.20 17.83 —2.18 17.66
Austria 0.067 0.566 5.36 —41.80 36.67 —2.18 22.32
Belgium —0.009 0.267 3.92 —33.51 15.38 —2.28 19.46
Spain —0.129 0.217 3.91 —35.19 18.46 —2.25 20.93
China 0.071 0.202 3.55 —12.09 16.37 0.02 2.500
Russia 0.326 0.607 3.41 —21.72 16.43 —1.31 8.480
India 0.203 0.406 3.99 —25.00 16.22 —1.59 9.010
South Korea 0.068 0.337 3.58 —25.44 15.97 —1.26 9.170
World Index 0.299 0.701 3.23 —26.22 14.53 —2.33 17.21
Emerging Market Index 0.052 0.345 3.65 —25.87 13.51 —1.49 8.950
Commodity Index 0.231 0.678 3.16 —19.35 8.910 —1.38 5.370
Gold 0.214 0.332 2.35 —10.90 10.24 —0.09 3.210
Oil 0.199 1.046 8.69 —59.86 46.28 —1.35 14.81
Bitcoin 0.712 0.352 13.6 —59.36 46.02 —0.16 1.750
Ethereum 0.662 0.966 17.5 —75.95 72.66 —0.26 1.670
PIMCO Index 0.110 0.163 1.45 —14.44 13.08 —2.76 44.17
USD Index 0.072 0.041 1.02 —4.510 7.120 0.70 5.960
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Notes. Panels A and B show summary statistics of the daily and weekly log returns on each asset. Regardless
of the time horizon (daily or weekly), NFTs are the most volatile and show the highest average return
compared to other asset classes. Among other assets, cryptocurrency shows the highest risk, while the bond
index and US dollar index show the lowest levels of risk. Stock market and commodity indices show mid-level
volatility.



We use different data sets for each test of a hedge or safe haven effect and diversi-
fication effect. This is because we attempt to investigate the specific results of the
hedge and safe haven effect of NFT's on the traditional asset addressing overall coun-
try coverage and regional coverage comprehensively in the test of a hedge and safe
haven. On the other hand, in diversification effect of NFTs on the traditional asset,
we have to reduce the number of assets since the portfolio with the higher number

of assets suffers from the estimation error problem.

3.2.1 Data for a hedge and safe haven effect

For the test of a hedge and safe haven effect, our asset classes consist of stock
(country coverage and regional coverage indices), commodity (commodity index,
gold, and oil), cryptocurrency (Bitcoin and Ethereum), bond, US dollar index, and
NFTs. We obtain prices of the assets from Yahoo Financeﬂ except for the NFT price.
The country coverage stock market indices consist of each country’s stock market.
These are clustered as the North American (the US and Canada), Pacific (Australia
and Japan), European (the UK, Germany, Switzerland, Italy, Finland, Netherlands,
Austria, Belgium, and Spain), and Emerging Markets (China, Russia, India, and
South Korea)ﬂ The regional coverage stock indices consist of the MSCI World index
and MSCI Emerging Market index. We use, as commodity indices, the Invesco DB
Commodity index, SPDR Gold Shares, and Brent Crude oil. Cryptocurrencies are

represented by Bitcoin and Ethereum pricesﬂ Bitcoin is the largest capitalization

Zyww.finance. yahoo.com

3Specifically, the US, Canada, Australia, Japan, the UK, Germany, Switzerland, Italy, Finland,
Netherlands, Austria, Belgium, Spain, China, Russia, India, and South Korea are represented by
S&P 500, S&P/TSX, S&P/ASX 200, Nikkei 225, FTSE 100, DAX 30, SMI, IT 40, OMXH 25, AEX,
ATX, BE 20, IBEX, CSI 300, MOEX, INDA, and KOSPI 200, respectively.

4We include cryptocurrency into our asset classes under study because of its relevance in that
NFTs are emerging assets developed from cryptocurrency.
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cryptocurrency. Ethereum is the representative smart contract-based core engine
of NFT. We select the Pimco Investment Grade Corporate Bond Exchange-Traded
Fund index as the bonds index. The US dollar index represents the US currency.

NFT index is represented by the average value of transaction prices following
Aharon & Demir| (2021]). We obtain average NFT price from NonFungibleﬂ At the
time of writing, we used 250 different NF'T markets and 21,087,054 total NFT trades
to calculate the average NF'T price. A large number of observations of market trades
and the use of average NFT price mitigates the extreme oscillation issue of NFT
returns (Dowling, [2021b)).

Our data sample covers January 1, 2018, to February 9, 2022. Each price of
assets and indices is in US dollars. We obtain daily and weekly log returns of all
assets. The total of 869 daily and 173 weekly observations for each asset are used.

Table [3.1] summarizes the statistics of the daily and weekly returns on each asset.

3.2.2 Data for a diversification effect

For the test of a diversification effect, we construct our portfolio using classes of
the existing asset (stock, bonds, US dollar, commodity index, and cryptocurrencies)
and NFTs as a new alternative asset class. We obtain the stock market index, bond
index, US dollar index, commodity index, and cryptocurrency price from Yahoo
Financd’] The WRDS database is used to calculate the market capitalization of
each asset in the traditional asset class, while CoinMarketCalﬂ is used to obtain
the market capitalization of cryptocurrency. We select S&P 500 index, MSCI World

index, and MSCI Emerging Market index as stock market indices. Pimco Investment

Swww. nonfungible.com
Swww.finance. yahoo.com
"W coinmarketcap.com
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Grade Corporate Bond Exchange-Traded Fund index represents Bond. The proxy

of the US currency is represented by the US dollar index. We select the Invesco DB

Commodity index and SPDR Gold Shares as commodity indices. We select Bitcoin

and Ethereum as our cryptocurrency assets.
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Figure 3.1: Time series of price and return of each asset.

Notes. This figure shows the time series of price and returns of each asset on a weekly basis for the period December 4, 2019,
to June 9, 2021.

Based on the concept of the aforementioned F-NFT, we assume that the market

index of each NFT can be replicated by aggregating partial shared ownership for

tokens in any NFT market. With this assumption, it is acceptable to use the average

price of each NFT as a proxy of the corresponding NFT market.

However, there are some critical issues with collecting and preprocessing the rel-

evant data for portfolio analysis. First, there are a large number of missing values

because of the low trading volume, particularly in the early period. The early period

with excessive missing values is excluded from our empirical results for reliable re-
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sults. Second, the daily return is subject to extreme fluctuations (Dowling, [2021D]).
To address this issue, we used the weekly average price of each individual NFT.
We select three of the most liquid and prominent NFT's for our analysis: Sandbox,
Decentraland, and Cryptopunksﬂ We have 92,371 trades of Sandbox, 68,500 trades
of Decentraland, and 10,704 trades of Cryptopunks. We obtain log returns of all

assets on a weekly basisﬂ

Table 3.2: Summary statistics of the weekly price and return of each asset

Mean Median  Std. Min Max Skew. Kurto. ADF
Panel A: Price
Sandbox 346.94 76.34 542.54  26.38 3054 2.45 7.54 -0.69
Decentraland 948.08 531.9 1179.6  12.24 4745 1.75 2.17 -1.22
Cryptopunks 16338  980.87 28797  56.73 113932 1.8 2.12 -0.49
Bitcoin 21589 11246 17827 5225 59893 1.08 -0.4 -0.6
Ethereum 821.47 366.23 921.8 113.94 3952 1.58 1.71 -0.02
S&P 500 338.25  329.59 46.48 237.77  419.56  0.07 -0.74 -0.9
MSCI World Index 101.46  98.64 13.88 71.69 125.8 -0.0 -0.75 -0.88
MSCI Emerging Mkt. Index 45.62 44.06 6.89 32.24 57.5 -0.02 -1.03 -0.55
Bond Index 109.76  111.08 3.89 96.12 114.76  -1.24 1.67 -2.1
US dollar Index 25.5 25.28 0.99 24.09 27.65 0.32 -1.22 -1.1
Commodity Index 14.33 13.95 2.24 10.84 19.3 0.41 -0.75 -0.29
Gold 166.32 166.84 12.5 138.92 190.15  -0.35 -0.66 -2.24

Mean Median  Std. Min Max Skew. Kurto. ADF
Panel B: Return
Sandbox 0.0553  0.0569 0.435 -1.24 1.2944  0.0377  0.9601 -4.32%F*
Decentraland 0.0106  0.0046 0.7065 -2.4843 2.199 -0.0012  0.6281 -4 T8¥F*
Cryptopunks 0.0912 0.0688 0.4706 -1.4802 1.2416 -0.1418 0.7673 -4.34%%*
Bitcoin 0.0213  0.0229 0.1134 -0.6024 0.3413 -1.025 4.9628 -3.23%%*
Ethereum 0.0388 0.039 0.149 -0.7133  0.5311  -0.9618  4.9059 -3.91%**
S&P 500 0.0044  0.0091 0.0352 -0.1981 0.1601 -1.4135 7.8681 -4 4TFF*
MSCI World Index 0.004 0.0084 0.0359 -0.2194 0.1543 -1.731 9.5309 -4.46%F*
MSCI Emerging Mkt. Index 0.004 0.0087 0.0371  -0.195 0.1274  -1.4187 6.4634 -3.9TH**
Bond Index 0.001 0.0019 0.0189 -0.1164 0.1216  -1.0774 19.9531 -5.95%**
US dollar Index -0.001  -0.0016 0.011 -0.0468 0.0605 0.9229  7.1007 -4.46%F*
Commodity Index 0.0029  0.0084 0.0317 -0.1422 0.07 -1.5816  3.8585 -3.65%**
Gold 0.0033  0.0052 0.0259 -0.1081 0.1045 -0.4492 2.4013 -4 5¥**

Notes. Panels A and B show summary statistics of price and log return of each asset, respectively.
We apply the Augmented Dickey-Fuller (ADF) test (Cheung & Lail, [1995) to log price and log
return. ADF statistics show that the null hypothesis of a unit root can be rejected for realized
variances. ** and *** mean significance at the 5% and 1% levels, respectively.

SNFT data is sourced from www.nonfungible.com. These three NFTs account for 56.2% of the
total trading volume at the time of writing. To demonstrate the reliability of our results, we also
performed additional experiments using the top 5 and 7 NFTs by liquidity. The top 5 and 7 NFTs
account for 60.1% and 62.6% of the total trading volume at the time of writing. The overall results
are available in Table in Appendix. Note that the main results are essentially similar.

9A total of 76 weekly observations for each asset are included.
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We use a 3-month treasury-bill rate as the risk-free rate proxy. Our data sample
covers from December 4, 2019, to June 9, 2021, as NFT trades in Sandbox started
in December of 2019. All indices and prices are denominated in US dollars. Figure
shows the weekly price and returns on each asset. When compared to other
traditional assets, NFT's exhibit higher volatility and a disproportionately large price
increase. Table summarizes the statistics of the weekly price and return for each

asset.

3.3 Methodology
3.3.1 Methods for a hedge and safe haven effect

For the test of a hedge and safe haven effect, we define a hedge and a safe haven

following the seminal study of |Baur & McDermott| (2010)):

o A hedge: An asset is a strong (weak) hedge if it is negatively correlated (un-

correlated) with another asset on average.

o A safe haven: An asset is a strong (weak) safe haven if it is negatively correlated

(uncorrelated) with another asset in a certain period, such as a financial crisis.

Based on these definitions, we use econometric models introduced by Baur &
McDermott (2010) for analyzing the hedge and safe haven properties of NFT's.
Firstly, the equations below present the regression model to statistically analyze

the hedge and safe haven effects of NFTs.
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TNFTt = @+ biTothert + €t, (3.1)
by = co + ClD(rotherqn)) + CZD(Tothe’rq&'J) =+ C3D(rotherq1)v (32)

hy = 7+ aei_y + Bhi_1, (3.3)

In Eq. a and b; are parameters of the pairwise regression model for the
relation between NFTs and another asset, and ¢; is the error term. After obtaining
by from Eq. it is regressed on the dummy variables as presented in Eq. Eq.
models the b; as a dynamic process, where ¢, c1, c2, and c3 are estimated. D(+)
denotes the dummy variables capturing extreme asset return movement. If the asset
return is below a certain threshold (e.g., 10%, 5%, and 1% quantile of the return
distribution), D(-) = 1, otherwise D(-) = 0. Hence, ¢¢ represents the coefficient for
the hedge property, while c¢1, co, and c3 represent the coefficient for the safe haven
properties of NFTs against any counterpart asset. Eq. represents a GARCH(1,1)
model, accounting for heteroscedasticity, where h; is the conditional variance, 7 is the
constant, « is the short-run persistence parameter, and g is the long-run persistence
parameter. With Maximum Likelihood, all the parameters in Egs. and
are jointly estimated.

If the ¢g is zero (significantly negative), NFTs are a weak (strong) hedge, given
that the sum of the parameters (X3_;¢;) is not jointly positive, exceeding ¢y (Manuj,
2021)). Statistical significance that at least one of the parameters c1, ¢, or ¢3 is non-
zero implies evidence of a non-linear relationship between NFTs and other assets.
NFTs are a weak (strong) safe haven if the parameters in Eq. are non-positive

(significantly negative).
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Secondly, to identify the effect of a financial crisis, the economic approach is
presented as follows:

by = co + c1D(COVID-19 crisis). (3.4)

While Eq. specifies the model implicitly, Eq. specifies the model explicitly,
analyzing the crisis period. This specification is less statistical but more economical
in that the selection of the crisis period is more arbitrary. In this model, the dummy
variable, D(-), is equal to one if the return overlaps with the COVID-19 crisis period
starting on February 20, 2020, to March 23, 202@, and zero otherwise.

In the COVID-19 crisis period, if the ¢y is zero, NFTs are a weak hedge, while
NFTs are a strong hedge if the ¢y is significantly negative. If the parameters in Eq.
are significantly (insignificantly) negative, NFTs are a strong (weak) safe haven

in the COVID-19 crisis period.

3.3.2 Methods for a diversification effect

For the test of a diversification effect, firstly, we examine the diversification effect
of NFTs on portfolio investing in traditional assets as a preliminary analysis by
analyzing correlation, co-movement, and volatility transmission between the NFT
asset class and the traditional asset class.

Pearson’s product-moment pairwise correlation coefficients between returns on

different assets are used. The correlation coefficients are obtained for all covered

10We use a period covering 20 trading days following [Baur & Lucey| (2010). The authors assume
most of the crisis effects occur in the first 20 trading days (one month) after the start date.

" The economic approach is more arbitrary in selecting the specific periods of crisis compared
to the statistical approach which uses a quantile of the return for a dummy variable threshold.
Therefore, to show the reliability of our original results, we also conduct an analysis involving
longer periods by incrementally advancing the start date until January 12, 2020, following |[Aharon
& Demir| (2021). The results are essentially similar to the original results. The full results are
available upon request.
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periods.
Next, we examine the co-movement in each asset by using the Gerber Statistic

and the corresponding Gerber correlation matrix. The Gerber Statistic, proposed by

\Gerber et al.| (2019} 2021), is a robust co-movement measure for portfolio construc-

tion that ignores extreme movements below a certain threshold while also limiting
the effects of excessive variation. This is intended to deal with outliers and volatility
peaks that can cause traditional correlation coefficients to be distorted. Several stud-

ies used the Gerber Statistic for measuring the co-movement of certain assets (Algieri

et al., [2021} |Zaremba et al., 2021b)). Since NFT returns show excessive fluctuations,

we calculate the Gerber Statistic for robust co-movement measurements.
Lastly, to quantify volatility transmission between NFTs and traditional assets,
we employ the volatility spillover index based on the generalized variance decomposi-

tion methods from a vector autoregressive regression (VAR), proposed by Diebold &

Yilmaz (2009, 2012, 2014) (hereafter, DY). The volatility spillover index is a general

method for measuring the directional connectedness between asset return volatil-

ity. In addition to studies on the interconnectedness of traditional finance markets

(Grobys, 2015; |Symitsi & Chalvatzis|, 2018), studies on the spillover between NFTs

and cryptocurrencies (Dowling, [2021b]) or among cryptocurrencies have been re-

ported (Corbet et al., [2018; Koutmos, [2018).

We also use the enhanced framework of spillover index based on time-varying

parameter vector autoregression (TVP-VAR) proposed by [Antonakakis & Gabauer|

(2017)) using a time-varying covariance structure of [Primiceri| (2005). The spillover

index based on TVP-VAR methods mitigates the DY framework’s shortcomings by

providing robust results against outliers and avoiding the loss of valuable obser-

¥ 2 A 2-T) 8

e

)

I

n



vations. As a result, this method is appropriate for low-frequency data and lim-
ited time-series data (Antonakakis et al., 2020). Moreover, many studies analyzed
the connectedness between the traditional assets by using this TVP-VAR approach
(Antonakakis et al., 2019alb; Gabauer & Gupta, 2018]), and |Aharon & Demir| (2021))
examined the return spillover between returns for NFTs and traditional assets. In
this paper, we calculate the volatility spillover index based on TVP-VAR for NFTs
with small sample size. We briefly investigate two spillover indices between NFTs
and traditional assets.

Secondly, the risk-return effect of each portfolio strategy was scrutinized using
the portfolio selection via the traditional mean—variance framework proposed by
Markowitz (1952). Expected return vector f,; of portfolio p at time ¢ and the co-
variance matrix X, ; of portfolio p at time t using h historical days are estimated.
The portfolio is rebalanced monthly, and only long positions are allowed. Each port-
folio is held for one month (for an out-of-sample test) using j,; and X, ; estimated
by 3-month historical data (for in-sample estimation). The out-of-sample test and
in-sample estimation are conducted in a rolling window method for the entire period.

Table[3.3]shows an overview of each portfolio construction strategy. We construct
five different portfolios, each for two different investment sets (whether NFTs are
included in that portfolio or not). The five strategies consist of an equally weighted
portfolio which is a 1/N naively diversified strategy (EW), a value-weighted port-
folio which is a market capitalization-weighted strategy (VW), a tangency portfolio

(tangency), a maximum return portfolio (maxR), and a minimum variance portfolio

(MVP).
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Table 3.3: Overview of each portfolio construction strategy

Strategy Abbreviation Description

Equal weighted EW Equally weighted portfolio of all asset

Value weighted VW Value-weighted portfolio of all asset

Maximum Sharpe ratio Tangency Portfolio that has the highest Sharpe ratio
Maximum return maxR Single asset portfolio that has the highest return
Minimum variance MVP Portfolio that has the lowest risk

Figure [3.2] exemplarily shows an in-sample risk-return profile of each strategy
for the two possible sets of investments and efficient frontier for March 11, 2020.
Note that the efficient frontier expands in a more efficient direction when NFTs are

included in the portfolio when applied to in-sample.
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Figure 3.2: In-sample risk-return profiles.

Notes. In-sample risk-return profiles are presented by log scale on March 11, 2020. Panel (a) shows an efficient frontier derived
from traditional assets and five portfolio strategies investing in the corresponding investment set (traditional assets). Panel
(b) shows an efficient frontier derived from traditional assets and NFTs and five portfolio strategies investing in corresponding
investment sets (traditional assets and NFTs). Gray circles represent the risk-return profiles of individual assets. Blue, gold,
red, purple, and green squares represent equal-weighted, value-weighted, tangency portfolio strategy, minimum variance, and
max return, respectively.

3.4 Empirical results

3.4.1 Results of a hedge and safe haven effect

We use two econometric models to test a hedge and safe haven properties of NFTs
for extreme market turmoils and the COVID-19 crisis, as introduced in Section|3.3.1

We present empirical results from these models for both time horizons (daily and
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weekly).

Table 3.4: Daily estimation results on the hedge and safe haven properties of NFT's

Hedge 10% quantile 5% quantile 1% quantile
Stock indices (country coverage)
US —0.464*** —0.214 —0.425 —0.307
Canada —0.386*** 0.135 —0.404 —0.200
Australia 0.288*** 0.369*** 0.471%** 1.009***
Japan 1.049*** 1.137%** 1.360*** 2.230***
UK —0.279*** —0.036 —0.169 —0.772
Germany —0.224*** —0.282 —0.019 0.183
Switzerland —0.363*** —0.256 —0.519*** —0.591
Italy —0.489*** —0.392 —0.408 —0.433
Finland —0.051*** 0.016 —0.042 0.010
Netherlands —0.455*** 0.099* —0.196 —1.001
Austria —0.279*** —0.123 —0.320 —0.127
Belgium —0.145*** 0.028 0.020 —0.172
Spain —0.343*** —0.096 —0.243 —0.177
China —0.685*** —0.470*** —0.361*** —0.426
Russia 0.146 0.521 0.632 —0.283
India 0.393*** 0.590*** 0.680*** 0.545
South Korea 0.996*** 1.027*** 1.165%** 2.203***
Stock indices (regional coverage)
‘World —0.322*** —0.080 —0.231 —0.103
Emerging Market 0.394*** 0.510*** 0.491 1.454%**
Commodity
Commodity index 1.052*** 1.145%** 1.233*** 1.382%**
Gold 0.205%** 0.406*** 0.331%** 0.197
Oil —0.132%*** —0.058 —0.219 —0.173
Cryptocurrency
Bitcoin 0.220*** 0.244*** 0.255%** 0.292***
Ethereum 0.077*** 0.080 0.190*** 0.048
Bond
PIMCO index —4.217*** —4.038*** —3.153 —2.688
Currency index
USD index —3.777*** —5.266*** —1.435* —3.830

Notes. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
Model: by = co + 1 D(Totherqio) + c2D(Totherqs) + c3D(Totherqi)

Tables and show the daily and weekly estimation results of the regres-
sion model, respectively, presented in Egs. and The hedging effect is
evaluated by estimates of ¢y, and the total effects of the extreme market movement
are estimated. Specifically, E}ZOCi, E?:()ci, and E?:()Cz’ are calculated for the 10%,
5%, and 1% quantile. Hence, each table contains these estimates to investigate the

relation between NFTs and the stock, commodity, cryptocurrency, bond, and US
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currency in normal and extreme conditions of the market.

In Table for the country coverage stock markets, looking at the estimation
results for the hedge coefficient, NFTs have a strong hedge property for the North
American, European, and Chinese markets, while NFTs show no hedge effect for
Pacific and Emerging Markets (Russia, India, and South Korea) on average. This
trend is similar to the results of regional coverage stock indices, demonstrating that
NFTs have a significant negative correlation with the World index and a significant
positive correlation with the Emerging Market index. For the commodity markets,
it can be seen that commodity index and gold are positively correlated with NFTs,
implying that NFTs strongly co-move with these markets on average. Interestingly,
however, NFTs have a strong hedge effect against the oil market, showing a sig-
nificant negative hedging coefficient. Cryptocurrencies (Bitcoin and Ethereum) are
positively correlated with NFTs on average. This result is hardly surprising, consid-
ering that NFTs are a secondary market derived from the cryptocurrency market
(Dowling, 2021b)). For the bond and currency markets, NFTs have a strong hedge
benefit for the PIMCO and USD indices. We can see that the PIMCO index (-4.217)
and the USD index (-3.777) offer a more negative hedging value compared to the
stock markets, where the range is between -1 and 0, indicating that the hedging
benefits of NFT's vary by asset classes EL

Furthermore, NFTs are also a safe haven against the same markets. Specifically,

for the North American, the European market, with the exception of Switzerland (5%

12We can see relatively large coefficients in the results of Tables and Several coefficients
exceed one. This implies that a 1% change in the corresponding asset price leads to more than a
1% change in NFT price. This is hardly surprising, since the average return and risk of NFTs are
extremely high compared to those of any other asset classes. Thus, beta coefficients are expected
to be large.
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quantile), World index, and oil, NFTs show a weak safe haven effect, while a strong
haven effect is seen for Switzerland (5% quantile), China (10% and 5% quantiles),
bond (10% quantile), and USD index (10% and 5% quantiles). These results suggest
that the relationship between NFTs and asset returns is non-linear in the above
cases. On the other hand, for the remaining markets, NF'Ts show positive coefficient
estimates, implying the nonexistence of a safe haven effect.

Considering the above estimation results of hedge and safe haven together, we
find that the reaction of investors to shocks varies across the asset classes. When
huge shocks occur in the market, some investors in the North American, European,
and Chinese markets and some investors who invest in World, oil, bond, and USD
indices sell some of their assets and buy NFTs. On the other hand, under similar
extreme market disturbance, this trend does not persist in the case of other markets,
considering that these markets are positively correlated with NFTs. In other words,
they may not consider NFTs as protection even though they may sell their assets
during times of market turmoil.

Regarding the hedging role of NF'Ts, the pattern on a weekly basis in Table |3.5
is essentially similar to that on a daily basis, with the exception of the European
markets. The result of weekly return shows strong hedge benefits between NFTs
and the North American, and Chinese markets, bond, and USD index and weak
hedge benefits between NFTs and World index and oil on average (only the hedging
effect of NFTs for the European market vanishes compared to daily results). Con-
trastingly, the Pacific, European, and Emerging Markets, commodity index, gold,
and cryptocurrency co-move strongly with the NFT market on average, showing a

highly significant and positive coefficient.
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Similar patterns are also found in the analysis for the weekly safe haven prop-

erty of NFTs. NFTs act as a safe haven against the same markets. For Canada (5%

quantile), bond (10%, 5%, and 1% quantiles), and USD index (5% quantile), NFTs

show a strong safe haven property, while a weak safe haven effect is seen for the US,

China, World, and oil. On the other hand, the Pacific and Emerging Markets, com-

modity index, gold, and cryptocurrency show positive coefficient estimates, which is

also consistent with the result of daily returns.

Table 3.5: Weekly estimation results on the hedge and safe haven properties of NF'T's

Hedge 10% quantile 5% quantile 1% quantile
Stock indices (country coverage)
US —0.234** 0.093 —0.428 —0.488
Canada —0.398** 0.759 —1.669** —0.554
Australia 0.877*** 0.718 0.592 0.964
Japan 0.985*** 0.980*** —0.112** 1.206***
UK 0.243** 0.223 —1.578*** —0.149
Germany 0.807*** 0.943*** 0.494 1.226***
Switzerland 1.009*** 0.254* —0.330 —1.304
Italy 0.608*** 0.811*** 0.069** 0.709
Finland 0.774*** —0.266** 0.444 0.766
Netherlands 0.384*** 0.566 —0.438 0.336
Austria 0.295%** 0.253 —0.233* 0.411*
Belgium 0.882%** 1.165%** 0.617*** 0.721
Spain 0.995*** 1.483*** 0.869*** 1.336%**
China —0.435*** —0.396 —0.381 0.324
Russia 1.278%** 1.342%** 0.986*** 0.410
India 1.896*** 2.090*** 2.544*** 3.312%**
South Korea 1.062*** 0.866*** 0.986*** 1.223%**
Stock indices (regional coverage)
World 0.126 0.059 —0.019 —0.307
Emerging Market 0.862*** 0.543 0.884*** 1.443***
Commodity
Commodity index 1.380*** 1.822%*** 1.009*** 0.035
Gold 0.115* —0.012 —0.140 0.536
Oil —0.005 —0.188 —0.305 —0.148
Cryptocurrency
Bitcoin 0.633*** 0.766*** 0.920*** 0.667***
Ethereum 0.487*** 0.543*** 0.603*** 0.427***
Bond
PIMCO index —2.741%** —4.560*** —9.563*** 2.705**
Currency index
USD index —5.996*** —4.737 —8.349*** —7.488

Notes. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
Model: by = ¢co 4+ c1 D(rotherqio) + c2D(Totherqs) + c3D(Totherqi)
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Similar to the results of the hedge property, the phase of the safe haven property
on a weekly basis of the European market differs from that on a daily basis. In
the European markets, overall safe haven effects of NFTs in daily data fade when
weekly data is used. Hence, only a few of the markets have negative estimates.
Furthermore, the strength of the safe haven effect decreases in the case of other
stock markets compared to the daily results, implying that the hedging and safe
haven properties of NFTs differ across time horizons.

From these results, we find that the return frequency matters to the investors in
the stock markets, especially the European markets. This finding implies that the
view of investors in the stock markets, particularly the European markets, about
the strength of NFTs’ protection role against losses from market stress varies across
two data frequencies. Two main plausible explanations for this tendency are as fol-
lows. Firstly, it is demonstrated that extreme fluctuations of NFT returns exist in
daily data, as reported in the study of Dowling| (2021b)), revealing that this issue is
mitigated by using weekly returns to some extent. As a result, the daily fluctuation
of NFTs may affect the estimation of the hedge and safe haven properties of NFTs.
Secondly, as revealed in the research of [Umar et al. (2022), who conducted an em-
pirical analysis to investigate the pairwise coherence between NFTs and traditional
assets, risk absorption capacities of NF'T's vary between short-run and long-run time
horizons. The authors confirm that NFT's offer mainly short-run risk absorption ca-
pacity against other asset classes. This result is consistent with our findings in that
the strength of a hedging and safe haven effect of NFTs against stock markets with
daily data becomes weak on a weekly basis.

We summarize the above results as follows. NFTs are a hedge for the North
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American, European (only on a daily basis), Chinese, World, oil, bond, and US
currency markets. NFTs are also a safe haven for these markets. The strength of
these effects varies across asset classes. NFT's do not act as a hedge or safe haven for
the Pacific and Emerging markets, commodity index, gold, and cryptocurrency. The
time horizon matters to investors in stock markets, especially the European markets.
The hedge (safe haven) role of NFTs for the Europe market, as shown in the results
on a daily basis data, vanishes (weakens) in the results on a weekly basis data. In
line with this finding, the strength of hedge and safe haven roles of NFTs varies
across the data frequency, revealing that the long-term strength decreases compared
to the short-term strength.

Table [3.6] shows the daily and weekly estimation results from the model spec-
ified in Eq. [3:4] The results are similar to that in Tables [3.4] and [3.5] The daily
hedge effects of NFT's are shown in the North American, European, Chinese, World,
Oil, Bond, and the USD index. The total effect estimates for the crash during the
COVID-19 crisis indicate a negative correlation between NFTs and these markets,
except for Germany. Similar to the result in Tables|3.4] and these hedge and safe
haven properties weaken when we consider the weekly results in the stock markets.
The overall hedge effects vanish while the overall safe haven effects decrease in the
European markets, suggesting that the time horizon also matters to the investors
during a crisis period.

The pronounced difference of these results compared to that in Tables and
3.5 is that the strength of the safe haven effects of NFTs during the COVID-19
crisis is larger for bond (daily) and USD Index (daily and weekly), although that of

NFTs is similar for any other assets, implying that NFTs can be a more effective
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refuge against the loss from bond and USD index than from other markets during

the COVID-19 crisis compared to times of market turmoil.

Table 3.6: Estimation results on the hedge and safe haven properties of NF'Ts during

the COVID-19 crisis

Daily Weekly
Hedge COVID-19 crisis Hedge COVID-19 crisis
Stock indices (country coverage)
USs —0.455%** —0.305 —0.174 —1.570***
Canada —0.324*** —1.230*** —0.257 —3.190***
Australia 0.284*** 0.982*** 0.902*** —0.097**
Japan 1.017*** 2.448*** 0.978*** 0.436**
UK —0.243*** —0.844%*** 0.234** —1.278**
Germany —0.231*** 0.226** 0.805*** 0.830***
Switzerland —0.338*** —1.028*** 1.016*** —1.785%**
Italy —0.476*** —0.616*** 0.617*** 0.226*
Finland —0.045** —0.087 0.739*** 0.237
Netherlands —0.401*** —0.920*** 0.392*** —0.460**
Austria —0.253*** —0.661*** 0.403*** —1.126***
Belgium —0.124*** —0.293 0.904*** 0.365**
Spain —0.314*** —0.557*** 1.020%** 0.989***
China —0.669*** —0.499*** —0.439*** —0.034*
Russia 0.273*** —1.915%** 1.321%** —0.354**
India 0.373*** 1.358*** 1.878*** 3.572%**
South Korea 0.942%** 2.876%** 1.064*** 0.822%**
Stock indices (regional coverage)
World index —0.312%*** —0.166 0.164* —1.117***
Emerging Market Index 0.362%*** 1.723%** 0.857** 0.831%**
Commodity
Commodity index 1.065*** 1.170%** 1.434%** —0.634**
Gold 0.213*** 0.418*** 0.105* —0.034
Oil —0.116*** —0.521*** 0.010 —0.952%**
Cryptocurrency
Bitcoin 0.223*** 0.210%*** 0.649*** 0.591%***
Ethereum 0.091*** —0.192*** 0.497*** 0.350***
Bond
PIMCO index —3.904*** —9.132%** —3.188*** —1.230
Currency index
USD index —3.478*** —10.74*** —5.869*** —10.43***

Notes. *** ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
Model: by = co + ¢1 D(COVID-19 crisis)

Our main findings in Section [3.4.1] are in line with the study of[Aharon & Demir

(2021). Aharon & Demir| (2021)) demonstrated in their study that the spillover effect

of NFTs against traditional assets is affected largely by NFTs themselves, compared

to other assets, which indicates the possibility of diversification, hedge, or safe haven

effect of NFT's against these traditional asset classes. Consistent with this finding, we
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confirm that NFTs act as a protection against the loss of traditional asset markets.
This protection capability of NFTs against losses in these markets on average or
under market stress may be attributed to the demand for NFTs from investors

who participate in corresponding markets during times of market turmoil and the

COVID-19 crisis.

3.4.2 Results of a diversification effect
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Figure 3.3: Pearson’s correlation matrix and the Gerber Statistic matrix.

Figure 3.3/ shows a Pearson’s correlation matrix (Panel (a)) and the Gerber Statistic
matrix (Panel (b)) between the return of each asset involved over the entire period.
While correlations between traditional asset classes are high, correlations between
NFTs and traditional assets are low, ranging between -0.2 and 0.2. This tendency is

also confirmed by the Gerber Statistic matrix results. The small values of the Gerber
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Statistic matrix between NFTs and traditional assets imply low co-movement levels
between the two asset classes.

Panels A and B in Table report the volatility spillover effects based on DY
and TVP-VAR between NFTs and traditional assets in the entire period. The DY
spillover index from and to NF'T markets is lower than that from and to traditional
markets, implying that NFTs are distinct from traditional asset classes in terms of
volatility transmission. Furthermore, the spillover index based on TVP-VAR pro-
duces consistent results, although the spillover index of NFT's to others rises to the
level of the US Dollar index or gold when compared to the DY spillover index.

Considering the results of the preliminary analysis, one may conclude that NFT's
have the potential to provide diversification benefits as a new asset class. Hence, it

suggests the possibility of achieving a well-diversified portfolio.

Table 3.7: Volatility spillover effects between NFTs and traditional assets

Panel A: DY Spillover index

sand decen cpunk BTC ETH SP500 WI EI BOND USDI CMDT GLD FROM
sand 75.3 0.44 1.86 2.0 0.48 4.03 4.44 2.68 1.11 1.55 2.72 3.38 24.7
decen 2.07 83.03 229 0.67 4.72 1.09 0.89 1.58 0.67 0.67 1.37 0.96 16.97
cpunk 1.26 1.8 75.4 2.76 4.09 2.06 2.52 2.48 0.76 4.91 0.46 1.51 24.6
BTC 1.21 1.7 1.89 39.86  26.9 4.35 5.27 5.28 1.74 2.3 8.6 0.9 60.14
ETH 0.83 1.41 2.27 27.17 47.83  3.96 4.41 3.6 0.77 1.56 5.36 0.83 52.17
SP500 0.28 0.07 0.47 5.67 5.07 28.43 26.05 10.51 5.59 2.66 12.75 2.45 71.57
WI 0.32 0.11 0.56 6.28 5.17 26.94 25.79  11.1 5.5 3.01 12.83 2.38 74.21
EI 0.18 0.1 0.79 7.48 6.61 20.12 20.66 19.72  5.36 2.96 14.75 1.24 80.28
BOND 0.18 0.08 1.46 10.37 6.97 18.16 19.37 13.91 11.51 7.03 8.89 2.09 88.49
USDI 0.18 0.07 2.39 12.15 9.8 15.57 16.69 11.09 6.1 13.62  10.21 2.13 86.38
CMDT 1.3 0.5 0.32 2.55 2.71 16.73 14.0 7.11 1.8 4.89 46.68 1.41 53.32
GLD 0.65 1.32 1.67 1.73 1.69 6.0 6.21 7.01 4.73 5.34 2.91 60.74  39.26
TO 8.47 7.6 15.98 78.83 74.21 119.01 120.51  76.35  34.13 36.87 80.85 19.27  Total
In. own 83.78 90.63 91.37 118.69  122.04  147.44 146.3 96.07  45.64 50.49 127.53 80.02 56
Panel B: Spillover index based on TVP-VAR

sand decen cpunk BTC ETH SP500 WI EI BOND USDI CMDT GLD FROM
sand 81.52  3.84 4.24 1.72 2.05 0.91 1.14 1.71 0.92 0.58 0.96 0.41 18.48
decen 4.73 83.48 295 1.25 3.03 1.26 0.89 0.49 0.28 0.39 0.83 0.43 16.52
cpunk 5.33 3.73 65.46 3.80 3.91 4.52 4.44 2.32 2.46 1.42 1.32 1.29 34.54
BTC 3.92 2.51 3.49 43.24  29.16 3.35 4.35 3.35 1.07 3.18 1.02 1.38 56.76
ETH 2.43 4.06 3.58 30.46 46.92 2,13 2.74 2.17 0.81 2.24 0.86 1.60 53.08
SP500 1.48 3.70 2.08 2.47 2.41 24.78 24.20 13.81 6.45 2.37 13.18 3.08 75.22
WI 1.73 3.29 2.06 2.81 2.53 23.35 24.30 1446 6.86 2.43 13.05 3.13 75.70
EI 4.34 2.60 1.66 5.72 4.21 15.77 17.91 24.08  6.76 3.02 10.46 3.47 75.92
BOND 1.94 1.60 2.37 5.32 4.65 11.78 13.39 10.78  25.88 4.95 10.07 7.28 74.12
USDI 2.18 2.34 2.60 6.42 5.32 10.00 11.96 9.73 16.06 20.82  5.69 6.86 79.18
CMDT 2.13 3.51 1.94 4.99 4.39 15.76 16.42 10.37  5.34 1.59 30.08 3.49 69.92
GLD 2.21 2.97 1.67 4.30 4.19 7.55 8.55 5.64 9.75 4.20 8.52 40.44  59.56
TO 32.42 34.15 28.65 69.26 65.85 96.38 105.99  74.82  56.74 26.37 65.95 32.44  Total
In. own 113.94  117.62  94.11 112,50 112.77  121.16 130.28  98.90  82.62 47.19 96.03 72.88 57.42

We provide empirical results by constructing portfolios investing in individual
NFTs and traditional assets using five different strategies. We attempt to demon-

strate the impact of the diversification effect of NFTs as distinct individual assets
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on the portfolio in this experimental setting.

We evaluate each strategy’s out-of-sample performance using the following cri-
teria: (i) out-of-sample portfolio mean return and standard deviation, (ii) out-of-
sample Sharpe ratio (SR), and (iii) certainty equivalent (CEQ) return.

CEQ return is the rate at which an investor with quadratic utility is willing to
accept rather than invest in a particular risky portfolio. CEQ return is calculated
as follows:

CEQ,=E(R,) — = - 0> (3.5)

p?

b2

where 7 is the risk aversion of investors. We use v = 1 following the prior research

of DeMiguel et al.| (2009)).

Table 3.8: Out-of-sample empirical results of each portfolio strategy using individual
NFTs

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: without NFTs
EW 0.516 0.295 -2.246 10.83 1.749 0.472
VW 0.738 0.507 -1.297  4.555 1.454 0.609
Tangency 0.143 0.179 -0.881 6.839 0.798 0.127
maxR 1.657 1.06  -1.495 5.302 1.564 1.096
MVP -0.012 0.084 -1.207  20.056 -0.144 -0.016
Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel B: with NFTs
EW 1.369 0.644 -0.098 0.48 2.126%** 1.162
VW 0.7384 0.508 -1.298  4.554 1.455%** 0.61
Tangency 0.24 0.248 -0.96 5.043 0.969***  0.21
maxR 0.243 4.678 0.131 0.281 0.052* -10.698
MVP -0.0123 0.089 -1.19 19.746  -0.138***  -0.016

Notes. We apply |Ledoit & Wolf] (2008)’s test where the null hypothesis is no differences in per-
formance in SR of each strategy with NFTs from that in strategy without NFTs. In the test, the
robust statistical inference method is performed to test the null hypothesis. *** ** and * mean
significance at the 1%, 5%, and 10% level, respectively. The covered period is from December 4,
2019, to June 9, 2021, on a weekly basis.

In Table 3.8 Panels A and B report out-of-sample results of each portfolio strat-
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egy without and with NFT's as a new asset class on a weekly basis. The mean return
of the maxR portfolio, 1.657, has the highest value in Panel A, while the MVP port-
folio has the lowest risk, 0.084. The EW portfolio has the highest SR of all strategies,
1.749. The CEQ of the maxR portfolio without NFT's outperforms the CEQ of other
strategies. In Panel B, the EW strategy outperforms the others in terms of mean re-
turn (1.369), and the MVP strategy outperforms the others in terms of risk (0.089).
EW portfolio shows the highest SR, 2.126, compared to other strategies. CEQ of
EW, 1.162, also exhibits the highest value.

Considering Panels A and B in Table 3.8 together, including NFTs in the invest-
ment basket dramatically reduces the maxR portfolio’s SR and CEQ. The maxR
strategy involves using a single asset that has the highest return compared to other
assets in investment decisions without taking the level of risk into account, so choos-
ing a NFT asset as a single investment assetlg Hence, this causes deterioration in
risk-adjusted measures, SR and CEQ. This tendency is revealed in the result of the
standard deviation of maxR strategy with NFTs, 4.678, which shows an extremely
high value of risk.

MVP portfolio exhibits only a small performance improvement in SR and minor
change in CEQ. MVP pursues the lowest risk investment strategy, resulting in the
exclusion of NFTs, a highly volatile asset, from its portfolio. Similarly, the VW
portfolio shows little improvement in SR and CEQ because the inclusion of NFTs in
its portfolio is very small due to NFTs’ low market capitalization relative to other
traditional assets.

SR and CEQ of EW and tangency portfolio strategies with NFTs largely improve

13We checked that the maxR strategy selects one of the NFTs as a single investment asset at
every rebalancing point.
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compared to strategies without NFTs. The results show that the SR and CEQ
of the EW portfolio and the tangency portfolio are improved by 0.377 and 0.171,
respectively, and by 0.69 and 0.083, respectively, when NFTs are included. In terms
of SR, we use the Ledoit & Wolf| (2008) method to test whether the difference in
performance between strategies is statistically significant or not, depending on the
inclusion of NFTs. As shown in Panel B, the SR of all strategies significantly differs,
implying that the inclusion of NFTs is highly beneficial to a given portfolio in terms
of diversification.

Interestingly, irrespective of the inclusion of NFTs, the EW portfolio outper-
forms the rest of the strategies on a weekly basis. This is consistent with [DeMiguel
et al. (2009)’s research, which discusses a superior risk-return pattern of an EW
strategy compared to optimized strategies, revealing that an inaccurate estimation
of correlation increases the out-of-sample error of optimized strategy with limited
observations. It is worth noting that including individual NFTs in the investment
basket enhances the performance of the EW strategy to be greater than that of the
tangency portfolio. We take this as a strong hint that excessive fluctuation of return
on individual NFTs makes the correlation estimation for NFT-included portfolio
unstable.

In Figure Panels (a) and (b) display a risk-return perspective of every single
asset and portfolio. As illustrated in Panel (a), NFTs, cryptocurrencies, and tra-
ditional assets form three clusters: high-risk, mid-risk, and low-risk. In Panel (a),
NFTs gather in the northeast of the risk-return plot, while traditional assets gather
in the southwest. Notice how the position of the squares in Panel (b) changes from

X-shaped to square-shaped for each strategy. The addition of NFTs to a portfolio
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shifts it in the direction of higher risk and higher return. Except for the maxR port-
folio, the slopes of other strategies increase when NFTs are included, which implies

that the strategies are improved in a more efficient direction.

® - - . EW
. 1.50 vw
o
4 - = MVP
c 125 = maxR
= = tangency
g’ T 100 x  EW w/o NFT
« ) -~ 075 VW w/o NFT
S2 / -/ Cryptocurrencies 2 ~ MVPlwfo NFT
s 0.50 * < maxR w/o NFT
= .
L2 < tangency w/o NFT
! - NFTs
Traditional Assets 0.25 . -

0 000 =

0 1

2 3 2 3
Standard Deviation Standard Deviation

(a) Single assets (b) Portfolios
Figure 3.4: A risk-return perspective of every single asset.

Notes. These figures show a risk-return perspective of every single asset (Panel (a)) and portfolios (Panel (b)). In Panel (a),
gray circles correspond to single individual assets. In Panel (b), squares and X-shaped represent each portfolio strategy with
and without NFT's.

However, one can question whether the portfolio performance of our results is a
consequence of the properties of selected NFTs. Therefore, to present the reliability
of our results in Table |3.8] we use the aggregate NFT index as a representative
of the entire NFT markets by averaging each NFT priceﬂ similar to |Aharon &
Demir| (2021)). In this experimental setting, we can examine the impact of the entire
NFT market’s diversification benefit on the portfolio as a single index rather than
individual NFTs. To avoid unreliable results due to excessive missing values, we drop
the data during the early period, so the data sample is from March 5, 2018, to June

9, 2021. We have 5,239,211 total NFT trades.

1 We used 165 different NFTs for calculating the aggregate NFT index at the time of writing.

54 - .
] .-;rx% -‘“i- ]H i



Table 3.9: Out-of-sample empirical results of each portfolio strategy using aggregate
NFT index

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: without NFT
EW 0.19 0.244 -1.609 9.051 0.781 0.161
VW 0.256 0.383 -1.096 6.331 0.668 0.183
Tangency 0.077 0.119 -1.063 18.163  0.647 0.07
maxR 0.628 0.813 -1.088 6.708 0.773 0.298
MVP 0.031 0.069 -2.032 43.696  0.454 0.029
Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel B: with NFT
EW 0.454 0.462 -0.056  1.962 0.981***  0.347
VW 0.256 0.383 -1.096 6.33 0.669***  0.183
Tangency 0.115 0.141 0.54 12.194  0.815*%**  0.105
maxR 2.287 3.545 0.355 4.224 0.645* -3.997
MVP 0.03 0.07 -2.024 44.031 0.428***  0.028

Notes. We apply [Ledoit & Wolf| (2008))’s test. The covered period is from March 5, 2018, to June 9,
2021, on a weekly basis.

In Table Panels A and B report out-of-sample results of each portfolio strat-
egy without and with an aggregate NFT index on a weekly basim When an
aggregate NFT index is included in the investment basket of the portfolio, the SR of
0.781 and CEQ of 0.161 by EW strategy in Panel A increase to 0.981 and 0.347 in
Panel B. A similar trend can be seen in the SR and CEQ of the tangency portfolio

strategy. When an aggregate NFT index is included in the VW and MVP strategies,

15A preliminary analysis using an aggregate NFT index was also conducted. The results are
essentially similar. The full results are available upon request.

6The issue of extreme fluctuation of daily returns on NFTs can be addressed to some extent by
using the data of all trades in the entire NFT markets. As a result, portfolio analysis on a daily
basis can be performed. The results are shown in Appendix Table We discover that analysis
yields similar results. For weekly and daily covered periods, the total number of observations for
each asset is 164 and 818, respectively.

YPortfolio analysis only covers December 4, 2019, to June 9, 2021, since earlier data is not
available. However, portfolio analysis using the aggregate NFT index covers March 5, 2018, to
June 9, 2021, which includes the crisis caused by the COVID-19 pandemic. As a result, to test the
consistency of our main argument, we presented the results of portfolio analysis using pre-COVID-19
periods and during COVID-19 periods in Appendix Tables and E The results are essentially
similar to those from full periods in Table [A2] although the market conditions between the two
periods are fundamentally different.
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there is little change in SR and CEQ. The SR and CEQ of the maxR strategy in
Panel B are lower than that in Panel A. Irrespective of the inclusion of NFT, the
EW portfolio outperforms the rest of the strategies on a weekly basis, similar to
Table All the above results are consistent with the results of individual NFTs,
confirming that our main results are robust and reliable.

Taking the results of Section together, our empirical results suggest that
the inclusion of NFTs as a new asset class in portfolios has a diversification effect,
thus improving the diversified portfolio with improved risk-adjusted performance
and efficiently augmenting investment opportunities for investors. We consider these
findings to be evidence that the inclusion of NFTs improves a target portfolio and
that the EW portfolio is the best choice for building an NFT-included portfolio on

a weekly basis.
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Chapter 4

Volatility forecasting for portfolio insurance
strategy

4.1 Chapter overview

The portfolio insurance strategy is one of the most widely used dynamic asset al-
location frameworks. It helps limit the downside risk by specifying a risk tolerance
level for determining the portion of a risky asset (Bertrand & Prigent) 2001). In
other words, it is a popular strategetic allocation model that aims to protect the
risk and hedge the loss of underlying assets in market stress conditions. Due to its
flexibility in implementation and hedging ability, this portfolio insurance strategy
has globally attracted enormous attention among institutional and retail investors
for a long time in the financial system (Dichtl & Drobetz, 2011). Many researchers
have also obtained great interest; thus, various studies on portfolio insurance strate-
gies have been reported. First of all, diverse forms of portfolio insurance strategies
are proposed, including synthetic put portfolio insurance (Leland & Rubinsteinl,
1988; Rubinstein & Leland, [1981)), stop-loss portfolio insurance (Bird et al., [1988;
Rubinstein), (1985), constant proportion portfolio insurance (Black & Jones, |1987,
1988; Black & Perold} 1992; [Perold & Sharpe, 1988)), and time-invariant portfolio
protection (Estep & Kritzman, |1988) strategies.

In another strand of literature, researchers investigated the performance eval-
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uation that is adequate to the structure of portfolio insurance strategy to address

the evaluation problem caused by its skewness, non-normality, and asymmetry

maert et al., 2009; Bertrand & Prigent, [2011; Leland, 1999; |Zieling et al., [2014).

Furthermore, other researchers have reported uncovering the rationale of preference

of this strategy, taking account of investor’s utility on portfolio choice in portfolio

insurance strategy (Benninga & Blume, |1985; Dichtl & Drobetz, 2011; Gaspar &|

2021)). Based on these various portfolio insurance strategies and performance

measures, empirical evidence of outperformance of portfolio insurance strategies in

the global financial system has been reported (Agié¢-Sabetal, 2016; Agic-Sabetal, 2017;

Annaert et al.,[2009; Bertrand & Prigent), 2011} Dehghanpour & Esfahanipour], 2018},
Dichtl & Drobetz, 2011} Dichtl et al., 2017} |Garcia & Gould, [1987; [Jiang et al., 2009}

LLee et al., 2011; Zieling et al. [2014)). These studies support its popularity among

practitioners, corroborating the arguments of Bird et al. (1990). The authors men-

tioned that portfolio insurance could be considered a suitable alternative strategy
for investors who want their portfolio value to be directly hedged by limiting the
downward risk while benefiting from upward participation.

Despite its large popularity provided by numerous advantages, the portfolio in-
surance strategy, in particular, the synthetic put strategy, is widely known to have
a critical problem in its implementation. As an original version of the option-based

portfolio insurance (OBPI) strategy, a portfolio strategy whose position is protected

by the put option is called protective put (Figlewski et al.l 1993 |Pozen, 1978)). How-

ever, obtaining a protective put requires sufficient put options with liquidity, strikes,
and maturity for the underlying asset in the market. To mitigate the limitation of the

insufficiency of the put option, a novel portfolio insurance strategy that replicates
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the position of a protective put, the so-called synthetic put strategy, is introduced
by [Leland & Rubinstein| (1988)); Rubinstein & Leland (1981)). This strategy creates
the position of a protective put portfolio synthetically by dynamically adjusting the
weight of risky and risk-free assets based on the Black-Scholes option pricing model.
Even though this strategy offers flexibility to an investor, the dependency of the
Black-Scholes model, which requires the estimation of input parameters, particularly
volatility estimation, makes the insured portfolio unstable and, thus, implementa-
tion difficult in real-world market conditions. That is, the synthetic put strategy fails
in creating a synthetically precise put option due to its estimation error of volatil-
ity because its estimation is a complicated problem in the actual market (Chu &
Freund), [1996)).

This estimation error issue in the synthetic put strategy has been addressed
by a few researchers. Hill et al| (1988)) examined the volatility estimation error
problem and demonstrated that this causes a serious problem in terms of mispricing.
Rendleman Jr & O’Brien| (1990) investigated the effect of volatility misestimation
on synthetic put strategy in terms of the total cost of misallocation effect as well
as mispricing effect. They found that the misestimation of volatility can provide
a substantial impact on the terminal payoffs of a synthetically insured portfolio.
Zhu & Kavee (1988) studied the performance of synthetic put strategy in terms
of protection level error provided by volatility estimation error, using the standard
GBM simulation. They confirmed that sustaining the floor value to achieve the target
protection level requires considerable cost in terms of volatility misestimation. In this

study, we focus on the synthetic put strategy in terms of the impact of volatility
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estimatiorﬂ A large amount of studies on portfolio insurance strategy after the

studies of Hill et al.| (1988); Rendleman Jr & O’Brien (1990); |Zhu & Kavee| (1988)

have been done and, most of these studies all refer to the adverse effects of this
misestimation. However, no one reported more specific and advanced studies related
to the effect of this volatility misestimation using more closer to real-world data
rather than only using simple simulated data.

In the meantime, countless studies proposed novel volatility forecasting models

which are widely used in the global financial market, such as GARCH-type (Boller-

slev,, |1986; |Glosten et al.,|1993; [Nelson, [1991)), HAR-RV-type (Andersen et al., 2007}

2009), and machine learning-type (Bucci, |2020; D’Ecclesia & Clementi, 2021;

Dunis & Huang], 2002} [Khashanah & Shaol| 2022} Kristjanpoller & Minutolol 2015}

2019bl 2022} [Roh, 2007; [Santamaria-Bonfil et al., 2015} [Sun & Yul 2020} Xial
, 2022)) models until now. In the context of volatility forecasting literature,

many researchers have justified conducting their research on volatility forecasting
by explaining the importance of volatility estimation in option pricing and accu-
rate hedge strategy implementation. To the best of our knowledge, however, there is
no study investigating the impact of volatility forecasting as estimators for the in-
put volatility parameter in synthetic put strategy using various existing forecasting
modeld?]

Especially among volatility forecasting models, machine learning models have

elicited substantial attention from academia for time-series forecasting due to their

ITherefore, in this chapter, synthetic put strategy and portfolio insurance strategy will be used
alternately with the same meaning.

?Even if there are studies on synthetic put strategy, most of the studies (Annaert et al. [2009;
[Dichtl & Drobetzl [2011)) report only the results of synthetic put strategy with the naive volatility
estimation (e.g., the standard deviation of asset return).
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excellent predictability. Furthermore, without considering explicit formulation or
assumption for underlying processes, these machine learning models are success-
fully applied to traditional financial tasks by implicitly training non-linear function
form and extracting the complex pattern from data via learning procedure. There-
fore, many researchers have conducted empirical studies comparing the traditional
econometric models (GARCH-type and HAR-RV-type) and machine learning mod-
els in a variety of time-series tasks in a financial context, revealing the superiority
of machine learning models. However, no one addresses these types of forecasting
methods jointly in portfolio insurance literature.

Hill et al.|(1988); Rendleman Jr & O’Brien|(1990) did not address the protection
level error directly. Rendleman Jr & O’Brien (1990)) and Zhu & Kavee (1988) as-
sumed constant volatility rather than variable volatility from the forecasting model.
They also used only simulation data instead of real-world data. Zhu & Kavee| (1988)
only conducted simulation using the standard GBM rather than GBM with a jump
model closer to realistic market assumption. Simply, the literature on the impact
of volatility misestimation is limited. Motivated by these limitations, we want to
address and uncover the scope of the shade. For this, we investigate three research
questions as follows. First, is there any clear degradation in portfolio insurance
strategy performance due to volatility misestimation even under more realistic con-
ditions closer to the real world? Second, can a significant performance improvement
be achieved in a synthetic put portfolio insurance strategy if accurate estimation
is performed through various volatility forecasting models when using real-world
data? Finally, how do the traditional time series forecasting models compare to ma-

chine learning methods, and what significant differences are there? Therefore, in this
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study, we investigate the comprehensive and extensive empirical study of synthetic
put portfolio insurance strategies using various volatility forecasting models to fill
our research gap.

Our findings in Monte Carlo simulation results using the standard GBM with
and without jump phenomena indicate the existence and the effect of volatility mis-
estimation on the protection accuracy of the synthetic put strategy. The impact of
volatility estimation on the performance of portfolio insurance becomes more pro-
nounced as market volatility increases and can be further strengthened by the jump
phenomenon. These findings imply the importance of a more accurate volatility
forecasting model. This issue caused by volatility estimation errors is also confirmed
from the statistical point of view in real-world data. Interestingly, we find that the
protection error of portfolio insurance positively correlates with the accuracy of the
volatility forecasting model in terms of ranking correlation, implying a statistically
direct link between them. We also find that other sophisticated volatility forecast-
ing models are always superior to naive methodologies used as general conventions
in portfolio insurance literature. In particular, machine learning model, especially
XGB, consistently outperforms other traditional forecasting models regardless of
market conditions. Overall, these results suggest that investors can employ a tai-
lored investment strategy in implementing a synthetic put strategy based on our
findings on the performance of forecasting models. From our findings, we attempt
to shed light on the existence, impact, and improvement of volatility estimation er-
ror on the synthetic put strategy in terms of empirical results of various volatility
forecasting models, giving investors valuable alternatives to a naive way.

Chapter [ is organized as follows: Section describes the data. Section [4.3
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introduces the details of the synthetic put portfolio insurance strategy and related
performance measures. Section [£.4] explains the concept of various types of volatility
forecasting models. Section presents the experimental design and procedure.
Section discusses the empirical results of portfolio insurance strategies in terms

of volatility estimation error and forecasting based on GBM and real data.

4.2 Data
4.2.1 The Monte Carlo simulation data

In this study, we analyze by using Monte Carlo simulations. For this, we utilize two
different simulations under two assumptions about the stock price process; standard
geometric Brownian motion (GBM) and GBM with jump process.

In the standard GBM setup, the log return of risky asset follows a Brownian
motion with linear drift, and constant parameters (u and o) are assumed. This
setup postulates unrealistic stock markets, neglecting the effect of autocorrelation,
skewness, and heavy tails, which are observed in actual financial data. Despite this,
we can confirm the impact of precise volatility estimation on the performance of
synthetic put strategy by using true volatility that we can explicitly pre-specify and
thus be known in advance. We assume that the price of the risky asset (S;) follows

a diffusion process following a stochastic differential equation is:
dS; = St(,udt + O'th) (41)

where p is the expected return, o is the volatility, Wy is a standard Brownian motion,

and dW; is a Wiener process. The period is [0, T|. The solution of Eq. can be
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obtained as:

Sy = Spel2o)(T—t)+oWe (4.2)

Dimson et al.| (2006) estimated the excess return to be approximately 4.5% per
year in their study on the developed stock markets covering periods of more than one
hundred years. Furthermore, the authors argued that the long-run return volatility
in the stock market is roughly 20% per yearﬂ Following these findings, by adding a
4.5% risk-free rate to the equity risk premium, in their portfolio insurance simulation
study, Dichtl & Drobetz| (2011) obtained the expected annual return on the stock
market as 9%. Then, they use 9% expected annual return and 20% annual volatility
as values of their pre-specified parameters of GBM simulations. Following Dichtl &
Drobetz (2011)), we use this 9% as the input parameter for our simulation as the true
market expected returnsﬂ In terms of volatility, we analyze the influence of volatility
estimation versus true volatility in a systemic way by using four different economic
scenarios; 10%, 20%, 30%, and 40%. We set these values as our true volatility. Hence,
the corresponding parameters in our numerical example we use are T' = 1, r = 4.5%,
So =1 p=9%, and o = 10%, 20%, 30%, and 40%.

On the contrary, in GBM with a jump process setup, the log return of risky asset
follows a Levy process with double-exponential jumps. This model, introduced by
Kou & Wang| (2003} 2004), incorporates two independent components; a diffusion
component and a jump component. A diffusion component corresponds to that of

standard GBM. In contrast, a jump component involves the jump times and sizes.

3Benningal (1990); [Figlewski et al.| (1993) also use 20% as a value of volatility in their portfolio
insurance studies (Dichtl & Drobetz} 2011)).

4We also conducted a simulation using 11.5% as expected return in the high-risk premium state
as used in Dichtl & Drobetz (2011). The results are essentially similar to the results in the 9%
scenario. To maintain our main argument clearly, we omit to report these results. The full results
are available upon request.
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The jump times follow exponential distribution (Poisson process), and the jump
sizes follow double-exponential distribution (Bertrand & Prigent, 2011). The price

of the risky asset (Sy) following the stochastic differential equation is assumed:

AS
dS; = Sy(ud; + cdW; + d(ZfV;ITT”
Ty

) (4.3)

where N; is a Poisson process with intensity A > 0 and ASiT" € (—1,00) denotes

n

relative jumps which are i.i.d. The double-exponentially distributed random variable

Zn =log (1 + AS‘S;T") has probability density function as follows:
fZ(Z) =p, - 7716_77121{220} +q. - 7726772,211{z<0}7 m > 17 Ny > 07 (4'4)

where p, and ¢, (p, + ¢. = 1 and p,, g, > 0) represent the probabilities of moving
upside and downside, respectively. In other words, z, = £ with probability p, and
2 = & with probability ¢., where £, £~ are exponentially distributed with means

1/n1,1/n2, respectively. The solution of Eq. can be obtained as:

ASy,

L62)(T—t)+o W+ £, log (14 5 1m)

S, = Spe” ST (4.5)

where Wy, Ny, and Z,, are independent. Similar to the standard GBM setup, we four
different volatility scenarios. The numerical example parameters we use are T' = 1,
r=4.5%, Sy =1 p=9%, o = 10%,20%, 30%, and 40%, m = 182.08, 1y = 172.86,
A = 1.4615, p. = 0.496, and ¢, = 0.5047]

5We use the parameters m = 182.08, n2 = 172.86, A = 1.4615, p. = 0.496, and ¢q. = 0.504,
following the research of Ramezani & Zeng (2007) on the estimations of the S&P 500 Composite
index during past 40 years.
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4.2.2 The real-world data

As for our real-world data simulation, we use the S&P 500 index as our base data
covering the period of 4 January 2000 to 19 May 2022. We obtain our data from
the Oxford-Man Institute’s Quantitative Finance Realized Libraryﬂ A total of 5,610
daily observations are included. We use the 3-month Treasury Bill (T-bill) Rate as
a proxy for the risk-free rates.

Unlike the GBM simulation, where we know about the true return volatility, in
actual financial data, the volatility measures are unobservable; thus, true volatility is
unknown. Therefore, it is difficult to evaluate the performance of volatility estimation
or forecasting tasks. A conventional solution to this issue is to set an appropriate
proxy for the true volatility and conduct the performance evaluation by comparing
estimated or forecasted volatility to this risk proxy. As a widely used alternative to
dealing with this issue, many related studies (Bentes, |2015; [Byun & Chol 2013; |Liu
et al., 2019, 2020a; Mittnik et al., 2015; [Wei, 2012|) use realized variance as a risk
proxy of actual volatility from a statistical point of view (Andersen & Bollerslev
1998a).

Realized variance, proposed by |Andersen & Bollerslev (1998b), is a widely used
effective proxy for a variance of an asset return. Realized variance at a specific day ¢
(RV}) is defined as the sum of squared intra-day high-frequency return data shown

as follows:
M

RV, =Y rf;, (t=1,..,T), (4.6)
j=1

where M is the number of high-frequency observations and 7;; denotes the j-th

intraday return of t-th day. As reported by various related studies, this realized

Chttps://realized.oxford-man.ox.ac.uk/data

66 1



variance is widely known to be a better measure of the ex-post variance than the

squared returns, which is a poor approximation of actual volatility (Andersen &
Bollerslevl, [1997; [Andersen et al., 2001, [2003)). We use the closing price of real data

at 5-minute intervalsﬂ to obtain log returnsﬂ Consequently, we calculate the daily
realized variance by summing obtained squared log return.

The limitation involved in RV, in Eq. is that this measure fails to consider

the effect of overnight returns. To address this limitation, Hansen & Lunde| (2005)

proposed to use the scale parameter to capture this overnight effect as follows:
RV, =c- RV}, (4.7)

where the scale parameter c is given by:

N2 /N

= 2T/ 4.8
“~ SNRV,/N (48)

Hansen & Lunde| (2005)) mention that this scaled RV is an approximately unbiased

estimator, and many studies also apply a similar scale parameter to obtain a measure

of variance accounting for the whole day (Martens, 2002 Fleming et al., [2003).

Figure shows the return and realized volatility of the S&P 500 index daily
for the covered period. As illustrated in Figure the most volatile moments of the

Dot-com bubble, the Global Financial Crisis, and the COVID-19 crisis can be found

"Numerous studies have reported that the selection of 5-minutes as sampling frequency is a
rule of thumb (Corsi et al., 2010 |Gong & Lin, 2017} [Liu et al., [2015] [2017} [Sévil 2014). That is,
this is the best parameter value to consider the trade-off between evaluation accuracy and noise of
microstructure. Consequently, we use this sampling frequency of realized variance in our study.

8In the financial context, log return is widely used in volatility forecasting studies
[Byun & Cho, [2013} [Liu et al.,|2020a} [2012)). In the vein of portfolio insurance strategy, although
several studies use the simple return (Annaert et al., 2009} [Dichtl & Drobetz, [2011; |Zieling et al.,
2014)), most other studies (Bertrand & Prigent}, [2011} [Buccioli & Kokholm), 2018} [Dichtl et al., 2017}
Jiang et al.| |2009} |Tawil, 2018) use log return for their empirical analysis. Hence, we use log return
in our empirical study.

o 2 A2 ety

- -



(a) Return of S&P 500 index
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Figure 4.1: Time series of return and realized volatility of S&P 500 index.

Notes. This figure shows the time series of return and realized volatility of the S&P 500 index on a daily basis for the period
4 January 2000 to 19 May 2022.

Table 4.1: Summary statistics of the S&P 500 index

Avg  Std. Skew Kurto ADF Q(I) Q() Q(i0) ARCH(I) ARCH(3) J-B
Return 0.044 0.197 -0.39 104 —138° 00 52 27.37%  593.4°*  1375.2°"  25221.0°"
Realized volatility 0.159 0.115  3.33 105  —84** 25  43.4°* 835 26064 3163.8°*  99290.0"*

Notes. We apply the Augmented Dickey-Fuller(ADF) test (Cheung & Lai, [1995). ADF statistics show that the null hypothesis
of a unit root can be rejected for return and realized volatility. Ljung-Box tests up to leg ten are conducted to detect serial
correlation. Q(-) denotes the test statistics of the Ljung-Box test. [Engle| (1982)’s Lagrange multiplier (LM) test detects
heteroskedasticity up to lag 3. Values in columns ARCH(1) and ARCH (3) denote the values of LM statistics. The J-B
columns denote the test statistic of the Jarque-Bera test, where the null hypothesis is that return distribution is normally
distributed. *, ** and *** mean significance at the 10%, 5%, and 1% level, respectively.

during these periods as marked by the grey shaded area. Table summarizes the
statistics of the annualized return and realized volatility for S&P 500 index over
the covered period. In Table we report the values of average return, standard
deviation, skewness, and kurtosis. While the average return shows 4.4% per year, the
average realized volatility is 15.9% per year. As widely reported by many studies

on the stock market, the return of the S&P 500 index shows negative skewness,
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whereas realized volatility shows positive skewness. Furthermore, it is shown that
there might be a fat-tail in return distributions of the S&P 500 index, taking into
account that the kurtosis shows greater Valueﬂ

We applied the ADF test (Cheung & Lail, [1995) to the return and realized volatil-
ity, either. The results show that the null hypothesis of a unit root can be rejected
at a 1% significance level. Hence, we confirm that returns and realized volatility of
the S&P 500 index are stationary. Furthermore, a Ljung-Box test up to leg ten is
performed to detect the existence of autocorrelations. The results of Q(1), Q(5),
and Q(10) in Table demonstrate that there are autocorrelations in both returns
and realized volatility. The return has the autocorrelation only at a higher lag (10).
On the other hand, realized volatility shows the autocorrelation at a higher and
relatively lower lag (5 and 10). Moreover, we conducted |[Engle| (1982)’s Lagrange
multiplier test to detect heteroskedasticity. The result implies statistically signifi-
cant heteroskedasticity effects in returns and realized volatility up to lag 3. Finally,
the Jarque-Bera (J-B) test statistics are presented. These J-B results confirm that
the null hypothesis of a normal distribution must be rejected in returns and realized

volatility of the S&P 500 index.

4.3 Portfolio insurance strategy

4.3.1 Synthetic put strategy

A synthetic put strategy has known to be prominent among all the portfolio insur-
ance strategies. |Leland & Rubinstein| (1988); |Rubinstein & Leland| (1981) proposed
this strategy aiming to replicate the protective put strategy, which is an option-based

portfolio insurance strategy (Figlewski et al., [1993). One of the most significant

9If a return is normally distributed, the corresponding kurtosis should be three.

69 1



weaknesses of the original protective put strategy is that it requires a put option
that is obtainable in the market and has adequate liquidity, strike price, and matu-
rity. Without the presence of an appropriate put option, the protective put strategy
becomes unavailable. However, the synthetic put strategy synthetically creates an
effect of a put option with a risky and risk-free asset as insurance against the risky
portion of the portfolio. It makes the insurance scheme more flexible and highly
executable in various conditions.

In order to replicate the effect of a put option, the synthetic put strategy si-
multaneously purchases both risky and risk-free assets to create a long position in
the underlying asset S; plus European put option P; with the maturity of T and
strike price K. With the Black-Scholes option pricing formula proposed by [Black &

Scholes| (1973)), the value of a put option P; can be derived as follows:
P, = Ke "M N(=dy) — S;N(—dy), (4.9)

where N(z) is the standard normal cumulative distribution function. d; and dy are

defined as follows:

_ In(S/K) + (r+0.50%)(T —t)
dy = i : (4.10)

dy=dy —oVT —t. (4.11)

In Eq. the true volatility of the underlying asset denoted by o is used to
calculate di and dy values. The problem is that the exact value of ¢ is unknown.
In order to utilize the Black-Scholes formula, we should correctly estimate the true
volatility o otherwise, the whole calculation would be biased. As long as we use the

Black-Scholes formula to calculate a put option value in a synthetic put strategy, the
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strategy’s performance would be inevitably highly dependent on the performance of
volatility estimation (Rendleman Jr & O’Brien) |1990). Our main focus in this study
is to show the importance of precise volatility estimation with empirical results on
synthetic put strategy using various forecasting methods.

By using Eq. the portfolio value with a synthetic put strategy can be ex-

pressed as follows:
Si+ Py = SiN(dy) + Ke "T=YN(~dy). (4.12)

In order to implement a synthetic put strategy and make the portfolio value equal
to Eq. the concept of delta must be introduced. The delta is defined as the
price change of a derivative given a unit change in the price of an underlying asset.
This definition implies that the delta value can be calculated as a partial derivative
of the option value with respect to the underlying asset value (Hull & White, 2017)).
Accordingly, from Eq. the delta of the portfolio in a synthetic put strategy can

be calculated as follows:
G(St + Pt)
0S;

= N(dy). (4.13)

In Eq. the delta implies the amount of the underlying asset to be purchased
to replicate the protective put strategy. In order to make a position’s delta in a
synthetic put strategy identical to the one in a protective put strategy, a certain
amount of position in the underlying asset should be maintained. It means that the
investor must hold a proportion N(d;) of the underlying asset at any given time.
It could be done by rebalancing the portfolio by selling or buying the underlying

asset or the risk-free asset to make a proportion of a risky asset to N(d;). In other

words, with the strike price and maturity of a put option, we can calculate N(d;)
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value at any time and decide the portion of the risky asset in the portfolio value in
a synthetic put strategy. It emphasizes the importance of precise estimation of o,
which is directly used in calculating the value of N(d;).

In our study, the strike price K of a put option with the maturity of T" is decided
as follows:

K =a-5S), (4.14)

where a is the predetermined percentage floor, and Sy is the initial price of the
underlying risky asset.

In the original Black & Scholes (1973) framework, transaction costs are not
considered. However, transaction costs are not negligible in a practical manner since
the more frequently an investor rebalances his asset, the more cost occurs by his
decision, which leads to an increase in total cost. In this study, we decide to include
transaction costs for implementing a synthetic put strategy to make our study more
realistic. Following the modified volatility estimation in the synthetic put strategy

proposed by Leland| (1985), the estimated volatility in our setting can be calculated

/2 k
OlLeland = 0A| 1+ 1/ — - 4.15
Leland \/ T ovAL ( )

where k denotes the round-trip transaction costs, and At is the time length of the

as follows:

rebalancing interval'}

1%Boyle & Vorst|(1992)’s model is also known to be an alternative to adjusted volatility considering

transaction cost. This model takes opoyic/vorst = 04/1+ 2+ %/E as adjusted volatility. [Dichtl &

Drobetz (2011) used this estimation model in their study on portfolio insurance strategy, testing
performance in Monte Carlo, and real-world data simulation. We also applied this model in this
study, revealing there are no different results qualitatively.
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4.3.2 Protection level error

The synthetic put portfolio insurance strategy aims to directly limit the downward
market movement while retaining the potential of upward gains rather than guar-
antee a higher level of return or risk-adjusted return. Even if volatility estimation in
implementing portfolio insurance strategy is performed well, no one guarantees their
portfolio has higher performance measures traditionally used, such as the Sharpe ra-
tio. It is trivial, considering that this kind of performance measure does not directly
and logically link to the accuracy of volatility estimation in portfolio insurance strat-
egy. In this line, in measuring the impact of volatility estimation accuracy on the
performance of portfolio insurance strategy, seeking explicit metrics to measure the
degree of capital damage protection beyond a given tolerance level is reasonable.
Hence, to address this aim, we use protection level error, which is appropriate to
evaluate the protection capability of a portfolio insurance strategy.

Suppose investors have no error in estimating parameters of market condition
(e.g., true volatility of stock market). In that case, they can replicate and obtain the
synthetic put with the protection value that is equal to that of a true protective put
(risky asset hedged by a true put option). Consequently, a portfolio insurance strat-
egy investor’s portfolio value cannot fall below that put protection value. However,
the true volatility is unknown in the real world; thus, investors cannot but resort
to estimating the proxy of market volatility (Bird et al., [1990; Zhu & Kavee, [1988).
As a result, the synthetic put portfolio insurance strategy fails in maintaining the
target floor level due to unavoidable errors in estimating market parameters. That

is, the minimum value of a synthetic put portfolio goes below the level of the true
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protective put’s target protection value (TPV) which is defined as follows:

So

TPV =
So + Py

(4.16)

where Sy is the initial price of a risky asset, Py is the initial price of the put option,
which is synthetically replicated. That is, Sy + Py indicates the initial price of the
portfolio, which synthetically replicates (true) protective put strategy. By plugging
Eq. into Eq. we obtain another form reflecting the Black-Scholes model

assumption as follows:

So

TPV = .
V= SN £ Ke TN (—dy)

(4.17)

To address the estimation error problem measurement, Zhu & Kavee (1988)
introduced protection level error (PLE). The authors defined it as the ratio of the
difference between TPV and the sample minimum value (SMV) to the TPV as
follows:

PLE =

max{T PV — SMV,0}
TPV ’

(4.18)
where SMV = miny<7{V; : t € {1,...,T}} is the sample minimum value and V; is
the portfolio value at time ¢.

The upper part in Figure exemplarily illustrates the price of the underlying
risky asset, the value of the synthetic put portfolio insurance strategy, and their
TPV, SMV, and PLE. The lower part in Figure presents the portfolio weights
between the risky and risk-free assets over time. For simplicity, the underlying asset’s
price is divided by the initial value. Hence, our portfolio value is scaled and starts

as a 1$ value. The underlying risky asset’s price drops sharply at inception. Then,

it is bound to the upside after reaching the local minimum value at the mid-time
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point, showing extreme market turbulence in all interim time horizons. The value
of a synthetic put portfolio, on the other hand, limits the additional capital loss
at some point and maintains this protected position until maturity, even though
it also slightly drops down like the value of the risky asset at the inception period.
Obviously, the synthetic put portfolio insurance strategy makes the weight of a risky
asset in the portfolio decrease as the price of the underlying risky asset goes down,
shifting the budget to the risk-free asset, thereby resulting in the protection of our
portfolio value to some extent as illustrated in the lower part in Figure [£.2]
However, the insured portfolio suffers from deteriorated performance caused by
estimation error of market volatility. The example in Figure [£.2]is under assumption
that So =1, K = Sy, r = 4.5%, T = 1, and 0 = 19.6(%). In other words, we create a
synthetic put portfolio with a 100% protection leve]E and 1-year duration under the
market condition that volatility is 19.6% and the initial price of the underlying risky
asset is 1$. Under this condition, we can obtain the price of the put option in Eq.
as 0.056. Thus, we can calculate TPV as Sy/(So+ Fp) = 1.0/(1.040.056) = 0.947. If
an investor can know true volatility exactly under frictionless market and continuous
trading, they can obtain a synthetic put portfolio where their portfolio value is not
below this TPV. However, our portfolio insurance strategy is implemented using
incorrectly estimated volatility (23.9%); thus, the SMV (0.876) of our portfolio is
below the TPV (0.947). As a result, our portfolio insurance seems to fail to achieve
the objective of sustaining the target floor value, showing the protection level error

((0.947 — 0.876)/0.947 = 7.49(%)).

1n this case, the strike price (K) equals a 100% of the initial price (Sp).
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Figure 4.2: Example of protection level error.

Notes. This figure shows an example of the price of an underlying risky asset and the value of a synthetic put portfolio. The
red dotted line, solid blue line, and the solid black line represent target protection value, the value of the portfolio obtained
by synthetic put strategy, and the price of the underlying risky asset, respectively. The red point on the blue dotted line
denotes the sample minimum value, and the green dotted line refers to protection level error. Note that we refer to protection
level error (green dotted line) as the ratio of the difference between the target protection value and the sample minimum
value to the target protection value, rather than the difference only.

4.4 Volatility forecasting models
4.4.1 Naive model

In order to implement a synthetic put strategy, an investor must prespecify the
volatility of an underlying risky asset. One of the most widely used textbook ap-
proaches is to use volatility estimated by calculating standard deviations of historical

returns, as shown in Eq.

S n(ri—7)?
6 = === (4.19)
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This method is the convention in the portfolio insurance context, as shown in a
significant body of portfolio insurance studies (Annaert et al., [2009; |Dichtl & Dro-
betz, 2011} [Dichtl et al., 2017). Therefore, we use the rolling window-based standard
deviation of 252 daily returns for the volatility estimate as our benchmark naive

forecasting model for our comparative study.

4.4.2 GARCH-type models

In order to address the drawback of the ARCH model proposed by |Engle (1982
about lack of flexibility, the standard GARCH model was introduced by [Bollerslev
(1986) by incorporating a moving average component together with the autoregres-
sive component. The standard GARCH(p,q) jointly estimates conditional mean and

conditional variance. This model can be described as follows:

o=+ e (4.20)
etlr_1 ~ N(0,0v), (4.21)
O%Q = W + Eg:]_()ézf?_i + Ezpzlﬁio-?—ia (422)

where v is the set of information available at time ¢, p is the order of moving average
(ARCH) term, ¢ is the order of autoregressive (GARCH) term, u, w, «;, and f3; are
constant parameters, w > 0, ay,81 > 0, and a1 + 81 < 1 for restrictions to avoid
negative variance. The conditional variance at current time ¢ (d;2) is estimated by the
function of constant (w) and weighted previous squared shocks (¢Z_;) and variances
(02_,) term. In the financial context, the GARCH has been the most widely used
model to describe stock return volatility due to the main advantage of the GARCH

model; fewer parameters required and better performance compared to the ARCH
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model.

However, despite this parsimonious, a standard GARCH model fails to capture
several features of financial time series. One of the most representative features is
the asymmetry of return series (the so-called leverage effect), as reported in many
studies on the stock market (Chou & Kroner, [1992; Engle & Ng, |1993; Pagan &
Schwert), {1990). These researchers have observed that negative shock appears to
make volatility to be more increased compared to positive shock in the financial
time series. The problem is that the traditional GARCH model fails to explain
this leverage effect. To address this issue, the Exponential GARCH (EGARCH)
model, the modified version of the GARCH model, is proposed (Nelson, |1991). By
making positive and negative shocks have a different impact on volatility, the author
mitigates the limitation of the GARCH model. This EGARCH(p,q) model can be

described as follows:

log 6,2 = w + ¥ aig(e—i) + 2P B log ol ., (4.23)

9(zt) = 0z + (|2l = E(l21))), 2t = et//0f, (4.24)

where 0 and y are the constant parameters, v shows the asymmetric effect, and there
are no sign restrictions on the parameters, unlike the GARCH model.

Another extension addressing the asymmetric effect is the so-called GJR-GARCH
model, which is introduced by (Glosten et al.| (1993). GJR-GARCH model explicitly
reflects asymmetry in obtaining a conditional variance, using a dummy variable

whose value differs depending on the sign of previous shocks. GJR-GARCH model
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can be written as follows:
61* = w+ S i + B Biop; + S viliiei s, (4.25)

where dummy variable I;_; is one if €;_; < 0, and zero otherwise.

4.4.3 HAR-RV-type models

For forecasting stock market volatility, various time-series auto-regressive models
are introduced. Among them, the heterogeneous autoregressive model of realized
volatility (HAR-RV) proposed by (Corsi| (2009), based on the Heterogeneous Market
Hypothesis of Miiller et al.| (1997)), is known to show the best performance for fore-
casting realized volatility. The author incorporates different dynamics in volatility
structure within different time horizons into the model to capture market partici-
pants’ short-term, mid-term, and long-term behavior. Accordingly, it uses volatility
information from the previous day, week, and month as heterogeneous volatility
components for forecasting. The standard formation of the HAR-RV model can be

expressed as follows:
RV; = By + BaRVi-1 + BuRVi—5:-1 + B RVi—224-1 + & (4.26)

where RV;_1 is realized variance at time ¢ — 1 and RV;_j.;_1 is average realized

variance from time t — k tot — 1. RV;_5.4_1 and RV;_99.;_1 is calculated as follows:

1
RVisi1 =2 D RVr, (4.27)
T=t—5
1 t—1
RVispi1 =5 ) RVr. (4.28)
T=t—22
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This simple model is known to capture well the features of financial asset return

series, such as long memory behavior of volatility. Moreover, various studies have

demonstrated its simplicity, parsimony, and superiority (Chen et al., 2020; Fernandes

et al. 20145 Ma et al., 2014; |Cech & Barunik, 2017; Zhang et al., 2019).

According to the theory introduced by Barndorff-Nielsen & Shephard, (2004)), as

M — oo, the RVZ in Eq. converges as follows:
) ¢
RV, = / 02(s)ds + Socscti(s), (4.29)
0

where the first term denotes the continuous component (the so-called integrated vari-
ance) and the second term represents the discontinuous component of the quadratic
variation process as the jump component. As M — oo, the continuous component

is equal to the realized bipower variation (BV}), approximately as follows:
BV; = w25 o |rylIre -1l (4.30)

where u = \/% is the mean of the absolute value of the random variable, which is

the standard normally distributed.

Accounting for the jump component, |Andersen et al.| (2007) proposed the HAR-

RV-J model where the jump component is added as an explanatory variable as

follows:
RVi = Bo + BaRVio1 + BuRViosi—1 + BnRVicomu—1 + BjJici + e (431)
where the jump component (.J;) is defined as follows:

J; = maz(RV, — BV},0). (4.32)
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Since more realistic model specifications are appropriate to actual realized volatility
series in the financial market, this HAR-RV-J model has been widely used and
obtained popularity in forecasting volatility (Chen et al.l 2020; Liu & Zhang), 2015}

Ma et al., 2018).

4.4.4 Machine learning-type models

In the financial context, there have been a large number of studies on volatility fore-
casting via machine learning-type models. This subsection reviews several related
kinds of research and briefly reviews our comparative machine learning methodolo-
gies.

Firstly, Support Vector Regression (SVR) has been used as a forecasting model
for asset volatility. Santamaria-Bonfil et al.| (2015)) proposed a volatility forecasting
model using SVR with a hybrid genetic algorithm. They demonstrated that their
SVR volatility forecasting model outperforms GARCH(1,1) in terms of the mean
absolute percentage error and directional accuracy functions, claiming that their
proposed model overcomes the drawbacks of a traditional method. Furthermore, |Sun
& Yul (2020]) proposed the hybrid forecasting model for financial returns volatility by
mixing the SVR with GARCH. The author shows the empirical results of one-step-
ahead forecasts suggesting that their hybrid models improve the volatility forecasting
capability. [Khashanah & Shao (2022)) also introduced a forecasting model with kernel
SVR for short-term volatility, revealing the outperformance of the proposed model.

Various studies using ANN have been reported. For example, Roh| (2007)) pro-
posed hybrid models with neural networks and traditional time series models in
volatility forecasting tasks for stock price index, demonstrating the utility of the hy-

brid model for volatility forecasting. Furthermore, Kristjanpoller & Minutolo| (2015))
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investigated the empirical results of a hybrid volatility forecasting model with ANN
and GARCH on the volatility of gold. Additionally, D’Ecclesia & Clementi| (2021))
examined the volatility forecasting performance using parametric, and ANN ap-
proaches, showing that the ANN approach is more accurate than parametric models.

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) are
representative machine learning models specialized for time series. They have also
been studied in the finance literature because of their superiority in the time series
domain. Dunis & Huang| (2002) investigated currency volatility forecasting using
the RNN model. The authors showed that RNN models seem to be the best single
modeling approach compared to benchmarks in forecasting currency volatility. Bucci
(2020) examined the predictive performance of ANN, RNN, and LSTM compared
with traditional econometric approaches. The authors demonstrated that RNN out-
performs all the traditional econometric models, and LSTM also appears to enhance
the forecasting accuracy in a highly volatile period capturing long-range dependence.
Liu (2019b) proposed a novel volatility forecasting model using deep learning—long
short-term memory recurrent neural networks. The results revealed that with big
data, their proposed model improves the volatility prediction compared to SVR-
based models and the GARCH model when applied to the forecasting task of stocks
volatility.

Attention mechanism Bahdanau et al.| (2015); |Vaswani et al.| (2017)) is a famous
deep learning model to capture complex patterns in time-series data. It also extracts
the importance of the input feature (the so-called attention) on an element-by-
element basis based on the internal attention layer component incorporated between

layers in a deep neural network. There are a few of study in the volatility forecasting
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vein. For example, [Lin & Sun| (2021) proposed a novel volatility prediction model
based on sparse multi-head attention. The author claimed that their model shows
effectiveness in empirical financial data by addressing the gradient issue due to
long-range propagation, revealing that this model is more suitable than traditional
methods for forecasting tasks on long time series.

The eXtreme Gradient Boosting (XGB) is another strand of machine learning
models specialized time series. |Xia et al.[(2022) investigated the volatility forecasting
results of a green bond by proposing tree-based ensemble models, including XGB,
which utilizes exogenous predictors, showing significant outperformance relative to
the benchmark models. [Liu| (2022) examines the empirical results of applying XGB
to forecasting stock volatility. They concluded that XGB-based models show the
best performance in terms of root mean square percentage error compared to other
machine learning-based models such as logistic regression and SVM.

Therefore, taking into account the aforementioned broad strands of financial
literature, we select these machine learning-type models as our comparative volatil-
ity forecasting method for portfolio insurance strategy. By this, we investigate the
empirical results of comparing these models with traditional volatility time-series

models such as GARCH-type and HAR-RV-type models.
Support vector regression

After the rise of the Support Vector Machine (SVM), which is the cornerstone ma-
chine learning model for classification proposed by |Cortes & Vapnik| (1995)), SVR
was proposed as a variation of SVM for regression problems (Drucker et al., [1997).

In SVR, the maximized distance from the hyperplane H € R”~! to support vectors
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is obtained by solving a quadratic optimization problem as follows:

min Sl + OS¢ 4 ¢h) (4.33a)
subject to Yt — g(wlxh) < e+ (4.33b)
gw'x) —y' <e+ (4.33¢)
¢, ¢l >0, (4.33d)

where ¢ is a tube depending on a nonlinear function, g(-), ¢* and ¢! are 0 if the i-th
point is in the tube, and z; is a slack variable for i-th point.

From the Karush—Kuhn—Tucker conditions, the predicted value, y, of x,, which
is new data, is obtained as y, = X1 (o — B;)k(2*, x,) + b, where k(z,z.) is a kernel
gives SVR a nonlinear nature by mapping the data points to feature space, and «

and 3 are Lagrangian multipliers.
Recurrent neural network

A RNN is designed to keep and use the historical information as a sequence. In
dealing with sequential data, computation with historical data is as important as
the computation with the current input. However, there is no way to include previ-
ous outputs in the training phase in the standard ANN structure inside the neural
network. In RNN, the model uses previous outputs with the current input data in
hidden layers by adding a recurrent layer. Owing to this structural modification,
RNN shares weights across time and overcomes this major shortcoming of the stan-
dard ANN model. The basic formula of hidden state at time ¢ in the RNN model is
as follows:

ht = a(ht,l,xt;ﬁ). (434)
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where function a is the activation function, x; is the current input, and 6 is the
parameters of function a. Implementing hidden state values could be done by adding
computation results from h;_1 to the input of the activation function of ANN models

described in Eq 2.4
Long short-term memory

LSTM model was proposed to overcome a significant weakness of the standard RNN
model. The standard RNN model suffers from vanishing gradient problems; the gra-
dient could easily die during the backpropagation of sequential data in the training
phase. Furthermore, gradient values could also burst during the training, so the
weight update could not be done appropriately. This inherent problem during the
training phase makes the model’s weight updates difficult so that the whole optimiza-
tion process might get stuck. This LSTM model suggests a solution by introducing a
concept of the cell state and gates to handle both the long-term and the short-term
dependencies within the data. The cell state runs through the entire network, and
gates control updates in this state. An LSTM cell consists of three different gates
(a forget gate, an input gate, and an output gate) (Gers et al.l 2000). A forget gate
decides the information be thrown away from the cell state, while an input gate
decides the information to be stored in the cell state. An output gate decides the

final output of an LSTM block at time ¢. The equation for each gate at time ¢ is as

follows:
i = O'(U),L' [htfl, CL‘t] + bl) (435)
ft = O'(’u)f[htfl, ZEt] + bf) (436)
o = o(we[hi—1, x¢] + bo) (4.37)
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where i; is the value of an input gate, f; for a forget gate, and o; for an output gate.
o is the sigmoid function. w, is the weight of neurons at gate x, and b, is the bias
term at gate x. hy_1 is the output from time ¢ — 1.

The value of cell state and the final output of an LSTM block at time ¢ are as

follows:
G = tanh(we[hi—1, z¢] + be) (4.38)
Ct = ft * 1 + it * C~t (439)
hy = o * tanh(cy) (4.40)

where ¢; is the value of cell state and ¢ is the candidate value for a cell state. The

final output of block h; is calculated with o; from Eq. [£.37}

Attention

x= [ty . 0] — [Ercotre — b = [ty — [ Aemion ] — a = [ay ) — o=

Figure 4.3: Illustration for attention.

Attention mechanisms have been widely used in various fields, such as machine
translation and question-answering (Bahdanau et al., [2015; [Vaswani et al. 2017).
The weights of attention often offer insights into the decision process of deep learn-
ing models by interpreting the output softmax probabilities as the important of
information (Koh & Liang, 2017; [Vaswani et al., 2017)). The overall mechanism is

expressed in Figure 4.3] Given an input sequence x = [z1, ..., ;] € R¥, the output
g
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sequence of encoder is h = [hy, ..., hj]T € R, which is formulated as
h = e(x), (4.41)
where e is an encoder function. Then, we compute the attention score for hy
a; = cTtanh(Whg + b), (4.42)

where W € R¥*J and b,c € RY are the parameters of attention mechanism. At-
tention weights can be obtained from using the softmax function to the attention
scores as follows:

a = softmax(a), (4.43)

where the ¢-th element of a is %.The final output vector o of the attention

model becomes

o=a’h. (4.44)
Extreme gradient boosting

XGB is a scalable tree ensemble boosting algorithm. This model is proposed by
Chen & Guestrin| (2016)) and is one of the boosted tree models that incorporate the
baseline decision tree methods into the gradient boosting algorithms. The concept of
the boosting algorithm indicates combining simple and weak machines incrementally
to obtain a more accurate and powerful ultimate model. Let the complete model is
f, and k is the number of complement steps. Then, k-th complemented model f is

obtained by:

fe = fr—1 + hi(2), (4.45)
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where fr(z) = fr — frx—1 is a basic model to be trained model that aims to capture
the residual of y — fi for the forecasting model at step k. A gradient of the objective
function is used to train this basic model.

Although the performance of a created model is inferior, another model com-
plements the weaknesses of the previous model, and this improvement procedure is
repeated. Several weak models are created and combined step by step in terms of
the gradient of the loss function based on the ensemble method, thereby creating a
strong classifier (Friedman), 2001)).

Based on this gradient boosting algorithm, XGB combines multiple weak classi-
fiers into a strong classifier as a linear-additive model. The XGB model uses a tree

ensemble model, which uses K additive functions as follows:

K
gi =Y fr(zi) (4.46)
k=1

where fi € F is the space of regression trees (e.g. CART).
In order to train the set of functions, the following regularized objective function
is minimized based on an additive manner where f;, which most improves the model,

is added:

L£O =510y, 98 + fula) + Qf), (4.47)

where Q(f) =T + %)\Z]T:lw]?, [ is a differentiable convex loss function, T is the
number of leaves, and w; is the score on a j-th leaf. This regularized loss function is
the difference between other tree boosting algorithms and XGB, improving learning
speed and avoiding over-fitting problems.

The XGB has an advantage as an engine for the volatility forecasting task. The

excellent forecasting power has been proven through numerous pieces of literature
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in the field of time-series analysis. The method shows a dominant forecastability

provided by ensembles of decision trees as a state-of-art prediction model.

4.4.5 Forecasting performance measure and statistical test

The volatility forecasts (0}2) obtained by various models are compared to the realized
volatility (RV;) based on the following volatility forecasting criteria in evaluating the

accuracy of models:

MAPE = n~ ' ,|(RV; — 6:%)/RV;| - 100, (4.48)

MAFE = n~ 'S ,|RV; — 62|, (4.49)

where n is the number of forecasts, MAPE is the mean absolute percentage error,
and MAE is the mean absolute error.

In order to test the statistical significance of the above performance criteria, we
conducted the Diebold-Mariano (DM) test introduced by Diebold & Mariano| (2002)
for comparison of the forecasting model and benchmark model. The DM statistic of

two h-step ahead forecasts is defined as follows:

T
= [Var(d)]"2d, d = Z (4.50)

’ﬂ \

where d; = g(e1+)—g(e2+), g(e) is certain specified function, and e; ; denotes forecast
errors from method ¢ at time ¢. We use the function g(e) = |e| as for di = |e1 +|—|e2+|.
Specifically, we use €;; = (RV; — 67 ) /RV; for test of MAPE and e;+ = RV; — 0’
for test of MAE. The null hypothesis of d = 0 based on the student’s t-distribution
is used to obtain a p-value.

Moreover, for additional statistical evidence of forecasting model performance,

we employ the model confidence set (MCS) test introduced by |[Hansen et al.| (2011)).
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The concept of MCS is related to testing for superior predictive ability (Hansen)
2005) by comparing forecasts. Hence, the MCS test offers a set of models identify-
ing the best performance model using a specific loss with confidence level a. The
procedure of MCS starts at the full universe of comparative models, rather than
only depending on a benchmark model. It drops the model based on an elimination
rule by alternately testing a null hypothesis of equal predictive ability at significance
level a. The procedure provides a set of significantly inferior models as eliminated

models and a set of superior models.

4.5 Experimental design and procedure

We use the synthetic put strategy for all empirical studies we investigate with a
100% protection level. 100% is a commonly used protection level in the context of
portfolio insurance research, as revealed in Dichtl & Drobetz (2011). This study
focuses on the investigation of the impact of volatility estimation error in synthetic
put strategy rather than the impact of other parameters such as protection level
(strike price K) and maturity time (7"). As a result, to maintain our main argument
clear, we use only a fixed level of these parameters as in the values mentioned above
(K = Sp and T = 1). Next, our benchmark is the buy-and-hold strategy, where
100% of the portfolio is invested in the risky asset at the initial date and held until
maturity.

To consider the impact of transaction costs due to the frequent rebalancing,
we use the transaction cost scheme as in Eq. for the synthetic put portfolio
insurance strategy. Ten basis points are used as a value of k, which is round-trip

transaction costs, following the studies of Dichtl & Drobetz (2011); [Herold et al.
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(2007). To reflect the transaction cost of the buy-and-hold strategy, we also use ten

basis points using an explicit scheme in our implementation of backtesting.

4.5.1 The Monte Carlo simulation

To investigate the results of synthetic put portfolio insurance strategy based on the
standard GBM and GBM with a jump, we generate numerous simulation paths,
assuming that GBM simulation contains 252 trading days as a 1-year duratiorﬂ In
creating random path of simulated price, we use T' =1, r = 4.5%, So = 1 u = 9%,
and o = 10%, 20%, 30%, and 40% as input parameters in our numerical example of
the standard GBM. For simulation of GBM with jump, we use T' = 1, r = 4.5%,
So=1p=9%, o0 =10%,20%, 30%, and 40%, n; = 182.08, ny, = 172.86, A = 1.4615,
p, = 0.496, and ¢, = 0.504 as fixed parameters.

The procedure of our Monte Carlo simulation is as follows. First, the level of true
volatility is selected out of four possible values (10%, 20%, 30%, and 40%). Second, to
obtain reliable results taking into account various market conditions, the diffusion
process model is selected following the stochastic differential equation in Eq.
(the standard GBM) or Eq. (the GBM with a jump). Third, 1,000 paths are
created based on selected true volatility and selected diffusion process model using
the aforementioned pre-specific input parameters. Finally, a total of 1,000 repeated
synthetic put strategy simulation is implemented based on four estimated volatility
(10%, 20%, 30%, and 40%) as an input strategy parameter using simulated prices,
and the performance of the strategy are evaluated based on various performance

measures.

12A 1-year is a popular investment horizon for a large amount of institutional or retail investors
in their investment strategy (Benartzi & Thaler} [1995).
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4.5.2 The real-world data simulation

For portfolio insurance simulation in real-world data, we use S&P 500 index as our
empirical results on real-world data. In order to obtain more reliable results, we apply
our portfolio insurance simulation-based rolling window scheme (moving the window
forward by one day by deleting the first observation and adding one observation)
following the research of |Dichtl & Drobetz (2011)H Moreover, this rolling windows
simulation ensures that each window consisting of the corresponding period is exactly
considered once. We use K = Sy and T' = 1 as input parameters of synthetic put
strategy with 100% protection level, and transaction cost scheme is same as in Monte
Carlo simulation. For the risk-free rate at time ¢, the T-bill rate corresponds to that
time is used.

For volatility forecasting, the total data whose observations are 5,610 on a daily
basis are divided into two subsamples; in-sample and out-of-sample. In-sample con-
sists of 2,000 observations covering 4 January 2000 to 31 December 2007 and is
used to estimate or train the models. Out-of-sample consists of 3610 from 1 Jan-
uary 2008 to 19 May 2022 and is used to tesdﬂ Volatility forecasting also uses the
rolling window scheme to generate a one-step-ahead forecast. Thus, it delivers a
3,610 — 252 = 3,358 overlapping series of data in implementing our strategies by

using 3,610 one-step ahead forecasts.

13Dichtl & Drobetz| (2011) claim that the rolling window basis method uses the available data
most efficiently since it preserves the effect of dependency in the financial time series, such as
autocorrelation and heteroskedasticity.

MWe also examined the result using a case of 70% in-sample and 30% out-of-sample since it is
widely known the convention in the field of machine learning is that the percentage of out-of-sample
does not exceed 50% of the total sample. However, we report only the main result, which is not in
accordance with this convention, since we want to investigate the empirical out-of-sample result of
the period of the 2009 financial crisis event. Nevertheless, we confirmed that the result following
the convention is essentially similar to our main result. The full results are available upon request.
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For our volatility forecasting models, we first use naive models with 252 daily
rolling windows standard deviation as the benchmark model. We select the best per-
formance model among various possible models (e.g., the window size equals 5, 22,
132, and 252.). As for GARCH-type models, we use GARCH(1,1), EGARCH(1,1),
and GJR-GARCH(1,1) models. We also use HAR-RV and HAR-RV-J as our HAR-
RV-type models. For machine learning-type models, we select the best models by
searching the hyperparameter space, thereby resulting in the best set of hyperpa-
rameters. As a result, for SVR, we use Radial Basis Function (RBF) kernels, L2
regularization parameter C' = 1, and 0.1 of epsilon. In the case of deep learning
models (ANN, RNN, LSTM, and Attention), we use ReLU as the activation func-
tion and mean squared error as the loss function. We train all models 100 epochs
with the Adam optimizer. Unless specified otherwise, the learning rate is fixed to
le-3. For ANN, we use three hidden layers (128, 64, and 32 neurons). For RNN and
LSTM, we use one hidden layer followed by one fully connected layer. For Atten-
tion, we combine the aforementioned LSTM model and an attention module with
two convolution layers. We fix a learning rate to le-4 for Attention. For XGB, we
use 1,000 gradient boosted trees, six maximum tree depths for base learners, 0.3
learning rate, gamma of zero, one L2 regularization term on weights, and root mean
square error as loss function.

The detailed procedure to obtain the result for the impact of volatility forecast-
ing in synthetic put strategy is as follows. First, we obtain forecasting models using
in-sample and conduct out-of-sample volatility forecasting using those models based
on the rolling window method. Second, using these forecasts as an input parameter

in the Black-Scholes formula of synthetic put strategy (estimators for volatility),
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synthetic put strategy is implemented based on t-th 1-year S&P 500 index data
obtained from out-of-sample. Third, a total of 3,358 repeated synthetic put strat-
egy simulation is implemented based on the rolling window method. Finally, the
strategy’s performance is evaluated in terms of PLE, and forecasting performance

evaluation is conducted using two performance measures (MAPE and MAE).

4.6 Empirical results

4.6.1 The Monte Carlo simulation results

The standard GBM result

Table shows the performance evaluation results of the synthetic put strategy
using the standard GBM simulation. Panels A, B, C, and D correspond our simula-
tion setup of true volatility as 10%, 20%, 30%, and 40%, respectively. Each column
implies that the estimated volatilities as an input parameter of synthetic put strat-
egy are also 10%, 20%, 30%, and 40%, respectively. Hence, this table demonstrates
the overall impact of the estimation error of volatility in the synthetic put portfolio
insurance strategy. The last column includes the result of the buy-and-hold strategy
as a benchmark.

In the first column of Panel A, where true volatility is 10%, if there is no esti-
mation error, that is, if estimated volatility is equal to true volatility, the PLE is
4.627%, which is the lowest value. However, in the second column of Panel A, if
volatility is incorrectly estimated, it can be seen that the PLE increases to 5.448%.
Moreover, as the estimation error is significant, the PLE becomes larger, reaching
6.713% PLE when the estimated volatility is 40%.

In Panel B, the tendency of estimation error problem is consistent with the

results of Panel A. In other words, the more volatility is overestimated, the greater
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Table 4.2: The Monte Carlo simulation results using GBM data

6=01 6=02 6=03 6=04 B&H

Panel A: 0 =0.1

Average return 0.063  0.0586  0.0568 0.056 0.0838
Standard deviation 0.0783  0.0714 0.0681  0.0666 0.0998
Skewness 0.585 0.637 0.617 0.574  0.037
Sharpe ratio 0.23 0.191 0.173 0.165 0.389
Sample min value 0.9342 0.9262 0.9191 0.9138 0.7847

Protection level error (%)  4.627 5.448 6.175 6.713 -

Panel B: 0 = 0.2

Average return 0.047 0.047  0.0474 0.0479 0.0723
Standard deviation 0.1463  0.1373  0.1329  0.1308 0.2006
Skewness 0.958 0.975 0.929 0.861  0.016
Sharpe ratio 0.013 0.015 0.018 0.022  0.136
Sample min value 0.8682  0.8829 0.8576  0.8337 0.5313
Protection level error (%) 8.153 6.6 9.278  11.809 -

Panel C: 0 = 0.3

Average return 0.0337  0.0346  0.0352  0.0357 0.0448
Standard deviation 0.2116  0.2009  0.1954  0.1928 0.3001
Skewness 1.319 1.376 1.344 1.275  0.078
Sharpe ratio -0.053  -0.052 -0.05  -0.048 -0.001
Sample min value 0.7473  0.8125 0.8232  0.7964 0.4037

Protection level error (%)  18.106  10.957  9.785 12.72 -

Panel D: 0 = 0.4

Average return 0.0128  0.0168  0.0198  0.0223 0.0281
Standard deviation 0.2799  0.2679  0.2612 0.258 0.4002
Skewness 1.296 1.387 1.389 1.343 -0.069
Sharpe ratio -0.115  -0.105  -0.096  -0.088 -0.042
Sample min value 0.6783  0.7268  0.7636  0.7802 0.2482

Protection level error (%)  23.086  17.583  13.408 11.523 -

Notes. This table shows the Monte Carlo simulation performance evaluation results of the synthetic put strategy with a
100% protection level using the standard GBM according to the different true and estimated volatility conditions. The input
parameters of GBM are fixed as p = 9%, T = 4.5%, and T = 1.

the PLE. Specifically, when true volatility is 20%, if there is no estimation error, it is
shown that PLE has 6.6%, whereas when estimated volatility is 30% or 40%, PLE is
9.278% or 11.809%. Similarly, when volatility is underestimated as 10%, PLE shows
8.153%, which is also more extensive than the no-estimation error case.

In Panels C and D, we also find results that are essentially consistent with
the results of Panels A and B, indicating that the problem of volatility estimation

errors exists regardless of whether volatility is overestimated or underestimated. The
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interesting point is that considering the Panels A, B, C, and D together, the problem
of volatility estimation is pronounced as true market volatility is larger, implying
that extreme market turbulence makes it more difficult for investors to protect their
insured portfolioﬁ

Note that PLE is lowest when estimation error is lowest in all Panels. We imple-
ment a synthetic put strategy by modifying estimated volatility to adjusted volatil-
ity in Eq. rather than just using estimated volatility. This modified version
of volatility makes input volatility slightly larger, leading to slightly overestimated.
Hence, we demonstrate that slightly overestimation provides more accurate synthetic
put protection, consistent with the findings of Leland| (1985); |Zhu & Kavee (1988]).
Leland| (1985)) argues that larger volatility should be considered for taking into ac-
count transaction costs and replicating a put option more accurately. Zhu & Kavee
(1988) demonstrate performance evaluation of synthetic put strategy, revealing that
the protection level error becomes larger when using correctly estimated volatility
than the slightly greater estimated volatility when they do not adjust their input
volatility. They also argue that in implementing the synthetic put strategy, PLE
can be explained more accurately by Leland| (1985)’s model. Our study empirically
demonstrates that these arguments are correct by confirming the improved PLE in
simulation when using Leland (1985)’s alternative option pricing model.

Furthermore, we find that as more volatility is overestimated, the synthetic put

strategy invests in being less risky irrespective of true volatility value. We can see

151t can be seen that PLE is more than zero even though there is no estimation error in all Panels.
These are unsurprising results considering realistic trading conditions since our portfolio insurance
strategy applies weight rebalancing on a daily basis rather than a continuous basis, thereby suffering
from the sudden downward movement before adjustment. As a result, portfolio value can fall below
the TPV, and this tendency can be potentially reinforced when market volatility becomes larger.
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that the standard deviation decrease as the estimated volatility value increases in
all Panels. These results indicate that portfolio insurance strategy limits the risk
exposure based on their estimation of volatility level given a market condition and
seeks to reduce a risky position as the market uncertainty enlarges gradually. On
the contrary, the other performance measures widely used in traditional studies
on portfolio analysis, such as average return, skewness, and Sharpe ratio, do not
show any similar pattern to the results mentioned above according to the change of
volatility estimation error.

Compared to the synthetic put strategy, the buy-and-hold strategy shows the
largest value of average return and standard deviation in all Panels. This result is
not surprising, considering the concept of portfolio insurance that investor pays an
upside participant as a cost of downward protection for their portfolio. Contrary to
the buy-and-hold strategy, which shows a small skewness value, the portfolio insur-
ance strategy has substantially higher positive skewness. Generally, higher positive
skewness implies that the strategy is more desirable and provides frequent small
losses and a few significant gains rather than vice versa in investment (Harvey &
Siddique, [2000; [Post et al., [2008). On the other hand, the buy-and-hold strategy
outperforms portfolio insurance strategies in terms of the Sharpe ratio regardless of
volatility estimation erroﬂ Despite the inferiority in terms of Sharpe ratio, syn-
thetic put strategy considerably better level of sample minimum value compared
to a buy-and-hold strategy, implying that portfolio insurance strategy successfully

protects their portfolio value to the downside risk of the underlying risky asset.

161t is a trivial result since many portfolio insurance strategy studies have reported that the Sharpe
ratio might not be a proper performance measure for portfolio insurance due to its asymmetry and
non-normality in their return distribution (Annaert et al. 2009; Bertrand & Prigent, [2011} Dichtl
& Drobetz, 2011} |Dichtl et al., [2017; |Gaspar & Silvaj, [2021} |Zieling et al., 2014)).
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The GBM with jump result

Table 4.3: The Monte Carlo simulation results using the jump-diffusion model

6=01 6=02 6=03 6=04 B&H

Panel A: 0 =0.1

Average return 0.0558  0.0517 0.05 0.0494 0.0754
Standard deviation 0.0728  0.0666  0.0639  0.0628  0.0974
Skewness 0.334 0.326 0.257 0.183  -0.384
Sharpe ratio 0.148 0.101 0.079 0.069 0.312

Sample min value 0.926  0.9095 0.8915 0.8783  0.7438
Protection level error (%)  5.471 7.151 8.992  10.335 -

Panel B: 0 =0.2

Average return 0.0363  0.0368 0.0373  0.0379  0.0556
Standard deviation 0.1329 0.1246  0.1212  0.1202  0.1988
Skewness 0.892 0.886 0.803 0.7  -0.602
Sharpe ratio -0.066  -0.066  -0.063  -0.059 0.053

Sample min value 0.8528  0.8751  0.8482 0.8284  0.3649
Protection level error (%) 9.787 7.43 10.273  12.366 -

Panel C: 0 = 0.3

Average return 0.004  0.0067  0.0087 0.0101 0.005
Standard deviation 0.1885 0.1782 0.1742 0.1735 0.3168
Skewness 0.987 1.029 0.952 0.833  -0.847
Sharpe ratio -0.217  -0.215  -0.208  -0.201  -0.126

Sample min value 0.752 0.8 0.8169 0.7909 0.2143
Protection level error (%)  17.588  12.324 10.474 13.319 -

Panel D: 0 =04

Average return -0.0186 -0.0178 -0.0178 -0.0181 -0.0766
Standard deviation 0.2349  0.2242 0.2202 0.2201  0.4867
Skewness 1.049 1.12 1.077 0.98  -1.347
Sharpe ratio -0.271 -0.28  -0.285  -0.286 -0.25
Sample min value 0.6227  0.7096  0.7469  0.7472  0.0083

Protection level error (%)  29.382  19.526  15.306 15.265 -

Notes. The Monte Carlo simulation performance evaluation results of the synthetic put strategy with a 100% protection level
using the Kou jump-diffusion model according to the different true and estimated volatility conditions. The input parameters
of GBM are fixed as p = 9%, ry = 4.5%, T =1, 1 = 182.08, ny = 172.86, A = 1.4615, p, = 0.496, and ¢, = 0.504.

Table shows the performance evaluation results of the synthetic put strategy
using the GBM with jump-diffusion model simulation. Panels A, B, C, and D corre-
spond our simulation setup of input volatility (o term) as 10%, 20%, 30%, and 40%,
respectively. Overall, it can be seen that the results considering jump phenomena are

qualitatively similar to those based on only the standard GBM, which does not con-
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sider jump. In other words, the more volatility is incorrectly estimated, the greater
the PLE, no matter what volatility is overestimated or underestimated. Furthermore,
this tendency is more highlighted as the market goes extremely fluctuated.

Although the tendency is similar between these two results in Table and
Table[4.3] the specific intensity in the two results greatly differs. This result indicates
that the account for jump phenomena matters in evaluating the impact of volatility
estimation error in synthetic put portfolio insurance strategy. The overall PLE in
GBM simulation with jump is greater than without jump, looking at the results in
Table [4.2] and Table [£.3] together. These results imply that it is more difficult to
implement synthetic put strategy in real-world market conditions than in idealistic
conditions.

The crucial point suggested in the results in Table [.2] and Table [£.3] can be
summarized as follows. Obviously, there exists the protection error in the synthetic
put strategy caused by volatility misestimation. Furthermore, this protection error
is enlarged as the estimation error becomes greater. This impact can be more pro-
nounced in the market condition which is more similar to the real world considering
jump phenomena.

4.6.2 The real-world data simulation results

Volatility forecasting models results

Table [.4] shows the overall performance evaluation results of portfolio insurance and
volatility forecasting using the S&P 500 index. We report all results from various
forecasting models. Panel A, B, C, and D represent the result of naive, GARCH-
type, HAR-RV-type, and machine learning-type forecasting models, respectively. In

Table [£.4] each column presents the performance of portfolio insurance in terms of
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PLE with t-value of paired t-test, the performance of volatility forecasting in terms
of MAPE and MAE, DM test results of all forecasting models based on MAPE and
MAE measures, and rank for PLE, MAPE, and MAE, respectively.

More precisely, the PLE of the naive model shows 21.79%, while the PLE of
GARCH, EGARCH, and GJR-GARCH show 19.06%, 21.52%, and 19.38%, respec-
tively, revealing the outperformance of GARCH-type models compared to the naive
model. Furthermore, HAR-RV-type models outperform the naive model showing a
PLE of 18.41%. Compared to the GARCH-type model, HAR-RV-type models show
a better level of PLE, demonstrating that HAR-RV-type seems more suitable for
portfolio insurance strategy. However, this result should be interpreted with cau-
tion since the PLE improvement of HAR-RV-type is not statistically significant. In
contrast, GARCH and GJR-GARCH show statistical significance based on paired
t-tests. This result implies that even though the degree of improvement of GARCH
and GJR-GARCH is not greater than that of HAR-RV-type models, the PLE of
GARCH and GJR-GARCH is significantly improved compared to the PLE of naive
from the statistical point of view, unlike HAR-RV-type.

Interestingly, looking at Panel D, machine learning-type forecasting models, with
the exception of SVR, show absolute dominance compared to all traditional ap-
proaches. Among them, XGB (12.88%) shows overwhelming improvement in terms
of PLE, followed by Attention (15.08%) which is a substantial enhancement. Com-
pared with naive, in terms of PLE, XGB improved by 8.91%, and Attention improved
by 6.71%. Additionally, except for SVR, machine learning-type forecasting models
show statistical significance, supporting the improvement of these models compared

to the naive way.

100 !



Table 4.4: The performance evaluation results of the S&P 500 index

Portfolio insurance Volatility forecasting DM test Rank

PLE (%) t-value MAPE MAE MAPE MAE PLE MAPE MAE
Panel A: Naive
Standard deviation 21.79 - 2.14347 0.00016376 - - 11 12 11
Panel B: GARCH-type
GARCH 19.06 —2.45** 1.13206 0.00011182 —23.28"*  —13.51*** 8 8 7
EGARCH 21.52 0.37 1.21811 0.00012740 —16.67*  —12.76*** 10 10 10
GJR-GARCH 19.38  —2.15* 1.15530  0.00011096 —9.86™**  —12.48*** 9 9 6
Panel C: HAR-RV-type
HAR-RV 18.41 —-1.30 0.88339 0.00011401 —22.38"*  —10.54*** 6 5 9
HAR-RV-J 18.41 -1.30 0.88331  0.00011399 —22.38**  —10.54*** 7 4 8
Panel D: ML-type
SVR 22.54  0.68 1.51166  0.00017482 —10.01*** 1.69* 12 11 12
ANN 15.83 —5.97* 0.93554 0.00010788 —24.84**  —15.93*** 4 6 5
RNN 16.42 —2.12** 0.94762 0.00010355 —27.38"*  —21.8"** 5 7 4
LSTM 1511  —4.94** 0.87346  0.00009961 —26.41***  —17.23*** 3 3 3
Attention 15.08 —3.52"* 0.84996 0.00008408  —22.11*** —18.68"* 2 2 1
XGB 12.88 —12.21 0.78788  0.00009613 —25.63***  —23.64"** 1 1 2

Rank corr.  0.930**  0.916***

Notes. This table shows the performance evaluation results of portfolio insurance and volatility forecasting based on the S&P
500 index using various forecasting models.

Taking into account the overall result of PLE, the PLE shows great difference
depending on the selection of forecasting models. This result implies a strong hint
that the influence of volatility estimation error exists even in real-world data, even
though, at this point, we cannot identify the exact tendency yet.

Next, we report the value of MAPE and MAE as the performance measure
of volatility forecasting, which measures the accuracy of predicted volatility value
relative to realized volatility as a target. MAPE and MAE of naive show the largest
value among all models, whereas those of GARCH-type and HAR-RV-type modes
show a moderate level of valueﬂ In Panel D, with the exception of SVR, most
machine learning-based models outperform traditional forecasting models in terms

of MAE, and XGB, Attention, and LSTM show lower MAPE levels than other

17 Although there is no substantial difference in MAE, HAR type shows better performance than
GARCH type in MAPE. It is presumed that this is because, unlike the GARCH-type model that
generates latent volatility, the HAR-RV-type model is a methodology that directly targets realized
volatility.
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models. Specifically, XGB shows the lowest MAPE, and Attention is the second,
while Attention is the first and XGB is the second in terms of MAE. In both MAPE
and MAE, the LSTM model is the third most excellent forecasting model. All results
of these MAPE and MAE are confirmed to be statistically significant by [Diebold
& Marianol| (2002) test, indicating that all forecasting models improve the realized
volatility forecasting compared to the naive method in terms of MAPE and MAE.
All models, including traditional and machine learning models, outperform the naive
model. Furthermore, three machine learning models (XGB, Attention, and LSTM),
widely known to be specialized in the task related to time-series data, outperform
other traditional models in terms of MAPE and MAE.

The most shocking point is that the tendency of the degree of improvement in
PLE of each volatility forecasting model is very similar to that in MAPE and MAE.
In other words, if a particular forecasting model has better forecasting ability and
shows a better value of MAPE and MAE, this model appears to show a better level
of PLE. More precisely, machine learning models (especially XGB and Attention)
outperform the traditional and naive approach in terms of PLE, demonstrating that
similar patterns are shown in terms of MAPE and MAE. This tendency is confirmed
by the result of the rank of PLE, MAPE, and MAE in Table Specifically, it
can be seen that the lowest value of PLE of XGB can be corroborated by the lowest
MAPE and second lowest MAE. In addition, the second PLE rank of Attention

is explained by the second lowest MAPE and lowest MAE of Attention. The rank

18We also applied similar experiments based on HMAE and HMSE as volatility forecasting perfor-
mance measures. These results are presented in Table[A5]in Appendix and are essentially consistent
with the main result. The rank correlation of PLE and HMAE (0.944) and PLE and HMSE (0.937)
also support the statistically significant positive relationship between PLE and realized volatility
forecasting accuracy.
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of PLE of LSTM is also linked to the rank of MAPE and MAE. Most inferior
methodologies, such as SVR and naive, also show the highest PLE and second highest
PLE, while the highest level of MAPE and MAE is shown in both of those models.

To show our main argument clearly, we attempt to report the ranking correla-
tion between PLE and MAPE or PLE and MAE by simultaneously applying the
statistical test. As a result, the ranking correlation of PLE and MAPE is 0.93, and
that of PLE and MAE is 0.916 showing statistical significance. We consider these
results as strong evidence that improved realized volatility forecasting is directly
correlated with the improvement in the performance of portfolio insurance strategy
in real-world conditions. Therefore, an enhanced volatility forecasting model means
one can benefit from the better performance of portfolio insurance.

Table 4.5: The evaluation results of MCS p-values with a = 0.1

MCS p-value PLE rank MCS rank

MAPE MAE PLE MAPE MAE
Panel A: Naive
Standard deviation 0.0000  0.0000 11 12 11
Panel B: GARCH-type
GARCH 0.0000  0.2986 8 8 7
EGARCH 0.0000  0.0000 10 10 10
GJR-GARCH 0.0000  0.4830 9 9 6
Panel C: HAR-RV-type
HAR-RV 1.0000 0.1124 6 4 8
HAR-RV-J 1.0000 0.1114 7 5
Panel D: ML-type
SVR 0.0000  0.0000 12 11 12
ANN 0.5288  0.7608 4 6 5
RNN 0.2364  1.0000 5 7 4
LSTM 1.0000  1.0000 3 2 3
Attention 1.0000  1.0000 2 3 2
XGB 1.0000 1.0000 1 1 1

*

Rank corr. 0.930***  0.930***

In order to show the reliability of our main results, we also apply the MCS
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test as a supportive statistical test for the rank of our volatility forecasting models.
Table presents the evaluation results of the MCS test, demonstrating the MCS
p-value of MAPE and MAE, PLE rank, and MCS rank of MAPE and MAE with the
confidence level o = 0.1. More precisely, XGB, Attention, LSTM, and HAR-RV-type
models show the p-value of 1 in terms of MAPE, and XGB, Attention, LSTM, and
RNN reveal the p-value of 1 in terms of MAE. XGB always has the best performance
in terms of MAPE and MAE. Looking at the PLE rank and MCS rank of MAPE
and MAE together, we confirm the consistent tendency with the main results. This
finding is supported by the rank correlation reported in Table showing 0.93

based on each rank pair (PLE and MAPE, and PLE and MAE).

The impact of market condition

Table 4.6: The performance under the different market conditions

Total Low volatility High volatility

PLE (%) t-value PLE (%) t-value PLE (%) t-value
Panel A: Naive
Standard deviation 21.79 - 16.42 - 2598 -
Panel B: GARCH-type
GARCH 19.06 —2.45™ 15.36  —2.19** 2340 —1.66
EGARCH 21.52 0.37 15.31 —2.39** 25.73 1.29
GJR-GARCH 19.38 —2.15** 15.47 —2.03** 23.70 —1.65
Panel C: HAR-RV-type
HAR-RV 18.41 —-1.30 12.27 —3.80"** 22.78 —3.48**
HAR-RV-J 18.41 —-1.30 12.27  —3.80*** 22.78 —3.48**
Panel D: ML-type
SVR 22.54  0.68 13.28 —7.33*** 26.68  0.11
ANN 15.83 —5.97* 1249 —9.07*** 20.34 —7.85%*
RNN 16.42 —2.12** 15.68 0.74 2090 —2.61***
LSTM 1511 —4.94% 1229 —5.11% 19.65 —8.18"
Attention 15.08 —3.52%** 13.28 —2.76*** 19.63  —4.04***
XGB 12.88 —12.21*"* 10.60 —13.45%** 17.54 —3.30"**

In order to analyze our result from the economic point of view, we investigate the
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empirical results of PLE according to different market conditions. On the contrary to
the main result where the market condition is not ex-ante known to the investor at
the inception, this analysis is an ex-post exercise obviously, in that we already know
about the realized volatility. Even if we analyze the ex-post backtest, it can add value
to our study in that it makes us know about the impact of the market condition on
the volatility forecasting and, thus, the performance of portfolio insurance strategy.
Table shows the results of the total, low-volatility, and high-volatility samples
based on the ex-post realized volatility. Each Panel represents the model type, and
we report the PLE and t-value of these three groups. Low and high volatility groups
consist of the top lowest 33.3% and top highest 33.3% of out-of-sample in terms of
realized volatility, respectively. We present these two groups because the portfolio
insurance strategy aims to maintain the value of the insured portfolio not to be
below the floor value in highly volatile conditions (high potential to downside risk) as
well as normal conditions. Therefore, a desirable portfolio insurance strategy should
show no higher relative performance degradation under high volatility conditions
than under low volatility conditions.

The low-volatility condition results show that the PLE of naive (16.42%) shows
the highest value. In contrast, machine learning-based models (except for RNN) gen-
erally show decent performance among forecasting models, which is similar to the
main result. On the other hand, interestingly, although the performance of GARCH-
type models is still not so good, HAR-RV-type models show relatively enhanced
performance compared to that of the total sample in terms of PLE ranking. These
results demonstrate that the HAR-RV-type model outperforms all the models, in-

cluding machine learning-type models, except for XGB. Furthermore, unlike the
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result in the total sample, the HAR-RV-type model becomes statistically significant
in terms of PLE. It can be seen that the traditional HAR-RV-type models can be a
good choice in the low-volatility condition as well as machine learning models.

On the other hand, in the high volatility condition, we can find shocking results
which are not similar to the low volatility results. Although overall PLE values in-
crease due to increased market risk, the rank of PLE in traditional models shows dif-
ferent results. HAR-RV-type models show substantial deterioration compared to low
volatility conditions, whose PLE rank is lower than most machine learning models
in high volatility conditions. Additionally, it is shown that all GARCH-type models
become insignificant in terms of t-value, still maintaining the inferior level of PLE
rank. Considering the results of HAR-RV-type and GARCH-type models together,
we conclude that the traditional models suffer from the crucial deterioration in sus-
taining the target protection value of portfolio insurance strategy when the market
condition changes from low to high volatility condition. On the contrary, all machine
learning models except for SVR show pronounced outperformance, revealing the su-
periority in terms of the level of PLE. Considering the above results, we conclude
that traditional and machine learning models can capture the low volatile market
condition in forecasting volatility. However, if market conditions become different,
the results are different, implying the hint that machine learning models might ab-
stract the complex pattern of realized volatility series such as peak or turbulence in
highly volatile fluctuation better than traditional forecasting models.

The results in Table are summarized as follows. First, all models outperform
the naive model in terms of PLE, regardless of market condition. This result is consis-

tent with the main findings supporting that volatility forecasting improves portfolio
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insurance performance. Second, machine learning models (except for SVR in high
volatility conditions) are always a consistently good choice in volatility forecasting
for portfolio insurance strategy. Among them, XGB always shows the best PLE per-
formance irrespective of the degree of market fluctuation. Third, although traditional
models appear to be a good choice in low-volatility condition, these models’ perfor-
mance deteriorates rapidly when market turbulence become reinforced. Again, the
instability of traditional models supports the superiority of machine learning mod-
els in implementing portfolio insurance in both lowly and highly volatile market

conditions.
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Chapter 5

Portfolio insurance strategy in the cryptocurrency
market

5.1 Chapter overview

In 2009, Bitcoin, a novel peer-to-peer distributed ledger system, was proposed by

Nakamoto (2008). Since then, hundreds of alternative cryptocurrencies have emerged,

topping a market capitalization of 1.9 trillion USD by early 2022. Accordingly, shap-
ing huge market and media coverage, cryptocurrencies have not only captured the
attention of investors but also fascinated the world of academia, prompting numerous
studies on the cryptocurrency market. These studies include the study of cryptocur-

rencies’ behavior, market analysis, and asset pricing. Although some authors have

focused on the research topic, such as price (Bouri et al 2019¢} |Cai et all [2021}

Dimpfl & Peter} [2021; [K6chling et al., 2019} [Stosic et al., 2019)), return (Akyildirim

et all [2021; Balcilar et al., 2017} [Caporale et al., 2018} [Long et al., 2020} [Nguyen|
et al., [2019; [Punzo & Bagnatol [2021)), and volatility (Bouri et al.l [2019b; |Chaim &|

Laurinil, 2018} [Cross et al., [2021} [Liu & Serletis, 2019; (Omane-Adjepong et al., 2019;

\Qiao et al.,[2020)), others have investigated connectedness across the cryptocurrencies

(Bouri et al., 2021} Fousekis & Tzaferi, [2021} |Ji et al.,|2019; Koutmos, |2018; [Nguyen|

et al., [2020; [Omane-Adjepong & Alagidede, 2019} [Sensoy et al.l,[2021} [Shahzad et al.|
20215 Xu et al., 2021} |Yi et al., [2018). In line with the findings from these studies,
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other researchers confirmed the inefficiency of the cryptocurrency market

iera, 2017; Urquhart} 2016; Vidal-Tomas et al., 2019b; Wei, 2018) or explored the

common risk factors to explain excess returns of cryptocurrencies through the lens

of empirical asset pricing (Jia et al., 2022; Kosc et al., [2019; Kozlowski et al., [2021}

ILi et al.l [2020; [Liebi, 2022} [Liu et al.l [2020b] 2022} Liu & Tsyvinski, [2021}; [Zarembal
et al., 2021a; Zhang & Li, [2020, [2021).

In addition to the studies on the behavior of cryptocurrencies, market analysis,

and asset pricing, various studies from the portfolio analysis viewpoint have been

conducted. For instance, Brauneis & Mestel (2019)) empirically investigated cryp-

tocurrency portfolios using a mean—variance framework. The authors demonstrated
that the Markowitz optimal portfolio strategy shows a higher Sharpe ratio than the
buy-and-hold strategy and the naively diversified portfolio outperforms other opti-
mized portfolio strategies. Similarly, scrutinized portfolio diversification
across cryptocurrencies in terms of the Sharpe ratio and the investor’s utility. The
author showed significant enhancement in the out-of-sample Sharpe ratio and util-

ity of various cryptocurrency portfolio strategies compared to the benchmark strat-

egy. Meanwhile, Culjak et al.[(2022) examined the effect of the inclusion of sectoral

cryptocurrency in the cryptocurrency-based investment basket under the Markowitz
framework, revealing the benefit of the inclusion of sectoral cryptocurrency.

Unlike the aforementioned studies on portfolio strategies for cryptocurrency
under the Markowitz framework, some authors focused on other strategies un-

der the different philosophy of portfolio construction. For instance, |Platanakis &

\Urquhart (2019) explored the empirical result of the cryptocurrency portfolio un-

der the Black—Litterman framework and compared this to the strategy under the
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Markowitz framework and equal-weighted strategy. They demonstrated that Black—Litterman
approach outperforms other benchmarks by imposing variance-based constraints of
Levy & Levy| (2014]) to control estimation errors of the input parameters in man-
aging cryptocurrency portfolios. Burggraf| (2021]) provided the empirical result of
cryptocurrency portfolio using the Hierarchical Risk Parity strategy proposed by
De Prado| (2016)), one of the risk-based portfolio construction strategies like the risk
parity approach, to overcome the estimation error of the Markowitz approach and
risk parity’s ignorance of useful covariance structure. The study confirms the Hier-
archical Risk Parity strategy outperforms the benchmarks (minimum risk portfolio
and inverse volatility portfolio) in terms of tail risk-adjusted return, thus providing
cryptocurrency investors better opportunity to manage the risk of cryptocurrency
portfolio. The attempt behind the studies of [Burggraf (2021); |Platanakis & Urquhart
(2019) mitigates the estimation error problem of traditional Markowitz frameworks
in estimating the covariance of cryptocurrency portfolio under the limited number
of samples versus the number of cryptocurrencies included.

As another strand of literature, several studies on the strategies under technical
trading rules in the cryptocurrency market have been investigated. For instance,
Corbet et al.| (2019)) first reported the results of various technical trading rules. By
using the form of the break-out strategies of trading range and the oscillation of
the moving average, their results reveal significant support for the value of moving
average strategies in the cryptocurrency market. Supporting the findings of |Corbet
et al.| (2019), Grobys et al.| (2020) demonstrated that investors can obtain the op-
portunities for significant excess returns via simple technical trading rule strategies

in the cryptocurrency market. These results from (Corbet et al.| (2019)); Grobys et al.
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(2020) imply possible inefficiency in the cryptocurrency market, which is consistent
with the findings of the inefficiency in the cryptocurrency market (Bariviera, 2017}
Urquhart|, 2016} Vidal-Tomas et al., [2019b; Wei, 2018)).

Despite these various portfolio strategies, many investors in the cryptocurrency
market still suffer from extreme fluctuations that may result in a huge potential
loss. The hypothesis that this huge potential loss is related to some extent to the
high downside risk or tail risk of cryptocurrencies has started to receive attention.
In this vein, several studies on the downside and tail risks in the cryptocurrency
market have been studied. For example, Tan et al.| (2021) investigated the relation-
ship between downside risk (value at risk) and return in the cryptocurrency market
using the fractionally cointegrated vector autoregression model. The authors showed
that cryptocurrencies exhibit risk-return trade-off after the crisis, but the effect does
not exist before the crisis, suggesting inconsistency in the existence of risk-return
trade-off before and after the crisis. The authors concluded that their findings imply
it is not wise to adopt the buy-and-hold strategy. Meanwhile, Borri (2019) stud-
ied the vulnerability of cryptocurrencies concerning the tail risk. The important
finding of the study is that cryptocurrencies are highly exposed to tail risk within
the cryptocurrency market. The author also suggested that idiosyncratic risk in the
cryptocurrency market can be reduced, and better risk-adjusted conditional returns
can be obtained by a proper portfolio strategy.

Related to the heavy tail of cryptocurrency, bubble behavior is one of the re-
ported challenges for the cryptocurrency investors. In this regard, some researchers
investigated the bubble behavior of cryptocurrency as a speculative asset. [Fry &

Cheah! (2016) used econophysics models to examine shocks and crashes in the cryp-
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tocurrency markets, confirming that cryptocurrency markets have a significant spec-
ulative component and are extremely volatile. By combining long-tails with realistic
measures of risk and return, Fry (2018)) identified evidence of bubbles in the cryp-
tocurrency market, arguing that liquidity risks generate heavy tails in the cryptocur-
rency markets. The authors suggest caution to cryptocurrency investors, noting that
these markets are inherently risky. Additional study related to tail risk in terms of
interconnectedness, which is highly correlated with bubbles, has been conducted by
Ahelegbey et al. (2021). Specifically, Ahelegbey et al. (2021 examined bubbles in
crypto assets, presenting a general method to incorporate systemic connectedness
and tail risk. They showed a positive and significant relationship between the cryp-
tocurrencies’ tail risk and the weighted average market index. Additionally, they
clustered cryptocurrency into two groups and identified the asymmetric nature of
these groups. In particular, the first group’s role is being the main agents of tail
contagion, whereas the second group is vulnerable to tail contagion. The implica-
tions of the aforementioned research on the nature of cryptocurrencies, such as high
downside risk, heavy tail risk, and bubbles, are clear. The buy-and-hold strategy is
not always wise for investors in the cryptocurrency market.

In this vein, the first consideration is portfolio diversification strategies aimed
at diversifying crypto assets in the investment basket of investors (Brauneis & Mes-
tel, 2019; Burggraf, |2021; (Culjak et al., [2022; [Liu, |2019a; [Platanakis & Urquhart|
2019). Generally, these diversified portfolio strategies can offer the investor the ben-
efit of the diversification effect. However, the diversified portfolio strategies in the
cryptocurrency market may not be sufficient for an investor’s cryptocurrency port-

folio to be well-diversified, thereby not having a sufficiently lower risk. The required
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assumption that all assets included in the investment basket are uncorrelated (low-
correlated) is not adequately applied to crypto assetsEl as shown in many studies

on the evidence of significant herding behavior in the cryptocurrency market

rat & Alwafi, 2020} Ballis & Drakos|, 2020} Bouri et al., [2019a; Raimundo Junior]
et all [2022; Ren & Lucey, 2022} [Vidal-Tomds et al., 2019a} [Yarovaya et al.l 2021}

'Youssef, 2020). Bouri et al.| (2019a) studied herding behavior in cryptocurrencies

by conducting a rolling window analysis. They showed that herding behavior exists
and varies over time. Their logistic regression results reveal that herding is stronger
as uncertainty increases. This is evidence of the high degree of co-movement in

the cross-sectional returns across cryptocurrency markets, implying the tendency

of crypto investors to mimic the investment decisions of others. [Vidal-Tomas et al.|

analyzed the presence of herding behavior among cryptocurrencies based on
the cross-sectional absolute deviation of returns. The authors show that the cryp-
tocurrency market is characterized by herding during bearish markets, arguing that
inefficiency is evidenced by the presence of herding behavior. Another finding is
that the smallest cryptocurrencies are herding with the largest ones; thus, investors

base their investment decisions on the behavior of the main cryptocurrencies.

& Drakos| (2020)) investigated the presence of herding behavior in the cryptocur-

rency market using a GARCH model and found that herding exists in both up and

down markets. In other words, cryptocurrencies show a move in tandem and do

not necessarily reflect their fundamentals. Moreover, Raimundo Junior et al.| (2022)

'From the mathematical point of view, a high correlation among asset returns exacerbates the
estimation error problem. This is consistent with the finding of [Brauneis & Mestel (2019), who
specified that an equal-weighted portfolio strategy outperforms optimized portfolio strategies such
as the lowest-risk portfolio strategy. We conjecture that this outperformance of naive equal-weighted
strategy relative to the optimized portfolio is caused by estimation error which is substantially
sourced from the high correlation among crypto assets.
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also confirmed the existence of herding in the cryptocurrency market and identi-
fied a positive relationship between herding and market stress. All of these studies
on cryptocurrency herding behavior have important implications for the portfolio
management perspectives. Above all, evidence of herding implies the possibility of
insufficient portfolio diversification and the exposure of investors to additional risk.

Furthermore, as herding is stronger in a bearish market disturbance, this risk tends

to be extremeEl (Raimundo Junior et al.,[2022} [Vidal-Tomés et al., 2019al). If all assets

in our investment basket behave in the same direction, particularly if they have a
stronger tendency in a negative market condition, exploiting sufficient diversification
benefits from diversifying these assets is difficult.

The second alternative is to include an asset that has a hedge effect on the

cryptocurrency portfolio. However, there is a scarcity of literature on assets with

a hedge effect on crypto assetsEl (Hassan et al., 2021; Karim et al., 2022b)). Hassan|

investigated the hedge effect of precious metals on cryptocurrency risk.
The authors find that only gold shows a reliable and consistent safe-haven effect on
the uncertainty of crypto assets among other precious metals. Similarly, [Karim et al|
studied quantifying the hedge and safe haven features of bonds against the
cryptocurrency uncertainty indices, revealing that some bond indices show the hedge
and safe haven effect on the cryptocurrency market, whereas none of the others offer

these effects. A challenging point for this consideration is that although one finds

*These results of [Raimundo Junior et al. (2022); [Vidal-Tomés et al| (2019a) are in line with
the findings of studies on the asymmetric volatility structure (Baur & Dimpfl} [2018} |Cheikh et al.|
of cryptocurrency that behavior of the cryptocurrency volatility varies across the regime of
market conditions (e.g., positive or negative).

3 At the time of writing, related studies are limited, although there are many studies on the hedge
effect in the opposite direction (Bouri et al., [2017; [Hasan et al., |2022} [Selmi et al., |2018} [Stensas|
let al., 2019 |[Urquhart & Zhang} [2019; Wang et al., 2019).
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some assets having this hedging effect on a crypto asset, like gold or some bond
index, we cannot perfectly hedge our position of the portfolio using this asset in a
practical perspective. Simply, it is difficult to find an asset that moves in reverse
completely unless someone artificially makes the asset move like that on purpose. In
this regard, the put option may also be one of the desirable alternatives since the
purpose of this asset is to hedge against the loss of the underlying asset as originally
designed. However, put options with sufficient liquidity, strikes, and maturity with
cryptocurrency as underlying assets are not always available in the marketﬂ Hence,
investors have no choice but to resort to other alternatives to protect the naked
position of their cryptocurrency portfolio.

To sum up the literature, cryptocurrency investment has several critical chal-
lenging issues: (i) cryptocurrency has extreme volatility, particularly, high downside
and heavy tail risk, and these are related to the bubble, which makes investment
perilous; (ii) it shows herding behavior, and this trend is outstanding in negative
market condition, thereby disturbing the construction of well-diversified portfolios
with sufficient diversification effect; and (iii) it lacks counterpart assets aimed at
hedging against a crypto asset. Considering the whole argument, we must consider a
portfolio strategy that lowers its downside risk and aims at directly hedging against
the potential loss of the cryptocurrency portfolio. Therefore, we consider that the
cryptocurrency investor should select a strategy that directly addresses the afore-
mentioned issues, such as a portfolio insurance strategy.

Portfolio insurance strategies are the framework for asset allocation that helps

limit the downside risk by setting a risk tolerance level for determining the portion

4Hou et al.| (2020) noted the lack of existence of the officially traded options in their study on
option pricing of cryptocurrency.
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Figure 5.1: Simulated price and insured portfolio value.

Notes. This figure shows simulated price based on Geometric Brownian Motion and a portfolio value of portfolio insurance
strategy using simulated price. When applied to the simulated stock price, the portfolio insurance strategy effectively limits
the downside risk.

of a risky assets (Bertrand & Prigent| 2001)), as illustrated in Figure It is the

strategic asset allocation model aimed at directly protecting the downside risk and
hedging the loss of underlying assets under market stress conditions. Because of
these advantages of an explicit approach for protection and flexibility for implemen-
tation, this portfolio insurance strategy has obtained enormous popularity among
practitioners and investors for a long time in the global financial system (Dichtl &
. Many academic researchers have also expressed great interest, lead-
ing to the development of various portfolio insurance strategies. Several researchers
have studied portfolio positions protected by put options, also known as protective

put, as an original version of the option-based portfolio insurance (OBPI) strategy

(Figlewski et al., [1993; Pozen, 1978)). This protective put strategy, however, lacks

flexibility because it requires a sufficient number of put options with liquidity, strikes,

and maturity for the underlying asset in the market. To overcome the limitation of

a lack of sufficient put options, |[Leland & Rubinstein| (1988); [Rubinstein & Leland|
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(1981) proposed a novel portfolio insurance strategy called the synthetic put (SP)
strategy. Given the level of protection and volatility, the SP strategy synthesizes
the portfolio’s position in the protective put strategy by dynamically adjusting the
weight of risky and risk-free assets. A stop-loss (SL) portfolio insurance strategy
is another type of naive portfolio insurance strategy (Bird et al., [1988; Rubinstein),
1985)). This SL strategy is a very simple method in that investors are only required
a fixed level of SL to guarantee that the portfolio value at maturity time has given
a level of protection. In addition to SP and SL portfolio strategies, as a successful
strategy with popularity, a constant proportion portfolio insurance (CPPI) strat-
egy was proposed by [Black & Jones (1987, |1988); [Black & Perold| (1992)); Perold &
Sharpe (1988)), where the strategy allocates more weight to risky assets when the
portfolio value is high and vice versa. The popularity of this strategy is easily ex-
plained by its flexibility in that it only requires the specification of two parameters
(protection level and risk exposure), and it mitigates the volatility estimation issues
in the SP strategy. |[Estep & Kritzman| (1988) proposed the time-invariant portfolio
protection (TIPP) strategy as an extension of the CPPI strategy. When compared to
the CPPI strategy, this TIPP strategy provides investors with elastic time-varying
protection bound by dynamically adjusting the floor value. Jiang et al. (2009)) pro-
posed a value at risk-based portfolio insurance (VBPI) strategy as another novel
portfolio insurance model. This strategy incorporates the concept of value at risk
(VaR) into the portfolio insurance framework, thereby aligning the value of VaR of
the investor’s portfolio with the level of protection. This model’s contribution is that
it analytically incorporates the concept of downside risk into the portfolio insurance

strategy as an explicit protection level of strategy.
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As another strand of study, some researchers have focused on the performance

evaluation that is more adequate to the structure of portfolio insurance strategy

(Annaert et all [2009; Bertrand & Prigent, 2011; Zieling et al., [2014]). These studies

are motivated by the issue that the Sharpe ratio widely used for performance mea-
sure of portfolio strategy is actually not suitable for measuring the performance of
the portfolio insurance strategy because the return distribution generated by port-
folio insurance strategy is a non-normal distribution rather than normaﬂ Under
the assumption that returns are normally distributed, investors know all about the
return distribution from expectations and standard deviation. In other words, the
Sharpe ratio is an adequate performance measure to capture the entire distribution
of normal returns due to the symmetry of the normal distribution. However, return
distribution generated by portfolio insurance strategy is highly (positively) skewed
than the normal by nature because it is a strategy aimed at directly cutting the loss
from the negative value of the investor’s portfolio. In this respect, some researchers

proposed using the novel performance measure for portfolio insurance strategy. For

instance, Annaert et al.|(2009)) proposed a block-bootstrap simulation and evaluated

portfolio strategies using the measures that capture the non-normality of the strat-
egy’s return distribution. VaR, expected shortfall (ES), Omega ratio, and stochastic
dominance criteria are among these measures. The authors found that although the
buy-and-hold strategy has a higher average return and Sharpe ratio, other perfor-
mance measures that capture the non-normality show opposite results, indicating
that the average return and Sharpe ratio are not always proper measures of perfor-

mance for the portfolio insurance framework. In line with this study,

5]

Leland| (1999) argued that portfolio insurance strategies will be under-evaluated based on the
traditional CAPM performance measure.

118

e

APSE R

)

I

p |

-



TDrigent (2011)) analyzed the Omega ratio, which takes account of the entire return
distribution as a performance measure for portfolio insurance strategy. The authors
investigated the empirical results from the simulation using geometric Brownian mo-
tion and the US stock market data, revealing that CPPI outperforms OBPI strategy
in terms of Omega ratio.

Although the aforementioned studies demonstrated that these novel performance
measures can provide the proper criteria to evaluate the results of the implementa-
tion of portfolio insurance strategies, the rationale for portfolio choice and preference
of each investor over portfolio insurance strategies is not uncovered. In this regard,

studies taking into account investor’s utility on justification of choice for portfolio in-

surance strategies have been reported (Benninga & Blume| |1985; Dichtl & Drobetz,

2011} |Gaspar & Silval, [2021)). First, Benninga & Blume]| (1985) studied the portfolio

choice of portfolio insurance strategies based on the investor’s utility. The authors

theoretically revealed that the optimality of portfolio insurance strategies depends

on the investor’s utility. After the research of Benninga & Blume| (1985)), additional

research on the impact of investor utility in the portfolio insurance strategy context
has been investigated. The basic argument behind these studies is that depending
on the type of utility function of investors and corresponding parameters (e.g., risk

aversion and loss-aversion coefficient), the perceived performance of outcomes might

differ greatly. |Dichtl & Drobetz| (2011)) evaluated the outcomes of portfolio insur-

ance and benchmark strategies using the concept of prospect theory introduced by

Kahneman & Tversky| (1979); Tversky & Kahneman, (1992). The study shows that

a portfolio insurance strategy is preferred to a buy-and-hold strategy for the type

of prospect theory investor. Similarly, Gaspar & Silval (2021)) studied the results of
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portfolio insurance strategy using the expected utility theory and prospect theory,
explaining the popularity of portfolio insurance.

Finally, based on these various portfolio insurance strategies and performance
measures, many studies have shown the empirical results of better investment oppor-
tunities caused by the outperformance of portfolio insurance strategies. Numerous

pieces of evidence have been shown in the research on the global financial markets.

The empirical results in the US (Annaert et al., 2009; Bertrand & Prigent| 2011}

Dehghanpour & Esfahanipour], [2018; [Garcia & Gould, [1987} [Lee et al., 2011} Zieling

2014), European (Agié-Sabetal, 2016} [Dichtl & Drobetz, [2011; Dichtl et al.|
2017)), and other emerging markets (Agic-Sabeta, [2017; [Jiang et al., [2009; [Lee et al.,

2011), and under simulation (Buccioli & Kokholm)|, |2018; |Gaspar & Silval, 2021} |Lee

et al.) 2011; Tawil, |2018) support the popularity of portfolio insurance strategies

among practitioners who participate in the financial market. Bird et al.| (1990) men-

tioned that a portfolio of highly volatile assets under negative market conditions
sees minimum degradation in performance via a portfolio insurance strategy. As
they noted, portfolio insurance can be considered a suitable alternative strategy for
investing in cryptocurrency that has the aforementioned challenges to crypto as-
sets investors who want their portfolio value to be directly hedged by limiting the
downside risk while benefiting from the upside market.

Considering the literature on cryptocurrency and portfolio insurance together,
many studies have dealt with various strategies for the cryptocurrency market and
portfolio insurance in various markets. To the best of our knowledge, no research
has been conducted on portfolio insurance in the cryptocurrency market, although

investors in this market have suffered from extreme fluctuations in market condi-
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tions regularly. The cryptocurrency market has become more mature than before,
and many retail and institutional investors have decided that this is a viable form
of investment vehicle for managing their portfolios to seek significantly positive al-
phas (Bianchi & Babiak, 2022)). Along this line, as cryptocurrency is increasingly
recognized as an investable asset by many investors in the financial market, the
demand for extensive research on investment strategies to protect downside risk,
such as portfolio insurance in the cryptocurrency market, is increasing. Therefore,
this study investigates the comprehensive empirical results from portfolio insurance
strategies in the cryptocurrency market to fill the related research gap. In particu-
lar, the research questions we will investigate are two folds. First, what meaningful
empirical results (i.e., supportive evidence of a better level of performance compared
to benchmarks) are shown in the cryptocurrency market through portfolio insurance
analysis in terms of downside risk and traditional performance measures of portfo-
lio strategy? Second, how will the impact of an investor’s utility form on portfolio
choices or preferences be demonstrated in the cryptocurrency market compared to
the traditional stock market? If our research successfully clarifies the empirical find-
ings from a portfolio insurance strategy in the cryptocurrency market in terms of
these research questions, it can assist investors in reaping the benefits of the bull
market while limiting the downside risk in the bearish market.

Our findings in downside risk results indicate a dominant performance of port-
folio insurance strategies compared to buy-and-hold in the cryptocurrency market
in terms of downside risks, showing that portfolio insurance strategies reduce the
simple buy-and-hold risk of cryptocurrency. For the test of the impact of parametric

conditions, we check protection level, money market condition, and frequency. Risk
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exposure is empirically demonstrated to be closely related to protection level and
money market conditions. If the frequency is changed while remaining fundamen-
tally similar to the overall result, the outstanding evidence for the degradation of
SP and VBPI due to volatility estimation error is confirmed. Another finding in
the utility results of investors suggests that expected utility theory investors prefer
portfolio insurance strategies to buy-and-hold as risk aversion increases, whereas an
interesting finding confirming prospect theory investors show the opposite trend in
their portfolio choice. In other words, investors are more sensitive to risk-seeking
in the loss domain than risk aversion in the gain domain. Furthermore, the greater
the investor’s loss-aversion, the more they prefer portfolio insurance. In a compar-
ison between the cryptocurrency and traditional stock market results, we confirm
the significant difference between the two market results, implying the pronounced
benefit of portfolio insurance for the crypto asset investment. Overall, our research
provides investors with the criteria for designing portfolio insurance as a customized
strategy in terms of downside risks and utility.

Chapter 0]is organized as follows: Section[5.2)describes various portfolio insurance
strategies. Section [5.3] introduces the details of the downside risk measures. Section
explains the concept of expected utility and prospect theory. Section presents
the data and experimental design. Section discusses the empirical results of
portfolio insurance strategies in the cryptocurrency market in terms of downside

risk and utility, respectively.
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5.2 Portfolio insurance strategies

As aforementioned, various portfolio insurance strategies have been suggested in the
literature. The objective of the portfolio insurance strategy is to limit the potential
downward loss of the underlying assets to a specified floor value while exploiting
the benefit of participation in the upside market movement. We use the following
portfolio insurance strategies: SL, SP (in Section , CPPI, TIPP, and VBPI

strategies. In this section, we provide reviews of these strategies.

5.2.1 SL strategy

One of the simplest methods of implementing a portfolio insurance strategy is the SL
portfolio insurance strategy (Bird et al.| |1988; Rubinstein, [1985). The investor only
needs the pre-specified level of protection (floor value, F') and takes a 100% risky
asset position at the initial time in this strategy. The main idea of this strategy is
that to guarantee a given level of protection of SL to be a portfolio value at maturity
time, investors liquidate their position of risky assets and move to risk-free assets
when their portfolio value goes under the current discounted value of the protection

level®l This condition is described as follows:

Vi < Fe =), (5.1)

where V; is the portfolio value at time ¢, T' is maturity, and r is the risk-free rate,
respectively. As long as the condition of V; > Fe "I holds, the investor’s risky
asset position maintains and helps to obtain the positive upside part of market

movement.

S After liquidation, this risk-free position is held until the time point at maturity 7.
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This strategy is very popular due to its flexibility and easy implementation, in
that it does not require any assumptions or estimation of parameters. Meanwhile,
the limitation of this simple method is that by cutting the loss based on naive
conditions, investors no longer obtain the potential gain from the upside market
after the liquidation of their position. Another disadvantage might be transaction
costs since all risky assets are sold in the investor’s portfolio only once but are

substantial.

5.2.2 CPPI strategy

As a successful alternative strategy to portfolio insurance, a constant proportion
portfolio insurance strategy is proposed by Black & Jones (1987, [1988); Black &
Perold, (1992)); |[Perold & Sharpe| (1988). CPPI strategy aims at mimicking the move-
ment of allocation strategy where investor’s capital moves to risky assets when the
portfolio value goes up, whereas capital shifts to risk-free assets in opposite mar-
ket condition, thereby guaranteeing the insured value F' at maturity time T". Hence,
floor value F, the first parameter for CPPI strategy, has to be decided as the insured

value that is the final protection level of an investor’s portfolio as follows:
F=a-V, (5.2)

where a is the percentage floor and V{ is the initial value of the portfolio. After
determining this floor value, the investor can calculate the so-called ”cushion” (C%)
which is the investor’s risk capital at time ¢. The cushion (Cy) is the difference
between the portfolio value at time ¢ (V;) and the current discounted value of the
floor F' as follows:

Cy=V,— Fe I (5.3)
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The multiplier m is the second pre-specified input parameter. The multiplier m, a
constant value, is assumed to be greater than one and serves to provide an option-like
payoff structure for the insured portfolio (Jiang et al. 2009). In economic terms, m
denotes the degree of sensitivity to market movement. Following the determination
of m, the risky exposure (the amount invested in the risky asset) at time ¢ (E;) can
be calculated as:

Et =m:- Ct (54)

However, this unconstrained specification of Eq. [5.4] can lead to short positions in
the risk or risk-free asset (Dichtl & Drobetz, 2011)). To rule out short-sale, implement-
ing strategy as simple and practical as possible in terms of commercial applications
to the practitioner, we used the modified version of the specification of the cushion

(Annaert et al.l 2009; Benningaj, 1990; Dichtl & Drobetz, 2011; [Huu Do, [2002):
E; = maz(min(m - Cy, V;),0) (5.5)

At every rebalancing date, the amount F; is dynamically invested in a risky
asset, and the remainder is invested in the risk-free asset. As shown in Eq.
the cushion will increase when the market goes up. As a result, the risk exposure
increase, leading to further capital shift to the risky asset. In contrast, the cushion
will decrease when market conditions are negative, thereby causing a fund shift to
the risk-free asset. If the market goes down continuously so that the value of the
cushion reaches zero, all capital in the portfolio is fully invested in the risk-free asset,
thereby limiting the investor’s wealth to below the floor value. Additionally, a higher
value of multiplier m and a lower value of floor F' imply a more risky investment

since these lead to larger risk exposure. Hence, if investors want a higher degree of
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protection level, they must specify a higher floor value and a lower multiplier that

trade-off participation in a potential upside market.

5.2.3 TIPP strategy

Estep & Kritzman| (1988) proposed a TIPP strategy, a variant of the CPPI strat-
egy. In this TIPP strategy, floor value is dynamically ratched-up when the portfolio
value goes up. From this ratched-up floor value, the portfolio value is guaranteed the
original protection level as pre-specified and an increased protection level by com-
bining interim upside. Generally, the TIPP strategy with this dynamic ratched-up
floor value is expected to lead to a higher percentage proportion of risk-free assets
in an investor’s portfolio compared to the CPPI strategy. Likewise to the CPPI
strategy, in the TIPP strategy, investors must decide on the initial floor value Fy
and the multiplier m. Contrary to the CPPI strategy, the floor value is dynamically
adjusted by comparing this to the new floor value calculated using the current port-
folio value. Specifically, when the multiplication of the current portfolio value by the
floor percentage is larger than the previous floor value, this value is set to the new

floor value; otherwise, the previous value is kept, as described in the following:

a-V; ifa-Vy>F_4
F = , (5.6)

F;_1 otherwise
where a is the percentage floor, and V; is the current value of the portfolio. As a

result, the cushion (Cy) of TIPP can be calculated as follows:

Ct = ‘/t — Fte_r(T_t) (57)
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Risk exposure E; is also obtained similar to the CPPI strategy as follows:

E; = max(min(m - Cy, V;),0) (5.8)

TIPP strategy is proposed to address the disadvantages of SP and CIPP strate-
gies. In particular, |[Estep & Kritzman| (1988) argued that in the TIPP strategy,
protection is continuous, computation is simple, and the cost of an equivalent pro-
tection level is lower. Additionally, investors do not have to consider the ending date,
the effect of time, or volatility estimation. In contrast to the attractiveness of the
TIPP strategy, |Choie & Seft (1989)) criticized its limitations of the TIPP strategy.
They argued that the TIPP strategy decreases the likelihood of participation in any
upside market due to excessive capital shift from risky assets to risk-free assets via

the ratched-up floor value.

5.2.4 VDBPI strategy

Due to discrete portfolio adjustments or insufficient liquidity, the final insured port-
folio value is practically not guaranteed at the pre-specified protection level in stan-
dard portfolio insurance strategies. In contrast, the VBPI strategy proposed by |Jiang
et al.| (2009) seeks to achieve the insurance level through a probabilistic approach
based on the concept of confidence level rather than a strictly fixed percentage value
of protection level, to provide flexibility to a strategy. As a result, the VBPI strategy
dynamically adjusts the proportion of investor’s capital allocated to the risky and
risk-free assets in order to achieve an insured portfolio with a VaR at a confidence
level based on the return distribution as its worst case of loss.

The VBPI strategy is under the assumption that the price of risky asset Sy
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follows a geometric Brownian motion as follows:
dS; = St(,udt + O'th), So > 0, (59)

where p is the expected return, o is the volatility, and W denotes a standard Brow-

nian motion. The value of the risk-free asset (B;) is also described as follows:
dBt = TBtdt, BO > 0, (510)

where r is a constant risk-free rate, and p > r.
If w denotes the proportion weight of risk-free assets in the insured portfolio and
1 —w that of the risky asset, the final value (V) at maturity time T over the initial

value (Vp) of the insured portfolio can be described as follows:

So (5.11)
_ weTT + (1 - w)e(u70.502)T+0WT.

Then, based on the VaR approach, the VaR for the portfolio at pre-specified confi-
dence level a (VaRi_,) over Vj is obtained as:

VaRl_a
Vo

Ve, F

—E S
(Vo Vo

(5.12)

where E(“%) is the expectation of “% and F' is the insured amount. According to

Jiang et al. (2009)), since the horizon of VaR coincides with the period of investment,

%S‘a can be obtained by plugging Eq into Eq as follows:

—a F
Va]‘jol =we' + (1 —w)et! — Vo (5.13)

From the other side, the VaR for the insured portfolio is equal to the VaR for the

risky asset since the insured portfolio includes only risky assets and risk-free assets.
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Hence, %01*0‘ can be described as follows:
Va‘R;Ola _ (1 . w)(euT + e(u70.502)T+z1,a0\/T)7 (514)

where z1_, denotes the (1 — a)-quantile of the standard normal distribution. By

plugging Eq. into Eq. we have

F e(u—0.502)T+21,a0\/T
1%

_ W
v erT — (n=0.502)T+z1_aoVT’ (5.15)

Eq. denotes the weight of the risk-free asset of the static VBPI strategy,
if the proportion of the portfolio is not rebalanced until the terminal end of the
investment horizon. However, the weight of risk-free assets of the dynamic version of
the VBPI strategy, which dynamically adjusts the investment proportion between

risky assets and risk-free assets, can be described as follows:

P e(p—0.502)(T—t)+21,ao\/T—t
7

— t
v er(T—t) _ o(n—0.502)(T—t)+z1_aoV/T—t " (5.16)

At every rebalancing point, investors adjust the proportiorﬂ of their portfolio be-
tween the risk-free asset (w) and risky asset (1 —w) based on Eq. For practical
reasons, w is set to zero (one) when w is less than zero (larger than one) to avoid
leverage and short sales. As seen in Eq. two parameters, final insured value
(F') and the confidence level («), must be decided in advancedlﬂ

The major advantage of the VBPI strategy is that, in incorporating the concept

of the VaR to the protection level of the insured portfolio, this strategy can control

"Note that there is a V; term in Eq. rather than Vy. V; denotes the value of the insured
portfolio, reflecting the market condition. A higher value of V; implies a higher value of w, suggesting
that if the market goes up, the investment in the risk-free asset decreases and vice versa (Jiang et al.,
2009).

8As the economic implication, these two parameters represent the degree of the investor’s risk
tolerance (Jiang et al., [2009).
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the capability to meet the protection level. In contrast, the drawback of the VBPI
strategy is that the investor must estimate the expected return and volatility of the
risky asset. As a result, the performance of the strategy depends on the precision of

the estimation of these parameters.

5.3 Downside risks

Portfolio insurance strategies seek to directly limit downward market movement
while maintaining the potential for upward gains. In addition, the payoffs of port-
folio insurance strategies are generally non-linear in relation to the underlying risky
asset (Bertrand & Prigent) [2011)). As a result, the insured portfolio’s return distri-
bution becomes skewed and asymmetric, with a left short tail and a right heavy tail.
Because of their skewness and asymmetry, general performance measures, such as
the Sharpe ratio, are argued to be inappropriate performance measures in the con-
text of portfolio insurance (Annaert et al., 2009; [Bertrand & Prigent, 2011; Dichtl
& Drobetz, |2011). To address this issue of inadequacy of traditional performance
measures, several researchers have proposed and studied various downside risks as
performance measures for portfolio insurance strategies in the literature (Acerbi,
2004; Artzner et al.; 1999; |Pedersen & Satchell, 1998; [Szegd, [2002); This consists of
maximum drawdown (MDD), average drawdown (AvDD), VaR, ES, semideviation,

and Omega ratio. Therefore, this section briefly reviews these performance measures.

5.3.1 MDD and AvDD

A drawdown is a percentage of how much the value of an investor’s portfolio given
a portfolio strategy is down from the peak until it recovers back to the peak during

a specific investment horizon. After being introduced by Grossman & Zhou (1993)
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for the first time, many studies have used it as one of the measures of the downside
risk of portfolio strategy (Chekhlov et al., 2004, 2005; Hamelink & Hoesli, [2004;
Johansen & Sornette], [2000; |Pospisil & Vecer, |2010). The drawdown process of the

portfolio strategy at time ¢ is defined as follows:

Vi

maxr<¢ Vr

dy = —1:te{l,..,T}}, (5.17)

where V; is the value of the portfolio at time ¢ and max,<; V- is the maximum of all
values up to time t.

A MDD is the maximum value of the series of drawdown. This MDD refers to
the loss suffered when an investor buys an asset at a local maximum and sells it at

the next local minimum. The MDD at time T is defined as follows:
MDDy = d;. 1
T I?Sa%{ t (5.18)

Next, an AvDD is the average value of the series of drawdown. Hence, AvDD at

time T is defined as follows:
I or
AUDDT == thzldt' (519)

In the context of portfolio insurance, investors can use MDD and AvDD as the
performance measures of downside risk. To some extent, these can serve as an eval-
uation for protection against the downside risk of comparative portfolio insurance
strategies because the main demand of investors for the desirable property of an
insured portfolio is ultimately to increase the likelihood of limiting the downward

losses when the market condition begins to be negative.
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5.3.2 VaR

In finance, VaR is widely used as the standard downside risk measure to quantify
the market or portfolio risk (Hotta et al., |2008]). The definition of VaR is a measure
of the risk of possible financial losses of an asset or portfolio over a specific pe-
riod. Initiated by Dowd| (1998); [Jorion| (1997), a theoretical study on the VaR as a
risk measure has been conducted. Since then, a considerable number of studies have
applied risk management methods based on VaR for portfolio management (Alexan-
der & Baptistal [2003; |Gaivoronski & Pflug, 2005; Huang et al., |2009; |Quaranta &
Zaffaroni, [2008)).

Let X be a random variable of an asset and F'(x) be the cumulative distribution
function of the corresponding random variable, such that F'(z) = P(X < z). Then,

VaR, at a fixed level of'|is defined as the a-quantile of X as follows:
VaR,(X) = F Y(a) (5.20)

Its popularity is easily explained by its simplicity. It is intuitively understood by
a single number for a value of potential loss over a given period. Another reason is
that VaR, as an asymmetric risk measure, mitigates the problem of the symmetric
volatility measure by focusing on the left tail of the return distribution (Ibragimov,
& Walden|, 2007; [Jorion, [1997). Due to this advantage, VaR can be considered to be
an appropriate performance measure for a portfolio insurance strategy under which

return distribution is non-normally and asymmetrically distributed.

9A larger confidence level implies a higher degree of risk aversion since larger confidence levels
will involve more negative VaR.
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5.3.3 ES

A crucial drawback of VaR is the absence of an indication of excessive losses beyond
VaR. This can lead to critical real-world problems since risk information via VaR
may misguide investors (Yamai & Yoshiba, [2005)). To address this limitation, the
ES that measures the average loss below the VaR is introduced (Acerbi & Taschel
2002). Further research on justifying the advantages of an ES over VaR has also been
conducted in terms of tail risk management on allocating economic capital (Acerbi
& Tasche, 2002 [Yamai & Yoshibay, 2005]).

The ES refers to the conditional expectation of loss given the loss beyond the
level of VaR. Let X be a random variable of the loss of an asset. The ES is defined
as follows:

ES.(X) = E[X|X > VaRa(X)]. (5.21)

That is, the ES represents the average loss under conditions where the loss ex-
ceeds VaR. ES, like VaR, aims to capture tail risk and is thus regarded as an appro-

priate performance measure for the framework of portfolio insurance strategies.

5.3.4 Semideviation

The semideviation refers to the square root of the expected squared deviation from
the mean under the condition that the random variable (X) does not exceed the

mean (F(X)). This semideviation (o_) is defined as follows:
1
o_ = E[(P[X] - X)Q]lxgE[X]]Za (5.22)

where 1x<p(x) denotes the indicator function of X < F[X].

The semideviation of returns is a plausible measure of risk, considering many
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advantages. Due to these abundant advantages, various studies have used semidevi-
ation as a downside risk measure to use as a criterion for the optimal portfolio choice
problem (Chiodi et al., 2003} Ogryczak & Ruszczynski, (1999, 2001} Pmar & Pag,
2014; |Vercher & Bermudez), 2015). The superiority of semideviation as a downside
risk measure is three-fold. First, investors obviously focus mainly on the downside
volatility rather than the upside volatility. Additionally, the semideviation is more
useful than the simple standard deviation in the case of the asymmetric underlying
return distribution as well as the symmetric case (Jafarizadeh & Khorshid-Doust),
2008). Furthermore, the semideviation incorporates the information on standard de-
viation and skewness into one measure (Estrada, 2004, 2007)). Accordingly, in that
semideviation well addresses the downsides of return, asymmetry, and skewness, it
is considered an appropriate performance measure for the evaluation of portfolio

insurance strategies under this study.

5.3.5 Omega ratio

Keating & Shadwick| (2002) proposed the Omega performance measure which is one
of the powerful measures that consider the entire distribution of portfolio return. The
Omega ratio evaluates the gains and losses with respect to the pre-specified threshold
of return. By doing so, the Omega ratio can consider the whole distribution rather
than a particular moment of the return (e.g., volatility or skewness) while requiring
no assumption of parameters on the return distribution. Additionally, the authors
successfully incorporated the concept of loss-aversion studied by [Hwang & Satchell
(2010); Tversky & Kahneman| (1992)) into this measure, by using the downside lower
partial moment.

In particular, the Omega ratio is defined as the probability-weighted ratio of
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the expectation of gains to the expectation of losses relative to a return threshold
(Keating & Shadwick] 2002). At this point, the gains refer to a return that is above
the threshold, whereas the losses refer return that is below the thresholdﬂ In this
way, the Omega ratio splits the return into two sub-parts by using a threshold. The

exact mathematical form of the Omega ratio is represented by the following;:

_ J(L - P(a))da
faL F(z)dz

where F'(-) denotes the cumulative distribution function of the return X € (a, b) and

Q. (L) (5.23)

L denotes the pre-specified threshold of return.
Interestingly, Kazemi et al. (2004) showed that the Omega ratio can be written
as:

O, (L) = 2o =) (5.24)

where P denotes the probability distribution. In other words, the Omega ratio is
the ratio of the expected gains above the threshold to the expected losses below
the threshold. More specifically, from the mathematical point of view, [Kazemi et al.
(2004) observed that the Omega is equivalent to the ratio of the expected value of a
call option payoff over the expected value of payoff of a put option for the underlying
risky asset X with a strike price L corresponding to the threshold evaluated under
the historical probability P rather than risk neutral one (Bertrand & Prigent, 2011)),

as follows:

10A threshold implies a minimum acceptable return. According to [Bertrand & Prigent| (2011)),
thresholds between zero and the risk-free rate are proper in evaluating an investment using the
Omega ratio. The authors mentioned that the threshold corresponds to the concept of protection
of funds in the economic term.
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e "TEp[(X — L)Y]  Call(L)

(L) = e TEp|(L — X)*]  Put(L)

(5.25)

Generally, a strategy with a higher Omega ratio is considered more appealing since
the investors prefer the strategies with higher gains above the threshold return and
lower losses below the threshold return.

The major advantage of the Omega ratio is that it is an appropriate performance
measure to compare non-normally distributed portfolio returns since it considers all
the moments of the return distribution, such as volatility, skewness, and kurtosis,
compared to traditional measures (e.g., Sharpe ratio). Due to this advantage, the
Omega has been applied across an amount of literature in financial studies, including
portfolio insurance strategies with non-linear payoff features and asymmetric returns

(Bertrand & Prigent|, 2011]).

5.4 Investor’s utility
5.4.1 Expected utility theory

Expected utility theory, which was initially introduced by Bernoulli in 1738, was
developed by [Von Neumann & Morgenstern| (1947). Von Neumann & Morgenstern:
(1947), who modeled the decisions of economic agents based on their preference un-
der uncertainty. This theory assumes that agents are rational investors, and thus,
their decisions are rational. Each agent bases his or her decision on the utility pro-
vided by wealth (w), rather than the monetary value of the wealth. As a result, the
optimal choice problem for investors is reduced to a maximization problem of the

final value of investors’ expected utility, which is described as follows:

Elu(w)] = S5 1pi - u(wy), (5.26)
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where u(w) is the utility function provided by wealth w and p; is the probability
that i-th outcome w; will occur.

There are three principles behind this expected utility theory. First, the expec-
tation of the utility of the investor’s choice is equal to the summation of the utilities
weighted by the probability of all possible outcomes (Dichtl & Drobetz, [2011)). Sec-
ond, if the alternative portfolio choice generates excessive value compared with the
existing asset portfolio, it is considered more acceptable. Third, every investor is
assumed to be strictly risk-averse rather than risk neutral or risk-seeking.

Utility is a function that maps the monetary value of wealth to the magnitude of
an investor’s perceived preference. Among various utility functions, hyperbolic abso-
lute risk aversion (HARA) utility is widely used in the general form of Von Neumann
& Morgenstern| (1947)’s utility functions. This HARA utility function is described

as follows:

1=y, aw
v o l=n

+6)7, (5.27)

with the parameters a and 8 such that a > 0 and % + 3 > 0. Various special forms
of this HARA utility are commonly used in prior studies related to an investor’s
utility (e.g., quadratic utility and exponential utility function). Quadratic utility

can be obtained by HARA utility if v = 2, as follows:
b o
u(w) =w — W (5.28)

where b > 0 implies risk aversion. Exponential utility can also be obtained by HARA
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utility if v goes negative infinity and 5 = 1 as follows:
u(w) = —e %, (5.29)

where b > 0 also implies risk aversion. The expected utility theory takes into account
the investor’s risk aversion, which is the economic concept that the investor would
prefer certain outcomes over lottery risk by avoiding a fair gamble. Expected utility
theory investor’s utility functions such as quadratic and exponential utility show
concavity and diminishing marginal wealth utility. As a result, the utility function’s

curvature b measures the level of risk aversion.

5.4.2 Prospect theory

Several behavioral phenomena that contradict the expected utility theory have been
reported; thus, related literature has discussed the rational framework to describe
how investors assess the possible outcome of gains and losses. As a seminal study of
behavioral finance, which addresses this issue, Kahneman & Tversky| (1979) proposed
a prospect theory@ where the investor’s choice is determined by preference under
framing of gains and losses. More specifically, prospect theory investors evaluate
their choices based on the potential gains and losses by comparing to a pre-specific
reference point, contrary to the expected utility theory of investors who evaluate

their choices based on the overall value of expected wealth. This phenomenon refers

' After research on this prospect theory, Tversky & Kahneman| (1992) proposed cumulative
prospect theory, which is the modified version of the original prospect theory. The crucial dif-
ference is that cumulative prospect theory weights the prospect value based on the cumulative
weights obtained by the probability weighting function. From the economic perspective, this indi-
cates the accounts for the investor’s sensitivity to extreme events. To obtain reliable results, we also
conducted the simulation under a cumulative prospect framework. However, we confirm essentially
similar result to the result from the original prospect theory. To maintain our main argument clearly,
we omit the cumulative prospect results in our study. Full results are available upon request.
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to the framing concept.

The key point is that, unlike expected utility theory investors, who are always
risk-averse, prospect theory investors are assumed to be risk-averse in the domain
of gains while seeking risk in the domain of losses. Hence, value functionlﬂ of the
gain domain is concave, whereas the value function of the loss domain is convex,
implying an S-shaped value function. Another important aspect of prospect theory
is that it assumes investors have a loss-aversion personality. Loss-aversion implies
that the impact of losses is greater than the corresponding gains with the same
deviation from the reference point. Prospect theory investors, in other words, pay
more attention to potential losses than potential gains. As a result, the value function
should be steeper in the domain of losses relative to the domain of gains.

Accordingly, to capture the aforementioned-assumed properties of investors, the
authors suggest the value function considering different features of the domain of
gains and losses, considering deviations from a reference point (Az) as outcomes as

follows:

(Az)™ if Az >0
v(Az) = , (5.30)

—\-(—Az)? otherwise
where a denotes the coefficient of risk aversion in the gain domain, 8 denotes the
coefficient of risk-seeking in the loss domain, and A denotes the coefficient of loss-

aversiorﬁ By averaging the value function in Eq. the mean prospect value of

12In prospect theory, the value function indicates the standard utility function in expected utility
theory.

13Kahneman & Tversky| (1979) suggested using o = 8 = 0.88 and A = 2.25. These o and f
represent the concavity in gains and convexity in losses, respectively. A denotes the loss-aversion of
the investor. A = 2.25 implies that investors respond to the impact of losses more than twice as
much as the impact of gains.
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a portfolio strategy (p) is obtained as follows:

S v(Aw;)

MPV, =
P N

(5.31)

where Ax; is the i-th outcome sorted in ascending order.

5.5 Data and experimental design

5.5.1 Data

To obtain reliable and robust results, we use the following criteria for the filtering
process to select cryptocurrencies for our empirical study. First, cryptocurrency price
data must cover at least a 5-year period to include a sufficiently long time series that
captures most of the dynamics in the cryptocurrency market during periods. Second,
since portfolio insurance strategies require risky assets as investment assets, stable
coins (e.g., Tether) are excluded. Finally, the selected cryptocurrencies in our data
must be included in the list of the 50 largest cryptocurrencies in terms of market
capitalization at the time of the writing.

As a result of the filtering process, we obtain the price of seven major cryp-
tocurrencies from May 2017 to April 2022. Bitcoin, Ethereum, Ethereum Classic,
Litecoin, Ripple, Stella, and Monero are all part of it. Figure depicts the daily
price and return of these seven cryptocurrencies over the covered period. These seven
cryptocurrencies account for 89.6% of market capitalization in May 2017 and 64.5%
in April 2022, respectively. The daily prices of these cryptocurrencies are obtained
from CoinMarketCapE A total of 1,827 daily observations for each cryptocurrency
are included. Prices are denominated in USD. Based on price data, we calculate sim-

ple returns of all cryptocurrencies on a daily basis, similar to |Annaert et al.| (2009);

HMyyww.coinmarketcap.com
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Zieling et al.| (2014). As a proxy for risk-free rates, the 3-month Treasury Bill (T-bill)

Rate is used. For the covered period, the average annual return and annual volatil-

ity are 1.05% and 0.89%, respectively. Table summarizes the return statistics for

each asset based on annualized returns over the covered period.
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Figure 5.2: Time series of price and return of each cryptocurrency.

Notes. This figure shows time series of price and return of each cryptocurrency on a daily basis for the period May 2017 to

April 2022.

In Table[5.1] we report the values of the average return, standard deviation, skew-

ness, and kurtosis for each cryptocurrency. The overall average return and standard
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Table 5.1: Summary statistics of return of each cryptocurrency

Avg  Std. Skew Kurto ADF Q(10) Q(40)  Q(70) ARCH(1) ARCH(3) J-B

BTC 0.682 0.677 -0.08 6.7 —30.0"* 9.0 47.0 85.9% 24.1% 28.8%* 3388.0"**
ETH 0.863 0.869 -0.03 4.8 —124** 223" 53.3* 73.1 58.2%** 64.2%* 1748.0%**
ETC 0.74 1.071 1.3 129 -84 20.8* 85.5"* 127.0"* 97.3"** 101.8"** 13027.0***
LTC 0.698 0.964 0.75 74 -16.2"* 123 51.9* 88.9* 92.9%** 121.5™** 4337.0"*
XRP 0.938 1.146 2.5 219 —9.6"* 8.0 63.3**  93.5** 39.9%* 92.7%* 38090.0***
XLM 1.25 1.324 3.95 40.9 -19.0* 16.5* 49.0 83.5 307.0%* 3117+ 131349.0"**
XMR 0.751 0.957 0.59 9.6 —15.7"* 16.2* 64.1"* 86.5* 66.1*** T1.1%* 7056.0**

Notes. We apply the Augmented Dickey-Fuller (ADF) test (Cheung & Lail|[1995). ADF statistics show that the null hypothesis
of a unit root can be rejected for returns. Ljung-Box tests up to leg 70 are conducted to detect serial correlation. Q(-) denotes
the test statistics of the Ljung-Box test. |Engle| (1982))’s Lagrange multiplier (LM) test detects heteroskedasticity up to lag 3.
Values in columns ARCH (1) and ARCH (3) denotes the values of LM statistics. The J-B columns denote the test statistic
of the Jarque-Bera test, where the null hypothesis is that return distribution is normally distributed. *, ** and *** mean
significance at the 10%, 5%, and 1% level, respectively.

deviation show relatively large values. While Bitcoin shows the lowest average re-
turn and risk (68.2% and 67.7%), Stella shows the highest average return and risk
(125% and 132.4%) among cryptocurrencies. These high returns and risks are shown
in Figure [5.3] representing the overall growth of each cryptocurrency. Furthermore,
although Bitcoin and Ethereum have small negative skewness values, the remainders
have positive skewness values, implying that, except for these two cryptocurrencies,
whose return distributions are slightly left-skewed, the remainder’s return distribu-
tions are right-skewed. Next, fat-tail seems to exist in the return distributions of
all cryptocurrencies, considering that the value of all cryptocurrencies’ kurtosis is
greater than ﬂ Considering the aforementioned descriptive statistic results of each
cryptocurrency together, we found that the cryptocurrency market is characterized
by high average return, risk, skewness, and kurtosiﬂ

We apply the ADF test (Cheung & Lai, [1995), and the result shows that the null

hypothesis of a unit root can be rejected at 1% significance level. Hence, we confirms

151f a return distribution is normal, the corresponding kurtosis should be 3.

161 fact, many articles have reported these characteristics of the cryptocurrency market (Liu
& Tsyvinski, 2021} [Liu et al 2022)). They demonstrate that the cryptocurrency market shows a
higher value of average return, standard deviation, skewness, and kurtosis compared to the stock
market, which is consistent with our results.

142



us{ —— BTC

ETH
— ETC
101 —— LIC

XRP
— XM
125 XMR

El

Value of $1 invested
8

& ~ g & ~ ¥ & ~ N IS
. . &0 o o o o o o o
L L Y " " 0y 0y P » »

Figure 5.3: The value of $1 invested in the initial date of the covered periods.

that returns of cryptocurrencies are stationary. Furthermore, a Ljung-Box test up
to leg 70 is conducted to detect the existence of autocorrelations. The results of
Q(10), Q(40), and Q(70) in Table|5.1| reveal autocorrelations in all returns. Bitcoin,
Litecoin, and Ripple have autocorrelation only at a higher lag (40 or 70). Meanwhile,
Ethereum, Ethereum classic, Stella, and Monero show the autocorrelation at lower
lag (10), although Ethereum, Ethereum classic, and Monero show the autocorrelation
at higher lag (40), either. Next, we performed (1982)’s Lagrange multiplier
test to check heteroskedasticity, revealing that there exist statistically significant
heteroskedasticity effects in all cryptocurrency returns at up to lag 3. Finally, the
Jarque-Bera (J-B) test statistics are reported. These J-B results indicate that a
normal distribution null hypothesis can be rejected in all cryptocurrency returns.

5.5.2 Experimental design

Simulation setup for downside risks results

The first research question we want to address in our study is how the impact of risk

and return structure of our portfolio in portfolio insurance strategies compared with
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benchmark strategies are shown in the cryptocurrency market. In order to investigate
this, the block-bootstrap simulatiorm introduced by |Annaert et al.| (2009)) is used in
our study on selected cryptocurrencies for the past five years. We assume that the
bootstrap simulation contains 252 trading dayﬁ as l-year duration since various
institutional or retail investors prefer using a 1-year horizon of investment (Benartzi
& Thaler} |1995)). The procedure of the block-bootstrap approach is as follows. First,
among our selected cryptocurrencies, one cryptocurrency is randomly drawn with
the replacement. Second, a continuous block of 252 daily cryptocurrency returns is
obtained by randomly drawing a random starting date with replacement. A total of
10,000 repeated simulations using this procedure are performed to reliably evaluate
the performance of all strategies.

To implement the SP strategy, investors must specify the volatility of an under-
lying risky asset. However, since true volatility is unknown to investors in advance,
they should estimate this volatility. In this study, we attempt to investigate the
empirical results of various portfolio insurance strategies in the cryptocurrency mar-
ket rather than attempt to propose an enhanced volatility estimation model in SP.
Thus, we use the rolling window-based standard deviation of 252 daily returns be-
fore the random initial date of simulation for the estimate of volatility, following the

various portfolio insurance studies (Annaert et al., 2009; Dichtl & Drobetz, 2011;

7The authors stated that they can obtain return series without making any distribution assump-
tions using block-bootstrap simulation. Furthermore, bootstrapping preserves skewness and kurtosis
structure, avoiding the dependency effects associated with autocorrelation and heteroscedasticity.
The selection of the simulated periods has a significant impact on the performance evaluation of
portfolio insurance strategies. As a result, we believe that using this block-bootstrap simulation
effectively mitigates this issue.

18Some cryptocurrency portfolio studies (Grobys et al. [2020; [Liul [2019a} |Silahli et all [2021)
used the assumption that a 1l-year is about 365 trading days. We conduct the simulation under
this assumption, demonstrating essentially similar result to the main ones. Full results are available
upon request.
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Dichtl et al [2017)). This is consistently applied to the VBPI strategy. Moreover, the
VBPI strategy requires estimation of expected return as well as volatility; we also
use rolling a window-based average of 252 daily returns before the random initial
date of simulation as an estimated expected return. In CPPI and TIPP, we use the
value that is equal to the SP’s initial risk exposure for selecting the initial value of
that risk exposure.

Our benchmarks consist of a buy-and-hold strategy, a buy-and-hold strategy
with 50/50 proportion (B&H 50/50), 70/30 portfolio strategy (70/30), and 50/50
portfolio strategy (50/50). In buy-and-hold strategy, 100% of portfolio is invested
in cryptocurrency at the starting date and held until maturity. In B&H 50/50, 50%
of the portfolio is invested in cryptocurrency and 50% of the portfolio is invested in
risk-free assets at the starting date and held until maturity. In contrast, in the 70/30
portfolio strategy, 70% of the portfolio is invested in cryptocurrency and 30% in risk-
free assets at the start date, and portfolio rebalancing occurs at each rebalancing
point (daily) until maturity in order to maintain its initial proportion. Similarly,
in the 50/50 portfolio strategy, 50% of the portfolio is invested in cryptocurrency
and 50% in risk-free assets at the start date, with rebalancing occurring at each
rebalancing point until maturity.

To consider the effect of transaction costs from the frequent rebalancing, we use a

transaction cost of 0.1% for our overall portfolio insurance strategies and benchmark

analysig "}

YFor the SP strategies, we apply the transaction cost scheme as shown in Eq. Following
Dichtl & Drobetz| (2011)); [Herold et al.| (2007)), we use ten basis points as the value of k, which is
the round-trip transaction cost.

145



Investor’s utility simulation setup

The second research question of our study is how the choice of portfolio strategies
is affected by the investors’ utility and level of parameters in the cryptocurrency
market. To investigate this question, we consider two types of investors: (i) ex-
pected utility investors and (ii) prospect theory investors. In this study on investor’s
utility over portfolio insurance strategies, we also performed 10,000 repeated block-
bootstrap simulations. Likewise to downside risk simulation, we calculated the utility
value and mean prospect value by using the obtained 10,000 return series. As a re-
sult, the contribution of different features across utility types, such as risk aversion
in expected utility theory, a curvature of S-shaped value functions, and loss-aversion
in prospect theory is investigated. We use the buy-and-hold strategy as a unique
benchmark because we want to investigate the impact of these investor character-
istics in the cryptocurrency market by comparing a group of portfolio insurance
strategies and a 100% risky asset invested portfolio.

In expected utility theory, we use two widely used utility functions (e.g., quadratic
and exponential), revealing the impact of cryptocurrency investor’s risk aversion on
the choice of investors among portfolio strategies. In prospect theory, the value
function in Eq. is used to investigate the impact of curvature (a and () of
the S-shaped value function on the investors’ preferences with a fixed level of loss-
aversion. The curvature in the S-shaped value function indicates the degree of risk
aversion («) in the gain domain and the degree of risk-seeking (/3) in the loss domain.
Since regression results in [Tversky & Kahneman (1992) demonstrated that param-
eters o and (3 estimated as the same values (0.88) are in accord with the empirical

data, following the research, we explore the space in the condition that e = 8 which
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implies that the degree of investor’s risk aversion in the gain domain is assumed to
be the same as the degree of the investor’s risk-seeking in the loss domain. For this
result, we use the two fixed levels of loss-aversion (A = 1.0 and A = 2.25). A = 1.0
means that it does not account for loss-aversion while A = 2.25 means vice versa.
By comparing the expected utility theory and prospect theory results, we uncover
the impact of S-shaped value functions, which implies the additional consideration
of risk-seeking features in the loss domain. Additionally, we also explored the impact
of loss-aversion \ at a fixed level of curvature (o« = 8 = 0.88). To obtain the total
effect of the S-shaped value function, we use the average value function as the mean

prospect value.

5.6 Empirical results

5.6.1 Downside risk results

Comparison of portfolio insurance strategies and benchmarks

Table 5.2: Performance evaluation results based on downside risks

SL SP CPPI TIPP VBPLS VBPI-D B&H B&H 50/50 70/30  50/50

Average return  0.109  0.537  0.107  0.026 0.012 0.027  0.766 0.419 0.531 0.38
Volatility 0.19 0.615 0.16  0.019 0.021 0.046  0.846 0.482 0.592  0.423
Skewness 3.032  1.402 3.369 6.949 22.16 3.761  0.801 1.354 0.8 0.8
Sharpe ratio 0.516  0.855 0.601 0.824 0.086 0.372  0.892 0.847 0.878 0.873
MDD -0.145 -0.441  -0.12 -0.009  -0.016 -0.038  -0.56 -0.367 -0.426 -0.321
AvDD -0.094 -0.209 -0.067 -0.005 -0.007 -0.016  -0.255 -0.159  -0.18 -0.128
VaR 5% -0.176 -0.313 -0.077 -0.002  -0.017 -0.031  -0.509 -0.249 -0.352 -0.245
ES 5% -0.244  -0.35 -0.154 -0.006 -0.06 -0.072  -0.581 -0.285 -0.418 -0.298
Semideviation 0.081 0.279 0.045 0.007 0.019 0.022 0.42 0.21 0.289 0.202
Omega ratio 1.192  1.186 1.205 1.499 1.209 1.219 1.185 1.18 1.183 1.184

Notes. This table shows performance evaluation results using performance measures, including downside risks in the cryp-
tocurrency market.

Table shows the overall results from comparative portfolio insurance strate-

gies and benchmarks in the cryptocurrency market. For the main results, we studied
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SL, SP, CPPI with multiplier 7, TIPP with multiplier 7@, static VBPI (VBPI-
S) with 99% confidence level, and dynamic VBPI (VBPI-D) with 99% confidence
leveﬂ as our portfolio insurance strategies. We implemented all portfolio insur-
ance strategies under 100% protection leve@ As shown in Table the buy-and-
hold strategy offers the largest value of average return and volatility. Despite having
lower average returns, portfolio insurance strategies show substantially lower volatil-
ity than the buy-and-hold strategy. This result is not surprising given the portfolio
insurance philosophy that investors pay an upward capture as a cost of downward
protection for the insured portfolio. Specifically, SP has the highest average return
and volatility (53.7% and 61.5%, respectively), while TIPP, VBPI-S, and VBPI-D
strategies have the lowest average return and risk among portfolio insurance strate-
gies. The average returns and volatility of the SL (10.9% and 19%) and CPPI (10.7%
and 16%) strategies are both in the middle. These findings imply that, despite the
same level of protection, the risk exposures of each strategy are very diﬂ"eren@
The other benchmarks (B&H 50/50, 70/30, and 50/50) show average returns and
volatility roughly intermediate between SP and CPPI.

Although the benchmark strategies show a moderate positive value of skewness,

all portfolio insurance strategies show substantially higher positive skewness than

20We also investigated the impact of multiplier m. Since the aim of this study is to investigate
portfolio insurance strategies in the cryptocurrency market, rather than to propose a new portfolio
insurance strategy, we present these results in Table[A6]in Appendix in order to maintain our main
argument in this section.

21'We also investigated the impact of confidence level. These results are presented in Table in
the Appendix.

22The commonly used level of protection is 100% in the vein of study on the portfolio insurance
strategy, as shown by [Dichtl & Drobetz (2011]).

23In that TIPP strategy is the modified version of CPPI with dynamically adjusted floor level
(only adjusting upward side), it is a plausible result that risk exposure of TIPP is less than that of
CPPI given the same level of protection since the degree of protection might be tight compared to
that of CPPL.
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the benchmarks in the cryptocurrency market. Generally, higher positive skewness of
strategy indicates that the strategy is more desirable since the positive skewness of a
return distribution implies frequent minor downward losses and a few large upward
gains rather than frequent minor upward gains and a few large downward losses in
their investment (Harvey & Siddique, 2000; Post et al., |2008). However, in terms
of the Sharpe ratio, it is shown that most of the benchmarks outperform portfolio
insurance strategies. However, it is a non-surprising result, as already reported in
many portfolio insurance strategy studies. As aforementioned, the Sharpe ratio might
not be an adequate performance measure for a portfolio insurance strategy due to
its non-normalityP7]

As a result, to adequately address this issue, we also conducted a performance
evaluation of all strategies using various downside risk measures (MDD, AvDD, VaR,
ES, semideviation, and Omega ratio), which are proper to capture non-normality and
asymmetry in return distribution. Specifically, the buy-and-hold strategy (—56% and
—25.5%) shows the highest level of MDD and AvDD (in absolute value) compared
to the portfolio insurance strategies and other benchmarks in the cryptocurrency
market. Among portfolio insurance strategies, SP (—44.1% and —20.9%) show the
highest MDD and AvDD, while TIPP (—0.9% and —0.5%) showed the lowest MDD
and AvDD. Overall results of MDD and AvDD demonstrate that all portfolio insur-
ance strategies significantly improve compared with buy-and-hold. Similar results
are shown in terms of VaR and ES with a confidence level of 5%. The buy-and-hold

strategy (—50.9% and —58.1%) has the highest VaR and ES (in absolute value),

24Much research related to this issue has been reported. See |Annaert et al| (2009); Bertrand &
Prigent| (2011); |Dicht]l & Drobetz| (2011); [Dichtl et al.| (2017)); \Gaspar & Silval (2021); |Zieling et al.
(2014).
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indicating that all portfolio insurance strategies have a considerably better level of
VaR and ES than the buy-and-hold strategy. TIPP (—0.2% and —0.6%, respectively)
outperforms other portfolio insurance strategies in terms of VaR and ES level.
Furthermore, the buy-and-hold semideviation (42%) is higher than that of all
other portfolio insurance strategies and benchmarks. The result of semideviation
should be interpreted with caution because, in addition to the absolute value of
semideviation, the relative difference in volatility and semideviation of comparative
strategies over the baseline has significant implication. More precisely, the volatility
of buy-and-hold (84.6%) decreases by 50.4% to the semideviation of buy-and-hold
(42%), as expected; thus, the upside deviation of buy-and-hold return distributions
is similar to the downside deviation of buy-and-hold since its return distribution is
close to the symmetry. Meanwhile, volatility of SL, SP, CPPI, TIPP, VBPI-S, and
VBPI-D (19%, 61.5%, 16%, 1.9%, 2.1%, and 4.6%, respectively) decreases to the
semideviation of those (8.1%, 27.9%, 4.5%, 0.7%, 1.9%, and 2.2%, respectively) by
57.4%, 54.6%, 71.9%, 63.2%, 9.5%, and 52.2%, respectively. With the exception of
VBPI-S, the degree of reduction in portfolio insurance strategies is larger than that
of the buy-and-hold strategy. That is, the downside deviations of these portfolio
insurance strategies are lower than the upside deviations of those due to asymme-
try and positive skewness, and portfolio insurance strategies in the cryptocurrency
market effectively improve the degree of risk reduction relative to the standard risk.
Considering the results in terms of MDD, AvDD, VaR, ES, and semideviation to-
gether, we confirm that portfolio insurance strategies in the cryptocurrency market
can deliver a better level of downside risk to the investors compared to buy-and-hold,

thereby corroborating lower risk investment.
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Next, we investigate the results based on the Omega ratio with a zero return
threshold. Portfolio insurance strategies outperform the buy-and-hold strategy and
other benchmarks in the cryptocurrency market in terms of the Omega ratio. This
result implies that portfolio insurance strategies’ expectation of gains to expectation
of losses is greater than that of buy-and-hold and other benchmark strategies in the
cryptocurrency market. TIPP strategy has the best Omega ratio performance among
portfolio insurance strategies, whereas the SP strategy has the worst.

Interestingly, although most results demonstrated substantial outperformance of
portfolio insurance strategies in terms of downside risks, there exist several excep-
tions, such as VBPI-S in terms of semideviation and the insignificant outperfor-
mance of SP in terms of Omega ratio. These exceptions show a strong hint that
under the requirement of assumption of the Black—Scholes option pricing model,
SP, and VBPI strategies suffer from underperformance due to the absence of con-
sideration of sudden jumps in cryptocurrency prices (Bouri et al., [2020) and due
to unbiased volatility estimation in the complex real-world market condition. This
result is consistent with the results of |Annaert et al. (2009). The authors demon-
strate that under high volatility market condition, the portfolio insurance strategies
with a requirement of Black—Sholes assumptions show underperformance, while the
portfolio insurance strategies without the requirement of Black—Sholes assumption
substantially outperforms the benchmarks in terms of various performance measures
in part.

The main results from Table are summarized as follows. First, portfolio in-
surance strategies make investment less risky than the buy-and-hold strategy in the

cryptocurrency market, as shown in all risk measures (MDD, AvDD, VaR, ES, and
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semideviation as well as volatility), and this lower risk entails a lower average re-
turn. Second, portfolio insurance strategies are inferior to the buy-and-hold strategy
in terms of the Sharpe ratio in the cryptocurrency market. However, the argument
that the Sharpe ratio in a portfolio insurance context is not necessarily an appro-
priate measure is also corroborated by the higher skewness and asymmetry of the
insured portfolio compared to the buy-and-hold portfoliﬂ Third, the results from
all downside risks (MDD, AvDD, VaR, ES, semideviation, and Omega ratio) clearly
demonstrate the outperformance of portfolio insurance relative to the benchmarks
in the cryptocurrency market. Despite this superiority, several portfolio insurance
strategies based on Black—Scholes assumptions seem to suffer from an estimation

error problem.
The impact of the protection level

A common pre-determined specification in all portfolio insurance is floor value F'
(i.e., protection level a). As a result, we investigate how performance measures of
portfolio insurance strategies change as the level of protection changes in the cryp-
tocurrency market. Because it is commonly used for protection levels, three pro-
tection levels (100%, 95%, and 90%) are considered (Dichtl & Drobetz, 2011). As
the level of protection is reduced, the average return and volatility of all portfolio
insurance strategies rise. This volatility tendency is reflected in the results of other
downside risk measures in all portfolio insurance strategies. It is not surprising given
that the protection level, or floor value, denotes the willingness to accept potential

losses. Simply put, it refers to the level of risk exposure. Consistent with this im-

25This result is consistent with the prior research on adequate performance measures of the
portfolio insurance strategies in the stock market (Annaert et al.l |2009; Bertrand & Prigent, [2011}
Zieling et al., |2014).
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Table 5.3: Performance evaluation results according to protection levels

SL SP CPPI TIPP VBPIS VBPI-D B&H B&H50/50 70/30 50/50

Panel A: Protection level of 95%

Average return 0.232  0.553 0.244  0.079 0.06 0.088  0.766 0.419 0.531 0.38
Volatility 0.337  0.632 0.336 0.098 0.079 0.124  0.846 0.482  0.592  0.423
Skewness 2.021 1.354 2356 7.738 4.657 4.33  0.801 1.354 0.8 0.8
Sharpe ratio 0.66 0.859 0.697 0.697 0.623 0.625 0.892 0.847 0.878 0.873
MDD -0.263 -0.451 -0.25 -0.059  -0.063 -0.1  -0.56 -0.367 -0.426 -0.321
AvDD -0.161 -0.213 -0.151 -0.048 -0.028 -0.044 -0.255 -0.159  -0.18 -0.128
VaR 5% -0.224 -0.326 -0.152 -0.058  -0.061 -0.061  -0.509 -0.249 -0.352 -0.245
ES 5% -0.292  -0.363 -0.239 -0.067 -0.12 -0.095 -0.581 -0.285 -0.418 -0.298
Semideviation 0.107  0.291  0.068 0.042 0.042 0.042 0.42 0.21 0.289 0.202
Omega ratio 1.198  1.186 1.198  1.349 1.201 1.209  1.185 118  1.183 1.184

Panel B: Protection level of 90%

Average return 0.322 0.57 0.329 0.129 0.102 0.134  0.766 0.419  0.531 0.38
Volatility 0.44 0.649 0437 0.177 0.129 0.182  0.846 0.482 0.592 0.423
Skewness 171 1.303 1.918 7.608 2.854 3.644  0.801 1.354 0.8 0.8
Sharpe ratio 0.708  0.862 0.73  0.668 0.713 0.677  0.892 0.847 0.878 0.873
MDD -0.34 -0.461 -0.323 -0.111 -0.102 -0.145  -0.56 -0.367 -0.426 -0.321
AvDD -0.205 -0.217 -0.198 -0.095  -0.044 -0.064 -0.255 -0.159  -0.18 -0.128
VaR 5% -0.272  -0.34 -0.224 -0.109 -0.089 -0.097  -0.509 -0.249 -0.352 -0.245
ES 5% -0.34 -0.376 -0.305 -0.127  -0.149 -0.124  -0.581 -0.285 -0.418 -0.298
Semideviation 0.135 0.306 0.108 0.078 0.061 0.062 0.42 0.21 0.289 0.202
Omega ratio 1.197 1.185 1.195 1.331 1.197 1.197 1.185 1.18 1.183 1.184

plication, overall results are presented as expected. In other words, a lower level of
protection leads portfolio insurance strategies to be more volatile.

However, except for several cases (TIPP and VBPI in 100% and 95% protection
level), overall skewness increases as the protection level increases, revealing that a
higher protection level leads to a return distribution of the strategy to be more
positive-skewed. Next, it is unclear which protection level provides a better level
of Omega ratio. None of the major changes in the Omega ratio are shown, which
indicates the ambiguity of enhancement according to the protection level.

There are a few differences between the results of SL and SP. The most high-
lighted is that the SP strategy is riskier than the SL strategy. As well as values
of volatility, all downside risks (MDD, AvDD, VaR, ES, and semideviation) show
higher values in SP than in SL under the same level of protection. Presumably, this

is because the SP strategy might have a longer opportunity of risk exposure than
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the SL strategy since the SL strategy maintain its 100% risk-free asset position after
switching its proportion of risky assets when the value of the portfolio reaches the
(discounted) floor value. Interestingly, as protection level varies, the Sharpe ratio
of SL changes significantly while the Sharpe ratio of SP changes only slightly. This
indicates that there is room for improvement in the risk-return trade-off relationship
based on the level of protection in SL. Meanwhile, the protection level does not allow
for any Sharpe ratio improvement in the SP strategy.

In a comparison of all risk measures of CPPI and TIPP, CPPI seems riskier
than TIPP, regardless of the protection level. Although the impact of a dynamically
adjusted floor in TIPP is unclear, at least in the cryptocurrency market, it seems
that it acts as a stabilizer for the insured portfolio by reducing the exposure to the
position in the cryptocurrency asset. Consistent with the results in downside risks,
TIPP outperforms the CPPI in terms of Omega ratio, irrespective of the level of
protection.

Considering Tables [5.2] and together, we confirm the impact of the level of
protection in all portfolio insurance strategies in the cryptocurrency market. Its
implications are clear. The lower the level of protection, the higher the level of
volatility in strategies due to the rise in risk exposure. Furthermore, all metrics of
downside risk at lower levels of protection show higher values compensated by higher

average returns.
The impact of frequency

We also scrutinized the impact of data frequency on the performance evaluation

of portfolio insurance and benchmark strategies in the cryptocurrency market. We
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Table 5.4: Performance evaluation results on a weekly basis

SL SP CPPI TIPP VBPI-S VBPI-D B&H B&H 50/50 70/30  50/50

Average return  0.199  0.484  0.202  0.026 0.015 0.034  0.825 0.476 0.34 0.406
Volatility 0.269 0.511 0.204 0.018 0.022 0.056  0.886 047 0336 0.397
Skewness 5172  4.097 6.362 5.994  10.016 1.178  3.245 2.846 2.846 4.194
Sharpe ratio 0.702  0.927 0.941 0.863 0.193 0.42 0.919 0.989  0.981  0.996
MDD -0.182 -0.335 -0.135 -0.009 -0.013 -0.042 -0.538 -0.299 -0.221 -0.259
AvDD -0.109 -0.147 -0.068 -0.005 -0.005 -0.013 -0.246 -0.122  -0.087 -0.104
VaR 5% -0.24 -0.259 -0.125 -0.007 -0.015 -0.057 -0.531 -0.253 -0.179 -0.178
ES 5% -0.309 -0.287 -0.183 -0.009 -0.054 -0.138  -0.604 -0.303  -0.217 -0.208
Semideviation 0.133 0.25 0.061 0.008 0.019 0.04 0.539 0.25 0.17  0.196
Omega ratio 1.556 1.53 1.637 2.226 1.59 1.477  1.506 1.555 1.555  1.569

construct portfolios based on all strategies and present the results on a weekly basiﬁ
in Table at the same protection level of 100% as in the main results. First, by
comparing the results on a weekly and a daily basis, the buy-and-hold strategy
shows higher average return, volatility, skewness, Sharpe ratio, and Omega ratio on
a weekly basis than on a daily basis. These tendencies are similar to results in SL and
CPPI. However, other portfolio insurance strategies show a change differently. In SP,
even if average return and volatility show lower value, skewness, Sharpe ratio, and
Omega ratio shows higher values on a weekly basis than on a daily basis. In TIPP,
volatility and skewness show lower value, although Sharpe ratio and Omega ratios
show higher value on a weekly basis than on a daily basis. In VBPI-S and VBPI-
D, average return, volatility, Sharpe ratio, and Omega ratio shows higher value.
However, skewness shows lower values on a weekly basis than on a daily basis. In
terms of downside risks, risks of SL, CPPI, TIPP, and VBPI-D show higher values,
while SP and VBPI-S show lower values on a weekly basis than on a daily basis,

with the only exception of AvDD in VBPI-D.

26A total of 261 weekly observations for each cryptocurrency were used. We conduct the same
analysis on a monthly basis, confirming the essentially consistent, but pronounced results with the
results on a weekly basis due to the limited number of observations provided by the lower frequency.
Full results are available upon request.
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In a comparison of buy-and-hold and portfolio insurance strategies on a weekly
basis, almost all metrics are qualitatively similar to the daily results. Portfolio in-
surance strategies on a weekly basis in the cryptocurrency market also lead to less
risky investments than a buy-and-hold strategy based on volatility. Furthermore,
although the buy-and-hold strategy outperforms portfolio insurance strategies in
terms of the Sharpe ratio, the results from downside risks reveal that portfolio in-
surance strategies outperform buy-and-hold on a weekly basis in the cryptocurrency
market, effectively reducing the overall downside risks.

The shocking point, however, is that even though this superiority of downside
risk measures, several portfolio insurance strategies are inferior to the benchmarks in
terms of Omega ratio, such as SP (1.53 in SP vs. 1.555 in B&H 50/50) and VBPI-D
(1.477 in VBPI-D vs. 1.506 in B&H). This result on a weekly basis is inconsistent
with the results on a daily basis in Table which shows the outperformance of SP
and VBPI compared to buy-and-hold. Considering the outperformance of the CPPI
and TIPP strategies in both frequencies, it is a strong hint that there might be critical
issues in the estimation error problem from the extracted cryptocurrency return
data under the SP and VBPI framework?’| SP and VBPI are intrinsically under the
assumption of the Black—Scholes option pricing model. True volatility is unknown to
investors. Thus, a precise estimation of volatility is required to obtain an accuracy of
strategy implementation (Hentschel, 2003). This tendency to underperformance is
more pronounced on a weekly basis than on a daily basis. Precisely, the Omega ratio
of SP and VBPI-D at least shows higher values than the benchmarks on a daily basis,

while that of SP and VBPI-D shows lower values than those of the benchmarks on

2TThis volatility estimation issue in the Black-Scholes formula in portfolio insurance strategies
are well organized in the research of |Zhu & Kavee| (1988)).
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a weekly basis. We think of this finding as strong evidence to support our argument

that underperformance is caused by estimation error since the estimation of return

volatility on a weekly basis is considered more difficult than the estimation of that

on a daily basis due to insufficient observationﬂ

Table 5.5: Performance evaluation results according to a level of the risk-free rate

SL SP CPPI TIPP VBPI-S VBPI-D B&H B&H50/50 70/30 50/50
Panel A: Risk-free rate 0.55%
Average return 0.093 0.555 0.075 0.012 0.007 0.019  0.766 0.417  0.531 0.38
Volatility 0.174 0.629 0.121  0.009 0.013 0.033  0.846 0.483 0.592 0.423
Skewness 3.185 1.238  3.864 7.33  22.859 3.815  0.801 1.353 0.8 0.8
Sharpe ratio 0.5 0874 0.575 0.758 0.088 0.412  0.898 0.853 0.887 0.885
MDD -0.132  -0.452 -0.092 -0.004 -0.01 -0.028  -0.56 -0.367 -0.426 -0.321
AvDD -0.087 -0.205 -0.054 -0.003 -0.004 -0.012 -0.255 -0.159  -0.18 -0.128
VaR 5% -0.17 -0.342 -0.071 -0.001 -0.01 -0.025 -0.509 -0.252  -0.352 -0.245
ES 5% -0.238 -0.389 -0.142 -0.003 -0.044 -0.068 -0.581 -0.288 -0.418 -0.298
Semideviation 0.078  0.287 0.04  0.003 0.015 0.019 0.42 0.21  0.289  0.202
Omega ratio 1.185 1.184 1.194 1.506 1.203 1.227  1.185 1.179  1.183 1.184
Panel B: Risk-free rate 1.55%
Average return 0.123  0.558 0.134 0.04 0.017 0.034  0.766 0.531 0.38 0.421
Volatility 0.206  0.632 0.196 0.03 0.028 0.056  0.846 0.592  0.423 0.482
Skewness 2.786 1.232  3.227 6.672 15.038 3.711  0.801 0.8 0.8 1.355
Sharpe ratio 0.521 0.859 0.601 0.833 0.053 0.335 0.886 0.87 0.862 0.841
MDD -0.158 -0.454 -0.145 -0.014 -0.022 -0.047  -0.56 -0.426 -0.321 -0.366
AvDD -0.102 -0.206 -0.081 -0.009 -0.01 -0.02 -0.255 -0.18 -0.128 -0.158
VaR 5% -0.184 -0.344 -0.086 -0.004 -0.026 -0.035 -0.509 -0.352  -0.245 -0.247
ES 5% -0.253  -0.391 -0.169 -0.009 -0.074 -0.078 -0.581 -0.418 -0.298 -0.282
Semideviation 0.084 0.289 0.049 0.012 0.023 0.024 0.42 0.289  0.202 0.21
Omega ratio 1.196 1.184 1.207 1.484 1.202 1.212  1.185 1.183 1.184 1.181

The impact of money market conditions

Since portfolio insurance strategies adjust their proportion of investment to the

risk-free asset and risky asset, we consider that money market conditions might

affect the overall performance of strategies. Thus, we investigate the empirical results

from the assumed condition of different money market conditions by comparing the

results in Tables [5.2] and We consider two levels of risk-free rate assumptions;

28Some researchers have addressed this type of issue (Dokuchaevl [2014). The author mentioned
that under the condition where data frequency is limited and only short time series of prices are

available, the estimation error can be significantly enlarged.
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ry = 1.55% and 7y = 0.55%. Based on the baseline of the average 3-month T-bill
rate for the covered periods as the risk-free rate (1.05%) in Table we obtain
these two scenarios by adding + and — of 50 base points to the baseline risk-free
rate.

Panel A results show that an undervalued risk-free rate (0.55%) makes portfolio
insurance strategies less risky than before, with lower average return and volatility
across all portfolio insurance. This lower risk is supported by lower downside risks, as
demonstrated by the values of MDD, AvDD, VaR, ES, and semideviation. Although
the condition of an undervalued risk-free rate leads to a lower level of risk in portfolio
insurance, the skewness of all insured portfolios increases. However, the Sharpe and
Omega ratios show no clear tendency, implying a hazy causal relationship between
the risk-free rate and the improvement of portfolio insurance strategies in terms of
Sharpe and Omega ratios.

Looking at Panel B, we confirm the exact opposite trends compared to the results
in Panel A. The overvalued risk-free rate (1.55%) provides a riskier insured portfolio
than before, revealing the higher average return and volatility. This higher risk also
aligns with higher downside risks shown in the value of MDD, AvDD, VaR, ES, and
semideviation. Skewness shows a lower value than before, and we cannot detect any
tendency to change in the Sharpe ratio and Omega ratio relative to before.

Taken the results together, we can interpret the results in the economic term
as follows. A higher risk-free rate leads to a higher degree of a discount factor for
pre-specified floor value at the maturity time 7. As a result, strategies’ floor value
at current time t is specified less than before by this higher discount factor, thereby

providing the potential of longer time and a larger level of risk exposure. As such, we
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Figure 5.4: Quadratic utility function: the impact of the risk aversion b of expected
utility theory investors.

present the preceding interpretation as an implication behind the result from Table

5.6.2 Investor’s utility results

Expected utility investors

First, we investigate the impact of the risk aversion b of expected utility theory in-
vestors. Figures and [5.5)show the utility function values according to the changes
in risk aversion coefficient b. We want to confirm the difference between results in
the cryptocurrency market and the traditional stock market when implementing the
portfolio insurance strategies. To achieve this, we present the empirical results using
both cryptocurrencies and S&P 500 index, respectively. The quadratic utility in Eq.
[5.28]is presented in Figure 5.4 and the exponential utility in Eq. is presented in
Figure Looking at the result in the cryptocurrency market shown in Panel (a)

in Figure we confirm that the utilities of all strategies decrease as risk aversion
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Figure 5.5: Exponential utility function: the impact of the risk aversion b of expected
utility theory investors.

b increases. More precisely, the degree of reduction in the utility of buy-and-hold is
greater than that in other strategies, implying that buy-and-hold is more sensitive
to the degree of the changes in the risk aversion of investor. Meanwhile, in Panel
(a) in Figure utilities of all strategies increase as risk aversion b increases. The
degree of increase in the utility of buy-and-hold is lower than that in other strate-
gies, implying that buy-and-hold is less sensitive to the degree of the changes in risk
aversion of the investor.

Even though there is an opposite trend in utility function concerning risk aver-
sion, a common tendency is clearly shown in these two utility cases. At low risk
aversion, the utility of buy-and-hold is greater than the overall utility of other port-
folio insurance strategies, but as risk aversion increases, after a certain poin@ the

utility of the buy-and-hold strategy is smaller than that of all other portfolio in-

28pecifically, b = 0.29 is cut-off point in quadratic utility (Panel (a) in Figure and b = 2.675
is cut-off point in exponential utility (Panel (a) in Figure . These cut-off points are marked by
blue vertical dotted lines.
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surance strategies. Taking into account the utility function and its risk aversion
coefficient, these findings show that less risk-averse expected utility investors prefer
buy-and-hold to other portfolio insurance strategies, whereas more risk-averse ex-
pected utility theory investors prefer portfolio insurance strategies to buy-and-hold
in the cryptocurrency market. These findings are in line with our expectations. Given
the expected utility theory’s assumption that investors are risk averse (presented by
b), it is unsurprising that risk-averse investors tend to obtain higher utility in port-
folio insurance strategies (less risky strategies) than in buy-and-hold strategy (more
risky strategy), as our results in Section demonstrate.

Next, looking at the results in the traditional stock market shown in Panel (b) in
Figures 5.4 and we can confirm the critical difference between the results in the
cryptocurrency market and the traditional stock market. Although there is a differ-
ence in the degree of increase or decrease of each utility function according to the
change in risk aversion, the aforementioned trend is consistent. In other words, when
the risk aversion value is above a certain cut-off value, portfolio insurance strategies’
utility is higher than buy-and-hold’s utility. Interestingly, however, a significant dif-
ference is found between the cryptocurrency and traditional stock markets results.
The cut-off value is much larger in the traditional stock market’| It implies that
a wider range of expected utility theory investors can achieve greater utility in the
cryptocurrency market through portfolio insurance strategies than in the traditional

stock market when compared to a buy-and-hold strategy.
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Figure 5.6: The impact of curvature or loss-aversion on MPV in prospect theory
investors.

Prospect theory investors

In the prospect theory, we explore the impact of both the S-shaped value function’s

curvature (o and ) and the loss-aversion (\) of investors. Likewise to expected

30Tn the traditional stock market, b = 0.91 is cut-off point in quadratic utility (Panel (b) in Figure
5.4) and b = 28.1 is cut-off point in exponential utility (Panel (b) in Figure[5.5).
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utility theory results, we present the cryptocurrency market and the traditional
stock market results. Firstly, we discuss the cryptocurrency market result shown
in Panels (a), (c), and (e) in Figure Panel (a) and (c) in Figure show the
mean prospect value (MPV) of prospect theory investors as in Eq according
to the changes in curvature (o and () under the condition that the loss-aversion
A= 1.0 and X = 2.25 is fixed, respectively. As mentioned in Section [5.5] we only
explore the space under the condition that o = /5. In Panel (a), MPVs without loss-
aversion (A = 1.0) of all strategies except for TIPP and VPBI increase as the value
of curvature increases. More precisely, in the domain of o < 0.0325 (marked by a
green vertical dotted line), TIPP shows the highest MPV, VBPI-S shows second,
and buy-and-hold shows third, while TIPP shows the highest MPV, buy-and-hold
shows the second, and VBPI-S third in the domain of 0.0325 < «a < 0.212. Finally,
in the domain of @ > 0.212 (marked by a blue vertical dotted line), the buy-and-hold
strategy has the highest MPV of all strategies. Even after accounting for loss-aversion
(A = 2.25), the results in Panel (c) are qualitatively similar to the results in Panel
(a), despite the fact that the cut-off values shift to the upper direction. TIPP has
the highest MPV in the domain of o < 0.17, VBPI-S is second, and buy-and-hold is
third. Meanwhile, in the domain of 0.17 < a < 0.375, TIPP has the highest MPV,
buy-and-hold is the second, and VBPI-S is the third. The buy-and-hold strategy has
the highest MPV among all strategies in the domain of a > 0.375. These findings
imply that, regardless of the presence of loss-aversion, prospect theory investors
have higher utility in buy-and-hold strategy than portfolio insurance strategies as
curvature increases. We believe that this is a very interesting result because the

opposite results are demonstrated in the expected utility theory investors’ results
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in Figures and Taking into account the difference between expected utility
theory and prospect theory, which is a risk-seeking assumption in the loss domain,
this result indicates a strong hint that the impact of losses on return distribution is
significantly greater than that of gains, and this impact is effectively highlighted by
our study.

In the prospect theory, we also explore the loss-aversion () of investors. Panel
(e) in Figure presents MPV according to the changes in loss-averse coefficient A
given a fixed level of & = 3 as 0.88. As loss-aversion increases, MPVs of all strategies
decrease, although the degree of reduction significantly varies across the strategies.
More precisely, the buy-and-hold strategy shows the highest MPV when A < 7.9
(marked by a green vertical dotted line). Then, as loss-aversion increases, this MPV
is dramatically reduced, thereby most portfolio insurance strategies outperform the
buy-and-hold strategy. After a certain cut-off point (A = 20 marked by a blue vertical
dotted line), the buy-and-hold strategy finally demonstrates the lowest MPV values
among all strategies. This is another interesting result that indicates the impact of
loss-aversion on the prospect theory investor’s choice among portfolio strategies.

Next, looking at the cryptocurrency market results (Panels (a), (c), and (e))
and the traditional stock market results (Panel (b), (d), and (f)) together, we can
confirm the pronounced differences between markets. As the curvature increases,
the buy-and-hold strategy’s MPV increases in the cryptocurrency market, whereas
that in the traditional stock market decreases. It implies that the collective impact
of gains and losses in the cryptocurrency market substantially differs from that in
the traditional stock market. Additionally, as the most shocking result, the cut-off

value shifts so that the domain that the portfolio insurance strategies outperform the
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buy-and-hold strategy is wider in the cryptocurrency market than in the traditional
stock markeﬂ This result is consistent with the result of expected utility theory
investors.

In economic terms, the implications of the results from Figures and
are clear. First, the more sophisticated criterion of portfolio insurance strategy im-
plementation can be achieved based on the empirical results of investor’s utility by
considering our findings. Prospect theory investors with a higher value of curvature
tend to prefer a more risky strategy (buy-and-hold strategy) to a less risky strategy
(portfolio insurance strategies) rather than a less risky strategy to a riskier one,
regardless of the consideration of loss-aversion, indicating the pronounced impact
of risk-seeking in the loss domain relative to risk aversion in gain domains. How-
ever, the result should be interpreted with caution because the collective impact
of curvature in the gain and loss domain differs between the cryptocurrency and
the traditional stock market. Additionally, prospect theory investors with higher
loss-aversion at a fixed level of curvature tend to prefer portfolio insurance strate-
gies to a buy-and-hold strategy, implying that the degree of loss-aversion affects
the utility and preference of investors over strategies. Second, portfolio insurance
can provide effective cryptocurrency investment risk management opportunities by
offering higher utility to the larger number of both expected utility and prospect
theory investors. This is because the area where portfolio insurance strategies offer

higher utility than buy-and-hold strategies is wider in the cryptocurrency market

31The cut-off value shifts to the lower direction in the results of MPV with A = 1.0 (Panel (a)
and (b)), and MPV with A = 2.25 (Panel (c) and (d)). Meanwhile, the cut-off value shifts to the
upper direction in the results of MPV with @ = 8 = 0.88 (Panel (e) and (f)). Although the shift
directions are opposite, these are consistent results in that the area of the higher utility of portfolio
insurance strategies is wider in the cryptocurrency market than in the traditional stock market.
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than in the traditional stock market, as shown in our results.
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Chapter 6

Conclusion

6.1 Summary and contributions

This dissertation attempts to address the vital topic and critical issues in mod-
ern portfolio management in the field of finance regarding the two core procedures
(the model improvement and implementation and asset selection) in terms of two
perspectives (asset diversification and risk management). First, we attempt to im-
prove the existing portfolio management strategies using machine learning models
in terms of model construction in the Black-Litterman framework (in Chapter [2))
and input parameter estimation in the synthetic put strategy for the appropriate
model specification (in Chapter . Second, we investigate the result of portfolio
analysis in the emerging digital asset market, including the NFT (in Chapter and
the cryptocurrency (in Chapter [5) market using the mean—variance and portfolio
insurance frameworks, respectively. Our main findings and corresponding economic
implications can be summarized four-fold.

First, in Chapter |2, we investigate the effect of firm characteristics on the BL
framework proposing a novel dynamic BL model that incorporates characteristics
into the framework with or without prediction via ANN. We find that when firm

characteristics are successfully reflected in the BL framework, our proposed firm
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characteristic-based view construction procedure leads to improving the model,
demonstrating that the proposed models show higher out-of-sample Sharpe ratio,
cumulative return, and significant alpha compared to benchmarks. Additionally,
among proposed strategies, the forward-looking view model shows outperformance
over the backward-looking view model, revealing that the prediction is meaningful for
improvement. Our main results imply that the proposed model not only exploits the
implicated information on stock returns with a multitude of characteristics but also
appropriately identifies the time-varying attributes and interactions of firm char-
acteristics through prediction via ANN. Our study confirms that a more efficient
and well-diversified portfolio can be achieved through the proposed procedure in
constructing the BL portfolio.

Second, in Chapter [3, we investigate the role of NFTs in the traditional asset
markets in the global financial system in terms of hedge, safe haven, and diversifica-
tion effect. We conduct a hypothesis test regarding the significance of the hedge and
safe haven effects of NFTs against traditional assets by using econometric analysis
methods to estimate the benefit of these properties. Empirical analyses are applied
to investigate the effect in both times of extreme market turmoil and the COVID-
19 crisis in terms of short-run and long-run perspectives. Additionally, for a test
of a diversification effect, we examine Pearson’s product-moment pairwise correla-
tion coefficient, the Gerber Statistic for co-movement, and volatility transmission
via spillover index as a preliminary analysis. From the mean—variance point of view,
we also provide the first empirical results from portfolio analysis to construct vari-
ous comparative strategies using NFTs. We evaluate the performance measures for

out-of-sample data and apply the SR test of [Ledoit & Wolfi (2008]).
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As an empirical result of a hedge or safe haven effect, we find evidence that
NFTs are a hedge and safe haven for stock markets (the North American, European,
Chinese, and World index), oil, bond, and USD index, while NFTs show positive
co-movement with the Pacific, Emerging Market, commodity index, gold, and cryp-
tocurrency. Additionally, these hedging and safe haven benefits of NFTs vary by
asset class. Another finding is that the hedge and safe haven properties of NFT's
disappear or shrink as data frequency changes from daily to weekly, confirming that
time horizons are important to investors in the stock markets, especially in the Eu-
ropean market. This result is consistent with the finding of [Umar et al.| (2022) that
there exist differences between the short-run and long-run risk absorption capacities
of NFTs over traditional asset markets. In terms of the effect of the COVID-19 crisis,
we find results that are consistent with those in the time of extreme market stress,
showing that the strength of the safe haven effects of NFTs for bond and USD index
is much stronger. That is, NF'Ts act as a hedge or safe haven for the aforementioned
markets during the crisis and show a consistent tendency in that the strength in the
long-term is less compared to the strength in the short-term.

As an empirical result of a diversification effect, Pearson’s correlation and the
Gerber Statistic results show that NFTs are low correlated with the traditional as-
set class. Furthermore, we confirm that NFT markets are distinct from traditional
markets in terms of volatility transmission by investigating volatility spillover indices
based on DY and TVP-VAR. These findings are consistent with previous research on
NFTs (Dowling}, 2021b; |Aharon & Demir} 2021), shedding light on the potential of
NFTs to construct a well-diversified portfolio. Our main finding is that the inclusion

of moderate amounts of NFTs statistically significantly improves the risk-adjusted
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performance of EW and tangency portfolio strategies. On the other hand, VW and
MVP show minor changes in performance because the inclusion of NFTs in the
portfolio is very small, whereas maxR, the strategy with a large inclusion of NFTs,
shows a significant deterioration in performance. These findings imply that the di-
versification effect of NFT's can be advantageous, particularly when constructing an
EW or tangency portfolio. Another finding is that the EW portfolio outperforms
other optimized strategies on a weekly basis, and the tangency strategy is enhanced
when the number of observations is increased on a daily basisﬂ When NFTs are in-
cluded in a portfolio, the performance increase in an EW portfolio is greater than in
a tangency portfolio, indicating that estimation error is primarily caused by extreme
fluctuations in NFT return. Our finding suggests that when investing in traditional
assets with NFT's as a new asset class on a weekly basis, a simple EW portfolio may
be the best choice for constructing a well-diversified portfolio.

Third, in Chapter [ we address research questions on the performance evalua-
tion of portfolio insurance strategies under various virtual and real-world conditions
in terms of volatility estimation error. We uncover the adverse effect of misestima-
tion in terms of protection error and the positive relationship of volatility forecasting
model’s performance with protection error by presenting empirical results of compar-
ison of various models, including naive, GARCH-type, HAR-RV-type, and machine
learning-type models. As shocking results, our findings suggest the novel implication
in the economic term as summarized as follows.

We examine the overall impact of the estimation error of volatility in synthetic

put portfolio insurance strategy under the standard GBM and the GBM with jump

1See Table in Appendix
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simulations. We find that PLE is lowest when there is no volatility estimation error.
When there is an estimation error, on the other hand, the PLE becomes higher,
regardless of whether it is overly estimated or under-estimated. These results imply
that performance degradation due to volatility estimation error obviously exists in
terms of protection error in the synthetic put strategy. Also, this tendency becomes
more pronounced as true market volatility increases. The more unstable market
conditions, the more likely investors may suffer from deterioration in the protection
accuracy of portfolio insurance strategies. Moreover, when the jump phenomenon is
added, the intensity of the overall PLE degradation due to the volatility estimation
error becomes more considerable. It suggests that the synthetic put strategy is more
difficult to adequately achieve its goals with less sophisticated estimation methods
in an environment closer to the reality in which the jump phenomenon exists.
Next, we investigate the results of portfolio insurance strategy using comprehen-
sive volatility forecasting models using real-world data. The degree of improvement
in PLE differs significantly according to the volatility forecasting model. This result
shows evidence that the adverse effect due to volatility estimation error also exists
in real-world data. By checking the performance of portfolio insurance in terms of
PLE, we find that all forecasting models do better than the naive approach. Specifi-
cally, as an interesting result, no traditional method can beat machine learning-based
models except for SVR, followed by HAR-RV better than GARCH. The statistical
significance of the improvement of machine learning is also confirmed. Among them,
XGB, Attention, and LSTM, specialized in time-series, show excellent performance
in order. The performance of the volatility forecasting model is obtained in terms

of MAPE and MAE, confirming that the results are qualitatively similar to those
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of PLE. The performance improvement of MAPE and MAE is tested through DM
and MCS tests, and we find that all volatility forecasting models outperform the
benchmark. As the most shocking result, based on the ranks of PLE, MAPE, and
MAE, and the result of the MCS test, we find that realized volatility is forecasted
better, the better the portfolio insurance’s performance is. That is, even in the real
market, based on the rank correlation, it indicates that the volatility forecasting ac-
curacy is directly linked to the protection performance of the synthetic put portfolio
insurance strategy.

Lastly, we perform additional analyzes to investigate the impact of the various
market condition (low volatility and high volatility condition). When the market is
calm, traditional methodologies perform pretty well. Interestingly, however, when
the market fluctuates, the performance of the traditional method deteriorates sig-
nificantly in terms of PLE and t-value. In contrast, it is confirmed that the machine
learning model always performed robustly and consistently well regardless of market
conditions. This result implies that machine learning can adequately capture macro-
trends and complex micro-oscillations of realized volatility, irrespective of the actual
amplitude of market volatility, compared to traditional methodologies. However,
considering this experiment is an ex-post, it is impossible to know the market con-
ditions in advance and select the volatility forecasting model type. Therefore, we
suggest that machine learning models (especially XGB or Attention), rather than
naive or traditional models, as a forecasting model for portfolio insurance would be
a good option.

Finally, in Chapter |5l we address the two research questions on the performance

evaluation of portfolio insurance strategies compared to benchmarks under various
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parametric conditions and the impact of the type of utility and corresponding pa-
rameters on the portfolio choice in portfolio insurance relative to a buy-and-hold
strategy in the cryptocurrency market. We present empirical results by performing
10,000-year block-bootstrap simulations of various portfolio insurance strategies and
benchmarks using seven major cryptocurrencies cover past five years. We obtained
several observations that are very surprising because the findings are opposite to our
expectations, revealing the novel implication in the economic term. Our findings are
three folds as follows.

We examine the empirical results of portfolio insurance strategies compared to
benchmark strategies based on the downside risk performance results. We discov-
ered that portfolio insurance strategies make investing in cryptocurrencies less risky
by significantly lowering the potential downside risk at the expense of some upside
participation. Although portfolio insurance strategies are inevitably undervalued in
terms of Sharpe ratio due to their skewness and asymmetry of the return distribu-
tion, we confirmed that in the cryptocurrency market, portfolio insurance strategies
clearly outperform buy-and-hold strategy in terms of high positive skewness, low
downside risks (MDD, AvDD, VaR, ES, and semideviation), and high Omega ratio.
Overall, although the SP and VBPI methodologies, which require [Black & Scholes
(1973) model assumption, appear to be inferior to other portfolio insurance strategies
due to performance degradation caused by the volatility estimation error, the TIPP,
which has a flexible protection level update structure (time-varying floor value) and
is not subject to the Black & Scholes (1973) assumption, demonstrated the best
performance among portfolio insurance strategies in the cryptocurrency market.

Next, we perform additional analysis to investigate the impact of various spec-
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ifications on portfolio insurance strategies. We find that the change in the level of
protection implies the level of risk tolerance, revealing that the lower level of protec-
tion leads to a higher level of risk due to higher risk exposure of portfolio insurance
strategies in terms of all risk metrics in the cryptocurrency market. Next, when
comparing portfolio insurance strategies and benchmarks, we find that the results
of most downside risks and performance measures on a weekly basis are essentially
similar to those on a daily basis, with a few exceptions (e.g., SP and VBPI). What
is shocking is that in the cryptocurrency market, regardless of the frequency, CPPI
and TIPP always show decent performance compared to benchmarks, whereas SP
and VBPI (as the aforementioned exceptions) show noticeable degradation consider-
ing the performance difference relative to benchmarks, especially on a weekly basis.
Given that the CPPI and TIPP do not require the Black—Scholes assumption, and
that volatility estimation on a weekly basis can be more unstable, we conclude that
these results provide strong evidence to support the existence of volatility estima-
tion error in the cryptocurrency market. Hence, we suggest that SP and VBPI in the
cryptocurrency market should be implemented with caution. Additionally, similar
to the results on the impact of protection level, the impact of money market condi-
tions is also revealed to be related to the level of risk exposure in portfolio insurance
strategies in the cryptocurrency market. More precisely, the higher risk-free rate
implies a lower current (discounted) floor value caused by a higher discount factor,
thereby indicating the larger risk exposure.

Lastly, as for investors’ utility simulation results, we investigate the empirical re-
sult on the impact of an investor’s utility in terms of utility type and corresponding

parameters that imply the investor’s features by comparing the results from portfolio
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insurance strategies and buy-and-hold. We perform two sets of independent exper-
iments in the cryptocurrency and traditional stock market, respectively. We find
that in expected utility theory, at the higher level of risk aversion, [Von Neumann &
Morgenstern| (1947)) type utility shows higher values in portfolio insurance strategies
than in buy-and-hold strategy, implying unsurprising results that more risk-averse
expected utility theory investors prefer portfolio insurance to buy-and-hold strategy
in the cryptocurrency market. In prospect theory, however, the shocking opposite
results are shown compared to expected utility theory. Prospect utility theory in-
vestors show higher utility in buy-and-hold strategy rather than portfolio insurance
strategies at a higher level of the corresponding parameter (the curvature of the
S-shaped value function), regardless of the level of loss-aversion. This finding im-
plies a strong hint that the impact of risk-seeking on losses is greater than risk
aversion in gains on preferences for an investor, and this pronounced effect can be
detected by a more realistic assumption of risk-seeking nature in the loss domain
for prospect theory investors. Additionally, in terms of loss-aversion in prospect the-
ory, the degree of reduction is larger in buy-and-hold than in portfolio insurance
strategies, thereby leading to the lowest MPV of buy-and-hold at the higher level of
loss-aversion, among other strategies. These imply a higher chance of implementing
subtle portfolio insurance tailored to the broad crypto asset investors based on our
empirical findings on utility theory. Another shocking finding is that portfolio insur-
ance strategies in the cryptocurrency market cover a more comprehensive range of
investors than in the traditional stock market, in terms of higher utility, irrespec-
tive of the investor’s utility type. It suggests that the economic benefits of portfolio

insurance strategies are more prominent in the cryptocurrency market than in the
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traditional stock market, confirming the usefulness of an insured portfolio investing
in cryptocurrency for effective risk-managed investments.

The main contribution of this dissertation can be summarized as follows. First,
in Chapter [2| we show that irrespective of the adoption of the backward or forward-
looking view, combining firm characteristics into view distribution enhances the
portfolio performance of the BL framework. Additionally, our empirical results indi-
cate that prediction via ANN further increases the degree of improvement in the BL
portfolio compared to using naively historical averages. Empirically, we take all the
results obtained from large-scale data for all the stocks listed in the US stock mar-
ket for a period of 57 years; our proposed models outperform all other benchmarks,
revealing the evidence that the prediction of a multitude of characteristics through
ANN enhances the performance of BL. framework in terms of out-of-sample Sharpe
ratio and alpha.

Second, in Chapter [3] as a first attempt, we investigate the hedge, safe haven, and
diversification property of NFTs. With an established econometric analysis model
based on the test of | Baur & McDermott| (2010), we fill a research gap regarding the
NFTs’ role in the global financial system. In particular, we investigate whether NF'T's
act as a hedge or safe haven in times of extreme market conditions and the COVID-
19 crisis, presenting our empirical results in terms of different data frequencies, daily
and weekly. As a result, we confirm that NFTs can have significant hedging and safe
haven benefits against several traditional assets, and these tendencies vary across
the data frequency in both times of extreme market conditions and the COVID-
19 crisis. Furthermore, with the preliminary analysis of Pearson’s correlation, the

Gerber statistic, and volatility spillover effect, we construct portfolios by the inclu-
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sion of NFTs in traditional assets under the Markowitz mean—variance framework.
We confirm that NFTs can provide significant diversification benefits to traditional
asset-based portfolios by interpreting our empirical findings.

Third, in Chapter [4, we show the existence and impact of volatility estimation
error in synthetic put strategy based on more realistic conditioned Monte Carlo
simulation such as GBM with jump model as well as the standard GBM model, and
actual data such as S&P 500 index. Since the literature in the field of related studies
only focused on the standard GBM model, which is insufficient to capture the real-
world phenomena, we contribute to related literature. Next, as a first attempt, we
investigate comprehensive and extensive empirical results of the effect of the attempt
to correct volatility estimation using various existing volatility forecasting models
in the literature. Most researchers on portfolio insurance use, at best naive-way
estimation schemes in their studies. Contrarily, we use the most popular forecasting
methods, widely used in the related literature, devoting the in-depth comparison.
Lastly, we attempt to shed light on the economic value of machine learning-type
volatility forecasting in implementing a portfolio insurance strategy. Little attention
has been devoted to the ability and the economic implication of machine learning-
type volatility forecasting models through the lens of the protection level error in
the vein of a portfolio insurance strategy.

Finally, Chapter [5] is the first study of the empirical results on the portfolio in-
surance strategies in the cryptocurrency market. Since the literature in the vein of
portfolio insurance only focuses on traditional assets such as stock, we contribute to
cryptocurrency-based portfolio construction literature. Next, we investigate compre-

hensive and extensive empirical results using various established portfolio insurance
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strategies and benchmarks, and performance measures including numerous downside
risks proposed in the literature. Most research on portfolio insurance consists of at
best two or three portfolio insurance methods and several performance measures in
part in their studies. We use the most reported portfolio insurance methods (six port-
folio insurance strategies and four benchmarks) and performance measures (return,
volatility, skewness, Sharpe ratio, and six downside risks) in the related literature,
intensively, devoting to in-depth comparison. Lastly, using expected utility theory
and the prospect theory framework, we investigate the impact of investor’s utility
on the portfolio choice and preference in the cryptocurrency market over portfolio
insurance and benchmark strategies in terms of the type of utility function and cor-
responding parameters (risk aversion, risk-seeking, and loss-aversion). Additionally,
we compare the results of the cryptocurrency market with those of the traditional
stock market, confirming the economic implication of portfolio insurance strategies’
higher utility in the cryptocurrency market. Little attention has been devoted to
portfolio choice through the lens of investor’s utility in the context of cryptocur-
rency investment. From our findings, we shed light on the tendency of crypto asset
investors’ preference on the portfolio insurance strategies, giving investors valuable

alternatives to a buy-and-hold.

6.2 Future work

The research on portfolio management in the financial field has attracted significant
attention. Thus, many studies on improvement of portfolio models and new asset
markets have been attempted. However, despite these attempts, research on portfolio

management still has the potential for improvement, and several limitations of this
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dissertation should be addressed in future work.

For the research on portfolio strategy improvement, future studies should in-
clude examining the effect of other characteristics or the error mitigation of the
Black—Litterman model compared to the traditional portfolio model. Next, we should
investigate the impact of aggregating volatility forecasting models that exploit and
incorporates the advantages of each forecasting model for portfolio insurance strat-
egy in detail. Additionally, we should study the methods that aim to address the
drawback of each traditional and machine learning forecasting model for the syn-
thetic put strategy. Finally, another approach of Al-based models that, based on a
novel proposed loss-function, directly maximizes the Sharpe ratio of the mean—variance
portfolio and minimizes protection level error in portfolio strategy can be investi-
gated.

Furthermore, for the study on the selection of new asset classes, future research
should examine the empirical results of other emerging assets, such as Decentralized
Financial (DeFi) tokens and Central Bank Digital Currency (CBDC), in detail.
Additionally, future research should investigate the results of the portfolio analysis
with NFTs using the extensions of the mean—variance framework, such as the Black-
Litterman model and risk parity model, to address the estimation error problem.
Finally, we should study the methods that aim to manage the potential risk of
that emerging asset market by proposing a novel risk managing strategy that is

specialized in that emerging market.
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Appendix

A Appendix to Chapter 3

Table A1: Out-of-sample empirical results of top 5 and 7

individual NFT's

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: Top 5 Liquidity
EW 1.637 0.663 -0.229 -0.229 2.468FFF 1417
VW 0.738 0.507 -1.297  4.554 1.454%* 0.609
Tangency 0.293 0.216 -0.479  3.976 1.356%*%*  0.269
maxR 3.796 4129 0.297  1.439 0.919 -4.729
MVP -0.001 0.089 -1.233 19.839  -0.012***  -0.005
Mean Ret. Std. Skew. Kurto. SR CEQ Ret
Panel B: Top 7 Liquidity
EW 1.813 0.784 -0.251  0.597 2.312%%% 1.505
VW 0.7384 0.508 -1.297  4.554 1.456%* 0.609
Tangency 0.377 0.233 -0.687  3.188 1.621%%*  (0.351
maxR -1.181 4.731 0.122 0.898 -0.249%* -12.371
MVP -0.002 0.09 -1.217 19.687  -0.025***  -0.006

Notes. We apply |Ledoit & Wolf| (2008)’s test. The covered period is from December 4, 2019, to June 9, 2021,
on a weekly basis. Top 5 NFTs consist of top 3 NFTs, Axie infinity, and Superrare. Top 7 NFTs consist of

top 5 NFTs, Makersplace, and Gods unchained.

Table A2: Out-of-sample empirical results
basis

of an aggregate NFT index on a daily

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: without NFT
EW 0.186 0.232 -2.278 22.702  0.801 0.159
\A 0.25 0.375 -1.835 16.19 0.666 0.179
Tangency 0.141 0.112  -0.17 16.199 1.262 0.135
maxR 0.809 0.801 -1.986 22.177  1.01 0.488
MVP 0.038 0.048 1.852  41.213  0.806 0.037
Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel B: with NFT
EW 0.432 0.408 0.745 12.034 1.058%FF 0.348
\A 0.25 0.375 -1.835 16.188  0.667**  0.18
Tangency 0.19 0.148 1.005  21.933 1.285%%*  (0.179
maxR 1.925 3.137 2175 26215 0.614%**  -2.993
MVP 0.039 0.048 1.877  41.769  0.818 0.038

Notes. We apply |Ledoit & Wolf] (2008))’s test. The covered period is from March 5, 2018, to June 9, 2021. The inclusion of
NFTs increases the performance of the EW and tangency portfolio in terms of SR and CEQ. This result is consistent with

the main result in Table show that an EW strategy outperforms other optimized strategies on a
monthly basis due to inaccurate estimation of correlation from sample error of optimized strategy. The authors suggest that
in order to enhance the optimized strategies, the number of observations for the estimation needs to be increased. In this
table, the tangency strategy outperforms the EW strategy, which is consistent with the suggestion of
that a higher number of observations can mitigate the error of estimation. However, the increase in SR of the EW strategy is
larger than that of the tangency strategy, implying that the estimation error caused by extreme fluctuations of NFT return
greatly affects the optimization in the tangency strategy. These results are also consistent with the main results discussed

in Section [3.4.2)
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Table A3: Out-of-sample empirical results of an aggregate NFT index before COVID-
19 period on a daily basis

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: without NFT
EW -0.061 0.175 -0.34 1.808 -0.347 -0.076
VW -0.108 023  -0.383 2.145 -0.467 -0.134
tangency 0.075 0.039 -0.682 2.264 1.932 0.074
maxR 0.158 0.521  0.446 8.784 0.303 0.022
MVP 0.064 0.025 0.086 0.729 2.535 0.064
Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel B: with NFT
EW 0.085 0.41 1.869 18.252  0.207***  0.001
VW -0.108 023  -0.383 2.145 -0.467 -0.134
tangency 0.09 0.042 -0.385  2.007 2.131%*%  0.089
maxR 0.73 3.415  3.059 33.295  0.214%%* 5103
MVP 0.066 0.026 0.106 0.593 2.591 0.066

Notes. This table shows out-of-sample empirical results of each portfolio strategy without and with an
aggregate NFT index on a daily basis before the COVID-19 period. We apply |[Ledoit & Wolf] (2008)’s test.
The covered period is from March 5, 2018, to January 12, 2020. We use January 12, 2020, as the cut-off date
following the prior research of [Aharon & Demir| (2021)). The inclusion of an aggregate NFT index increases
the performance of the EW and tangency portfolio in terms of SR and CEQ. This result is consistent with
the main conclusion.

Table A4: Out-of-sample empirical results of an aggregate NFT index during the
COVID-19 period on a daily basis

Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel A: without NFT
EW 0.747 0.202 -0.405 1.639 3.693 0.727
VW 1.221 0.39  -0.259  2.585 3.127 1.145
tangency 0.352 0.132  -0.089  3.307 2.665 0.343
maxR 2.774 0.836 -0.027 2.163 3.318 2.425
MVP -0.006 0.034 -0.38 1.502 -0.177 -0.007
Mean Ret. Std. Skew. Kurto. SR CEQ Ret.
Panel B: with NFT
EW 1.389 0.356  0.536  2.696 3.901%FFF 1.326
VW 1.222 0.391 -0.259  2.585 3.13%%F 1146
tangency 0.546 0.173  0.447  3.512 3.145%F*  (.531
maxR 6.483 2.784 0.592  6.143 2.329* 2.608
MVP -0.005 0.034 -0.373 1.492 -0.148 -0.006

Notes. This table shows out-of-sample empirical results of each portfolio strategy without and with an
aggregate NFT index on a daily basis during the COVID-19 period. We apply [Ledoit & Wolf] (2008)’s test.
The covered period is from January 13, 2020, to June 9, 2021. We use January 12, 2020, as the cut-off date
following the prior research of [Aharon & Demir (2021). The inclusion of an aggregate NFT index increases
the performance of the EW and tangency portfolio in terms of SR and CEQ. This result is consistent with
the main conclusion.
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B Appendix to Chapter 4

In addition to MAPE and MAE, we report the result using additional volatility

forecasting criteria in evaluating the accuracy of models as follows:

HMSE =n"'SI (1 —6,2/RV,)?, (A1)

HMAE =n~'S! |1 — 6,/RV|, (A2)

where HMSE and HMAE are the heteroskedasticity-adjusted mean squared error
and mean absolute error, respectively.

Table A5: The performance evaluation results in terms of MAPE, MAE, HMAE,
and HMSE

Performance measures Rank

PLE (%) MAPE MAE HMAE HMSE PLE (%) MAPE MAE HMAE HMSE
Panel A: Naive
Standard deviation 21.79  2.14347 0.00016376 2.143 15.29 11 12 11 12 11
Panel B: GARCH-type
GARCH 19.06 1.13206 0.00011182 1.132 3.890 8 8 7 8 8
EGARCH 21.52 1.21811 0.0001274 1.218 8.210 10 10 10 10 9
GJR-GARCH 19.38 1.1553 0.00011096 1.155  32.22 9 9 6 9 12
Panel C: HAR-RV-type
HAR-RV 1841  0.88339  0.00011401 0.883 3.29 6 5 9 4 6
HAR-RV-J 1841  0.88331 0.00011399 0.883 3.29 7 4 8 5 7
Panel D: ML-type
SVR 22.54  1.51166  0.00017482 1.512  12.32 12 11 12 11 10
ANN 15.83  0.93554  0.00010788 0.936  2.790 4 6 5 6 4
RNN 16.42  0.94762 0.00010355 0.948  2.890 5 7 4 7 5
LSTM 1511 087346 000009961 0873  2.760 3 3 3 3 3
Attention 15.08  0.84996 0.00008408 0.850 1.900 2 2 1 2 1
XGB 12.88 0.78788 0.00009613  0.788 2.070 1 1 2 1 2

Rank corr.  0.930"** 0.916™* 0.944™* 0.937"**

Notes. This table shows the performance evaluation results of portfolio insurance and volatility forecasting based on various
volatility forecasting models in terms of HMAE and HMSE, as well as MAPE and MAE.

C Appendix to Chapter 5

CPPI and TIPP require special pre-specified parameters, multiplier m, and VBPI-S

and VBPI-D also require confidence level 1—a«. Each portfolio insurance strategy can
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be affected depending on these parameters. Hence, in this Appendix, we investigate
the impact of multiplier m of CPPI and TIPP and the impact of the confidence
level of VBPI-S and VBPI-D in the cryptocurrency market. We aim to examine the
empirical results from portfolio insurance strategies in the cryptocurrency market.
Therefore, we present our result in terms of the impact of changes in parameters on
the empirical results rather than attempt to find the optimal multiplier or confidence

level.

Table A6: The impact of the multiplier on CPPI and TIPP

CpPI CPPI CPPI CPPI TIPP TIPP TIPP TIPP
m=3 m=5 m=7 m=9 m=3 m=5 m=7 m=9
Average return  0.086  0.096 0.107 0.094 0.021 0.024 0.026  0.026

Volatility 0.128  0.152 0.16 0.16 0.012 0.016 0.019 0.02
Skewness 4.45 3.771  3.369 3.11  3.224  4.941  6.949 9.0
Sharpe ratio 0.593 0.565 0.601 0.523  0.854 0.87 0.824 0.762
MDD -0.103 -0.117  -0.12 -0.122 -0.007 -0.008 -0.009 -0.009
AvDD -0.045 -0.06 -0.067 -0.071 -0.003 -0.005 -0.005 -0.006
VaR 5% -0.053 -0.068 -0.077 -0.089  0.001 -0.001 -0.002 -0.007
ES 5% -0.086 -0.119 -0.154 -0.175 -0.003 -0.005 -0.006 -0.009
Semideviation 0.03 0.037 0.045 0.048 0.005 0.007 0.007 0.008
Omega ratio 1.184 1.185 1.205 1.188  1.458 1.471  1.499 1.54

First, we investigated the impact of the multiplier on the performance evaluation
of CPPI and TIPP in the cryptocurrency market. As shown in Table[A6] we consider
four multipliers (3, 5, 7, and 9) which are commonly used in the portfolio insurance
context (Annaert et al., [2009; Dichtl & Drobetzl, 2011), for both the CPPI and TIPP
strategies. All values of each metric are presented according to the value of m for
CPPI and TIPP at the protection level of 100%. It can be seen that the average
return increases as the multiplier increases up to m = 7, then the average return

decreases (CPPI) or maintains (TTPP) at m = 9, peaking at m = 7. By contrast,
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volatility increases as m increases. The results on average returns and volatility imply
that risk-return trade-off is not always positive, indicating excessive risk relative to
the return. That is, risk, which is not compensated by the level of return, might
exist at some point. However, as expected, volatility shows a consistent tendency
with the implication of m as the level of risk exposure.

As m increases, the value of skewness decreases in the CPPI strategy while it
increases in the TIPP strategy. When compared to the CPPI strategy, this opposite
tendency manifests the impact of TIPP’s dynamic floor value. In the case of the
Sharpe ratio, there is no clear tendency, revealing once again the Sharpe ratio’s
inadequacy in evaluating performance for portfolio insurance strategies. When the
Sharpe ratios of CPPI and TIPP are compared, it is clear that TIPP outperforms
CPPI in terms of Sharpe ratio at the same multiplier level. Similar to volatility,
most of the downside risks (MDD, AvDD, VaR, ES, and semideviation) increase as
m increases, showing the consistency with the implication of parameter m as risk
exposure, and these downside risks are also lower in TIPP than in CPPI. When
m = 7, CPPI shows the highest value of Omega ratio, while TIPP shows the highest
value of Omega ratio at m = 9. Similar to the results in downside risks, TIPP
outperforms the CPPI in terms of Omega ratio, given the same level of m.

Next, we also investigated the impact of confidence level on the performance
evaluation of VBPI-S and VBPI-D in the cryptocurrency market at the protection
level of 100%, as shown in Table For selecting the confidence level, we follow
the research of |Jiang et al. (2009). All the metrics were presented according to
the confidence level for VBPI-S and VBPI-D. The average return increases as the

confidence level decreases in VBPI-S. Meanwhile, average returns in VBPI-D were
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Table A7: The impact of confidence level in VBPI-S and VBPI-D

VBPI-S VBPI-S VBPI-S VBPI-D VBPI-D VBPI-D
confidence confidence confidence confidence confidence confidence
level 99%  level 95%  level 90%  level 99%  level 95%  level 90%

Average return 0.012 0.014 0.02 0.027 0.013 0.024
Volatility 0.021 0.042 0.055 0.046 0.076 0.1
Skewness 22.16 9.798 10.156 3.761 5.144 6.977
Sharpe ratio 0.002 0.003 0.006 0.009 0.001 0.005
MDD -0.016 -0.033 -0.044 -0.038 -0.065 -0.081
AvDD -0.007 -0.014 -0.016 -0.016 -0.029 -0.029
VaR 5% -0.017 -0.066 -0.09 -0.031 -0.087 -0.15
ES 5% -0.06 -0.124 -0.152 -0.072 -0.171 -0.252
Semideviation 0.019 0.037 0.043 0.022 0.047 0.067
Omega ratio 1.209 1.134 1.156 1.219 1.073 1.108

highest at the confidence level of 99% and lowest at 95% in VBPI-D. These results on
average return and volatility imply similar results in Table [A6] That is, risk-return
trade-off is not always captured well in the VBPI-D strategy, demonstrating that
risk is not always compensated by the level of return at some point.

The clearest thing is that the smaller the confidence level, the more risky the
strategy tends to be in both VBPI-S and VBPI-D. Furthermore, almost downside
risk metrics show a consistent tendency with the implication of confidence level for
the level of risk exposure. That is, investors expect that a lower level of confidence
provides a longer and higher risk exposure opportunity, thereby making the strategy
to be riskier. Overall, VBPI-S and VBPI-D seem to be riskier as the confidence level
decreases in terms of volatility, MDD, AvDD, VaR, ES, and semideviation, even if
there exist minor exceptions. In contrast, we cannot find any clear tendency in terms
of skewness and Sharpe ratio. In terms of the Omega ratio, interestingly, the value
of the Omega ratio at a confidence level of 99% is always the highest, and that at

a confidence level of 95% is always the lowest irrespective of strategies. Comparing
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the overall results of VBPI-S and VBPI-D, it seems that the VBPI strategy tends to
be riskier when the dynamic adjustment is included in the cryptocurrency market.
In terms of other performance measures such as skewness, Sharpe ratio, and Omega
ratio, we cannot detect any clear conclusion for the ranking of the two strategies.
Prospect theory has been criticized for the fact that the likelihood of violation
of first-order stochastic dominance exists (Rieger & Wang, 2008). In other words,
despite becoming a worse outcome, one prospect might be more preferred, with prob-
ability one. To address this issue, Tversky & Kahneman (1992)) proposed cumulative
prospect theory as the developed version of prospect theory. Contrary to prospect
theory, where single probabilities are weighted, under the cumulative prospect theory

framework, the cumulative probabilities are weighted as follows:

T, = w (p1+ ... +pi) —w (p1 + ... +pi-1)
ﬂ-i = ) (A3)

mr =wt(pi+ ... +pn) — wH(Pig1 + ... + DN)

where 7 is the index of sorted outcomes in ascending order. For w~ and w™, [T'versky
& Kahneman| (1992) suggested the probability weighting function in the following

functional form:

+

+ p’
Ve ra—pr 2720 (A

_ P’
wo = o+ A —p) ) Az <0, (A5)

where 7~ and 7" denote the curvature of function. However, [Ingersoll (2008)) speci-
fied the disadvantage of this form of Tversky & Kahneman (1992)) that uses a single

parameter. Another alternative is the other form of the probability weighting func-
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tion, proposed by [Lattimore et al| (1992) can be considered as follows:

N 5+pv+
w = 6+p7+ n (1 _p)’er Az Z 0 (AG)
— »-y*
w™ 07p Az <0, (A7)

T+ (l-p)
where v~ and 4T denote the curvature and 6~ and T denote the elevation. Based
on these parameters, this probability weight function well captures the tendency for
investors to overweight small probability eventsﬂ Using the value function in Eq.
and decision weight (7;) in Eq. the cumulative prospect value of a portfolio

strategy (p) is obtained as follows:

CPV, = SN 7 - v(Ax;) (AR)

where Az; is the i-th outcome sorted in ascending order. Dichtl & Drobetz (2011))

use cumulative prospect value (CPV) with [Lattimore et al| (1992))’s probability

weighting function for their portfolio insurance study. Following |Dichtl & Drobetz

(2011), we also used Lattimore et al| (1992)’s probability weighting function to

obtain CPV for our study.

Panel (a) in Figure shows the CPV of cumulative prospect theory investors
as in Eq[A§|according to the changes in curvatures at the fixed level of loss-aversion
A = 2.25. The results for CPV (with A = 2.25) are essentially similar to the results
in MPV (with A = 2.25) in Panel (c) in Figure When the value of curvature
is higher than a certain cut-off value, the buy-and-hold strategy shows the highest

CPV among all strategies. The only difference is that the cut-off value shifts to the

?According to the empirical result of Abdellaoui| (2000); Gurevich et al.| (2009), v© = 0.6,
~~ =0.65, 67 = 0.65, and §~ = 0.84 are suggested.
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Figure A1: The impact of curvature or loss-aversion on CPV in cumulative prospect
theory investors.

lower direction in the results of CPV (o = 8 = 0.258 in CPV vs. « = 8 = 0.377 in
MPV).

Panel (b) in Figureillustrates the cumulative prospect value (CPV) according
to the changes in loss-aversion at the fixed level of curvature o = g = 0.88. CPV
in Panel (b) shows also similar results to the results of MPV in Panel (e) in Figure
5.0] at the fixed degree of curvature in that all strategies’ CPV decreases as loss-
aversion increases, and the degree of reduction is highest in buy-and-hold among
all strategies, thereby CPV of CPPI was highest while CPV of buy-and-hold was
lowest among all strategies, after at a certain cut-off point. However, we can perceive
two pronounced differences between the results of CPV and MPV. First, the cut-
off value shifts to the upper direction in the results of CPV (A = 23 in CPV wvs.
A = 20 in MPV). Second, the CPV of TIPP and VBPI strategies was evaluated to
be lower among all portfolio insurance strategies, and the utility of CPPI showed

relatively higher CPV compared with other portfolio insurance strategies, contrary
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to the result of MPVEL Taking into account the implications of decision weight and
probability weighting function, that is, cumulative prospect theory investors are
assumed to be more sensitive to extreme events than normal ones, we believe that
these postulated specifications affect the parameter cut-off value and the ranking of
portfolio strategies in terms of CPV, compared to MPV.

Despite the impact of decision weight and probability weighting function in cu-
mulative prospect theory, our findings support the main argument of the results of
MPV. In other words, the cumulative prospect theory investors with higher curva-
ture values prefer more buy-and-hold strategy over portfolio insurance strategies,
demonstrating the impact of risk-seeking in the loss domain. Furthermore, cumula-
tive prospect theory investors with higher loss-aversion at a fixed level of curvature
also tend to prefer portfolio insurance strategies to a buy-and-hold strategy, demon-

strating the impact of loss-aversion on investor preferences.

3This second result indicates the more extreme positive return or the less extreme negative return
in CPPI compared to TIPP and VBPIL.

227



A @ 4-olt}. 2}

S
oh

-

Tele TEEZLQ P9

tol A4t BlES 7]9to 2 of

S

ot
oF

Tor
7A

T
ol

ZHAE L E

=
K

bod 44t

S

5L 54

oot

s
__01_

o

ARAE 2

5

), 43

gy

i} et

Lo

Az

s

2o el ¥ 7h) F8

il AAT Hl 2

o5

A=

5

olt}. Bgo] 714 WA

514

1] o] vt

qotn) 25

ol

A} Al %

5 74

?_)‘__]_'

ol 2]

ki

o

5

o

2l 4= ek A,

7

2R et 2o £ AR

1491

Z

olof et £ =

W

s
K
ol

o

o

1_,NO
N
<

Tk

N

‘_ao

ol
ofn
HK

Tol

Zolct.

HE=

g8 24 Al B

L
—

e

228



"_

=]
gl

At 7]

=
—

A=, 7]

[¢]

o3

=

=

WA A7

&)

EZo] M2& A

s A=

2l eof of

Iz
=

W]
H

of, 7] o]

=

S}

S

% 7}3]
=

[s1s
of

AmHEo 2N I AA|

=AE

3

Ao BT

ol

Al

A
—

il

EZ2 7] At

1
9

7}

=]
=
the 2712 waselnh TAHo R,

23, HiA

A
~

g

1

S

o tis

S
T

1 22 2o

=

a
EZ AL 71E

178

L

N A= I
A A
7Fs

=]

A&

=
A

]|
, o

o
-

St

Al X]-’ 2

o

T

&

Haoh &
229

=

] COVID-19 $17] “&<t, Af

°

T}

a

EZe oy 7ol A A,
o] b A

1
[

of et 1 Arr gt &

Sh
=

tAl=7F

A



ﬂ”
;ﬁ

Bo

o
_Zﬁ

Tk

oA =LA

HlE =

I

2o B A

iz
=

2o ngsl 4y nE

o)
o

EAE, ZEER] 2 7HA] Wo] @3} o

__o_o

el

A
R

&
g

HK

ol

file)

o

AR=H, dAE

e

LS

oA ©lel7t qle.

N

(XGB) 230l

HE A (realized volatility) 2]

o< Fohitk

—

o)

<k

ol

AP A A5k dtet

L
1

o

wg AR o 2

__o_l
<k

o|J
i
KA
o

L
ife]

o

AL
__OO

230



a
7t
SHH: 2019-37847

2

D

|t

22

N
L
N,
2
0
by
Y
2

o2, 1 e, A At = oh), A

E

it
olr
ru

231 :



	Chapter 1 Introduction
	1.1 Background and motivation
	1.2 Aims of the Dissertation
	1.3 Organization of the Dissertation

	Chapter 2 Black–Litterman model considering firm characteristic variables
	2.1 Chapter overview
	2.2 Data and Methodology
	2.2.1 Data
	2.2.2 Methodology

	2.3 Empirical results

	Chapter 3 Portfolio analysis for Non-Fungible Token market
	3.1 Chapter overview
	3.2 Data
	3.2.1 Data for a hedge and safe haven effect
	3.2.2 Data for a diversification effect

	3.3 Methodology
	3.3.1 Methods for a hedge and safe haven effect
	3.3.2 Methods for a diversification effect

	3.4 Empirical results
	3.4.1 Results of a hedge and safe haven effect
	3.4.2 Results of a diversification effect


	Chapter 4 Volatility forecasting for portfolio insurance strategy
	4.1 Chapter overview
	4.2 Data
	4.2.1 The Monte Carlo simulation data
	4.2.2 The real-world data

	4.3 Portfolio insurance strategy
	4.3.1 Synthetic put strategy
	4.3.2 Protection level error

	4.4 Volatility forecasting models
	4.4.1 Naive model
	4.4.2 GARCH-type models
	4.4.3 HAR-RV-type models
	4.4.4 Machine learning-type models
	4.4.5 Forecasting performance measure and statistical test

	4.5 Experimental design and procedure
	4.5.1 The Monte Carlo simulation
	4.5.2 The real-world data simulation

	4.6 Empirical results
	4.6.1 The Monte Carlo simulation results
	4.6.2 The real-world data simulation results


	Chapter 5 Portfolio insurance strategy in the cryptocurrency market
	5.1 Chapter overview
	5.2 Portfolio insurance strategies
	5.2.1 SL strategy
	5.2.2 CPPI strategy
	5.2.3 TIPP strategy
	5.2.4 VBPI strategy

	5.3 Downside risks
	5.3.1 MDD and AvDD
	5.3.2 VaR
	5.3.3 ES
	5.3.4 Semideviation
	5.3.5 Omega ratio

	5.4 Investor’s utility
	5.4.1 Expected utility theory
	5.4.2 Prospect theory

	5.5 Data and experimental design
	5.5.1 Data
	5.5.2 Experimental design

	5.6 Empirical results
	5.6.1 Downside risk results
	5.6.2 Investor’s utility results


	Chapter 6 Conclusion
	6.1 Summary and contributions
	6.2 Future work

	Bibliography
	Appendices
	A Appendix to Chapter 3
	B Appendix to Chapter 4
	C Appendix to Chapter 5

	국문초록


<startpage>17
Chapter 1 Introduction 1
 1.1 Background and motivation 1
 1.2 Aims of the Dissertation 11
 1.3 Organization of the Dissertation 13
Chapter 2 Black–Litterman model considering firm characteristic variables 15
 2.1 Chapter overview 15
 2.2 Data and Methodology 17
  2.2.1 Data 17
  2.2.2 Methodology 18
 2.3 Empirical results 25
Chapter 3 Portfolio analysis for Non-Fungible Token market 28
 3.1 Chapter overview 28
 3.2 Data 31
  3.2.1 Data for a hedge and safe haven effect 32
  3.2.2 Data for a diversification effect 33
 3.3 Methodology 36
  3.3.1 Methods for a hedge and safe haven effect 36
  3.3.2 Methods for a diversification effect 38
 3.4 Empirical results 41
  3.4.1 Results of a hedge and safe haven effect 41
  3.4.2 Results of a diversification effect 49
Chapter 4 Volatility forecasting for portfolio insurance strategy 57
 4.1 Chapter overview 57
 4.2 Data 63
  4.2.1 The Monte Carlo simulation data 63
  4.2.2 The real-world data 66
 4.3 Portfolio insurance strategy 69
  4.3.1 Synthetic put strategy 69
  4.3.2 Protection level error 73
 4.4 Volatility forecasting models 76
  4.4.1 Naive model 76
  4.4.2 GARCH-type models 77
  4.4.3 HAR-RV-type models 79
  4.4.4 Machine learning-type models 81
  4.4.5 Forecasting performance measure and statistical test 89
 4.5 Experimental design and procedure 90
  4.5.1 The Monte Carlo simulation 91
  4.5.2 The real-world data simulation 92
 4.6 Empirical results 94
  4.6.1 The Monte Carlo simulation results 94
  4.6.2 The real-world data simulation results 99
Chapter 5 Portfolio insurance strategy in the cryptocurrency market 108
 5.1 Chapter overview 108
 5.2 Portfolio insurance strategies 123
  5.2.1 SL strategy 123
  5.2.2 CPPI strategy 124
  5.2.3 TIPP strategy 126
  5.2.4 VBPI strategy 127
 5.3 Downside risks 130
  5.3.1 MDD and AvDD 130
  5.3.2 VaR 132
  5.3.3 ES 133
  5.3.4 Semideviation 133
  5.3.5 Omega ratio 134
 5.4 Investor’s utility 136
  5.4.1 Expected utility theory 136
  5.4.2 Prospect theory 138
 5.5 Data and experimental design 140
  5.5.1 Data 140
  5.5.2 Experimental design 143
 5.6 Empirical results 147
  5.6.1 Downside risk results 147
  5.6.2 Investor’s utility results 159
Chapter 6 Conclusion 167
 6.1 Summary and contributions 167
 6.2 Future work 178
Bibliography 180
Appendices 218
 A Appendix to Chapter 3 218
 B Appendix to Chapter 4 220
 C Appendix to Chapter 5 220
국문초록 228
</body>

