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Abstract

Graph-based Empirical Asset Pricing :
Impact of Network Connectedness

Bumho Son

Department of Industrial Engineering

The Graduate School

Seoul National University

Financial assets are always exposed to risks. It is important to evaluate the risk

properly and figure out how much each asset is compensated for its risk. Asset pric-

ing model explains the behavior of financial asset return by evaluating the risk and

risk exposure of asset return. We focused on factor model structure among asset

pricing models, which explains excess return through factor and beta coefficients.

While conventional factor models estimate factor or beta through various macroe-

conomic variables or firm-specific variables, there exist fewer studies considering the

connectedness between assets. Since financial assets have connected dynamics, asset

returns should be priced simultaneously considering the graph structure of assets.

In this dissertation, we proposed the AI-based empirical asset pricing model to

reflect the connected structure between assets in the factor model. We first proposed

the graph neural network-based multi-factor asset pricing model. As important as

the structure of the model in constructing an asset pricing model that reflects the

structure of the connection between assets is, how to define the connectivity. Graph
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neural network requires a well-defined graph structure. We defined the connected-

ness between assets as the binary converted Pearson correlation coefficients of asset

returns by the cutoff value. The proposed model consists of a beta estimation part

and a factor estimation part, where each part is estimated with firm characteris-

tics and excess returns, respectively. The empirical analysis of U.S equities reveals

that the proposed model has more explanatory power and prediction ability than

benchmark models. In addition, the most efficient stochastic discount factor can be

estimated from the estimated factors.

While return is the main object of asset pricing, volatility is also important prop-

erty for explaining the behavior of financial assets. Volatility can be the factor in

explaining return since many studies point out that return and volatility are corre-

lated. As with the asset pricing model, considering the connected structure between

assets in volatility prediction can be of great help in explaining the dynamics of

assets. In the volatility analysis, what affects between volatility is called spillover.

In this aspect, we proposed the volatility prediction model that can directly reflect

this spillover effect. We estimated the graph structure between asset volatility using

the volatility spillover index and utilized the spatial-temporal graph neural network

structure for model construction. From the empirical analysis of global market in-

dices, we confirm that the proposed model shows the best performance in short- and

mid-term volatility forecasting.

To include volatility in the asset pricing discussion, it is necessary to focus on how

volatility is defined in the asset pricing model. In the asset pricing model, volatility

can be interpreted as the variance of the residual of the model. However, asset

pricing models with time-series estimation mostly have time-unvarying volatility

ii



constraints. We constructed an asset pricing model with time-varying volatility by

estimating variability using the prediction model and reflecting it in the training loss

of the asset pricing model. We identify that the proposed model can improve the

statistical performance during the low volatility period through an empirical study

of U.S equities.

Currently, there are clearly structurally connected assets in the cryptocurrency

market, which has grown to a scale that cannot be ignored. All of the same blockchain-

based tokens are issued and traded on that blockchain, so they have strong structural

connectivity. We tried to identify that an observable factor for explaining excess re-

turn exists in such connected tokens as an application of previous studies. We limited

the analysis target to Ethereum-based tokens and showed that the Ethereum gas

price became a factor for the macroeconomic factor model after the application

of EIP-1559. Furthermore, we applied the volatility spillover index-based volatility

prediction model using gas return and showed that gas return can increase the pre-

diction performance of certain tokens’ volatility.

Keywords: Asset pricing, Volatility prediction, Graph neural network

Student Number: 2017-27701
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Chapter 1

Introduction

1.1 Motivation of the Dissertation

Financial markets around the world have experienced several financial crises in the

past century. There was great repression of the 1930s in the distance, and great

repression of 2007-2010 from subprime mortgages can be found nearby. In particular,

the Great Recession began with the bankruptcy of leading financial companies such

as Bear Steans, Lehman, and AIG, causing a worldwide stock price plunge, and it

took more than three years to recover. The fact that the stock market is exposed to

risks easily like this suggests that we should be able to properly evaluate and manage

the risk of stocks. Institutions and individuals must be able to correctly determine

what the return on individual stocks is determined by and how the factors that

determine the return relate to each other to form a risk-management portfolio.

In this aspect, explaining the behavior of financial assets is one of the main goals

of financial asset management. Especially, the approaches that try to explain the

behavior of return of financial assets is called asset pricing problem. This makes

it possible to evaluate how much an asset is exposed to risk and how valuable the

exposure is. In modern portfolio theory Markowitz (1952), Markowitz argued that

firm risk is divided into systemic risk and idiosyncratic risk. The former is the risk
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dependent on the market to which the firm belongs, and the latter is the risk that

the firm has uniquely regardless of the market. Systematic risk can be removed by

constructing a portfolio to gain a diversification effect. However, the idiosyncratic

risk still remains after constructing the portfolio.

Various studies of asset pricing have been done to explain the idiosyncratic risk.

The beginning of the asset pricing study can be seen as the capital asset pricing

model (CAPM) proposed by Sharpe (1964) and Lintner (1965). CAPM claimed

that the pricing of firm return is determined by beta coefficient and market excess

return, where beta coefficient denotes the idiosyncratic risk. The beta coefficient is

also known as risk exposure. This implies that the excess return of a firm is given

as compensation for the risk of the firm.

Although CAPM proposed a method of structurally interpreting an excess return

of a firm, studies to establish an empirically more accurate model continued. Among

various literature, we concentrate on factor models. The factor model clarifies the

factor that explains excess return. In the case of CAPM, it can be also seen as the

factor model with one factor, the market excess return. Research trends on factor

models can be classified into three categories: macroeconomic factor model, funda-

mental factor model, and latent factor model. The macroeconomic factor model uses

macroeconomic variables as factors. CAPM is also part of the macroeconomic factor

model because it uses a macroeconomic feature, market excess return. Chen et al.

(1986) proposed a macroeconomic multi-factor model. They showed that unexpected

changes in macroeconomic variables such as industrial production and inflation have

an exogenous influence on asset return.

The most important factor in the construction of the macroeconomic factor

2



model is which macro variable to choose. It is important to select macroeconomic

variables containing the unique characteristics of a market as factors for a macroeco-

nomic factor model targeting assets in a certain market. For instance, oil prices play

an important factor in the asset pricing of stocks in the oil refining industry sector,

but oil prices may not have a significant impact on stocks in the banking sector

that does not deal with consumer goods. Therefore, when evaluating an asset, it is

possible to identify which connected network the asset belongs to, such as a sector

in the case of stock, and to construct a macroeconomic factor model by selecting

the macroeconomic variable corresponding to that network.

In recent years, the size of the digital asset market, including cryptocurrency, has

grown so fast that the evaluation of digital assets has also emerged as one of the im-

portant research topics. Asset pricing models that use factors such as mining cost and

reward have been developed to reflect the unique characteristics of cryptocurrency

based on blockchain. However, these studies are attempts to judge cryptocurrency

as a unified market without classifying it. In fact, multiple cryptocurrencies can be

issued on a single chain, so it is reasonable to assume that each chain to which it

belongs has network connectedness. Therefore, assets belonging to a single layer one

blockchain, such as Ethereum-based tokens, can have a good explanatory power to

construct a macroeconomic factor model using the unique properties of the network

to which they belong as macroeconomic variables.

Unlike the macroeconomic factor model, which considers all firms to be affected

by the same variable, the fundamental factor model is a model in which each firm

considers its unique characteristic as a factor. Fama and French (1992) identified

that the market excess return, the excess return of firms with smaller market capi-
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talization versus large firms (Small minus big; SMB), and the spread between value

stocks and growth stocks (High minus low; HML) are the three factors that explain

the excess return of individual firms. While macroeconomic factor models use lin-

ear regression to estimate risk exposure to factors, Fama and French (1992) uses a

two-step procedure consisting of cross-sectional analysis and time-series regression.

First, they sort firms based on firm characteristics and construct long-short port-

folio which takes a long position on the top quantile and takes a short position on

the low quantile. The return of the long-short portfolio becomes factor. Second, the

time-series regression is done based on the constructed factor and estimates risk ex-

posure. Starting with the Fama-French three-factor model, there are parts where the

model does not fully explain access return, and many studies have been proposed to

present additional factors to explain this. Carhart (1997) proposed the four-factor

model, which shows that the momentum factor explains the excess return that is

not fully explained by the Fama-French three-factor model. Furthermore, Fama and

French (2015) suggested additionally using robust minus weak (RMW) and conser-

vative minus aggressive (CMA) factors to the Fama-French three-factor model and

thus proposed the five-factor model.

The macroeconomic factor model and fundamental factor model both consti-

tute factors with variables that are observable while the latent factor model aims to

build an unobserved latent factor from the observed data. Unlike fundamental factor

models, which usually have no more than six factors, latent factor models have the

advantage of being able to utilize a larger number of observable variables to make

them a smaller number of latent factors. In other words, for a latent factor model,

projecting high-dimensional observable variables into a low-dimensional latent fac-
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tor while maintaining as many variations as possible in the covariance matrix of

the dataset is a problem to be solved. Connor and Korajczyk (1986) and Connor

and Korajczyk (1988) developed asymptotic principal component analysis (APCA).

APCA estimates n latent factors as the first n eigenvectors of the covariance matrix

of asset return.

In recent years, there have been many related studies of latent factor model re-

search that certain firm characteristics have the explanatory power to explain risk

exposure, which can explain access return. Kelly et al. (2019) showed empirical evi-

dence that asset characteristics (also called anomalies) can estimate the time-varying

risk exposure. The asset pricing model, instrumented PCA (IPCA), proposed by

Kelly et al. (2019) assumes that risk exposure beta can be estimated as the linear

function of firm characteristics. However, many theoretical studies (e.g. Campbell

and Cochrane (1999), Bansal and Yaron (2004)) claim that risk exposure can have a

nonlinear complex structure of firm characteristics. To overcome the linear structure

limitation, Gu et al. (2020a) introduced autoencoder formation that allows nonlin-

earity of risk exposure by using a nonlinear activation function in neural network

structure. The authors of Gu et al. (2020a) generalized the PCA method often used

for asset pricing by deep learning-based autoencoder because PCA is theoretically

same with one layer autoencoder.

Even though Gu et al. (2020a) adopted a neural network for the asset pricing

model, there exist only a few numbers of asset pricing studies based on deep learning.

However, considering the characteristics of the latent factor model, the latent factor

model has a curse of dimensionality problem because it deals with high-dimension

features, and the neural network is an effective way to solve this problem (Bengio
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et al. (2006), Poggio et al. (2017)), so further research needs to be done. As far

as we know, Chen et al. (2019), Feng et al. (2020), and Gu et al. (2020a) are the

only attempts to use neural networks as the estimation function for the asset pricing

model. All of the above studies have a problem that the relationship between assets

cannot be considered in the model since the propagation rule of basic neural network

structure only supports column-wise or row-wise calculation. Since Ozsoylev and

Walden (2011) and Herskovic (2018) have shown empirically that excess return of

firms exchange relationships with each other, identifying the connection relationship

between assets can help improve the performance of the asset pricing model.

Deep learning technology has developed various models that fit the characteris-

tics of each domain, such as convolution neural network (CNN) in the image recog-

nition field and recurrent neural network (RNN) in the NLP field. To handle data

that each component has a relational structure, Kipf and Welling (2016) proposed

the graph convolution network (GCN). GCN takes the adjacency matrix of graph-

structured data as input and produces linked output considering the multi-step

linkage between data components. While Kipf and Welling (2016) used citation data

with a clear graph structure because the linkage between papers can be defined as

quotation status, GCN can be applied to data with no pre-defined graphical struc-

ture. Cai et al. (2019) and Doosti et al. (2020) estimated the adjacency matrix of

objects from the data and utilized it as the input of GCN. Therefore, the asset re-

turn data also does not have a clearly pre-defined relation, but GCN can be applied

if the adjacency matrix is estimated in an appropriate way.

While asset pricing studies mostly concentrate on asset return itself, volatility

is also the feature to be considered. Many researches as Jin (2017); Berument and
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Doǧan (2011) and Li (2011) showed that there exists a negative relationship between

return and volatility. Therefore, volatility can be a useful factor that explains excess

return. In this perspective, Herskovic et al. (2016) pointed out that shocks to the

common idiosyncratic volatility high affect asset return. However, the limitation is

that it uses historical volatility to construct factors. Considering the time-varying

property of volatility, using predicted future volatility to explain future return can

have more explanatory power. (Engle III and Ng (1991)).

Volatility prediction is being actively conducted in the field of time-series analy-

sis. One of the biggest features of volatility research is that it should start with how

to define volatility. Volatility is considered as the latent feature of asset return. The

generalized autoregressive conditional heteroskedasticity (GARCH) model, proposed

by Engle (1982), defined volatility as a hidden process embedded in the residual term

of the autoregressive (AR) model for asset return. GARCH-based models as expo-

nential GARCH and integrated GARCH predict daily volatility effectively (Nelson

(1991); Engle and Bollerslev (1986). Numerous estimation methods for latent volatil-

ity have been proposed alongside GARCH volatility, as well as stochastic volatility

(SV) and exponentially weighted moving average (EWMA) (see Taylor (2008) and

Morgan (1996)).

However, Bollerslev (1987); Malmsten et al. (2010) and Carnero et al. (2004)

pointed out that latent factors cannot capture decreasing autocorrelations in the

squared returns, which is one of the important dynamics of return. Misunderstand-

ing return dynamics can lead to the inadequate prediction of volatility. In this sense,

Andersen and Bollerslev (1998) introduced the concept of observable realized volatil-

ity. While GARCH volatility is estimated by the AR model, the realized volatility is
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directly calculated by the squared sum of returns. Theoretical results from Barndorff-

Nielsen and Shephard (2002); Andersen et al. (2003) and Meddahi (2002) claim that

observable volatility allows better prediction performance of volatility than latent

volatility in high-frequency return data. To predict observable realized volatility

(RV), Corsi (2009) proposed the heterogeneous autoregressive model for realized

volatility (HAR-RV). HAR-RV has a formulation of AR model with daily lagged

RV, weekly averaged lagged RV, and monthly averaged lagged RV as independent

variables. Empirical prediction results of HAR-RV type models proposed by Chen

and Ghysels (2011) and Patton and Sheppard (2015) showed good performance on

global stock markets.

In volatility prediction, it is important to consider the connection relationship

between assets as in asset pricing. The connection relationship between volatility is

expressed as spillover, which indicates the effect of the impact on the volatility of

other markets when an impact is applied to each market. Karolyi (2001) and Diebold

and Yilmaz (2009) reported that there both exists a volatility spillover effect in indi-

vidual stocks and global stock markets. Liang et al. (2020) and Wilms et al. (2021)

showed that the volatility spillover effect also affects volatility prediction. Attempts

to utilize the volatility spillover effect for realized volatility prediction mainly at-

tempted to extend the HAR-RV model to a multivariate structure, as shown in

Bubák et al. (2011) and Degiannakis et al. (2018). The limitation of these models

is that they do not use well pre-defined volatility spillover. Although the multivari-

ate model reflects the spillover effect in that it also uses the volatility of another

asset when predicting the volatility of one asset, it does not reflect its exact degree.

Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012) measured the volatil-
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ity spillover based on the error decomposition of the vector autoregressive model

and defined the volatility spillover index. Therefore, employing well-defined volatil-

ity spillover index for volatility prediction have the potential to improve prediction

performance.

The mixture of asset pricing and volatility prediction begins with considering the

role of volatility in the asset pricing model. While traditional asset pricing models

such as CAPM and Fama-French factor models assume constant volatility of model

since they use linear regression for model parameter estimation, empirical evidence

shows that volatility varies over time (see Justiniano and Primiceri (2008); Lee and

Ohk (1992); Lewis (2021)). Kim and Kim (2016) proposed CAPM with a time-

varying volatility framework to overcome this limitation, but it models volatility as

latent volatility. Utilizing time-varying realized volatility for asset pricing model can

guarantee better volatility prediction accuracy and thus more accurate asset pricing

on return.

In this dissertation, we first focus on developing a deep learning-based asset

pricing model that captures connectedness between assets. This study explores how

the relationship between assets can be estimated and how the relationship can be

reflected in the model structure. Next, we developed a volatility prediction method

to explore return dynamics by considering the volatility spillover effect. Based on the

previously proposed models, we proposed a deep learning-based asset pricing model

with time-varying volatility prediction. Finally, we identified the macroeconomics

factor for connected assets in the cryptocurrency market as an application.
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1.2 Aims of the Dissertation

This thesis aims to develop an AI-based asset pricing model reflecting the network

connectedness of assets. We first suggest a graph convolutional network-based asset

pricing model that reflects the graphical relationship between assets. After develop-

ing the graph-based multi-factor asset pricing model, this thesis focuses on realized

volatility prediction that contains volatility spillover effect. Then, we utilized the

proposed methods to develop an asset pricing model with network connectedness

and time-varying realized volatility. Finally, we showed that the connected assets in

the cryptocurrency market have a common macroeconomic factor of gas fee as an

application in the cryptocurrency market. The detailed summaries of this thesis are

presented as follows:

Graph-based multi-factor asset pricing model (Chapter 2) In this chapter,

we propose the graph-based multi-factor asset pricing model to make asset pricing

model reflect the connectedness between assets. We estimate the network structure

of assets by the Pearson correlation coefficients of asset returns and cutoff value for

binary classification. Estimated adjacency matrix of assets is used as the input of

proposed graph convolutional network-based asset pricing model. Subsequently, we

propose the forward stagewise adaptive factor constructing algorithm for sequential

factor modelling. We performed experiments on individual U.S. equities. The results

demonstrate that our proposed method outperforms benchmark models in terms of

explanatory power, prediction power, and Sharpe ratio of factor portfolio.
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Volatility prediction with volatility spillover index (Chapter 3) Consid-

ering the volatility spillover effect in multivariate volatility forecasting is widely

known to improve the prediction performance as it reflects the linkages between asset

volatility. In this chapter, we propose a method that uses the volatility spillover in-

dex to construct a graph between global market indices and apply the graph directly

through the spatial-temporal graph neural network model. An empirical analysis is

conducted on eight representative global market indices. From the out-of-sample

results, we found the following features. First, the proposed spatial-temporal GNN

spillover model outperforms the benchmark models in short- and mid-term forecast-

ing. Second, the forecasting accuracy highly depends on the inclusion of the market

index with a high volatility spillover effect. Including SPX, which contains the high-

est net spillover index, effectively helps to forecast the volatility of other markets.

Third, setting the mid-term KPPS step for constructing the graph performs the

best for mid- and long-term forecasting tasks because the volatility spillover effect

persists up to the mid-term.

Graph-based multi-factor model with time-varying volatility (Chapter 4)

Allowing factor model to have time-varying volatility can improve the conformity to

the real data of the model. In this chapter, we propose the graph-based multi-factor

asset pricing model with the relaxation of the fixed volatility constraint. Realized

volatility estimation is used for time-varying volatility prediction and worked as a

regularization term of the training loss. The empirical analysis result on U.S indi-

vidual stocks shows that the proposed model has a large increase in explanation and

prediction power during the low volatility period. Furthermore, the proposed model
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estimates factors that can construct the most efficient stochastic discount factor

among benchmark models, which can be confirmed as the Sharpe ratio of tangency

factor portfolios.

Macroeconomic factor model and spillover-based volatility prediction for

ERC-20 tokens (Chapter 5) In this chapter, we extend the literature on iden-

tifying internal factors in cryptocurrencies by demonstrating that Ethereum-based

token prices have a relationship with Ethereum gas prices. We applied the volatility

prediction model with a volatility spillover index based on the identified relationship

between tokens’ volatility and gas return. Based on the relationship analysis, we con-

structed the macroeconomic two-factor model of market return and Ethereum gas

return. An empirical analysis was performed using daily data from Ethereum, five

ERC-20 tokens, and seven ERC-721 tokens. The results are shown in two periods

divided by EIP-1559. The empirical results highlight the following features: First,

the gas returns and the Ethereum returns and volatility are strongly correlated;

Second, Ethereum and ERC-20 tokens’ returns Granger-causes gas returns in the

pre-EIP-1559 period, whereas gas returns have a causal effect on ERC-20 tokens’

returns in the post-EIP-1559 period; Third, Ethereum volatility is the only asset

volatility with predictive power for gas returns over the entire period; Fourth, the

ERC-721 tokens did not show any constant pattern in their influence on the gas

returns; and finally, the constructed two-factor model reveals that the EIP-1559 has

made Ethereum gas price as the consistent factor for connected assets on Ethereum

blockchain.
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1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In chapter 2, we pro-

pose a graph-based multi-factor asset pricing model that reflects the graph struc-

ture of asset return. In chapter 3, we propose a volatility prediction model using a

spatial-temporal graph neural network and volatility spillover index. In chapter 4,

we propose a multi-factor model with time-varying volatility. Chapter 5 investigates

the existence of observable factors for connected tokens in the cryptocurrency mar-

ket as an application of research from previous chapters. Chapter 6 concludes the

dissertation along with the contribution and future plan of the research.

13



Chapter 2

Graph-based multi-factor asset pricing model

2.1 Chapter Overview

“What determines the excess return of assets?” is a long-standing problem. Asset

pricing models try to explain why different assets have different expected returns.

Fama and French (2015) claim that firm characteristics such as market excess return,

size and B/E ratio can explain expected asset returns proposing a three-factor model.

Sanusi and Ahmad (2016) provide empirical evidence of a multi-factor model for

stocks in specific sectors and research on the magnitude of each factor in the model

was also conducted by Bank and Insam (2019). In addition to the study of observable

factor models, study of latent factor models has also been conducted (Chamberlain

and Rothschild (1982) and Connor and Korajczyk (1988)). Kelly et al. (2019) and

Gu et al. (2020a) showed that firm characteristics affect risk exposure rather than

risk factors.

Finding out the exact function to estimate risk exposure from firm characteristics

is a difficult issue to solve using conventional asset pricing models, because observable

firm characteristics have very high dimensions. Deep neural networks are known to

perform well on similar tasks that deal with high-dimensional data (Goodfellow et al.,

2016). Therefore, studies such as Gu et al. (2020a) and Chen et al. (2019) have tried
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to adopt a deep learning approach to estimate excess returns from high-dimension

asset characteristics.

However, deep-learning-based studies have thus far had two problems. First, the

connectedness between firms is not reflected in the previously proposed models.

Ozsoylev and Walden (2011) and Herskovic (2018) showed that the excess return

of an individual firm is affected by those of other firms connected to it, and some

asset pricing factors can be determined by the network structure of assets. However,

recent deep-learning-based approaches, like those in Gu et al. (2020a) and Feng

et al. (2020), have used an architecture in which different firms do not affect each

other during layer-wise propagation. Second, as the number of factors increases, the

influence of the added factors cannot be accurately measured, because the (K + 1)-

factor model does not inherit the factors of the K-factor model. Because existing

deep-learning-based models start learning from a new initialization point each time,

they cannot remember the factors from the previous model. Research on observable

factor models has been conducted by adding a new factor to the existing model and

checking whether it has explanatory power. For example, Carhart (1997) added the

momentum factor to Fama and French (1992)’s three-factor model and determined

whether the added factor explained the part of the data that the existing factors

could not explain, as regards expected returns. In research on the statistical latent

factor model, PCA-based models such as Lettau and Pelger (2020b) and Kelly et al.

(2019) have performed empirical analysis by adding factors starting with a one-factor

model to find the sufficient number of factors. This makes it difficult to compare an

observable factor model or PCA-based latent factor models with a deep-learning-

based latent factor model according to the number of factors on the same line.
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In this chapter, we estimated the multi-factor asset pricing model of individ-

ual US equities using firm-specific information and deep learning architecture. Our

contribution is two-fold. First, to reflect the connectedness between asset returns

for risk exposure estimation, we used a graph convolutional network (GCN), which

takes into account the graph structure between firms, rather than a simple neural

network. We also presented a way to construct a graph of firms that fits our goal, as-

set pricing, using the correlation of returns. Second, we proposed a forward stagewise

modeling architecture that sequentially adds latent factors to inherit factors from

the latent factor model of the previous step, such as an observable factor model or

PCA-based latent factor model. Moreover, we can accurately evaluate the value of a

newly added factor as the increase in the model’s explanatory power and prediction

performance while increasing the number of factors because the (K+1)-factor model

and the K-factor model share the same K factors.

Empirically, we conducted an analysis of 119 individual U.S. equities. In the out-

of-sample analysis, our proposed graph factor model shows 29% explanatory power

and 5.7% prediction R2, and thus outperforms every other benchmark model. In

terms of economic implications, we showed that our proposed model achieves the

highest Sharpe ratio of the tangency factor portfolio.

This chapter is organized as follows: Section 2.2 describes background of our pro-

posed model. In Section 2.3, we represent our proposed model. Section 2.4 presents

the data for the empirical analysis, benchmark models, and the empirical results.

Finally, Section 2.5 explains the corresponding discussion.
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2.2 Preliminaries

2.2.1 Graph Neural Network

Lots of variations of artificial neural network, such as convolutional neural network

and recurrent neural network, have been proposed for different purposes. However,

most of those approaches are not specialized to deal with graph data, where nodes

and their edges contain features and certain relationship information between nodes.

Proposed by Scarselli et al. (2008), the graph neural network (GNN) applies

neural networks in graph data that is cyclic, directed, or undirected, such as social

links and citation networks. Its framework attaches a state at each node based on

its features, neighborhood information, and relationships with its neighbors. Node

states xn are calculated through function fw with neighbor states and labels of

nodes, edges, and neighbors, each denoted as xne[n], ln, lco[n], lne[n].

xn = fw(ln, lco[n], xne[n], lne[n]) (2.1)

Node representations are iteratively propagated by contraction maps until they reach

a stable fixed point. Khamsi and Kirk (2011) supported the existence and uniqueness

of convergence using Banach’s fixed-point theorem.

Node states are used to compute their outputs, and the cost function can be set

by the difference between their outputs and real outputs.

ew =

p∑
i=1

q∑
j=1

(ti,j − ϕw(Gi, ni,j) (2.2)

The gradient-descent algorithm is then applied to update the weights until the state
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converges.

2.2.2 Graph Convolutional Network

GNN was later developed to apply the concepts of convolution in graph data by

stacking multiple graph convolutional layers to extract node representations, which

is known as GCN. GCN is based on the first order approximation of spectral graph

convolution. Spectral convolutions on graph is defined as follows:

gθ ⋆ x = UgθU
Tx (2.3)

where gθ denotes filter, U denotes eigenvector matrix of the normalized graph Lapla-

cian, and x is the signal. Since gθ can be approximated by a Chebyshev polynomials,

Equation 2.3 can be written in K-th order Chebyshev polynomials formulation:

gθ ⋆ x ≈
K∑
k=0

θ′kTk(L̃)x (2.4)

where Tk is k-th order Chebyshev polynomial, Λ̃ = 2
λmax

Λ − IN , Λ is a diagonal

matrix with eigenvalues of L, and λmax is the largest eigenvalue of L. By assuming

λmax ≈ 2 and k = 1, Equation 2.4 becomes as follows:

gθ ⋆ x ≈ θ′0x+ θ′1(L− IN )x

= θ′0x− θ′1D
− 1

2AD− 1
2x

= θ(IN +D− 1
2AD− 1

2 )x

(2.5)

where θ = θ′0 − θ′1.
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Then, the layer-wise propagation rule of GCN for graph G with corresponding

adjacency matrix A is derived from Equation 2.5 as follows:

H(ℓ+1) = ϕ
(
D̃− 1

2 ÃD̃− 1
2H(ℓ)W (ℓ)

)
(2.6)

Here, H(ℓ) and W (ℓ) are the matrix of hidden state and trainable weight in the ℓth

layer, respectively. Ã = A + I is the self-connection-added adjacency matrix, and

D̃ii =
∑

j Ãij is the normalization matrix of Ã. ϕ is an activation function, such as

sigmoid, ReLU, or tanh.

2.3 Methodology

2.3.1 Multi-factor asset pricing model

It is well-known (Back (2010)) that under the no arbitrage assumption, a stochastic

discount factor (SDF) satisfying the unconditional asset pricing equation exists:

Et[mt+1Ri,t+1] = 0 ⇔ Et[Ri,t+1] =
covt(mt+1, Ri,t+1)

vart(mt+1)

(
−vart(mt+1)

Et[mt+1]

)
, (2.7)

where Ri,t+1 denotes the excess return of asset i at time t + 1, orthogonal to the

SDF, mt+1. βi,t =
covt(mt+1,Ri,t+1)

vart(mt+1)
implies risk exposure, and λ = −vart(mt+1)

Et[mt+1]
is the

price of risk.

Given random variable F , the orthogonal projection of Ri,t+1 on the span of F

and constant is:

Et[Ri,t+1] + βT
i,t(Ft+1 − Et[Ft+1]) (2.8)

where βi,t =
∑−1

Ft+1
Cov(Ft, Ri,t+1). The existence of factor model with factor F is
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equivalent as the existence of λt+1 such that,

Et[Ri,t+1] = λT
t+1βi,t. (2.9)

We can find that the formulation of Equation 2.7 and Equation 2.9 derive the same

result. If there is a factor model with factor F , the affine function of the factor F

becomes an SDF. It leads to the following multi-factor model:

Ri,t+1 = βT
i,tFt+1 + ϵi,t+1, (2.10)

where βi,t ∈ ℜK×1, Ft+1 ∈ ℜK×1, ϵi,t+1 ∈ ℜ and Et[ϵi,t+1] = Et[ϵi,t+1Ft+1] = 0.

Recent literature, like Gu et al. (2020a); Feng et al. (2020) and Kelly et al. (2019),

has tried to estimate β or F using firm characteristics Z. In this chapter, we follow

this trend and use Z to estimate the risk exposure β.

Ri,t+1 = β(Zi,t)
′Ft+1 (2.11)

In this form, β becomes the embedding function of firm characteristics Zi,t ∈ ℜP×1.

We expand Eq. (2.11) to make function β conditioned by the characteristics of

firms related to firm i.

Ri,t+1 = β(Zji1,t
, . . . , Zjin,t

)′Ft+1, (2.12)

where firms ji1, . . . , j
i
n are the firms that have a relationship with firm i. If we consider

the relation of firms as graph G with adjacency matrix A, where nodes are firms and

edges mean the connected nodes have a relationship, Eq. (2.12) can be expressed as
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follows:

Rt+1 = β(Zt, A)Ft+1, (2.13)

where Rt+1 = (R1,t+1, ..., RN,t+1)
T ∈ ℜN×1, β(Zt, A) ∈ ℜN×K whose i-th row vector

is β(Zji1,t
, . . . , Zjin,t

)′.

2.3.2 Proposed method

The purpose of this chapter is to estimate the time-varying risk exposure from firm

characteristics and connectivity between firms. To develop a deep-learning-based

model for Eq. (2.12), we constructed a graph factor model (GF) consisting of two

parts: a risk exposure model and a factor model similar to Gu et al. (2020a).

Figure 2.1 shows the architecture of our proposed model. We considered the GCN

to estimate the risk exposure function β and set factors as a linear combination of

excess returns using a single-layer neural network. The mathematical representation

of the layer-wise risk exposure model is as follows:

H(0) = Zt−1

H(ℓ) = ϕ(D̂− 1
2 ÂD̂− 1

2H(ℓ−1)W (ℓ−1)), l = 1, ..., Lβ

βt−1 = H(Lβ)

(2.14)

Notations here are the same as those in chapter 2.2.2: ϕ can be any activation

function. In this study, we used ReLU activation to afford non-linearity in the model.

When Lβ = 2, the model can be interpreted as a network that utilizes characteristics

of other firms that are neighbors of firm i or are connected to a neighbor of firm i

to calculate the βi of firm i.
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In a traditional graph convolutional network, A denotes the adjacency matrix of

the graph. However, we do not know the exact connectivity between firms because

there is no agreement to come up with a clear definition of connectivity. To address

this issue, we estimated the adjacency matrix A using the correlation matrix of R.

Aij =


1, if rank(|ρij |) ≥ c

0, otherwise

, (2.15)

where ρij is the correlation of Ri,(0,...,t) and Rj,(0,...,t). rk(x) denotes the percentile

rank of x, and c is the cutoff value.

We used a simple neural network structure for the factor model to estimate

factors as a linear combination of excess returns. The recursive formula is as follows:

S(0) = Rt

S(ℓ) = b(ℓ−1) + W̃
(ℓ−1)

S(ℓ−1), l = 1, ..., Lf

ft = S(Lf ),

, (2.16)

where S(ℓ) ∈ ℜN×1, W̃
(ℓ) ∈ ℜN×K , and b(ℓ) ∈ ℜK×1 are the hidden state vector,

trainable weight matrix, and bias vector in the ℓth layer, respectively.

The output of Eq. (2.14) is the factor exposure matrix βt−1 ∈ ℜN×K and the

output of Equation 2.16 is factor vector ft ∈ ℜK×1. Finally, we dot product βt−1

and ft as in Eq. (2.11) to produce a prediction of asset return.

Rt = (H(Lβ))S(Lf ) = βt−1ft (2.17)

22



2.3.3 Forward stagewise additive factor modeling

We proposed a forward stagewise additive factor modeling architecture that main-

tainsK factors from theK-factor model while constructing the (K+1)-factor model.

Because our graph factor model is constructed of neural networks, we set the train-

ing initialization point of the (K + 1)-factor model as the K-factor model that has

undergone training. Then, we made corresponding gradients of K factors that were

to be newly trained as not trainable, which makes the K factors stay the same

when training the (K + 1)-factor model. The entire training process can be seen in

Algorithm 1.

Algorithm 1: Forward stagewise additive factor modeling

set Kmax;

while K <= Kmax do

if K = 1 then

train 1-factor model R = β(1)f (1);

else

load (K − 1)-factor model’s factor f (K−1);

initialize f (K)’s 1 (K − 1) part with f (K−1);

set f (K)’s 1 (K − 1) part as requires grad = False;

train K-factor model R = β(K)f (K);

end

end
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2.4 Empirical Studies

2.4.1 Data

We analyzed the monthly return data of firms from March 1957 to December 2016.

Asset returns are collected from CRSP. The object of data collection is firms in

NYSE, AMEX, and NASDAQ, which existed throughout the 60-year window, total-

ing 119 firms. Even though previous studies, Gu et al. (2020a); Kozak et al. (2017),

and Gu et al. (2020b) used all available firms over the past 60 years, we have to select

certain firms because our proposed model needs a fixed number of firms during the

training, validation, and test periods. We used the three-month Treasury bill rate

as the risk-free rate, which is also collected from CRSP. The average price of target

assets are shown in Figure 2.2.

For firm characteristics, we used the dataset of Gu et al. (2020b). It includes

94 characteristics; the full list and details of characteristics are presented in Tables

2.1, 2.2 and 2.3. We rank-normalized each firm characteristics from (-1, 1) in each

timestep.

We set data from 1957 to 1974 as the training set, the 1975 to 1986 data as the

validation set, and the 1987-2016 data as the test set. The validation set is used to

tune the hyperparameter of the model without observing any data in the test set.

2.4.2 Benchmark models

We chose the conditional autoencoder model of Gu et al. (2020a) for the benchmark

of the latent factor model, and chose the Fama-French factor model for the bench-

mark of the observable factor model. The conditional autoencoder model has the

same factor network structure as our proposed model, and uses a multi-layer per-
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Table 2.1: List and reference of firm characteristics

Variable name Firm characteristic Reference

absacc Absolute accuruals Bandyopadhyay et al. (2010)

acc Working capital accruals Sloan (1996)

aeavol Abnormal earning announcement volume Lerman et al. (2007)

age Number of years since first Compustat coverage Jiang et al. (2005)

agr Asset growth Cooper et al. (2008)

baspread Bid-ask spread Amihud and Mendelson (1989)

beta Beta Fama and MacBeth (1973)

betasq Beta squared Fama and MacBeth (1973)

bm Book-to-market Rosenberg et al. (1985)

bm ia Industry-adjusted book-to-market Asness et al. (2000)

cash Cash holdings Palazzo (2012)

cashdebt Cash flow to debt Ou and Penman (1989)

cashpr Cash productivity Chandrashekar et al. (2009)

cfp Cash flow to price ratio Desai et al. (2004)

cfp ia Industry-adjusted cash flow to price ratio Asness et al. (2000)

chatoia Industry-adjusted change in asset turnover Soliman (2008)

chcsho Change in shares outstanding Pontiff and Woodgate (2008)

chempia Industry-adjusted change in employees Asness et al. (2000)

chinv Change in inventory Thomas and Zhang (2002)

chmom Change in 6 month momentum Gettleman and Marks (2006)

chpmia Industry-adjusted change in profit margin Soliman (2008)

chtx Change in tax expense Thomas and Zhang (2011)

cinvest Corporate investment Titman et al. (2004)

convind Convertible debt indicator Valta (2016)

currat Current ratio Ou and Penman (1989)

depr Depreciation Holthausen and Larcker (1992)

divi Dividend initiation Michaely et al. (1995)

divo Dividend omission Michaely et al. (1995)

dolvol Dollar trading volume Chordia et al. (2001)

dy Dividend to price Litzenberger and Ramaswamy (1982)

ear Earnings announcement return Brandt et al. (2008)
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Table 2.2: List and reference of firm characteristics (Continued)

Variable name Firm characteristic Reference

egr Growth in commom shareholder equity Richardson et al. (2005)

ep Earnings to price Basu (1977)

gma Gross profitability Novy-Marx (2013)

grCAPX Growth in capital expenditures Anderson and Garcia-Feijoo (2006)

grltnoa Growth in long term net operating assets Fairfield et al. (2003)

herf Industry sales concentration Hou and Robinson (2006)

hire Employee growth rate Belo et al. (2014)

idiovol Idiosyncratic return volatiltiy Ali et al. (2003)

ill Illiquidity Amihud (2002)

indmom Industry momentum Moskowitz and Grinblatt (1999)

invest Capital expenditures and inventory Chen and Zhang (2010)

lev Leverage Bhandari (1988)

lgr Growth in long-term debt Richardson et al. (2005)

maxret Maximum daily return Bali et al. (2011)

mom12m 12 month momentum Jegadeesh (1990)

mom1m 1 month momentum Jegadeesh and Titman (1993)

mom36m 36 month momentum Jegadeesh and Titman (1993)

mom6m 6 month momentum Jegadeesh and Titman (1993)

ms Financial statement score Mohanram (2005)

mvel1 Size Banz (1981)

mve ia Industry adjusted size Asness et al. (2000)

nincr Number of earnings increases Barth et al. (1999)

operprof Operating profitability Fama and French (2015)

orgcap Organizational capital Eisfeldt and Papanikolaou (2013)

pchcapx ia Indstury adjusted percentage change in capital expenditures Abarbanell and Bushee (1998)

pchcurrat Percentage change in current ratio Ou and Penman (1989)

pchdepr Percentage change in depreciation Holthausen and Larcker (1992)

pchgm pchsale Percentage change in gross margin - percentage change in sales Abarbanell and Bushee (1998)

pchquick Percentage change in quick ratio Ou and Penman (1989)

pchsale pchinvt Percentage change in sales - percentage change in inventory Abarbanell and Bushee (1998)

pchsale pchrect Percentage change in sales - percentage change in A/R Abarbanell and Bushee (1998)
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Table 2.3: List and reference of firm characteristics (Continued)

Variable name Firm characteristic Reference

pchsale pchxsga Percentage change in sales - percentage change in SG&A Abarbanell and Bushee (1998)

pchsaleinv Percentage change sales-to-inventory Ou and Penman (1989)

pctacc Percent accruals Hafzalla et al. (2011)

pricedelay Price delay Hou and Moskowitz (2005)

ps Financial statements score Piotroski (2000)

quick Quick ratio Ou and Penman (1989)

rd R&D increase Eberhart et al. (2004)

rd mve R&D to market capitalization Guo et al. (2006)

rd sale R&D to sales Guo et al. (2006)

realestate Real estate holdings Tuzel (2010)

retvol Return volatility Ang et al. (2006)

roaq Return on assets Balakrishnan et al. (2010)

roavol Earnings volatility Francis et al. (2004)

roeq Return on equity Hou et al. (2015)

roic Return on invested capital Brown and Rowe (2007)

rsup Revenue surprise Kama (2009)

salecash Sales to cash Ou and Penman (1989)

saleinv Sales to inventory Ou and Penman (1989)

salerec Sales to receivables Ou and Penman (1989)

secured Secured debt Valta (2016)

securedind Secured debt indicator Valta (2016)

sgr Sales growth Lakonishok et al. (1994)

sin Sin stocks Hong and Kacperczyk (2009)

sp Sales to price Barbee Jr et al. (1996)

std dolvol Volatility of liquidity (in dollar trading volume) Chordia et al. (2001)

std turn Volatility of liquidity (in share turnover) Chordia et al. (2001)

stdacc Accrual volatility Bandyopadhyay et al. (2010)

stdcf Cash flow volatility Huang (2009)

tang Debt capacity / firm tangibility Almeida and Campello (2007)

tb Tax income to book income Lev and Nissim (2004)

turn Share turnover Datar et al. (1998)

zerotrade Zero trading days Liu (2006)
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ceptron for a factor exposure network, while our model uses a graph convolutional

network. For a fair comparison, we used the best-performing hyperparameters noted

in Gu et al. (2020a).

The Fama-French factor model has varying factors from one to six; the six factors

in turn are excess market returns, SMB, HML, CMA, RMW, and UMD. The Fama-

FrenchK-factor model we used for comparison in this study is composed ofK factors

described above. The factor returns are collected from Ken French’s website.

We compared our graph factor model while changing the parameter c, which

determines the sparsity of the asset graph’s adjacency matrix as in Equation 2.15.

2.4.3 Empirical results

We performed the model performance evaluation through out-of-sample data to

ascertain the true explanatory power and predictive power of our proposed model.

Revisiting Euler equation 2.11, the asset pricing model is the explanation model for

individual firms. We used R2
total to evaluate statistical explanatory power.

R2
total = 1−

∑
(i,t)∈OOS(Ri,t − β̂i,t−1f̂t)

2∑
(i,t)∈OOS R2

i,t

(2.18)

As deep-learning-based models are known to be good at prediction tasks, we

evaluated the predicted performance by replacing f̂t as β̂i,t−1 = 1
t−1

∑
s β̂i,s, which

is the time series mean of f̂1:t−1.

R2
pred = 1−

∑
(i,t)∈OOS(Ri,t − β̂i,t−1f̄1:t−1)

2∑
(i,t)∈OOS R2

i,t

(2.19)

To achieve robust result and show confidence interval, we used bootstrap method
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with 200 repeats. We computed the p-value of performance difference between graph

factor model with cutoff value 0.9 and conditional autoencoder model by Welch’s

t-test using the empirical distribution from bootstrapping.

The results are shown in Table 2.4. In terms of the out-of-sample total R2 and

the prediction R2, respectively, the graph factor model with a cutoff value of 0.9 and

six factors showed the best performance, at 29% and 5.7%. The Fama-French factor

model is known to explain characteristic-sorted portfolios, but shows little explana-

tory power for individual assets. The R2
total of the conditional autoencoder model

with four factors is 28.05%, which outperforms the graph factor model with cutoff

values of 0.1 and 0.5. At the same time, p-value 0.75 shows that conditional au-

toencoder model with four factors has similar performance with graph factor model

with cutoff value 0.9. However, in terms of R2
pred, the conditional autoencoder model

shows worse prediction performance than the graph factor model for all factor counts.

Overall, the graph factor model with a cutoff value of 0.9 outperformed all other

models. Table 2.5 shows additional metrics for evaluating goodness of fit and Table

2.6 shows significance of average coefficients of each model with six factors.

The cutoff value c of the graph factor model determines the sparsity of the firm

graph’s adjacency matrix. When c = 0.9, only 10% of firms are connected. We can

see the visualization of the adjacency matrix with various cutoff values in Figure

2.3. Recalling that our proposed model estimates firm i’s risk exposure by firm

characteristics connected across up to two edges from firm i, c = 0.1, and c = 0.5,

all firms’ risk exposures are affected by nearly all other firms. The fact that the

graph factor model with c = 0.9 dominates those with c = 0.1 and c = 0.5 in terms

of R2 from Figure 2.3 shows that the graph factor model requires a sparse, clear
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Table 2.4: Comparison of Out-of-sample R2
total and R2

pred

# of Factors 1 2 3 4 5 6

Out-of-sample
total R-square (%)

FF
0.25 0.33 0.41 0.41 0.62 0.63
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

CA
23.21 27.76 27.5 28.05 25.84 26.32
(0.12) (0.35) (0.2) (0.24) (0.27) (0.83)

GF 0.1
21.36 22.48 22.9 24.28 24.72 25.42
(0.12) (0.08) (0.31) (0.19) (0.19) (0.17)

GF 0.5
23.93 25.46 26.69 27.78 27.46 27.5
(0.09) (0.21) (0.13) (0.14) (0.25) (0.18)

GF 0.9
24.94 27.9 29 28 28.52 28.93
(0.1) (0.15) (0.19) (0.11) (0.31) (0.11)

t-statistic 20.4 0.76 8.02 -0.32 15.94 6.05
p-value 0.00∗ 0.45 0.00∗ 0.75 0.00∗ 0.00∗

Out-of-sample
prediction R-square (%)

FF <0 <0 <0 <0 <0 <0

CA
1.13 2.72 2.98 3.28 2.63 2.56
(0.13) (0.31) (0.14) (0.2) (0.21) (0.44)

GF 0.1
2.45 3.58 4.02 4.16 4.37 4.83
(0.1) (0.08) (0.16) (0.13) (0.12) (0.13)

GF 0.5
3.14 4.23 4.6 4.54 4.74 5.33
(0.11) (0.13) (0.08) (0.09) (0.16) (0.13)

GF 0.9
3.79 4.98 5.21 5.58 5.64 5.7
(0.09) (0.12) (0.14) (0.16) (0.1) (0.15)

t-statistic 32.38 13.75 20.52 18.7 23.96 13.33
p-value 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗

Notes. The upper part of table represents the empirical results of out-of-sample total R2

and lower part represents the out-of-sample prediction R2. 95% confidence intervals derived
by bootstrapping are in parenthesis. In the second column, FF, CA, and GF each denotes
Fama-French model, conditional autoencoder, and graph factor model. GF 0.1 means graph
factor model with cutoff value 0.1. The best performing models along the fixed number
of factors are shown in bold. For each metric, t-statistic and p-value are derived from
comparison between CA model and GF 0.9 model. We marked ∗ to p-value<0.05

adjacency matrix to be trained as intended.

Moreover, we can see that the R2
pred of the graph factor model subsequently in-

creases as the number of factors increases, while that of the conditional autoencoder

model decreases when the number of factors increases from four to five. This is due

to the proposed forward stagewise additive modeling scheme. Maintaining the pre-

vious stage model’s factors produces more consistent predictive power in statistical

30



Table 2.5: Comparison of MAE, RMSE, RAE, and RSE

# of Factors 1 2 3 4 5 6

Out-of-sample
MAE

FF 0.074 0.074 0.074 0.074 0.074 0.074
CA 0.056 0.053 0.054 0.053 0.055 0.054

GF 0.1 0.057 0.057 0.057 0.056 0.055 0.054
GF 0.5 0.055 0.054 0.054 0.053 0.053 0.053
GF 0.9 0.054 0.053 0.053 0.053 0.052 0.052

Out-of-sample
RMSE

FF 0.116 0.116 0.116 0.116 0.116 0.116
CA 0.1 0.096 0.097 0.096 0.098 0.097

GF 0.1 0.101 0.1 0.1 0.099 0.098 0.098
GF 0.5 0.099 0.098 0.097 0.096 0.097 0.097
GF 0.9 0.098 0.096 0.096 0.096 0.096 0.096

Out-of-sample
RAE

FF 1.061 1.06 1.057 1.058 1.057 1.055
CA 0.811 0.766 0.772 0.769 0.794 0.774

GF 0.1 0.825 0.815 0.814 0.8 0.791 0.781
GF 0.5 0.798 0.779 0.773 0.759 0.764 0.759
GF 0.9 0.787 0.76 0.758 0.763 0.753 0.751

Out-of-sample
RSE

FF 1.04 1.038 1.036 1.036 1.036 1.034
CA 0.876 0.85 0.851 0.848 0.861 0.858

GF 0.1 0.887 0.88 0.878 0.87 0.868 0.864
GF 0.5 0.872 0.863 0.856 0.85 0.852 0.851
GF 0.9 0.866 0.849 0.843 0.849 0.845 0.843

Notes. This table shows four metrics for evaluating goodness of fit. The first of the
four sections in the table represents the out-of-sample Mean Absolute Error (MAE)

= 1
N

∑
|Ri,t − β̂i,t−1f̂t|. The second, third, and fourth section each shows out-of-sample

Root Mean Squared Error (RMSE) =
√

1
N

∑
(Ri,t − β̂i,t−1f̂t)2, Relative Absolute Error

(RAE) =
∑

|Ri,t−β̂i,t−1f̂t|∑
|Ri,t| , and Relative Standard Error (RSE) =

∑
(Ri,t−β̂i,t−1f̂t)

2∑
R2

i,t
. For each

metric, the best performing models along the fixed number of factors are shown in bold.

terms.

R2 evaluation measures statistical evidence on asset pricing models. We can

evaluate the economic meaning of the factor models through the Sharpe ratio test

of the factor portfolio. According to Hansen and Jagannathan (1991), SDF is the

linear span of excess returns. Since we estimated factors as a linear combination of

excess returns in the graph factor model, SDF becomes the linear span of factors
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Table 2.6: Significance of average coefficient of each factor

t-statistics of average coefficient of
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

FF
Mean 0.037 -0.073 -0.058 -0.108 0.374 0.016

Std error 0.014 0.019 0.031 0.043 0.044 0.015
t-statistic 2.696∗ -3.89∗ -1.866 -2.534∗ 8.55∗ 1.052

CA
Mean -0.004 0.008 0.006 0.023 0.052 0.1

Std error 0.001 0.001 0.005 0.01 0.017 0.009
t-statistic -28.2∗ 116.6∗ 14.096∗ 24.71∗ 33.381∗ 122.244∗

GF 0.1
Mean 0.631 0.322 0.345 -1.991 -0.087 -0.349

Std error 0.069 0.025 0.096 0.149 0.355 0.038
t-statistic 9.122∗ 12.693∗ 3.593∗ -13.337∗ -0.243 -9.211∗

GF 0.5
Mean -0.382 -0.075 0.057 -0.109 0.031 -0.007

Std error 0.012 0.017 0.009 0.015 0.004 0.006
t-statistic -33.059∗ -4.295∗ 6.507∗ -7.189∗ 7.164∗ -1.201
GF 0.9
Mean -0.118 -0.09 0.091 0.322 0.153 0.173

Std error 0.009 0.006 0.034 0.026 0.015 0.031
t-statistic -13.705∗ 15.817∗ 2.632∗ 12.427∗ 10.163∗ 5.596∗

Notes. This table shows mean, standard error and t-statistic of coefficients of FF, CA,

and GF model with six factors. The mean coefficient is the cross-sectional average of β̄
(k)
i ,

which is the time-series average of each firm’s model coefficient β
(k)
i,t . In the same way, the

standard error is calculated from [β̄
(k)
1 , ..., β̄

(k)
N ] and the t-statistic is the mean coefficient

divided by its standard error. t-statistics with its p-value smaller than 0.05 are marked as ∗

according to Kozak et al. (2017). Therefore, we construct the factor portfolio as

the mean-variance efficient portfolio, considering each factor as asset returns, and

analyzed the annualized Sharpe ratio. Table 2.7 shows the results. The Fama-French

factors produce a maximum of 0.82, with six factors. The models with time-varying

betas (CA and GF) showed much higher Sharpe ratios than the Fama-French model.
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The best performing model is the graph factor model with factors more than four.

Compared to the graph factor model, with a cutoff value of 0.9, the conditional

autoencoder model produced a 1.74 Sharpe ratio. Through this analysis, we are able

to confirm that the graph factor model produces factors that are closer to SDF than

benchmark models.

Table 2.7: Comparison of tangency portfolio sharpe ratio

# of Factors 1 2 3 4 5 6

FF 0.51 0.41 0.53 0.71 0.71 0.82
CA 0.52 1.2 0.95 1.6 1.77 1.74
GF 0.1 0.47 1.62 1.84 1.86 1.86 1.89
GF 0.5 0.52 1.78 1.78 1.79 1.79 1.98
GF 0.9 0.52 2.04 2.04 2.05 2.05 2.05

Notes. Results in table denotes the annual Sharpe ratio of tangency portfolio of factors.
The best performing models along the fixed number of factors are shown in bold.

2.5 Chapter Summary

In this chapter, we have proposed a new asset pricing model that estimates risk ex-

posure by individual firm characteristics considering the connectivity between firms.

We estimated the graph structure of assets using the correlation of asset returns and

applied a graph convolutional network architecture using the estimated relationship

between assets. To clearly evaluate the statistical and economic value of a new factor,

we proposed a turn-based method of making a model while accumulating factors.

Our empirical analysis is performed on monthly data for individual US equities. The

results show that our graph factor model achieves 29% of the total R-squared and

5.7% of prediction R-squared, and thus that it dominates the Fama-French factor

model and the conditional autoencoder model. The graph factor model has a large
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cutoff value of 0.9, which means estimating the graph structure of assets as a sparse

matrix outperformed others. This shows that considering connectivity between as-

sets helps to estimate the risk exposure and helps explain excess returns. In terms of

the economic meaning of the model, the graph factor model shows a 2.05 Sharpe ra-

tio of the tangency factor portfolio, while the conditional autoencoder model shows a

1.74. Through these results, we can confirm that our graph factor model can generate

stochastic discount factor by spanning model factors.
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Figure 2.1: Overall architecture of graph based multi-factor model
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Figure 2.2: The average price of target assets during whole period

Figure 2.3: The illustration of adjacency matrix of firm characteristics as cutoff value
differs
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Chapter 3

Volatility prediction with volatility spillover index

3.1 Chapter Overview

Stock market volatility highly affects the decision-making of market participants.

Individual investors and hedge funds particularly care about managing their portfolio

weight based on the volatility of assets to manage the risk level of the portfolio

(Engle (1993)). Volatility is also important for pricing options and derivatives, where

stochastic volatility is used as the main component of pricing models (Ball and Roma

(1994); Bouchaud and Potters (2003)).

Future volatility is more important than historical volatility. For example, the

latter is used to find the maximum Sharpe ratio portfolio and efficient frontier for the

portfolio optimization problem, but it cannot guarantee its efficiency in the future

because it is not a sufficient estimate for future volatility (Choudhury et al. (2014)).

Therefore, accurate volatility forecasting is one of the most important problems in

managing risk.

The autoregressive conditional heteroskedasticity (ARCH) class of models was

first widely used for forecasting volatility. Bollerslev (1986) introduced the gener-

alized autoregressive conditional heteroskedasticity (GARCH) model, and Nelson

(1991) proposed the exponential GARCH (EGARCH) model to solve some draw-
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backs of GARCH as a negative correlation between current returns and future volatil-

ity. Engle and Bollerslev (1986) followed this research and introduced integrated

GARCH (IGARCH). While GARCH class models show good performance for daily

volatility, as shown in Harrison and Moore (2012), they do not perform well for

high-frequency intraday volatility data. Andersen and Bollerslev (1998) introduced

realized volatility (RV), which is constructed as the summation of squared intraday

returns. RV is a highly efficient estimator of latent return volatility. For empirical

forecasting of RV, Corsi (2009) proposed a heterogeneous autoregressive type of

model (HAR-RV). Despite its simple structure, the HAR-RV model showed good

empirical performance. Numerous studies have proposed extensions of the HAR-RV

model to improve forecasting accuracy (e.g. Wang et al. (2017), Andersen et al.

(2007), Chen and Ghysels (2011), Patton and Sheppard (2015)). In particular, our

research focuses on Liang et al. (2020) and Wilms et al. (2021), who highlighted

that volatility spillover between assets affects the prediction of realized volatility.

Engle III et al. (1988); Baillie and Bollerslev (1991); Forbes and Rigobon (2002)

and Bhar and Hamori (2003) suggested that when certain assets or markets expe-

rience shocks, the effect spreads to other assets or markets, which is known as the

volatility spillover effect. Therefore, including the volatility spillover information in

the forecasting model would increase the prediction performance.

BEKK-GARCH (Engle and Kroner (1995)) and HVS-GARCH (Wang et al.

(2018)) represent GARCH-type models that successfully capture volatility spillover

effects and generate accurate forecasts. They divided volatility from the return pro-

cess into two components and constructed one component as a spillover compo-

nent. However, they cannot be used for forecasting observed high-frequency real-
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ized volatility because a GARCH-based structure is designed for unobserved latent

volatility. To address this problem, various studies have proposed a multivariate

HAR-based model that reflects spillover between different assets. Bubák et al. (2011)

generalized multivariate HAR by allowing the error term to follow a multivariate

GARCH process and analyzed volatility transmission between Central European

currencies and the EUR/USD foreign exchange. While Bubák et al. (2011) concen-

trated on changing the model structure, Liang et al. (2020) and Wilms et al. (2021)

utilized different predictive information in addition to the realized variance. Follow-

ing Degiannakis et al. (2018), Liang et al. (2020) demonstrated that the information

flow of implied volatility (IV) offers better performance in forecasting underlying

volatility than RV. Garvey and Gallagher (2012) empirically shows that implied

volatility is an effective metric of volatility across medium-term horizons. Wilms

et al. (2021) extended the multivariate HAR model to allow jump, continuous, and

IV information as components of volatility. These recent studies only capture the

volatility spillover effect through a multivariate model structure.

In this chapter, we focus on implying the spillover effect directly in the fore-

casting model. Diebold and Yilmaz (2012) suggested a measure of the directional

spillover index using a decomposition of error variance from a vector autoregressive

regression (VAR) framework. As they successfully characterized the spillover effect

across different market domains to the net pairwise spillover index, we designed a

volatility forecasting model that involved volatility and the net pairwise spillover in-

dex as well. When we want to directly reflect the net pairwise spillover index in the

model, HAR-based models can only use it as an additional variable in the regression

equation, as in the HAR-RV-KS model of Liang et al. (2020). This causes the model
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to consider only the spillover effect of each asset adjacent to the asset, and not the

spillover effect that leads to multiple stages. As an extension of this discussion, we

adopted a deep-learning-based model graph convolution network (GCN) to apply

the spillover effect as a graph. The GCN structure can reflect the spillover effect of

each market linked in multiple steps because these can be represented as multiple

link connections between nodes in a graph.

Along with the success of deep-learning models in computer vision tasks, long

short-term memory recurrent neural networks (LSTM-RNN) have gained popular-

ity for time-series forecasting (Gers et al. (2000)) because of their ability to capture

both long- and short-term memory in time-series data. Liu (2019) and Hu et al.

(2020) suggested that LSTM-RNN can be used for volatility prediction of stocks and

copper. On the other hand, deep-learning has also been developed to learn graphi-

cal relationships for relational data. Kipf and Welling (2016) proposed a GCN for a

semi-supervised classification task on graph-structured data. Furthermore, Seo et al.

(2018) and Li et al. (2017) designed a spatial-temporal GNN, the model combining

RNN and GCN, to deal with multivariate time-series data where agents have physical

or geological relationships. Chen et al. (2021a) and Chen et al. (2018) demonstrated

that the graph convolutional approach can successfully capture the relationship be-

tween corporations, thus leading to better stock price or trend prediction. However,

the major problem of applying the GCN approach to financial time-series data is

constructing a graph. Unlike citation data or traffic data, financial volatility does

not originally contain a graphical relationship. Therefore, defining and construct-

ing graph relationships between markets has become the most important task. As

a solution, we propose using the volatility spillover index as the graph structure of
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global market indices.

In this chapter, we design a spatial-temporal GNN-based model for forecasting

the volatility of global market indices. We propose a method for constructing graph

edges of market indices with a net pairwise spillover index Diebold and Yilmaz

(2012) and compare it to the method using Pearson correlation coefficients, which

is a common approach. We conducted an empirical analysis of eight global market

indices and present out-of-sample results. Out-of-sample analysis indicates that our

proposed spatial-temporal GNN model using the spillover index outperforms other

benchmark models in short- and mid-term forecasting. We also highlight that the

results of our proposed model are highly affected by the inclusion of markets with

large spillover effects on others.

The remainder of this chapter is organized as follows. In Section 3.2, we explain

benchmark time-series models, deep-learning models, and volatility spillover mea-

surements. Section 3.3 presents the data for the empirical analysis, the proposed

prediction methodology, and the empirical results. Finally, concluding remarks are

presented in Section 3.4.

3.2 Preliminaries

3.2.1 Realized Volatility

Andersen and Bollerslev (1998) introduced realized variance to approximate the

integrated variance of intraday high-frequency return data . It is defined as the sum

of intraday squared returns with equal time intervals. The mathematical formula for
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the realized variance at day t is as follows:

RVt =
M∑
i=1

r2t,i (3.1)

where 1
M is the time interval and rt,i represents the return between (i − 1)M and

iM . As discussed in Andersen et al. (2007), the standard deviation form of RV is

closer to normal distribution. Therefore, we used (RVi,t)
1/2 as the realized volatility

for the remainder of the paper.

3.2.2 Volatility Spillover Measurements

With the growing need to measure the financial market volatility spillovers, Diebold

and Yilmaz (2009) introduced a general framework for measuring linkages between

asset return volatilities, also known as volatility spillovers. Their framework is based

on forecast error variance decomposition from VAR models, and it is capable of cap-

turing spillover trends and cycles across individual assets, portfolios, markets, and

so on. However, this framework has some limitations. First, the measuring of the

volatility spillover is dependent on the order of the variables. Second, it only mea-

sures the total spillovers; therefore, one cannot examine the directional spillovers of

a particular market. As a result, Diebold and Yilmaz (2012) extended the previous

framework to measure the directional spillovers in a generalized VAR framework,

which solves the variable ordering dependency problem (the DY framework here-

after).

A covariance stationary N-variable VAR(p) model can be defined as xt =
∑P

i=1Φixt−i+

ϵt, where ϵ ∼ (0,Σ) is an independently and identically distributed disturbance. The

moving average of such a VAR(p) model can be expressed as xt =
∑∞

i=0Aiϵt−i
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where Ai represents the coefficient matrices that satisfy Ai = Φ1Ai−1 + Φ2Ai−2 +

· · · + ΦpAi−p, with A0 being an identity matrix and Ai = 0 for i < 0. The DY

framework exploits the generalized VAR model by Koop et al. (1996) and Pesaran

and Shin (1998) (KPPS) to solve the variable ordering dependency problem of the

previous framework, as the KPPS produces variance decompositions that are in-

variant to the variable ordering. The KPPS H -step ahead forecast error variance

decompositions θgij(H) are given as:

θgij(H) =

σ−1
jj

H−1∑
h=0

(e′iAhΣej)
2

H−1∑
h=0

(e′iAhΣA
′
hei)

(3.2)

where σjj is the standard deviation of the error term for the j-th equation, ei is the

selection vector with one in the i-th element and zero otherwise, Ah is the coefficient

matrix of the VAR model, and Σ is the variance matrix of the error ϵ. However, the

KPPS approach does not orthogonalize the shocks of each variable, so the row sum

of the elements of the variance decomposition may not be equal to one. Therefore,

normalization by the row sum of the variance decomposition matrix is required:

θ̃gij(H) =
θgij(H)

N∑
j=1

θgij(H)

(3.3)

Then,
∑N

j=1 θ̃ij(H) = 1 and
∑N

i,j=1 θ̃
g
ij(H) = N .

Using θ̃gij(H), the directional volatility spillover by market i from all other mar-
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kets j can be measured as:

Sg
i·(H) =

N∑
j=1
j ̸=i

θ̃gij(H)

N∑
i,j=1

θ̃gij(H)

· 100 =

N∑
j=1
j ̸=i

θ̃gij(H)

N
· 100 (3.4)

In addition, the directional volatility spillover of market i to all other markets j can

be measured as:

Sg
·i(H) =

N∑
j=1
j ̸=i

θ̃gji(H)

N∑
i,j=1

θ̃gji(H)

· 100 =

N∑
j=1
j ̸=i

θ̃gji(H)

N
· 100 (3.5)

By netting the directional volatility spillovers related to market i, the net spillover

of market i can be expressed as follows:

Sg
i (H) = Sg

·i(H)− Sg
i·(H) (3.6)

Lastly, to examine the net volatility spillovers between individual markets, the net

pairwise volatility spillovers is defined as:

Sg
ij(H) =

 θ̃gji(H)

N∑
i,k=1

θ̃gik(H)

−
θ̃gij(H)

N∑
j,k=1

θ̃gjk(H)

 · 100

=

(
θ̃gji(H)− θ̃gij(H)

N

)
· 100

(3.7)
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3.2.3 Benchmark Models

Time-series Models

HAR-RV The heterogeneous autoregressive model of realized volatility (HAR-

RV) proposed by Corsi (2009), is an autoregressive volatility model in which realized

volatilities over different time horizons are considered. The HAR-RV model is a

direct extension of the HARCH model by Müller et al. (1997), which assumes the

existence of heterogeneity across market participants, also called the heterogeneous

market hypothesis. The HAR-RV model finds the general pattern in the volatility

structure within three different time interval sizes: daily (one day), weekly (5 days),

and monthly (22 days). Daily, weekly, and monthly volatility reflects the behavior of

short-, mid-, and long-term traders, respectively. Even though the HAR-RV model

does not formally belong to the class of long-memory models, it is still capable of

capturing the long-memory behavior of volatility in a very intuitive way. The original

HAR-RV model can be expressed as

RVi,t = βi,0 + βi,dRVi,t−1 + βi,wRVi,t−1:t−5 + βi,mRVi,t−1:t−22 + ϵi,t (3.8)

where RVi,t is the realized volatility of stock market index i on day t, RVi,t−1:t−n is

the simple average across the realized volatilities of stock market index i over time

horizon t− 1 to t− n. Therefore, RVi,t−1:t−5, and RVi,t−1:t−22 can be calculated as
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follows:

RVi,t−1:t−5 =
1

5

t−1∑
T=t−5

RVi,T (3.9)

RVi,t−1:t−22 =
1

22

t−1∑
T=t−22

RVi,T (3.10)

However, Andersen et al. (2007) argue that non-linear HAR models in logarith-

mic forms and standard deviation show better fitting capabilities compared to linear

HAR models. As a result, we modify the original HAR-RV model into the standard

deviation form, similar to the model suggested in Liang et al. (2020). The standard

deviation form of the HAR-RV model can be written as:

(RVi,t)
1/2 = βi,0 + βi,d(RVi,t−1)

1/2 + βi,w(RVi,t−1:t−5)
1/2

+ βi,m(RVi,t−1:t−22)
1/2 + ϵi,t

(3.11)

HAR-RV-KS Liang et al. (2020) also consider the impact of global information

flows of the realized volatility using a ”kitchen sink” (KS) model, which incorporates

all of the realized volatilities from other markets to the standard deviation form of

the HAR-RV model. Therefore the HAR-RV-KS model can be written as follows:

(RVi,t)
1/2 = βi,0 + βi,d(RVi,t−1)

1/2 + βi,w(RVi,t−1:t−5)
1/2

+ βi,m(RVi,t−1:t−22)
1/2 +

∑
k∈{1,...,N}{i}

βk,d(RVk,t−1)
1/2 + ϵi, t

= βi,0 +
∑

{k=1,...,N}

βk,d(RVk,t−1)
1/2 + βi,w(RVi,t−1:t−5)

1/2

+ βi,m(RVi,t−1:t−22)
1/2 + ϵi,t

(3.12)
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Deep-learning-based Models

RNN & LSTM Artificial neural network (ANN) is designed to resemble human

brains and show good performance in generalizing and learning from experience. As

mentioned in Kaastra and Boyd (1996), neural networks are data-driven self-adaptive

methods that do not require many assumptions. For these properties, ANN have

been proven very successful in many areas, including the finance domain, especially

in forecasting volatile financial data such as interest rates and stocks.

Recurrent neural network (RNN), a variant of neural networks, was first pro-

posed by Rumelhart et al. (1986) to effectively deal with time-and order-dependent

data. For this purpose, RNN is used extensively in domains such as machine trans-

lation, speech recognition, or financial time series. RNN consists of a hidden state

h with input sequence x and an optional output y. Given an input sequence x =

(x1, x2, ..., xT ), hidden state ht = (h1, h2, ..., hT ) is computed as follows:

ht = H(Whht−1 +Wxσ(xt) + b) (3.13)

where σ is an activation function and b is a bias. These hidden states are used to

predict the outputs. The total error is defined by comparing the actual and desired

outputs. To minimize the error, gradients are computed and back-propagated during

the training phase. However, gradients of the RNN may quickly vanish or blow

up, also known as the gradient vanishing problem or gradient exploding problem,

respectively. To mitigate this problem, Hochreiter and Schmidhuber (1997) proposed

LSTM using hidden layers containing memory blocks to store information and better

exploit long-range context. In most of the proposed LSTM structures, a memory
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block consists of three gates: input, output, and forget gates. Input gate controls

the flow of input activations to filter the irrelevant inputs. Similarly, the output gate

controls the output flow of cell activations to protect other units from perturbations.

The forget gate, introduced by Gers et al. (2000), learns to reset memory contents

that are no longer required.

Due to their ability to capture the structure of the dynamic data over time,

LSTM have been used successfully in the prediction of stock returns and forecasting

time-series events.

Spatial-Temporal Graph Neural Networks GNN have also been used in fore-

casting node values or labels given dynamic node inputs with interdependency.

Among several GNN models proposed to handle dynamic input data, RNN-based

approaches pass filter inputs and states to a recurrent unit using graph convolutions.

This is known as spatial-temporal forecasting, and these approaches include graph

convolutional recurrent network (GCRN) by Seo et al. (2018), and diffusion con-

vlutional RNN (DCRNN) by Li et al. (2017). GCRN uses an LSTM network with

CehbNet for graph convolutional layers. First introduced for traffic flow prediction,

DCRNN attempts to capture the spatial and temporal dependency by using gated

recurrent units (GRUs) and newly proposed diffusion convolutions. First proposed

by Chung et al. (2014), GRU is a powerful variant of RNN, and it consists of a

reset gate and an update gate. Similar to LSTM, GRU gates adaptively capture

the dependencies of different time scales. In DCRNN, GRUs use diffusion convo-

lutions instead of only matrix multiplications, so those GRUs are called diffusion
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convolutional gated recurrent units. They are computed as follows:

r(t) = σ(Θr ⋆G [X(t), H(t−1) + br)] (3.14)

u(t) = σ(Θu ⋆G [X(t), H(t−1) + bu)] (3.15)

where ⋆G denotes the diffusion convolutions to aggregate the spatial dependencies.

The diffusion convolution learns the graph representations using the graph node

features and edge features that contain relationship data between nodes. The filter

parameters of the reset and update gates are denoted as Θr and Θu, respectively,

and these parameters are trained using back propagation during the training. The

reset gates and update gates are then used to compute the current hidden states.

C(t) = tanh(ΘC ⋆G [X(t), (r(t) ⊙H(t−1))] + bc (3.16)

H(t) = u(t) ⊙H(t−1) + (1− u(t))⊙ C(t) (3.17)

where ⊙ and C(t) denote the pointwise operation and candidate hidden states, re-

spectively. GRUs build diffusion convolutional recurrent layers, which are used to

encode and decode the graph signals to make predictions. The structure of the GRU

and the whole process of the DCRNN can be summarized as illustrated in Figure

3.1.
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Figure 3.1: Diffusion Convolutional Gated Recurrent Unit and Diffusion Convolu-
tional Recurrent Neural Network

3.3 Empirical Studies

3.3.1 Data

In this paper, we focus on predicting the RV of global market indices. We included

both indices that are known to have a significant impact on other markets and

those that do not. Overall, eight market indices were selected for analysis: S&P 500

(SPX; United States), DAX (GDAXI; Germany), CAC 40 (FCHI; France), FTSE 100

(FTSE; United Kingdom), OMX Stockholm All Share (OMXSPI; Sweden), Nikkei

225 (N225; Japan), KOSPI (KS11; South Korea), and HANG SENG (HSI; Hong

Kong) index as in Liang et al. (2020). Realized variance data were collected from

the Oxford-Man Institute’s Quantitative Finance Realized Library.1 The sampling

frequency for calculating the realized variance is five minutes. Our sample begins in

1https://realized.oxford-man.ox.ac.uk/data
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October 2006 and ends in December 2018. We divide the data into training (October

2006-November 2012), validation (November 2012-December 2014), and test samples

(December 2014-December 2018) for proper training of our proposed model.

3.3.2 Descriptive Statistics

The descriptive statistics of the RV data are reported in Table 3.1. Augmented

Dickey-Fuller (ADF) statistics Cheung and Lai (1995) indicate that the null hy-

pothesis of a unit root can be rejected at the 5% significance level for every realized

variance. Therefore, we can guarantee stationarity, which allows us to train the

HAR-RV model without taking logs or other transformations of data. The time-

series visualization of the data is illustrated in Figure 3.2. Shaded areas are the

Global Financial Crisis and European Sovereign Debt Crisis. High volatile moments

are mostly located during these two periods.

Table 3.1: Descriptive statistics of realized variance data

Index Average
Standard
deviation

Skewness Kurtosis ADF

SPX 0.855 0.687 3.336 18.162 -4.168***
GDAXI 1.011 0.614 3.379 20.629 -4.254***
FCHI 1.009 0.577 3.154 18.805 -4.732***
FTSE 0.941 0.615 3.862 31.846 -3.987***
OMXSPI 0.849 0.634 4.335 35.612 -3.661***
N225 0.856 0.529 3.332 17.326 -5.928***
KS11 0.766 0.529 4.281 31.112 -4.852***
HSI 0.866 0.516 3.546 21.31 -3.831***

Notes. For ADF statistics, the asterisks *** denotes p-values smaller than 1%.
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Figure 3.2: Time series of realized volatility data

3.3.3 Proposed Method

We propose a spatial-temporal GNN-based model that constructs graphs of global

market indices with correlation or spillover index. Our model borrows the structure

of DCRNN. We estimated the graph G from Equations 3.14 and Equation 3.16 as

follows.

Gij =


f(RVi,(1:T ), RVj,(1:T )) if i ̸= j

0 if i = j

fori, j ∈ 1, ..., N (3.18)

where Gij is the ij-th component of G, andRVi,(1:T ) is the length T vector (RVi,1, ..., RVi,T ).

T is the maximum time step in the training sample, and N is the total number of in-

dices. f(·, ·) is the graph estimation function. The detailed structure of f is explained

in Section 3.3.3. For the remainder of this paper, we refer to the spatial-temporal

GNN model with graph estimation by the correlation method and volatility spillover

index method as the STG-Correlation model and STG-Spillover model, respectively.
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Graph construction

We constructed graphs between components using two types, correlation and spillover

index.

Correlation method The correlation method calculates the Pearson correlation

coefficients between realized volatility in the training period and uses it as a graph.

As a result, the correlation graph is a symmetric matrix with ones on the diagonal,

and it becomes an undirected graph. We defined the total correlation index TCIi of

each market i as the sum of the correlation coefficients r between the market and

others.

TCIi =
∑
j ̸=i

rij (3.19)

Volatility spillover index method In addition, we constructed total and di-

rected volatility spillover across global market indices Diebold and Yilmaz (2012).

The spillover index calculation is described in Section 3.2.2. Volatility spillovers

are derived through variance decomposition of errors from the vector autoregres-

sive model. We used p = 4 and H = 5 for constructing VAR(p) and H-step ahead

forecasts to derive error variances.

Since our purpose is to determine the impact between different market volatil-

ities, we used the net pairwise spillover index for graph construction. In addition,

the net spillover index is used to determine which market influences other markets

and which market is affected by other markets. The constructed correlation graph

and spillover graphs are presented in Figure 3.3. Each value on the edge is the

Pearson correlation coefficient and the net pairwise spillover index, respectively. In
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Figure 3.3: Visualization of constructed graphs
Notes. Left figure shows the graph constructed by correlation method and right figure is

the one constructed by volatility spillover index method.

addition, the value inside each node represents the net correlation index and the net

spillover index. GDAXI has the highest net correlation index of 5.19 and OMXSPI

has the smallest net correlation index of 3.94. For the spillover graph, four market

indices (SPX, FCHI, FTSE, and GDAXI) have a positive net spillover index, and

four (KS11, OMXSPI, N225, and HSI) have a negative net spillover index. SPX has

the highest net spillover index of 4.62, and HSI has the smallest value of -3.3.

3.3.4 Empirical Results

We conducted an empirical analysis of eight global market indices. The training

dataset is used for training each model, and the validation dataset is used for

early stopping and hyperparameter tuning. The optimal hyperparameters obtained

through the validation set are as follows. We use number of filters as one, and set

number of neurons in first and second layer as 128 and 64, respectively. The dropout

rate of 0.5 is used to avoid overfitting and learning rate is 0.001. Finally, our analysis

focuses on out-of-sample analysis using a test dataset. Overfitting a training dataset

is one of the major problems in deep learning-based models. Therefore, out-of-sample
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analysis results provide more meaningful and accurate information about the fore-

casting model than the in-sample analysis. During the out-of-sample analysis, we

performed multi-step ahead forecasting. The forecasting steps are h = 1, 5, 10, 22.

Each step represents short-term (a day), mid-term (one week and two weeks), and

long-term forecasting (a month). We did not construct separate models for each fore-

casting task. Rather, we predicted h-step ahead forecast of realized volatility in time

step t of market i, (R̂V i,t+h)
1/2, by repeatedly using the one-step ahead forecasting

model f(·).

(R̂V i,t+h)
1/2 = fh((RVi,t)

1/2)

∀i,k, (R̂V i,k+1)
1/2 = f((R̂V i,k)

1/2)

(3.20)

The mean absolute forecast error (MAFE) is used for the evaluation metric. The

h-step ahead forecasting MAFE for market i is defined as:

MAFE
(h)
i =

1

T − h+ 1

T−h∑
t=0

|(R̂V i,t+h)
1/2 − (RVi,t+h)

1/2| (3.21)

where T is the maximum time step in the test dataset.

This study confirms whether the spatial-temporal graph neural network-based

model performs good out-of-sample forecasts on global market index volatility, and

the spillover index is adequate for relation graph construction.

Out-of-sample results for multi-step ahead forecasting task for HAR-RV, HAR-

RV-KS, RNN, STG-Correlation, and STG-Spillover are reported in Table 3.2. HAR-

RV and HAR-RV-KS are used for the time-series based benchmark model, and RNN

is used for the deep-learning-based benchmark model. The results show the MAFEs

of each market index and the mean of MAFEs across the eight markets.

In the short- and mid-term horizons of h = 1, h = 5, and h = 10, the STG-
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Spillover model outperforms other benchmark models with MAFE of 0.162, 0.194,

and 0.211, respectively. In addition to the STG-Spillover model, the STG-Correlation

model displays the best performance of MAFE 0.164 for short-term horizon h = 1.

The HAR-RV model is the second-best model for the mid-term horizon h = 5 and

h = 10. However, in the long-term horizon h = 22, the RNN model shows the best

MAFE of 0.237, followed by the STG-Spillover model with 0.24. During all horizons,

the STG-Spillover model always displays better results than the STG-Correlation

model. This indicates that the net pairwise spillover index properly captures the

relationship between market indices compared to the correlation coefficients.

Table 3.2: Out-of-sample results of five models on four different forecast horizons

Forecast horizon h
1 5

HAR-RV HAR-RV-KS RNN STG-Correlation STG-Spillover HAR-RV HAR-RV-KS RNN STG-Correlation STG-Spillover

SPX 0.167 0.167 0.199 0.166 0.175 0.228 0.226 0.24 0.231 0.225

GDAXI 0.188 0.184 0.203 0.184 0.181 0.22 0.224 0.231 0.237 0.212

FCHI 0.171 0.176 0.192 0.171 0.165 0.208 0.215 0.223 0.227 0.196

FTSE 0.201 0.191 0.187 0.197 0.188 0.232 0.235 0.217 0.247 0.219

OMXSPI 0.157 0.176 0.159 0.133 0.129 0.176 0.2 0.179 0.182 0.153

N225 0.199 0.183 0.228 0.198 0.201 0.247 0.232 0.251 0.259 0.239

KS11 0.108 0.114 0.177 0.104 0.103 0.127 0.136 0.191 0.14 0.123

HSI 0.156 0.146 0.164 0.161 0.153 0.186 0.179 0.18 0.218 0.183

Mean 0.168 0.167 0.189 0.164 0.162 0.203 0.206 0.214 0.218 0.194

Forecast horizon h
10 22

HAR-RV HAR-RV-KS RNN STG-Correlation STG-Spillover HAR-RV HAR-RV-KS RNN STG-Correlation STG-Spillover

SPX 0.244 0.245 0.257 0.264 0.248 0.28 0.278 0.274 0.349 0.29

GDAXI 0.241 0.241 0.241 0.277 0.224 0.256 0.255 0.259 0.379 0.246

FCHI 0.224 0.229 0.24 0.275 0.211 0.255 0.254 0.255 0.385 0.244

FTSE 0.246 0.242 0.23 0.298 0.234 0.277 0.266 0.245 0.407 0.268

OMXSPI 0.181 0.206 0.19 0.224 0.164 0.196 0.217 0.196 0.343 0.187

N225 0.277 0.257 0.261 0.312 0.268 0.318 0.298 0.273 0.424 0.305

KS11 0.139 0.146 0.192 0.182 0.137 0.156 0.162 0.191 0.286 0.162

HSI 0.205 0.196 0.189 0.275 0.203 0.223 0.222 0.205 0.394 0.221

Mean 0.220 0.220 0.225 0.263 0.211 0.245 0.244 0.237 0.371 0.240

Notes. This table reports out-of-sample MAFE of HAR-RV, HAR-RV-KS, RNN, STG-
Correlation, and STG-Spillover model on forecast horizons 1, 5, 10, and 22. For each
forecast horizon and market index, the best performing models are shown in bold.

To identify the statistical evidence of the performance difference between the

STG-Spillover model and other benchmark models, we conducted the Diebold-

Mariano (DM) test introduced by Diebold and Mariano (2002) and modified by
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Table 3.3: DM test results of four competing models versus STG-Spillover model

Forecast horizon h
STG-Spillover vs HAR-RV STG-Spillover vs HAR-RV-KS STG-Spillover vs RNN STG-Spillover vs STG-Correlation

DM statistic p-value DM statistic p-value DM statistic p-value DM statistic p-value

1 -17.59 <0.01 -10.04 <0.01 -24.45 <0.01 -13.25 <0.01

5 -10.3 <0.01 -6.55 <0.01 -8.59 <0.01 -18.83 <0.01

10 -7.61 <0.01 -3.59 <0.01 -5.03 <0.01 -17.54 <0.01

22 -0.85 0.398 0.69 0.493 -0.75 0.451 -15.21 <0.01

Notes. This table reports out-of-sample DM statistic and p-value of four pairs models, which
are STG-Spillover model versus HAR-RV, HAR-RV-KS, RNN, and STG-Correlation. A
negative DM statistic means that STG-Spillover model performs better than the competing
model.

Harvey et al. (1997). The DM statistic of two h-step ahead forecasts having errors

(e1,t, e2,t), t = 1, ..., T is expressed as follows:

DM = [V ar(d̄)]−
1
2 d̄ (3.22)

where dt = g(e1,t) − g(e2,t) while g(e) is some kind of specified function and d̄ =

1
T

∑T
t=1 dt. We selected the absolute function for g(e), which makes dt = |e1,t|−|e2,t|.

The following p-value is obtained from the null hypothesis of d = 0 from student’s

t-distribution with T − 1 degrees.

The DM-test results of the STG-Spillover model versus others on forecast hori-

zons of h = 1, 5, 10, 22 are reported in Table 3.3. The STG-Spillover model has

statistically sufficient evidence at the 1% level that it outperforms STG-Correlation

in terms of MAFE for every forecast horizon. For HAR-RV, HAR-RV-KS, and RNN,

the DM test result confirms that the STG-Spillover model has an improvement over

the three models in short- and mid-term forecasts. However, in the long-term, we

can check that there is no statistical difference between the STG-Spillover model

and the HAR-RV, HAR-RV-KS, and RNN models at the 5% level. Throughout

the analysis, we can suggest that the STG-Spillover model successfully captures
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the volatility spillover effect. Such effect measures the effect of a shock from a cer-

tain index, which decreases naturally over time. Therefore, the predominance of the

STG-Spillover model decreases as the forecast horizon becomes longer.

Table 3.4: Out-of-sample results of comparing MAFE between STG-Spillover model
trained on leave-one-out dataset and full dataset

Forecast horizon h

1 5

Net spillover indexMAFE
Difference (%)

MAFE
Difference (%)

Leave-one-out Full Leave-one-out Full

Removed index

SPX 0.167 0.160 4.38 0.214 0.189 13.06 4.62

GDAXI 0.158 0.159 -0.63 0.198 0.191 3.66 1.15

FCHI 0.163 0.161 0.97 0.208 0.193 7.53 3.36

FTSE 0.159 0.158 0.54 0.201 0.190 5.71 1.6

OMXSPI 0.169 0.167 1.46 0.208 0.200 4.22 -3.07

N225 0.156 0.156 -0.18 0.19 0.187 1.45 -2.35

KS11 0.171 0.170 0.42 0.207 0.204 1.54 -2.01

HSI 0.16 0.163 -1.93 0.192 0.195 -1.68 -3.3

Forecast horizon h

10 22

Net spillover indexMAFE
Difference (%)

MAFE
Difference (%)

Leave-one-out Full Leave-one-out Full

Removed index

SPX 0.246 0.206 19.50 0.304 0.233 30.31 4.62

GDAXI 0.222 0.209 6.22 0.266 0.240 10.83 1.15

FCHI 0.234 0.211 10.83 0.282 0.240 17.57 3.36

FTSE 0.228 0.208 9.69 0.28 0.236 18.43 1.6

OMXSPI 0.231 0.218 6.03 0.271 0.248 9.27 -3.07

N225 0.208 0.203 2.46 0.238 0.231 2.97 -2.35

KS11 0.228 0.222 2.84 0.268 0.252 6.53 -2.01

HSI 0.207 0.212 -2.49 0.233 0.243 -4.17 -3.3

Notes. This table reports out-of-sample MAFE of STG-Spillover model trained on the
dataset that removed single market index and the model trained on the full dataset. The
last column presents the net spillover index of each index that can be also seen in Figure
3.3. A negative difference (%) means that the STG-Spillover model trained on LOO dataset
performs better. For each forecast horizon, the removed index with highest difference is
shown in bold. In addition, the removed index with highest net spillover index is also shown
in bold, too.

We conducted an experiment to determine the exact effect of the global mar-

ket index spillover graph. Specifically, we created datasets D−i excluding single

market index i from the original dataset D. A total of eight leave-one-out (LOO)

datasets are created because we use a total of eight market indices. For each dataset

D−i, we trained the STG-Spillover model and calculated the average MAFE loss
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MAFE
(h)
−i (D−i) across seven indices included in dataset D−i. Next, we observed the

difference between LOO MAFE loss MAFE
(h)
−i (D−i) and MAFE

(h)
−i (D), which is

the average MAFE of the same seven indices from the STG-Spillover model trained

over the original dataset. The overall procedure is as follows:

MAFE
(h)
−i (D−i) =

1

7

∑
j ̸=i

MAFE
(h)
j (D−i)

MAFE
(h)
−i (D) =

1

7

∑
j ̸=i

MAFE
(h)
j (D)

(3.23)

where MAFE
(h)
−i (D−i) denotes the average MAFE of indices included in D−i and

derived from the model using the training set D−i and MAFE
(h)
−i is the average

MAFE across the same indices from the model trained by training set D.

Out-of-sample results of single index removing analysis are reported in Table 3.4.

For short-term forecast horizon, the three indices with the largest MAFE difference

are SPX, OMXSPI, and FCHI. SPX, FCHI, and FTSE are the top-three indices

with largest MAFE difference for mid- and long-term forecast horizons, which are

the indices with a positive net spillover index. It is evidence that indices with high

impact on other indices’ volatility play an important role in spatial-temporal GNN

spillover models. Specifically, SPX having the largest net spillover index of 6.32

mostly effects the prediction of other indices’ volatility. Overall, the performance

of the STG-Spillover model decreases significantly as the forecast horizon becomes

longer. Furthermore, we highlight two significant observations. First, GDAXI and

N225 removed model shows better average MAFE than the original model for h =

1 but performance worsens when the forecast horizon is over the mid- or long-

term. The spillover effect becomes more important for predicting volatility when
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the forecast horizon is longer than five days. Second, the HSI removed model is

the only model that demonstrates better performance compared to the not removed

model in all forecast horizon. HSI is the only market index in which every net

pairwise spillover has a negative value. We could check that a market that does not

contribute to volatility in other markets does not help predicting volatility of other

markets through the STG-Spillover model.

Table 3.5: Out-of-sample results of STG-Spillover model trained on spillover dataset
with different KPPS steps

Forecast horizon h 1 5 10 22

KPPS step H 1 5 10 22 1 5 10 22 1 5 10 22 1 5 10 22

SPX 0.167 0.175 0.169 0.173 0.223 0.225 0.221 0.223 0.242 0.248 0.24 0.245 0.284 0.29 0.278 0.285

GDAXI 0.182 0.181 0.182 0.181 0.219 0.212 0.217 0.214 0.237 0.224 0.233 0.227 0.275 0.246 0.266 0.251

FCHI 0.166 0.165 0.167 0.166 0.203 0.196 0.201 0.198 0.223 0.211 0.22 0.214 0.273 0.244 0.265 0.25

FTSE 0.189 0.188 0.189 0.189 0.225 0.219 0.222 0.22 0.244 0.234 0.241 0.237 0.29 0.268 0.284 0.273

OMXSPI 0.127 0.129 0.127 0.128 0.156 0.153 0.153 0.153 0.165 0.164 0.162 0.162 0.197 0.187 0.188 0.185

N225 0.198 0.201 0.2 0.2 0.243 0.239 0.241 0.24 0.278 0.268 0.274 0.27 0.332 0.305 0.323 0.31

KS11 0.1 0.103 0.1 0.102 0.12 0.123 0.118 0.12 0.133 0.137 0.13 0.133 0.158 0.162 0.15 0.155

HSI 0.153 0.153 0.153 0.153 0.188 0.183 0.186 0.184 0.214 0.203 0.21 0.206 0.244 0.221 0.235 0.224

Mean 0.160 0.162 0.161 0.162 0.197 0.194 0.195 0.194 0.217 0.211 0.214 0.212 0.257 0.240 0.249 0.242

Notes. This table reports the out-of-sample MAFE of STG-Spillover models trained on the
dataset constructed with different KPPS step H. For each forecast horizon and market
index, the best performing models are shown in bold.

In addition, we show the relationship between H in KPPS H-step ahead forecast

and the performance of the STG-Spillover model. H can be seen as the maximum

time step for the effect of the shock to maintain. Therefore, the performance of

the STG-Spillover model on short-, mid-, and long-term forecast horizons can be

affected by setting H as short-, mid-, or long-term. The net pairwise spillover index

and net spillover index calculated from eachH are presented in Table 3.6. The out-of-

sample results of STG-Spillover for different forecast horizons, trained by the dataset

in which the following graph is constructed by the spillover index with different H

for the KPPS H-step ahead VAR are presented in Table 3.5. In the short-term

forecast horizon, the STG-Spillover model with KPPS step H = 1 showed the best
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performance. In the mid- and long-term forecast horizons, the H = 5 model is one of

the best performing, while the H = 22 model showed similar MAFE in the mid-term

of h = 5. From the analysis, we can conclude that short KPPS step H helps to train

the STG-Spillover model for predicting short-term ahead volatility, while long-term

H does not contribute much to long-term volatility forecasting. Furthermore, we

find that mid-term KPPS step H performs best when the forecast horizon is longer

than five. It is evident that the influence of shock for one market to others mainly

works until the mid-term.

3.4 Chapter Summary

We proposed a spatial-temporal GNN based model with a net pairwise spillover in-

dex graph. The out-of-sample results were analyzed on eight representative global

market indices. We suggest several key findings regarding the direct application of

the spillover effect in forecasting models. First, the STG-Spillover model demon-

strates the best out-of-sample prediction performance in the short- and mid-term

forecast horizons. Although the STG-Spillover model is not the best model for a

long-term forecast horizon, it still outperforms the STG-Correlation model. This

indicates that the net pairwise spillover index successfully reflects the volatility

spillover effect in the spatial-temporal GNN model in comparison to the Pearson

correlation coefficients. In addition, for the long-term forecast horizon, it was con-

firmed that the impact of the spillover effect decreased over time, and eventually

made the performance gap between the RNN model and the STG-Spillover model

almost non-existent. Second, the STG-Spillover model performs better when assets

with high volatility spillover effects are included in the dataset. When SPX with the
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largest net spillover is removed from the dataset, the short-term forecast accuracy

decreases by 4.38% and the long-term forecast accuracy decreases by 30.31%. In

contrast, when HSI, which has the smallest net spillover index and is only affected

by other indices, is removed from the dataset, the overall performance increases. We

suggest that this is because high-impact indices help predict the volatility of other in-

dices. We can confirm that the STG-Spillover model captures the volatility spillover

of each index well, and the model uses it to predict the volatility of other indices.

Finally, we empirically show that setting a short KPPS H-step for constructing a

net pairwise spillover index graph performs the best for short-term ahead forecast-

ing tasks, while the mid-term KPPS step is the best for mid-term ahead forecasting.

Interestingly, the long-term forecasts reveal distinct results: a graph using the mid-

term not the long-term KPPS step is optimal. Thus, we conclude that the volatility

spillover effect persists up to the mid-term horizon. Thus, constructing a graph of

market indices with mid-term KPPS step H will provide the best STG-Spillover

model fit for forecasting tasks with forecast horizon longer than five days.

In this chapter, we used a pre-defined volatility spillover measure in a spatial-

temporal GNN-based model. Because constructing a proper graph that captures the

relationship between input variables is an essential problem, some other variations

of the GNN-based model try to estimate the graph itself using the trained model. In

future research, measuring the spillover effect directly through the spatial-temporal

GNN would be a topic worth considering, similar to the neural relational inference

model introduced by Kipf et al. (2018).
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Table 3.6: Net pairwise spillover index and net spillover index of global market
indices with different KPPS steps

Net pairwise spillover index Net spillover index

Panel A : KPPS step H=1

To

SPX GDAXI FCHI FTSE OMXSPI N225 KS11 HSI

From

SPX - - - - 0.25 0.19 0.19 0.12 -0.3

GDAXI 0.28 - - - 0.54 0.36 0.32 0.52 1.92

FCHI 0.36 0.08 - 0.05 0.62 0.37 0.34 0.47 2.29

FTSE 0.41 0.02 - - 0.75 0.41 0.3 0.18 2.02

OMXSPI - - - - - - 0.01 0.01 -2.22

N225 - - - - 0.08 - 0.34 0.27 0.64

KS11 - - - - - - - 0.01 -1.49

HSI - - - - - - - - -1.58

Panel B : KPPS step H=5

To

SPX GDAXI FCHI FTSE OMXSPI N225 KS11 HSI

From

SPX - 0.47 0.3 0.28 0.91 1.03 0.72 0.91 4.62

GDAXI - - - 0.09 0.63 0.42 0.55 0.28 1.15

FCHI - 0.35 - 0.31 0.89 0.75 0.58 0.78 3.36

FTSE - - - - 0.8 0.7 0.31 0.47 1.6

OMXSPI - - - - - - 0.13 0.06 -3.07

N225 - - - - 0.03 - 0.21 0.31 -2.35

KS11 - - - - - - - 0.49 -2.01

HSI - - - - - - - - -3.3

Panel C : KPPS step H=10

To

SPX GDAXI FCHI FTSE OMXSPI N225 KS11 HSI

From

SPX - 0.86 0.44 0.32 1 1.17 1.23 1.3 6.32

GDAXI - - - - 0.54 0.33 0.31 0.22 -0.02

FCHI - 0.47 - 0.25 0.88 0.79 0.63 0.82 3.4

FTSE - 0.09 - - 0.82 0.82 0.5 0.66 2.32

OMXSPI - - - - - 0.04 0.18 0.14 -2.88

N225 - - - - - - - 0.33 -2.97

KS11 - - - - - 0.15 - 0.86 -1.84

HSI - - - - - - - - -4.33

Panel D : KPPS step H=22

To

SPX GDAXI FCHI FTSE OMXSPI N225 KS11 HSI

From

SPX - 1.07 0.53 0.34 1.01 1.31 1.51 1.5 7.27

GDAXI - - - - 0.44 0.22 0.2 0.21 -0.76

FCHI - 0.52 - 0.19 0.85 0.82 0.82 0.91 3.58

FTSE - 0.24 - - 0.83 0.94 0.86 0.9 3.24

OMXSPI - - - - - 0.12 0.34 0.25 -2.42

N225 - - - - - - - 0.37 -3.29

KS11 - - - - - 0.25 - 0.94 -2.54

HSI - - - - - - - - -5.08

Notes. This table reports the net pairwise spillover index and net spillover index. Four
panels each show indices created with the parameter KPPS step H = 1, 5, 10, and 22. The
number in the cell is the net pairwise spillover index ’from’ the market index in row and ’to’
the market index in column. For each panel, the last column represents net spillover index.
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Chapter 4

Graph-based multi-factor model with time-varying
volatility

4.1 Chapter overview

Asset pricing models focus on finding out the beta coefficient and factor that explains

the excess return of underlying assets. The development of the asset pricing model

over the last half century has many aspects, but we would like to view this as

a relaxation of the time-varying property conditions of the coefficients. The first

attempt at the asset pricing model, which can be seen as the capital asset pricing

model (CAPM) proposed by Sharpe (1964) and Lintner (1975), tries to construct a

factor as market return. In this case, they assumed that the beta coefficient does not

vary over time. Bollerslev et al. (1988) pointed out that the relationship between

market return and asset return may vary over time because of the restriction of

the market and proposed the CAPM model with time-varying covariances, which

typically denotes the time-varying beta coefficients.

Since most of the relevant researches adopted the idea of time-varying beta,

only a few research had focused on the time-variation of the volatility. Unlike asset

returns, which are directly observed and calculated from the rate of return derived

from the price, volatility is an intrinsic concept and has a characteristic that cannot

be directly observed. Therefore, the problem of discussing the volatility of the asset

64



must first begin with how to define the volatility. Referring to the GARCH process,

the most representative method of estimating volatility, volatility can be thought

of as the distribution of error terms of the model estimating return. The time-

varying volatility concept of the model has empirically important meaning because

the volatility of real data changes over time. Nelson (1991) found that a negative

correlation exists between the current return and future volatility. Furthermore, Jin

(2017) pointed out that the negative return-volatility relationship varies over time.

The nature of this volatility is not reflected in linear regression-based models such

as CAPM, Fama-French three, and five-factor models. Following the idea, Kim and

Kim (2016) considered the framework of varying volatility based on the volatility of

error term in CAPM. The main idea is that supposing the error term of CAPM is

to follow a distribution with zero mean and time-varying volatility.

One of the major problems of relaxing the time-invariant volatility constraint

for the traditional asset pricing model is that it makes the estimation hard because

the terms to be estimated are added to beta, factor, and volatility. Kim and Kim

(2016) employed the local-linear regression (Cleveland (1979); Stone (1977)). This

methodology first estimates beta coefficients, and then obtains an estimated value

of volatility based on the estimated beta. Similar research is also done by Ang et al.

(2006). They measured the volatility of assets as the standard deviation of residuals

from the Fama-French three-factor model.

All of these studies so far limit time-varying volatility to residuals within the

asset pricing model. This may be seen as an advantage of non-parametric volatil-

ity prediction, but since volatility is not predicted based on the parametric model,

there is a problem that the prediction performance itself may be degraded. This
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study estimates volatility as realized volatility, estimates it as a separate parametric

model from the asset pricing model, and suggests a method of reflecting it in the

asset pricing model. We adopted neural network architecture for realized volatility

prediction and asset pricing model. Deep-learning-based model architecture enables

effective handling of feature space when the size of the feature space is large. Fur-

thermore, compared to the linear regression model used in traditional asset pricing

models, deep learning-based models can be used to estimate beta and factor by

reflecting externally predicted volatility through modification of loss function. In

addition, the neural network model solves the problem of increasing the number of

parameters that the model must estimate by adding volatility as a variable, since it

can always be learned through the stochastic gradient descent methodology if only

the loss function is properly defined.

In this chapter, we propose the multi-factor asset pricing model with time-varying

volatility prediction. The proposed model is constructed of two parts, the factor

model part and the volatility prediction model part. The objective function of the

proposed model becomes the mean squared error between true excess return and

estimated excess return divided by estimated volatility plus the mean squared er-

ror between true volatility and estimated volatility. The volatility prediction model

part uses LSTM as an estimation function and the asset pricing model part utilizes

conditional autoencoder and graph neural network as estimation function.

The empirical analysis is done on monthly returns of 119 U.S individual stocks.

From the out-of-sample results, we could suggest important findings. First, the in-

crease in statistical performance of proposed time-varying volatility models during a

low-vol period is more than twice as large as time-unvarying volatility models. Sec-
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ond, the factors from five-factor graph-based factor model with time-varying volatil-

ity generate a tangency portfolio with the highest Sharpe ratio. It reveals that the

graph-based factor model with time-varying volatility can estimate the most efficient

stochastic discount factor.

The remainder of this chapter is organized as follows. Section 4.2 illustrates

the background of time-varying volatility estimation. In Section 4.3, we present the

structure and loss function of our proposed method. The data and benchmark models

for empirical analysis, and empirical results are shown in Section 4.4. Concluding

remarks are represented in Section 4.5.

4.2 Preliminaries

4.2.1 Local-linear regression for time-varying parameter estimation

Unlike the traditional time-unvarying regression model, the time-varying regression

model can be expressed as the following general form:

yτ = xTτ βτ + στ ϵτ (4.1)

where τ = 1, 2, ..., T is the discrete time-step, βτ is the coefficient and στ denotes the

time-varying volatility. ϵτ is the residual that satisfies E[ϵτ |xτ ] = 0 and E[ϵ2τ |xτ ] =

1. To estimate β and σ as functions, βτ and στ can be treated as the smoothly-

varying function by restricting domain in [0, 1]. The mathematical formulation can

be expressed as follows:

στ = σ(τ/T ), τ = 1, ..., T

βτ = β(τ/T ), τ = 1, ..., T

(4.2)

where σ(·) : [0, 1] → R+ and β(·) : [0, 1] → RN .

The estimation of parameters in Equation 4.1 requires estimation of both β(·)
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and σ(·). Therefore, local-linear regression is used (Cleveland (1979)). When β(·)

has sufficient smoothness, β(·) and β′(·) can be local-linear estimated as:

(β̂(t), β̂′(t)) = argminµ0,µ1

T∑
τ=1

(yτ − xTτ µ0 − xTτ µ1(t− τ/T ))2K

(
t− τ/T

bτ

)
(4.3)

where K(·) is a kernel function with finite support, even symmetry, and positive

value properties and bτ is the bandwidth. After estimating β(·), σ(·) can be local-

linear estimated as follows:

σ̂2(t) =

T∑
τ=1

wT (t, τ)(yτ − xTτ β̂τ )
2 (4.4)

where wT (t, τ) = K
(
t−τ/T
hT

)
S2(t)−(t−τ/T )S1(t)
S2(t)S0(t)−S2

1(t)
and Sj(t) =

∑T
τ=1(t−τ/T )jK

(
t−τ/T
hT

)
.

hT denotes bandwidth.

4.3 Methodology

4.3.1 Time-varying volatility implied loss function

In this section, we define the loss function for training the asset pricing model with

time-varying volatility. Our proposed method is based on the multi-factor model

formation of an unconditional asset pricing equation:

Ri,t+1 = βT
i,tFt+1 + ϵi,t+1 (4.5)

where Ri,t+1 denotes the excess return of asset i in time horizon t + 1, β is the

beta coefficient as known as risk exposure, Ft+1 is the factor, and ϵi,t+1 denotes the

residual. The residual ϵi,t+1 satisfies the following condition.

Et[ϵi,t+1] = Et[ϵi,t+1Ft+1] = 0 (4.6)
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However, when estimating Equation 4.5, traditional approaches mostly use linear re-

gression, which assumes constant variance for residual that Et[ϵ
2
i,t+1] = σ2. We relax

the constant variance condition by allowing residual to have time-varying variance

as follows:

Et[ϵ
2
i,t+1] = σ2

i,t+1 (4.7)

where σi,t+1 becomes the conditional volatility of asset i in time horizon t+1. Then

the multi-factor model can be written as the following equation.

Ri,t+1 = βT
i,tFt+1 + σi,t+1ϵ

′
i,t+1 (4.8)

where Et[ϵ
′
i,t+1] = 0 and Et[ϵ

′
i,t+1

2] = 1.

In chapter 2, we showed that when estimating Equation 4.5 with a deep neural

network, the MSE loss l = (Ri,t+1 − βT
i,tFt+1)

2 can be used. Since the MSE loss

minimizes the square of the residuals, it is the same target to be conceptually opti-

mized as linear regression, except that it is minimized using the stochastic gradient

descent methodology. However, the objective we need to minimize for Equation 4.8

is ϵ2i,t+1 = σ2
i,t+1ϵ

′
i,t+1

2. Therefore, we define the modified MSE loss lr to minimize

the residual with time-varying volatility as follows:

lr =
1

NT

∑
i,t

(Ri,t+1 − β̂T
i,tF̂t+1)

2

σ̂2
i,t+1

(4.9)

where β̂i,t, F̂t+1, and σ̂i,t+1 are the estimated values of βi,t+1, Ft+1, and σi,t+1, re-

spectively. N and T denote the number of assets and total time length. The lr loss

implies that when asset volatility is expected to be high, the asset pricing model has

a more relaxed error criterion.

The problem of minimizing lr loss is estimating σi,t+1. While βi,t and Ft+1 can be
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estimated by using a multi-factor model structure, σi,t+1 basically do not exists in the

traditional multi-factor asset pricing model. We regarded this volatility prediction

task as a separate task, and used it after estimating volatility from the outside

of the asset pricing model through the separate model. The independent volatility

prediction problem minimizes the lv loss as follows:

lv =
1

NT

∑
i,t

(
1− σ̂i,t+1

σi,t+1

)2

(4.10)

The lv loss has the structure of ratio formulation of MSE loss. It aims to make lv

loss has the same scale as the lr loss.

By integrating the lr loss and the lv loss, we finally define the lt which will be

used for training the model.

lt = w1l
r + w2l

t

= w1
1

NT

∑
i,t

(Ri,t+1 − β̂T
i,tF̂t+1)

2

σ̂2
i,t+1

+ w2
1

NT

∑
i,t

(
1− σ̂i,t+1

σi,t+1

)2

,
(4.11)

where w1, w2 are weight parameters for lr and lt, respectively.

4.3.2 Proposed model architecture

The time-varying volatility asset pricing model has three parameters to estimate,

which are βi,t, Ft+1, and σi,t+1. When estimating βi,t and Ft+1, we follow the multi-

factor asset pricing approach used in chapter 2. βi,t is estimated from firm charac-

teristics Zi,t, and Ft+1 is estimated by the portfolio of future returns, which is the

linear span of Rt+1. We refer the estimation functions for βi,t and Ft+1 as g(·) and

h(·). Then the mathematical formulation of multi-factor model becomes as follows:

Ri,t+1 = g(Zi,t)h(Rt+1) + ϵi,t+1 (4.12)
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For estimating future volatility, we use the time-series approach. σi,t+1 is esti-

mated based on the historical volatility σi,1:t. We refer to the estimation function

as f(·). Using g(·), h(·), and f(·) notation, the time-varying volatility asset pricing

model can be written as follows:

Ri,t+1 = g(Zi,t)h(Rt+1) + f(ϵi,1:t)ϵ
′
i,t+1 (4.13)

Estimation of beta and factor

We used two approaches to estimate g(·) and h(·). The first approach is the con-

ditional autoencoder model proposed by Gu et al. (2020a). It estimates g(·) with

multi-layer perceptron with input Zi,t and estimates h(·) with a single layer network

with input Rt+1 to make Ft+1 as the linear combination of future return.

The second approach is the graph-based multi-factor model we proposed in chap-

ter 2. The graph-based structure aims to construct a graph between assets to capture

the relationship between assets and adopt it in the model. In this chapter, we used

Pearson correlation coefficients of asset returns as the proxy for the adjacency ma-

trix of assets. The cutoff value of Pearson correlation coefficients to construct binary

adjacency matrix is set as 0.1, which is the best parameter found in chapter 2.

Estimation of volatility

We used the LSTM approach to estimate f(·) for volatility prediction. It is well

known that RNN-based approaches work well for time-series forecasting task. We

also showed that it works well in long-term volatility forecasting in chapter 3. Al-

though the objective of the volatility prediction task in this chapter is one-step ahead

forecast, the used realized volatility is monthly realized volatility. Therefore, in term

of the forecast horizon, the task can be assumed as long-term volatility forecasting.
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4.4 Empirical Studies

4.4.1 Data

We used the monthly return data of 119 firms on NYSE, AMEX, and NASDAQ

from March 1957 to December 2021. The targeted firms are those that have full data

during the above period. The 94 firm characteristics are from Gu et al. (2020a), which

is the same dataset used in chapter 2. The list of firm characteristics is represented

in Tables 2.1, 2.2, and 2.3. The monthly return data and three-month Treasury bill

rate are collected from CRSP. We divided the whole period into training, validation,

and test set. The training set is from 1957 to 1974, the validation set is from 1975

to 1986, and the test set is from 1987 to 2021.

4.4.2 Benchmark Models

For a fair comparison, we selected four models as benchmark models. As the bench-

mark for the fundamental factor model, we selected the Fama-French factor model

(Fama and French (1992, 2015)). The K-factor Fama-French factor model consists

of the first K elements of (Excess market return, SMB, HML, RMW, CMA). The

varying volatility CAPM is used as the benchmark for the varying volatility macroe-

conomic factor model with the local-linear regression introduced in chapter 4.2.1.

Since the CAPM is one-factor model, varying volatility CAPM is only applied in

one-factor model.

As the benchmark for latent time-unvarying volatility factor models, the condi-

tional autoencoder model and graph-based multi-factor model is used. Each model

is trained using the best parameters as mentioned in its originally proposed papers.

During the rest of this chapter, FF stands for Fama-French factor model, LLR
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stands for varying volatility CAPM with local-linear regression estimation, CA-UV

stands for conditional autoencoder with time-unvarying volatility model, GF-UV

stands for the graph-based multi-factor model with time-unvarying volatility model,

CA-VV stands for conditional autoencoder with time-varying volatility model, and

GF-VV stands for the graph-based multi-factor model with time-varying volatility

model.

4.4.3 Empirical Results

During the out-of-sample period, we compared the statistical performance of bench-

mark models and proposed models. Statistical performance includes both explana-

tion power and prediction power of excess return. Asset pricing models are basically

explanation models because the objective variables and independent variables are in

the same time step. Therefore, explanation power comparison is the proper evalua-

tion index for model comparison. Although the asset pricing model takes the form

of an explanatory model, it is also possible to change it to the form of a predictive

model through a time-series mean. Out-of-sample R2
total and R2

pred each are used for

explanatory and prediction performance indicators:

R2
total = 1−

∑
(i,t)∈OOS(Ri,t − β̂i,t−1f̂t)

2∑
(i,t)∈OOS R2

i,t

R2
pred = 1−

∑
(i,t)∈OOS(Ri,t − β̂i,t−1f̄1:t−1)

2∑
(i,t)∈OOS R2

i,t

(4.14)

Table 4.1 shows the empirical results. CA-VVmodel shows the best out-of-sample

total R-square in the one-factor model, while the GF-UV model shows the best out-

of-sample total R-square in the two-, three-, and five-factor model. The GB-VV four-

factor model represents the highest out-of-sample total R-square of 32.28%. For the
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out-of-sample prediction R-square, the GF-UV model shows the best performance

in the two-, three-, and the five-factor model. The GF-VV model represents the

best performance in the one- and the four-factor model, where the 7.26% of the

four-factor model is the highest R-square. We can confirm that the graph-based

factor models, both unvarying volatility and varying volatility models, show better

performance than time-series models and conditional autoencoder models in terms

of prediction power.

Revisiting Equation 4.11, the proposed training loss gets smaller when the pre-

dicted volatility decreases. It implies that the CA-VV and GF-VV model will be

trained more tightly in the low-vol period. To check the quantitative effect based

on volatility level, we compared the out-of-sample total R-square and prediction

R-square during the low-vol period and high-vol period. The low-vol and high-vol

period are defined by the time-series quantile of the average volatility of target assets.

We used five-quantile and the k-th quantile set is defined as follows:

S = {σ̄1, ..., σ̄T },where σ̄t =
1

N

N∑
i=1

σi,t

Uk = {σ̄t|σ̄t ≤ xk, P r[S ≤ xk] ≤
k

5
}

(4.15)

Tables 4.2 and 4.3 each report the out-of-sample total R-square and prediction

R-square for U1 and U4. For comparison of performance difference between the whole

period and U1 period, Figure 4.1 shows the difference in percentage for CA-UV, GF-

UV, CA-VV, and GF-VV models. The results show that both total R-square and

prediction R-square for varying volatility models, CA-VV and GF-VV, increases far

more than unvarying volatility models in the low-vol period. In the low-vol period

of the four models, the average increase in total R-square for each factor is 1.22%,
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1.86%, 6.84%, and 7.19%, respectively. The average increase in prediction R-square

for each factor is 5.04%, 3.23%, 11.19%, and 9.54%, respectively. It shows that in the

low-vol period, the R-square of varying volatility models increases more than double

compared to unvarying volatility models. Looking at the absolute amount, not the

increase in performance, the model that produces the best performance for each

number of factors is mostly similar to the result in the total period, but is different

in the two-factor model. For the two-factor models in the low-vol period, the CA-VV

model shows the best performance in terms of out-of-sample total R-square. During

the high-vol period, out-of-sample total R-square and prediction R-square decreases

for every model. However, the rank of each metric between models does not change

compared to the whole period.

Alongside R-square metrics, the Sharpe ratio of factor tangency portfolio is also

used. While out-of-sample total R-square and prediction R-square evaluate the sta-

tistical performance of models, the Sharpe ratio of factor tangency portfolio is the

measure of the economic value of constructed factors. Following Hansen and Jagan-

nathan (1991), the stochastic discount factor should be well estimated by the linear

span of factors. Therefore, the optimal mean-variance portfolio of well-constructed

factors should replicate the stochastic discount factor. Since the higher out-of-sample

Sharpe ratio of stochastic discount factor infers a more efficient stochastic discount

factor, the Sharpe ratio test of factor portfolios becomes the test of efficient stochas-

tic discount factor construction, which is the essential goal of asset pricing. Table

4.4 represents the results for the Sharpe ratio of tangency factor portfolios of each

model. For the two- and three-factor models, the GF-UV model shows the highest

Sharpe ratio of 2.07. GF-VV model shows the highest Sharpe ratio in one-, four-
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Table 4.1: Comparison of Out-of-sample R2
total and R2

pred

# of Factors 1 2 3 4 5

Out-of-sample
total R-square (%)

FF 0.25 0.32 0.4 0.42 0.62
LLR 2.08 - - - -

CA-UV 23.25 27.69 27.48 28.08 25.88
GF-UV 24.97 27.75 28.91 28.21 28.6
CA-VV 27.01 27.12 26.33 26.31 24.38
GF-VV 26.06 25.33 27.35 32.28 24.61

Out-of-sample
prediction R-square (%)

FF <0 <0 <0 <0 <0
LLR <0 - - - -

CA-UV 1.17 2.67 2.97 3.3 2.64
GF-UV 3.75 4.97 5.15 5.62 5.59
CA-VV 2.01 2.69 2.55 3.08 2.67
GF-VV 4.24 4.18 3.25 7.26 5.1

Notes. The upper part of table represents the empirical results of out-of-sample total R2

and lower part represents the out-of-sample prediction R2. In the second column, FF,
LLR, CA, and GF each denotes Fama-French model, time-varying volatility CAPM with
local-linear regression estimation, conditional autoencoder, and graph factor model. UV
and VV each denotes the time-unvarying volatility and time-varying volatility. The best
performing models along the fixed number of factors are shown in bold.

, and five-factor models. It is the similar result with the out-of-sample prediction

R-square result, except for the five-factor model.

From the empirical analysis of statistical performance and economic valuation

of benchmark models and proposed models, we could confirm the following points.

First, graph-based factor models show the best out-of-sample prediction R-square

regardless of the number of factors. Both the time-unvarying volatility GF model

and the time-varying volatility GF model show better statistical performance than

CA models. Second, time-varying volatility models have more than doubled the

statistical performance in the low-vol period compared to time-unvarying volatility

models. Finally, the Sharpe ratio of tangency factor portfolio shows that graph-based

models construct efficient factors and the factors constructed by the five-factor GF-

VV model can span the most efficient stochastic discount factor along all models.
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Table 4.2: Comparison of Out-of-sample R2
total and R2

pred during low 20% quantile
volatility period

# of Factors 1 2 3 4 5

Out-of-sample
total R-square (%)

FF 0.26 0.35 0.41 0.42 0.65
LLR 2.2 - - - -

CA-UV 23.46 28 27.86 28.64 26.03
GF-UV 25.42 28.58 29.32 28.44 29.17
CA-VV 28.69 28.86 28.33 27.42 26.76
GF-VV 28.06 27.48 28.04 36.21 25.86

Out-of-sample
prediction R-square (%)

FF <0 <0 <0 <0 <0
LLR <0 - - - -

CA-UV 1.21 2.86 3.13 3.39 2.75
GF-UV 3.87 5.14 5.45 5.77 5.8
CA-VV 2.54 2.87 2.76 3.3 2.87
GF-VV 4.76 4.55 3.69 7.71 5.45

Notes. This table shows the empirical results of out-of-sample total R2 and prediction
R2 during the period that average observed realized volatility is in low 20% among
out-of-sample periods. The upper part of table represents the out-of-sample total R2 and
lower part represents the out-of-sample prediction R2. The best performing models along
the fixed number of factors are shown in bold.

Table 4.3: Comparison of Out-of-sample R2
total and R2

pred during high 20% quantile
volatility period

# of Factors 1 2 3 4 5

Out-of-sample
total R-square (%)

FF 0.23 0.32 0.39 0.4 0.57
LLR 2.01 - - - -

CA-UV 23.05 27.51 27.29 27.96 25.64
GF-UV 24.79 27.61 28.84 27.9 28.32
CA-VV 26.8 26.9 26.08 26.17 24.07
GF-VV 25.8 25.06 27.26 31.78 24.45

Out-of-sample
prediction R-square (%)

FF <0 <0 <0 <0 <0
LLR <0 - - - -

CA-UV 1.01 2.44 2.78 3.84 2.41
GF-UV 3.71 4.73 5.82 5.08 5.31
CA-VV 1.82 2.34 2.32 2.84 2.49
GF-VV 3.97 3.94 2.9 6.75 4.82

Notes. This table shows the empirical results of out-of-sample total R2 and prediction
R2 during the period that average observed realized volatility is in high 20% among
out-of-sample periods. The upper part of table represents the out-of-sample total R2 and
lower part represents the out-of-sample prediction R2. The best performing models along
the fixed number of factors are shown in bold.
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Figure 4.1: Change in R-square between total period and low-vol period

In addition, we have done an empirical analysis on the period from January

2017 to December 2021 to figure out the robustness of the proposed model. Since

the global markets have been highly volatile after COVID-19, which has been started

in 2021, restricting the test period to recent years can give value for the check of

efficiency of proposed model in recent stock market. Tables 4.5 and 4.6 shows the
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Table 4.4: Comparison of tangency portfolio Sharpe ratio

# of Factors 1 2 3 4 5

FF 0.52 0.41 0.54 0.69 0.69
LLR 0.48 - - - -

CA-UV 0.53 1.15 0.99 1.62 1.77
GF-UV 0.52 2.07 2.07 2.09 2.09
CA-VV 0.76 0.78 0.89 1.51 1.82
GB-VV 0.82 1.95 1.99 2.12 2.12

Notes. Results in table denotes the annual Sharpe ratio of tangency portfolio of factors.
The best performing models along the fixed number of factors are shown in bold.

statistical performance and Sharpe ratio of factor tangency portfolio, respectively.

The results show that the overall result is robust with the result from whole test

period, while GF-VV showed the highest Sharpe ratio for every number of factors.

4.5 Chapter Summary

We proposed a multi-factor asset pricing model with time-varying volatility con-

dition. The proposed model is based on a neural network. The model considers

volatility as realized volatility and proceeds with the volatility prediction, then uti-

lizes predicted volatility as the regularization term of asset pricing loss. As a result,

we proposed a training loss constructed of two parts, volatility estimation loss and

residual divided by time-varying volatility. For the asset pricing part of the model,

the conditional autoencoder model and the graph-based factor model are used as

estimation methods. For the volatility prediction part, LSTM is used for estimation

because it is known to work well on long-term forecasting in chapter 3.

The empirical results on U.S individual stocks show the following findings. First,

in terms of out-of-sample prediction R-square, the graph-based factor model with

time-unvarying volatility and time-varying volatility showed the best performance.
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Table 4.5: Comparison of Out-of-sample R2
total and R2

pred during 2017-2021

# of Factors 1 2 3 4 5

Out-of-sample
total R-square (%)

FF 0.23 0.33 0.36 0.43 0.6
LLR 2.12 - - - -

CA-UV 23.31 27.7 27.35 28.22 25.76
GF-UV 25.02 28 28.85 28.57 28.73
CA-VV 27.08 27.23 26.31 26.54 24.72
GF-VV 26.2 25.45 27.49 32.17 24.81

Out-of-sample
prediction R-square (%)

FF <0 <0 <0 <0 <0
LLR <0 - - - -

CA-UV 1.22 2.65 2.91 3.38 2.63
GF-UV 3.79 5.03 5.13 5.73 5.55
CA-VV 2.06 2.74 2.55 3.2 2.78
GF-VV 4.25 4.24 3.4 7.22 5.29

Notes. This table shows the empirical results of out-of-sample total R2 and prediction R2

during January 2017 to December 2021. The upper part of table represents the
out-of-sample total R2 and lower part represents the out-of-sample prediction R2. The best

performing models along the fixed number of factors are shown in bold.

Table 4.6: Comparison of tangency portfolio Sharpe ratio during 2017-2021

# of Factors 1 2 3 4 5

FF 0.5 0.45 0.57 0.73 0.73
LLR 0.49 - - - -

CA-UV 0.58 1.16 1.07 1.61 1.8
GF-UV 0.61 2.01 2.01 2.05 2.05
CA-VV 0.83 0.86 1.03 1.58 1.99
GF-VV 0.88 2.02 2.05 2.17 2.17

Notes. Results in table denotes the annual Sharpe ratio of tangency portfolio of factors
during January 2017 to December 2021. The best performing models along the fixed

number of factors are shown in bold.

80



It is the consistent result with the findings from chapter 2, which showed the

graph-based factor models have more explanation and prediction power than the

Fama-French factor model and conditional autoencoder model. Second, time-varying

volatility models show a large performance increase in total R-square and prediction

R-square during the low-vol period. It shows that the expected volatility term in lr

loss effectively worked as a regularization term, and therefore fitted more strictly

when expected volatility is low. Third, the graph-based factor models show the high-

est Sharpe ratio of tangency factor portfolio and the graph-based factor model time-

varying volatility on the five-factor model shows the highest Sharpe ratio among all

benchmark models. The superiority of the graph-based factor models for the Fama-

French factor models and conditional autoencoder models are consistent with the

findings from chapter 2. Moreover, even though the GF-UV model shows the highest

Sharpe ratio in the two- and three-factor model, the fact that the Sharpe ratio of

tangency factor portfolio of the GF-VV model in the four- and five-factor model is

the highest for all shows that the GF-VV model consequently estimates the most

efficient stochastic discount factor through its factors.

81



Chapter 5

Macroeconomic factor model and spillover-based
volatility prediction for ERC-20 tokens

5.1 Chapter Overview

Blockchain, a distributed ledger, has grown rapidly, starting with Bitcoin and Ethereum.

The second-largest cryptocurrency, Ethereum, made it possible to implement smart

contracts on the chain, allowing other cryptocurrencies called tokens to be issued

on the Ethereum blockchain. Therefore, the Ethereum blockchain plays an impor-

tant role in the blockchain ecosystem, in which not only Ethereum itself but also

numerous tokens are traded. This characteristic of the Ethereum blockchain makes

Ethereum and Ethereum-based tokens have a structural association. Thus, it is ex-

pected that Ethereum and Ethereum-based tokens are highly likely to have certain

common characteristics.

Many previous studies have explored factors that can explain the return of cryp-

tocurrencies. The approaches used in these studies can be broadly classified into two

categories: internal and external. The first approach tries to find internal factors

that can be derived from the price of the cryptocurrency or technical specifications

of blockchain, such as mining cost and reward. Momtaz (2021) showed that liq-

uidity, market capitalization, and high-low price ratios can predict cryptocurrency

returns, while Shen et al. (2020) showed that market, size, and reversal factors affect
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cryptocurrency pricing. Studies have also been conducted on chain-related factors.

Fantazzini and Kolodin (2020) analyzed the causal relationship between Bitcoin

and its hashrate, and Meynkhard (2019) addressed the fair market value of Bitcoin

in terms of the halving effect. The second approach attempts to find external fac-

tors outside the blockchain system that provide predictive power for cryptocurrency

prices. Chen et al. (2021b) and Abraham et al. (2018) suggested that global eco-

nomic factors and Twitter and Google Trends data are important for predicting the

cryptocurrency price using a machine learning model. Aysan et al. (2019) showed

that global geopolitical risks is related to the returns and volatility of Bitcoin.

Our study followed the previous approach. To the best of our knowledge, no

previous study has found common characteristics of only Ethereum-based tokens

in pricing. Urquhart (2021) offered a detailed analysis of the, Ethereum blockchain

including gas value, but they did not provide a relationship between gas price and

token price. In this study, we show that Ethereum gas price is related to the returns

and volatility of Ethereum-based tokens. Our study contributes to existing studies by

suggesting a new aspect: among many cryptocurrencies, cryptocurrencies that exist

on the same blockchain (Ethereum) can have their own common characteristics, and

gas can be the characteristic.

Gas is the cost that the transaction issuer must pay to publish a transaction on

Ethereum. Since issuers have to pay gas to trade Ethereum or tokens in the chain,

gas can be considered similar to the transaction fee paid when market participants

trade traditional assets such as equity. However, gas has different characteristics from

transaction fees in the following respects: First, transaction fees are determined at a

fixed rate with respect to the transaction amount, whereas gas is proportional to the
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size of the transaction code, regardless of the transaction amount. In addition, one

of the most important characteristics of gas is that it is affected by the number of

nodes trying to publish a transaction in the current Ethereum network, that is, the

network congestion level, because it is determined in the form of a first-price auction.

Therefore, the prices of assets traded in the Ethereum chain are structurally related

to gas. However, the first price auction system makes it difficult for transaction

issuers to decide the appropriate gas price bid and causes overpayment in the gas

price. Recently, the EIP-1559 proposal was adopted in Ethereum to address this

issue Buterin et al. (2019). It is expected that gas prices will be more stable and

more precisely represent network congestion.

In this chapter, we empirically analyzed the relationship between the return and

volatility of Ethereum-based tokens and gas returns using four different measures:

a Pearson correlation analysis, the autoregressive regression (AR) and heteroge-

neous AR (HAR) based analysis, and the Granger causality test. The analysis was

performed on two periods: pre-EIP-1559 and post-EIP-1559. The empirical results

revealed four important findings. First, a strong correlation exists between the re-

turns and volatility of Ethereum and gas returns in the same time horizon. Second,

the returns and volatility of the Ethereum and ERC-20 tokens caused gas returns

before EIP-1559 was adopted. Third, gas returns caused ERC-20 tokens’ return in

the post-EIP-1559 period. In addition, the predictive ability of Ethereum volatility

on gas returns remained after EIP-1559. Lastly, ERC-721 token returns and volatil-

ity both do not show a clear pattern of relationship with gas returns over the entire

period. Our results provide evidence that the price of ERC-20 tokens is now affected

by the gas price because the gas price reflects the network congestion level well after
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EIP-1559 was adopted, while the volatility of Ethereum affects the gas price. Along

with the relationship analysis of tokens’ volatility and gas return, we constructed

the volatility prediction model for ETH and ERC-20 tokens with gas return using

STG-Spillover model proposed in Chapter 3. The empirical result shows that includ-

ing spillover effect of gas return can increase the volatility prediction performance

of ETH and ERC-20 tokens affected by gas return.

From the analysis of Ethereum-based tokens’ return and gas return, we con-

firmed that gas return has statistically significant effect on Ethereum-based tokens’

return. Therefore, we also constructed the two factor model for Ethereum-based to-

kens. The two factors are cryptocurrency market return and Ethereum gas return.

Cryptocurrency market return is derived as the size weighted return of whole cryp-

tocurrencies. The empirical analysis of two factor model shows that starting with

EIP-1559, the r-square of factor model increases for ERC-20 tokens and metaverse

ERC-721 tokens. The decrease of intercept also confirms that Ethereum and ERC-20

tokens return are better explained by gas return after EIP-1559 adoption.

The remainder of this chapter is organized as follows. In Section 5.2, we ex-

plain the ERC standards and provide more details on the EIP-1559. Section 5.3

describes the measures and macroeconomic factor model used in this study. Section

5.4 presents the data used for the empirical analysis and following empirical results.

Finally, concluding remarks are presented in Section 5.5.

5.2 Preliminaries

Ethereum-based tokens can be classified according to composition standards, and

representative classifications include ERC-20 and ERC-721. ERC-20 has been the
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standard for fungible tokens on the Ethereum blockchain owing to its appearance

Vogelsteller and Buterin (2015). After the boom in ERC-20 tokens, the concept of

ERC-721 tokens was proposed for non-fungible tokens (NFT) Entriken et al. (2018).

Owing to the spike in demand for Ethereum-based tokens, gas fees have become a

factor for Ethereum users, but the original fee mechanism made it extremely volatile.

To address this problem, Buterin et al. (2019) proposed EIP-1559 introducing a new

concept of base fee (bt) which reflects the network condition at time t. Under this

system, the user submits two parameters: maximum fee (f) and maximum priority

fee (p). The maximum fee is the maximum amount of gas that the user would pay for

their transaction, and the maximum priority fee is the maximum amount of tip for

miners that the user would pay to include in their transaction. Under this protocol,

the amount of gas paid by the user was max {bt + p, f}. For every block, the base

fee, which is indexed by the block height t, is updated using the following equation:

bt+1 = bt

(
1 + d · Gt − T/2

T/2

)
(5.1)

Here, d denotes an adjustment facto,r which is currently set to 0.125. Gt is the

total amount of gas used for transactions included in block t and T is the block size.

5.3 Methodology

5.3.1 Relation analysis

For further analysis, we used the logarithmic return of asset price and logarithmic

return of gas price at time t as rat and rgt . We approximated asset volatility as the

squared asset return at time t as (σa
t )

2 = (rat )
2.

We used four methodologies to identify the relationship and causality between
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gas and asset prices, following Baur and Dimpfl (2018). Each methodology was used

twice to investigate the relationship between asset returns and gas returns and be-

tween asset price volatility and gas returns. Since there exists little consensus about

the causal relationship between asset and gas prices, we investigated the relationship

by changing the time sequence between the two. Each measure is calculated from

the methodologies as follows. First, we calculated the Pearson correlation coefficient

between asset return, volatility and gas return as follows:

ρr,1t = cor (rat+1, r
g
t ), ρr,2t = cor (rat , r

g
t+1), ρr,3t = cor (rat , r

g
t )

ρv,1t = cor (σa
t+1

2, rgt ), ρv,2t = cor (σa
t
2, rgt+1), ρv,3t = cor (σa

t
2, rgt )

(5.2)

Among the four methodologies, only the Pearson correlation coefficient method ob-

serves the relationship between assets and gas in the same time horizon (see ρr,3t and

ρv,3t in Equation 5.2).

Second, we implemented an AR analysis by adding an additional term to the

independent variable. When predicting asset returns using the AR(1) model, an

additional regression term of gas returns is provided to figure out if gas returns can

provide additional predictive ability for asset returns. The implemented model is

expressed as follows:

rat+1 = αa,1
0 + αa,1

1 rat + βa,1rgt

σa
t+1

2 = αa,2
0 + αa,2

1 σa
t
2 + βa,2rgt

(5.3)

rgt+1 = αg,1
0 + αg,1

1 rgt + βg,1rat

rgt+1 = αg,2
0 + αg,2

1 rgt + βg,2σa
t
2

(5.4)

The corresponding coefficient β documents the effect of the added independent vari-
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able on predicting asset returns, asset volatility, or gas returns.

Third, in the context of expanding the AR analysis, a HAR analysis was per-

formed Corsi (2009). The HAR model, proposed by Corsi (2009), showed good per-

formance in predicting realized volatility. We followed this idea and implemented the

HAR analysis by affixing an additional term of the independent variable as follows:

rat+1 = αa,1
0 + αa,1

1 rat + αa,1
2 rat:t−4 + αa,1

3 rat:t−21 + βa,1rgt

σa
t+1

2 = αa,2
0 + αa,2

1 σa
t
2 + αa,2

2 σa
t:t−4

2 + αa,2
3 σa

t:t−21
2 + βa,2rgt

(5.5)

rgt+1 = αg,1
0 + αg,1

1 rgt + αg,1
2 rgt:t−4 + αg,1

3 rgt:t−21 + βg,1rat

rgt+1 = αg,2
0 + αg,2

1 rgt + αg,2
2 rgt:t−4 + αg,2

3 rgt:t−21 + βg,2σa
t
2

(5.6)

where rt:t−k = 1
k

∑k
i=0 ri and σa

t:t−k
2 = 1

k

∑k
i=0 σ

a
t:t−i

2. Therefore, rat:t−4, σa
t:t−4

2,

rat:t−21, and σa
t:t−21

2 denote the weekly average of asset returns and volatility and

the monthly average of asset returns and volatility, respectively. The corresponding

coefficient β documents the effect of the added independent variable on predicting

asset returns, asset volatility, or gas returns.

Lastly, we conducted a Granger causality test to determine the inference struc-

ture. To test the null hypothesis that stationary time series X : x1,...,T does not

Granger-cause other stationary time series Y : y1,...,T for lag p or vice versa, the

augmented formulation of autoregressive model is used as follows:

xt = αx,0 +

p∑
i=1

αx,ixt−i +

p∑
i=1

βx,iyt−i + ϵx,t

yt = αy,0 +

p∑
i=1

αy,iyt−i +

p∑
i=1

βy,ixt−i + ϵy,t

(5.7)

The null hypothesis becomes H0 :
∑p

i=1 βx,i = 0 when Y Granger-causes X. The
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hypothesis was tested using an F -test.

5.3.2 Factor model analysis

We used fundamental-based factor model for constructing asset pricing model. The

fundamental factor model assumes that some macroeconomic variable affects the

assets as a whole. The most well-known example is the one factor model CAPM

proposed by Sharpe (1964) and Lintner (1965). The mathematical formulation of

CAPM is expressed as follows:

Ri,t = αi,t + βi,tR
m
t + ϵi,t (5.8)

where Ri,t is the excess return of asset i at time-step t, αi,t is the intercept, βi,t is

the beta coefficient also known as risk exposure, Rm
t is the excess market return at

time-step t, and ϵi,t is the residual.

While CAPM assumes that the excess market return can explain asset return, we

proposed two factor model by adding gas return term to CAPM. The mathematical

formulation is as follows:

Ri,t = αi,t + β1
i,tR

m
t + β2

i,tR
g
t + ϵi,t (5.9)

Since the purpose of the factor model is to analyze whether the fundamental

factor can account for excess returns, R2 is used as an evaluation index. Along

with R2, the absolute value of intercept is also important. If the market is perfectly

efficient, the well designed factor model can fully explain the excess return and it

means that there exists no anomaly. Therefore, no anomaly gets the same meaning

as the intercept of factor model becomes zero.
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5.3.3 Volatility prediction with volatility spillover index

We used the developed volatility prediction model from Chapter 3. The developed

model is based on spatial-temporal graph neural network structure, and estimates

graph structure using the volatility spillover index proposed by Diebold and Yilmaz

(2012). For the rest of the chapter, the used volatility prediction model is referred

as STG-Spillover model.

We compared the volatility forecasting performance of two STG-Spillover models,

where one is trained with only volatility data of ETH and ERC-20 tokens, and

another is trained with volatility data and gas return. The analysis is aimed to

identify the effect of gas return for predicting volatility of ERC-20 tokens.

5.4 Empirical Studies

5.4.1 Data

To examine the relationship between the Ethereum gas and Ethereum-based tokens,

this study included ETH, ERC-20, and ERC-721 based tokens. Among the ERC-

20 tokens, we selected MANA, AXS, SAND, ENJ, and CHZ, considering their use

in NFT trades and the awareness of users. We obtained the hourly prices of these

currencies from Coinmarketcap1 and analyzed them on a daily basis. Prices were

collected between November 2020 and January 2022.

We divided ERC-721 based tokens into two subcategories, metaverse and col-

lectibles. Among each domain, we selected the top three representative tokens re-

garding the market capitalization, which is defined as the sum of the last price of

the NFT collection in the project and its awareness. For metaverse-related ERC-721

1https://coinmarketcap.com
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tokens, we obtained the prices of secondary market trades in Decentraland LAND

tokens, Sandbox LAND tokens and every recorded sales price in the Axie Infinity

marketplace, following approaches from Dowling (2022b) and Dowling (2022a). The

recorded price of each transaction was sourced from NonFungible.com2 and then

aggregated into daily frequency. For ERC-721 based collectibles, we collected daily

average sales prices in USD for CryptoPunk images, Art Blocks, and Bored Ape

Yacht Club images from Cryptoslam3. The average gas price was downloaded from

EtherScan4. The gas price has its own unit called Gwei, which is 10−9 ETH.

EIP-1559 was implemented on August 5, 2021. To analyze its impact on asset

prices, we divided our data into two parts for analysis: pre-EIP-1559 and post-EIP-

1559. The descriptive statistics of daily asset returns throughout this period are

presented in Table 5.1. From this table, we verify the fact that EIP-1559 stabi-

lized the Ethereum gas price. To check the stationarity of returns, we conducted

Augmented Dickey-Fuller test and the results are shown in the ADF column in Ta-

ble 5.1. Every asset shows a stationary return, which justifies our use of the AR,

HAR-based method.

For the factor model construction, we used CRIX index, introduced by Trimborn

and Härdle (2018), as the cryptocurrency market return. It can be downloaded from

CRIX5. The CRIX index is value-weighted return of representative cryptocurrencies

on market, which is calculated as follows:

Rm
t =

∑N
i=1Ri,tPi,tDi,t∑N

i=1 Pi,tDi,t

(5.10)

2https://nonfungible.com
3https://cryptoslam.io
4https://etherscan.io/chart/gasprice
5https://www.royalton-crix.com/
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where Pi,t and Di,t each denotes the price of asset i at time-step t and the quan-

tity, respectively. The time-series visualization of price and return of CRIX index is

presented in Figure 5.1.

Figure 5.1: Price and return of CRIX index
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Table 5.1: Descriptive Statistics

Mean Median Std Dev Min Max Skewness Kurtosis ADF

Panel A: Pre-EIP-1559

ETH 0.0090 0.0072 0.0664 -0.3411 0.3152 0.1409 5.2734 -4.7057∗∗∗

MANA 0.0144 -0.0020 0.1108 -0.3707 0.7203 1.7531 8.8607 -8.3666∗∗∗

AXS 0.0295 0.0032 0.1394 -0.4499 0.5920 1.1980 2.8290 -10.8749∗∗∗

SAND 0.0174 0.0059 0.1216 -0.4306 0.8850 1.9695 11.5045 -7.5020∗∗∗

ENJ 0.0152 0.0033 0.1184 -0.4275 0.8565 2.1098 11.9351 -5.6011∗∗∗

CHZ 0.0192 0.0086 0.1308 -0.4211 1.0571 3.3021 21.6978 -4.6598∗∗∗

Decentraland LAND 0.1537 0.0136 1.3336 -0.9199 27.2818 16.2858 320.4130 -25.5536∗∗∗

Sandbox LAND 0.0818 0.0131 0.6083 -0.9192 10.1112 9.7400 143.5687 -5.4059∗∗∗

Axie Infinity 0.2691 0.0021 1.6060 -0.9489 22.3549 8.2915 88.0370 -10.5719∗∗∗

CryptoPunks 0.0624 0.0277 0.3706 -0.7291 2.0745 1.9543 8.6931 -10.9276∗∗∗

ArtBlocks 0.2047 0.0166 0.8512 -0.9309 5.8502 3.5911 20.0720 -3.5434∗∗∗

Bored Ape 0.0878 0.0258 0.3309 -0.4037 2.0874 3.6665 19.1721 -8.6524∗∗∗

Gas Price (Gwei) 0.0557 -0.0009 0.3842 -0.6831 2.3940 2.2086 8.4587 -9.7199∗∗∗

Panel B: Post-EIP-1559

ETH 0.0005 0.0014 0.0413 -0.1386 0.1118 -0.1118 0.8886 -10.2350∗∗∗

MANA 0.0138 -0.0003 0.1519 -0.2045 1.7354 8.3656 93.2101 -7.8596∗∗∗

AXS 0.0040 -0.0068 0.0842 -0.1529 0.6182 3.9421 25.2381 -13.6219∗∗∗

SAND 0.0158 -0.0037 0.1206 -0.1744 0.8513 3.2727 17.1215 -7.1185∗∗∗

ENJ 0.0036 0.0032 0.0719 -0.1772 0.3475 0.5941 2.4248 -14.6986∗∗∗

CHZ 0.0004 -0.0025 0.0751 -0.2058 0.5674 2.2705 17.8680 -15.4614∗∗∗

Decentraland LAND 0.0866 0.0232 0.4477 -0.7706 3.0995 2.3763 11.8646 -9.6752∗∗∗

Sandbox LAND 0.0199 0.0156 0.1510 -0.4532 0.8728 1.2236 6.4411 -19.5031∗∗∗

Axie Infinity -0.0102 -0.0076 0.0472 -0.2008 0.1616 0.0098 2.5328 -12.9624∗∗∗

Cryptopunks 0.0421 0.0000 0.3274 -0.7015 2.0537 3.1444 16.4858 -11.3029∗∗∗

ArtBlocks 0.1368 -0.0235 0.6112 -0.7931 2.8745 1.5066 3.2678 -20.7239∗∗∗

Bored Ape 0.0341 0.0056 0.2514 -0.5846 1.7099 2.5320 13.8854 -4.9299∗∗∗

Gas Price (Gwei) 0.0255 -0.0145 0.2192 -0.4041 0.9432 0.9033 1.6474 -5.0258∗∗∗

Panel C: Entire Period

ETH 0.0058 0.0046 0.0579 -0.3411 0.3152 0.1923 6.0169 -6.1197∗∗∗

MANA 0.0142 -0.0012 0.1284 -0.3707 1.7354 6.1012 73.7546 -12.7673∗∗∗

AXS 0.0195 -0.0002 0.1210 -0.4499 0.6182 1.7415 5.8406 -13.8636∗∗∗

SAND 0.0169 0.0023 0.1209 -0.4306 0.8850 2.4679 13.5080 -9.1195∗∗∗

ENJ 0.0107 0.0033 0.1025 -0.4275 0.8565 2.0998 13.7466 -7.1094∗∗∗

CHZ 0.0117 0.0035 0.1122 -0.4211 1.0571 3.5095 26.5599 -6.3937∗∗∗

Decentraland LAND 0.1364 0.0151 1.1747 -0.9199 27.2818 17.8578 398.3796 -29.7540∗∗∗

Sandbox LAND 0.0674 0.0134 0.5327 -0.9192 10.1112 10.9081 183.8055 -6.1605∗∗∗

Axie Infinity 0.1986 -0.0038 1.3937 -0.9489 22.3549 9.6201 118.5374 -11.9709∗∗∗

Cryptopunks 0.0494 0.0092 0.3421 -0.7291 2.0745 2.6317 12.8169 -13.6599∗∗∗

ArtBlocks 0.1596 -0.0002 0.7031 -0.9309 5.8502 2.8737 16.3893 -24.5041∗∗∗

Bored Ape 0.0545 0.0099 0.2831 -0.5846 2.0874 3.2192 18.2648 -5.6472∗∗∗

Gas Price (Gwei) 0.0445 -0.0045 0.3289 -0.6831 2.3940 2.2704 10.3603 -4.9452∗∗∗

Note. Asterisks flag levels of statistical significance of result statistic in ADF Test. The significance levels are flagged
as follows: *** : p-value < 0.01
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Table 5.2: Result Statistics (Return)

Measure Pearson Correlation Coefficient AR beta HAR beta

ρr,1t ρr,2t ρr,3t βa,1 βg,1 βa,1 βg,1

Panel A: Pre-EIP-1559

ETH 0.1200∗∗ 0.1903∗∗∗ -0.1613∗∗∗ 0.0205 0.8697∗∗∗ 0.0211 0.7496∗∗

MANA 0.1573∗∗∗ 0.1067 -0.2704∗∗∗ 0.0471∗∗∗ 0.1927 0.0581∗∗∗ 0.1570

AXS 0.0624 0.1335∗∗ -0.1932∗∗∗ 0.0218 0.2539 0.0351 0.2658

SAND 0.1157 0.1767∗∗∗ -0.2104∗∗∗ 0.0345 0.4187∗∗ 0.0330 0.3756∗∗

ENJ 0.1391∗∗ 0.0954 -0.2534∗∗∗ 0.0404∗∗ 0.1504 0.0421∗∗ 0.0822

CHZ 0.0514 0.0967 -0.1418∗∗ 0.0189 0.2120 0.0163 0.1624

Decentraland LAND -0.0711 0.0725 -0.0352 -0.1138∗∗ 0.0520 -0.0967∗∗ 0.0474

Sandbox LAND -0.0112 0.0230 -0.0559 -0.0373 0.0170 -0.0524 0.0093

Axie Infinity -0.0063 0.0961∗∗ -0.0176 -0.0221 0.0547∗∗ -0.0044 0.0521∗∗

CryptoPunks 0.0358 0.2147∗∗ -0.1115 -0.0007 0.2102 -0.0456 0.0431

ArtBlocks -0.2989∗∗∗ -0.1286 0.4391∗∗∗ -0.1410 -0.0341 -0.2745 -0.0289

Bored Ape -0.1257 0.0114 -0.0753 -0.0659 -0.0034 -0.0581 0.2205

Panel B: Post-EIP-1559

ETH -0.1219 0.1143 -0.1707∗∗ -0.0261 0.5192 -0.0148 0.6202

MANA -0.0627 -0.0491 -0.1480∗∗ -0.0227 -0.1177 -0.0140 0.0774

AXS -0.0253 0.0286 -0.2335∗∗∗ -0.0047 0.0488 -0.0072 0.1634

SAND -0.0655 -0.0211 -0.1130 -0.0244 -0.0619 -0.0237 0.0949

ENJ -0.1078 0.0060 -0.1480∗∗ -0.0395 -0.0057 -0.0298 0.1079

CHZ -0.0720 0.0571 -0.1889∗∗ -0.0294 0.1478 -0.0229 0.3145

Decentraland LAND 0.0159 -0.0354 0.0252 0.0528 -0.0182 -0.0051 -0.0193

Sandbox LAND 0.0160 0.0365 -0.0902 -0.0115 0.0459 -0.0091 0.0873

Axie Infinity -0.0547 0.1179 -0.0026 -0.0128 0.5095 -0.0113 0.5970

CryptoPunks -0.0058 0.0480 -0.0985 -0.0615 0.0331 -0.0865 0.0389

ArtBlocks -0.0626 0.1479 -0.0124 -0.1781 0.0601 -0.1782 0.0542

Bored Ape -0.0123 0.2887∗∗∗ -0.1962∗∗∗ -0.0994 0.2728∗∗∗ -0.1062 0.2861∗∗∗

Note. This table reports result statistics for Pearson’s Correlation Coefficient method, AR method and HAR method on asset return
and gas return. Greek letters in the second row are from the implemented model we proposed in Methodology section. Asterisks flag
levels of statistical significance of result statistic using t-test. The significance levels are flagged as follows: *** : p-value < 0.01, ** :
p-value < 0.05
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Table 5.3: Granger Causality Test Statistics (Return)

F-statistics

H0: Gas return granger causes
token return

H0: Token return granger causes gas
return

lag = 1 lag = 2 lag = 3 lag = 4 lag = 1 lag = 2 lag = 3 lag = 4

Panel A: Pre-EIP-1559

ETH 3.2864 1.4906 1.0616 1.1533 7.3141∗∗∗ 4.7362∗∗∗ 4.1741∗∗∗ 4.8584∗∗∗

MANA 7.2013∗∗∗ 3.9163∗∗ 3.5035∗∗ 2.2526 0.7734 0.7057 2.0644 1.7440

AXS 0.8063 0.6682 1.8314 1.7306 2.5756 1.5950 2.4918 2.1100

SAND 2.8499 1.1757 2.1604 1.4794 5.3136∗∗ 3.9254∗∗ 2.3072 1.8323

ENJ 4.6386∗∗ 2.5752 2.5273 2.0484 0.5457 0.4814 1.2011 2.3961

CHZ 0.9146 0.4652 0.4316 0.2794 1.3053 0.7609 1.0096 0.8187

Decentraland LAND 5.4921∗∗ 2.4280 1.4251 1.1870 2.9266 0.8503 0.4807 0.5193

Sandbox LAND 0.9861 0.8278 0.6466 0.8349 0.1875 0.0545 0.0974 1.5137

Axie Infinity 0.1218 0.9915 0.3752 0.2305 5.4913∗∗ 3.0069 2.0569 1.6517

CryptoPunks 0.0001 3.5330∗∗ 2.3229 1.4425 3.7734 2.8582 1.2561 1.7076

ArtBlocks 0.7247 0.7995 0.7296 0.7703 0.2509 1.4578 0.7376 1.0362

Bored Ape 1.2131 1.4821 0.9498 1.0111 0.0005 1.1707 0.4395 0.5880

Panel B: Post-EIP-1559

ETH 2.7279 4.4750∗∗ 2.9754∗∗ 2.1329 2.0177 0.6218 1.3020 2.6178∗∗

MANA 0.3687 4.7892∗∗∗ 4.1101∗∗∗ 3.7826∗∗∗ 0.5880 0.5910 0.3250 0.7645

AXS 0.0320 2.2650 1.5651 1.5342 0.0471 0.0227 0.3532 0.8216

SAND 0.5269 5.5260∗∗∗ 3.9263∗∗∗ 3.0294∗∗ 0.1321 0.2145 0.4591 1.1996

ENJ 2.3342 6.6778∗∗∗ 4.3324∗∗∗ 3.0357∗∗ 0.0007 0.7317 0.4269 2.0582

CHZ 1.3889 4.1548∗∗ 3.1477∗∗ 2.3464 0.4009 0.1455 0.2482 1.0547

Decentraland LAND 0.1627 0.3586 0.3744 0.0736 0.1981 0.8405 0.7806 0.6125

Sandbox LAND 0.0535 0.1072 0.1508 0.1058 0.1805 0.5705 0.8263 1.3843

Axie Infinity 0.5256 0.4339 0.6386 0.3880 2.4568 1.6976 1.1612 1.3336

CryptoPunks 0.4628 0.3920 0.5437 0.7981 0.3271 0.1713 0.1093 1.2697

ArtBlocks 1.2033 0.3336 0.1921 0.8865 3.8281 1.5672 1.0156 0.8647

Bored Ape 1.7617 0.1294 0.3558 0.7808 15.2563∗∗∗ 7.9090∗∗∗ 5.2779∗∗∗ 4.5278∗∗∗

Note. This table reports result statistics for Granger Causality test from lag 1 to lag 4 on asset return and gas return. Asterisks flag
levels of statistical significance of result statistic using t-test. The significance levels are flagged as follows: *** : p-value < 0.01, ** :
p-value < 0.05
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Table 5.4: Result Statistics (Volatility)

Measure Pearson Correlation Coefficient AR beta HAR beta

ρv,1t ρv,2t ρv,3t βa,2 βg,2 βa,2 βg,2

Panel A: Pre-EIP-1559

ETH 0.0681 -0.3516∗∗∗ 0.2150∗∗∗ -0.0007 -18.3156∗∗∗ 0.0007 -17.5412∗∗∗

MANA 0.0665 -0.2597∗∗∗ 0.1812∗∗∗ 0.0021 -3.4358∗∗∗ 0.0036 -3.0945∗∗∗

AXS 0.0187 -0.1898 0.2197∗∗∗ -0.0013 -1.8330∗∗ 0.0006 -2.2128∗∗∗

SAND -0.0119 -0.0893 0.1299∗∗ -0.0030 -0.4963 -0.0025 -0.3383

ENJ 0.0138 -0.2407∗∗∗ 0.1525∗∗ -0.0007 -2.7949∗∗∗ 0.0004 -2.7245∗∗∗

CHZ 0.0468 -0.2182∗∗∗ 0.1655∗∗∗ -0.0003 -2.6788∗∗∗ 0.0022 -2.2467∗∗∗

Decentraland LAND -0.0151 0.0158 0.0031 -0.0354 0.0075 -0.0418 0.0020

Sandbox LAND 0.0141 0.0500 -0.0076 0.0241 0.0361 0.0296 0.0396

Axie Infinity 0.0303 -0.0163 0.0064 0.0856 -0.0050 0.0566 -0.0061

CryptoPunks -0.0597 -0.0535 0.2631∗∗∗ -0.1017 -0.0074 -0.0495 -0.5432

ArtBlocks 0.0084 -0.0513 -0.0378 0.0376 -0.0238 0.0600 -0.1578

Bored Ape -0.0567 -0.0009 -0.0195 -0.0140 -0.0091 -0.0314 0.0079

Panel B: Post-EIP-1559

ETH 0.1111 -0.2378∗∗∗ 0.2080∗∗∗ 0.0003 -32.2404∗∗∗ 0.0009 -28.9441∗∗∗

MANA -0.0033 -0.1088 -0.0205 0.0008 -1.2861 0.0000 -0.1996

AXS 0.1773∗∗ -0.1248 0.0089 0.0051∗∗ -4.1831 0.0048∗∗∗ -2.5558

SAND 0.0532 -0.1224 0.0424 0.0015 -2.0330 0.0001 -1.2005

ENJ 0.0503 -0.1433 0.1258 0.0003 -4.3704 0.0001 -3.3768

CHZ 0.0955 -0.1871∗∗ 0.0790 0.0016 -6.6648∗∗ 0.0001 -4.8698

Decentraland LAND 0.0242 0.0178 0.0286 0.0180 0.0132 0.0237 0.0380

Sandbox LAND -0.0199 -0.0768 0.0938 -0.0092 -0.3121 -0.0004 0.0588

Axie Infinity 0.0091 -0.1259 -0.0171 0.0003 -4.9585 0.0002 -4.8751

CryptoPunks -0.1021 0.0265 -0.0513 -0.0804 0.0236 -0.0943 -0.0261

ArtBlocks -0.0733 -0.0684 -0.1552∗∗ -0.0830 -0.0452 -0.0275 -0.0262

Bored Ape -0.0686 0.0699 0.0494 -0.0554 0.1179 -0.0589 -0.0351

Note. This table reports result statistics for Pearson’s Correlation Coefficient method, AR method and HAR method on asset
volatility and gas return. Greek letters in the second row are from the implemented model we proposed in Methodology section.
Asterisks flag levels of statistical significance of result statistic using t-test. The significance levels are flagged as follows: *** : p-value
< 0.01, ** : p-value < 0.05
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Table 5.5: Granger Causality Test Statistics (Volatility)

F-statistics

H0: Gas return granger causes
token volatility

H0: Token volatility granger causes gas
return

lag = 1 lag = 2 lag = 3 lag = 4 lag = 1 lag = 2 lag = 3 lag = 4

Panel A: Pre-EIP-1559

ETH 0.5500 1.5445 3.7444∗∗ 1.5585 31.0551∗∗∗ 14.2211∗∗∗ 8.7081∗∗∗ 6.5410∗∗∗

MANA 0.2944 0.4903 0.6007 0.3055 15.1906∗∗∗ 6.7749∗∗∗ 4.3214∗∗∗ 3.1916∗∗

AXS 0.0707 0.0538 0.1285 0.2706 6.2948∗∗ 3.0249 2.8620∗∗ 2.1605

SAND 0.1532 0.6246 0.7495 0.8168 1.1156 3.1726∗∗ 2.6627∗∗ 2.1524

ENJ 0.0253 0.0178 0.3648 0.3410 13.2342∗∗∗ 6.5321∗∗∗ 4.6766∗∗∗ 3.5120∗∗∗

CHZ 0.0087 0.3573 1.2611 0.4208 10.1692∗∗∗ 4.7636∗∗∗ 2.4910 2.2725

Decentraland LAND 0.1413 0.3133 0.6318 0.7942 0.1413 0.3133 0.6318 0.7942

Sandbox LAND 0.2162 1.1384 0.5649 0.3885 1.3227 0.8583 0.7350 3.6101∗∗∗

Axie Infinity 0.5059 0.4006 0.3106 0.2532 0.1352 0.0244 0.0136 0.2711

CryptoPunks 2.3908 2.1448 2.1777∗∗ 1.6787 0.0021 0.4851 0.4129 0.4450

ArtBlocks 0.0225 0.7480 1.3237 0.8653 0.3270 0.9816 1.1302 0.8259

Bored Ape 0.3251 2.0443 1.3579 1.6907 0.0017 0.9829 0.7525 0.6080

Panel B: Post-EIP-1559

ETH 0.4169 3.0859∗∗ 2.1110 1.7478 9.9522∗∗∗ 3.8828∗∗ 2.5461 3.3383∗∗

MANA 0.0310 0.3183 1.4739 1.6791 2.1480 1.5106 0.9844 1.0210

AXS 6.3314∗∗ 3.9496∗∗ 2.9983∗∗ 2.4774∗∗ 2.7617 1.1092 0.6864 1.1431

SAND 0.2123 0.2082 0.3790 0.0784 2.5757 1.0471 1.4987 1.3140

ENJ 0.0187 0.5575 0.5977 0.3994 3.3901 1.4370 1.2768 1.2839

CHZ 0.8090 0.8683 0.9956 1.1226 6.1149∗∗ 2.3388 2.0209 3.1392∗∗

Decentraland LAND 0.0309 0.2186 0.3631 0.4678 0.0667 1.4177 1.0668 0.8459

Sandbox LAND 0.2878 1.1393 0.9102 1.7045 0.9578 0.9155 0.7517 0.7374

Axie Infinity 0.0335 0.2577 0.2069 0.2547 2.9057 1.5283 1.0732 0.8763

CryptoPunks 1.3598 0.6032 0.8968 0.7467 0.0993 0.0290 0.6466 0.4117

ArtBlocks 0.4032 3.7403∗∗ 2.7664∗∗ 2.3097 1.0341 0.9420 0.6445 0.7283

Bored Ape 1.7193 0.7301 1.6206 1.5209 0.9187 1.6289 1.1450 1.8266

Note. This table reports result statistics for Granger Causality test from lag 1 to lag 4 on asset volatility and gas return. Asterisks
flag levels of statistical significance of result statistic using t-test. The significance levels are flagged as follows: *** : p-value < 0.01,
** : p-value < 0.05
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5.4.2 Empirical Results

Tables 5.2 and 5.3 show the empirical results for the four proposed measures of

asset returns and gas returns. There is a strong negative correlation between the

returns and volatility of Ethereum and ERC-20 tokens and gas returns over the

entire period. Negative correlation represents the phenomenon in which gas prices

rise rapidly when the Ethereum token market plummets, such as Black Thursday.

ETH, SAND, and Axie Infinity return Granger-causes and have predictive power

for gas returns in the pre-EIP-1559 period. However, after EIP-1559 adoption, the

trend is reversed for ETH, while SAND and Axie Infinity returns no longer have a

relationship with gas returns. Gas returns Granger-causes ETH returns and ERC-20

tokens’ returns when lag is longer than two. Since EIP-1559 aims to structure the

gas price valuation system systematically, it stabilizes the gas price and makes it

reflect network transaction congestion more precisely. Therefore we can conclude

that EIP-1559 caused network congestion levels to affect ETH and ERC-20 based

tokens’ returns. Despite the clear relationship between ERC-20 tokens’ returns and

gas returns, no correlation exists between ERC-721 tokens’ returns and gas returns

regardless of EIP-1559 adoption, except for ArtBlocks and Bored Ape. During the

post-EIP-1559 period, the Bored Ape returns had a causal and non-causal effect on

gas returns.

The empirical analysis of the relationship between asset volatility and gas returns

is presented in Tables 5.4 and 5.5. For the Pearson correlation coefficient measure-

ment result, the most representative finding is that a positive correlation of ERC-20

tokens’ returns and gas returns on the same time horizon exists in the pre-EIP-1559

period but disappears afterward, while the correlation between ETH and gas returns
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remains. The positive correlation is explained by the fact that when the price fluc-

tuation of Ethereum is large, network congestion increases and the gas price rises.

Looking at the AR, HAR, and Granger causality test results, before EIP-1559 is

applied to the Ethereum blockchain, the volatility of ERC-20 tokens consistently

affects and Granger-causes gas returns except for the SAND tokens. After EIP-1559

adoption, every causal effect between ERC-20 token volatility and gas returns dis-

appears except for the CHZ token, while the effect of ETH remains. The predictive

power of the ERC20 token volatility remains for some, but many disappear, and

the significance level decreases. Both Ethereum and ERC-20 tokens are assets that

transfer in transactions on the Ethereum network, but considering that Ethereum

is the main asset and the rest are sub-tokens, EIP-1559 has ensured that sub-tokens

do not affect the gas price by controlling the gas price more systematically and

predictably. Similarly, with asset return analysis, the ERC-721 tokens did not show

any clear pattern in relation to gas. This seems to be the opposite result of the fact

that OpenSea, the ERC-721 token trading platform, accounts for the majority of

total gas consumption. This is due to the unique characteristics of NFTs, which are

expensive and infrequently traded. The proportion of the gas price for trading the

NFT is low because of the relatively high price of the NFT. In addition, low trading

frequency indicates that NFTs have little incentive to react sensitively to temporary

gas price fluctuations.

Table 5.6 shows the statistics of constructed two-factor model. Compared to

pre-EIP-1559 period, in post-EIP-1559 period, R2 of ETH, ERC-20 tokens, and

ERC-721 metaverse tokens have increased, while R2 of CryptoPunks and ArtBlocks

decreased. The results of factor analysis imply the same meaning as the result that
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Ethereum and ERC-20 token returns are more related to gas return after the EIP-

1559 adoption from relationship analysis. This tendency shows the same result when

observing absolute intercept. The absolute intercept of ERC-20 tokens decreases

after the EIP-1559 adoption. We can confirm that after EIP-1559, gas return better

explain ERC-20 tokens return since its stability has increased.

Another interesting point is that the gas return coefficient of Ethereum has

positive sign during pre-EIP-1559 period. Every gas return coefficients of ERC-20

tokens have negative sign in whole period and even Ethereum has negative sign in

post-EIP-1559 period. We believe that it is due to the noise in gas return during the

pre-EIP-1559 period. Transaction issuers had overestimated the gas price because

there is no guideline as base fee before EIP-1559 is adopted. The elimination of

overestimation by EIP-1559 had derived both Ethereum and ERC-20 tokens to have

negative gas return coefficient.

Lastly, we compared the volatility prediction performance of STG-Spillover model

for ETH and ERC-20 tokens, with and without the gas return. From the previous

analysis, we could confirm that gas return has correlation with volatility of certain

tokens. In the pre-EIP-1559 period, gas return helps predicting volatility of ETH,

MANA, AXS, SAND, and CHZ. After the EIP-1559 adoption, gas return affects

volatility of ETH and CHZ. We first constructed the net pairwise volatility spillover

index graph of ETH, ERC-20 tokens, and gas return to quantitatively measure the

effect between assets. The constructed graph is shown in Figure 5.2. The graph

shows the similar structure with the result of Table 5.4.

Using the constructed volatility spillover graph, the empirical results of STG-

Spillover models are shown in Tables 5.7 and 5.8. For each forecast horizon, one
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Table 5.6: Summary statistics for two factor model analysis

Measure R square Intercept
Market return

coef

Gas return

coef

Panel A : Pre-EIP-1559

ETH 0.573 0.001 0.869 0.037

MANA 0.35 0.008 0.892 -0.079

AXS 0.129 0.022 0.751 -0.071

SAND 0.12 0.013 0.582 -0.062

ENJ 0.303 0.013 0.924 -0.091

CHZ 0.157 0.018 0.771 -0.058

Decentraland LAND 0.007 0 0.786 -0.002

Sandbox LAND 0.005 0.001 -0.032 -0.065

Axie Infinity 0.003 -0.001 0.673 -0.014

CryptoPunks 0.086 0.006 1.047 -0.198

ArtBlocks 0.146 -0.015 0.973 0.685

Bored Ape 0.032 0.01 0.551 0.027

Panel B : Post-EIP-1559

ETH 0.727 -0.001 1.009 -0.023

MANA 0.262 0.004 0.953 -0.073

AXS 0.405 0.005 1.083 -0.097

SAND 0.182 0.01 0.929 -0.056

ENJ 0.407 0 1.135 -0.03

CHZ 0.487 0 1.088 -0.055

Decentraland LAND 0.016 0.017 1.202 0.09

Sandbox LAND 0.04 0.016 0.356 -0.136

Axie Infinity 0.189 -0.009 0.505 0.011

CryptoPunks 0.008 -0.002 0.376 -0.092

ArtBlocks 0.008 -0.02 -0.147 0.219

Bored Ape 0.096 0.012 1.131 -0.27

Note. This table reports the R2, intercept α, beta coefficients of market return and gas return.

101



model is trained with tokens’ volatility and gas, and another model is trained with

only tokens’ volatility. The empirical results show that gas return can help forecast-

ing volatility of ETH and ERC-20 tokens, which are affected by gas return in terms

of both linear time-series and spillover effect.

Figure 5.2: Spillover graph of ETH, ERC-20 tokens, and gas
Notes. Left figure shows the graph constructed in pre-EIP-1559 period and right figure is

the one constructed in post-EIP-1559 period.

5.5 Chapter Summary

In this chapter, we conducted the first analysis of the relationship between Ethereum

gas price and Ethereum-based token price. The analysis was conducted in two pe-

riods based on EIP-1559. The empirical results show that the returns and volatility

of Ethereum and gas returns have strong correlations. In addition, before EIP-1559,

Ethereum and ERC-20 token returns Granger-cause gas returns. However, after

EIP-1559 adoption, the pattern is reversed. We also showed that the volatility of

ERC-20 tokens has a predictive ability for gas returns in the pre-EIP-1559 period but

it disappears in the post-EIP-1559 period, while the predictive ability of Ethereum

volatility on gas returns remains. Finally, the ERC-721 token price has no clear rela-

tionship with gas price. From these findings, we conclude that after EIP-1559, only

Ethereum volatility affects gas returns among various tokens and the price of ERC-
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Table 5.7: Out-of-sample results of STG-Spillover models on dataset consisted of
ETH and ERC-20 tokens with and without gas return

Forecast horizon h
1 5 10 22

With gas Without gas With gas Without gas With gas Without gas With gas Without gas

Panel A : Pre-EIP-1559

ETH 0.004 0.005 0.005 0.007 0.007 0.008 0.007 0.008

MANA 0.009 0.011 0.01 0.012 0.011 0.013 0.012 0.015

AXS 0.013 0.017 0.014 0.018 0.016 0.018 0.019 0.02

SAND 0.012 0.011 0.013 0.012 0.013 0.013 0.015 0.018

ENJ 0.009 0.009 0.011 0.012 0.012 0.014 0.015 0.018

CHZ 0.01 0.012 0.01 0.013 0.011 0.015 0.011 0.016

Mean 0.010 0.011 0.011 0.012 0.012 0.014 0.013 0.016

Forecast horizon h
1 5 10 22

With gas Without gas With gas Without gas With gas Without gas With gas Without gas

Panel B : Post-EIP-1559

ETH 0.002 0.004 0.004 0.006 0.005 0.009 0.007 0.01

MANA 0.007 0.008 0.008 0.008 0.01 0.009 0.012 0.011

AXS 0.01 0.009 0.012 0.011 0.014 0.013 0.015 0.015

SAND 0.009 0.01 0.01 0.011 0.011 0.011 0.014 0.014

ENJ 0.008 0.008 0.009 0.009 0.01 0.009 0.011 0.012

CHZ 0.01 0.012 0.012 0.014 0.013 0.015 0.015 0.017

Mean 0.008 0.009 0.009 0.010 0.011 0.011 0.012 0.013

Note. This table reports out-of-sample MAFE of STG-Correlation model on ETH and ERC-20
tokens. With gas denotes the dataset containing gas return and without gas denotes the dataset
without gas return.

Table 5.8: DM test result for STG-Spillover model trained with gas versus without
gas

Forecast horizon h
1 5 10 22

DM statistic p-value DM statistic p-value DM statistic p-value DM statistic p-value

Panel A : Pre-EIP-1559

ETH -7.83 <0.01 -7.58 <0.01 -3.53 <0.01 -3.71 <0.01

MANA -5.11 <0.01 -4.32 <0.01 -4.19 <0.01 -6.04 <0.01

AXS -9.82 <0.01 -9.15 <0.01 -3.88 <0.01 -2.92 <0.01

SAND 1.43 0.47 2.68 0.61 0.15 0.18 -3.07 <0.01

ENJ -0.37 0.23 -0.79 0.19 -3.54 <0.01 -4.66 <0.01

CHZ -5.56 <0.01 -6.3 <0.01 -6.21 <0.01 -7.49 <0.01

Forecast horizon h
1 5 10 22

DM statistic p-value DM statistic p-value DM statistic p-value DM statistic p-value

Panel B : Post-EIP-1559

ETH -9.38 <0.01 -7.05 <0.01 -8.23 <0.01 -5.38 <0.01

MANA -1.2 0.09 -0.32 0.11 1.47 0.69 0.53 0.43

AXS 0.84 0.28 0.59 0.58 0.83 0.6 0.08 0.19

SAND -0.93 0.12 -0.72 0.22 -0.16 0.09 -0.11 0.13

ENJ -0.11 0.14 0.28 0.41 0.9 0.61 -0.82 0.11

CHZ -5.37 <0.01 -4.84 <0.01 -4.51 <0.01 -3.06 <0.01

Note. This table reports the DM test result for Table 5.7. The competing models are STG-Spillover
models trained with the dataset containing gas return and not containing gas return.
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20 tokens is affected by gas returns since EIP-1559 made gas prices more stable and

directly affected by Ethereum network congestion. This trend is also confirmed by

the volatility forecasting approach using STG-Spillover model. Including gas return

into the volatility spillover index graph of ETH and ERC-20 tokens had increased

the forecasting performance of the assets that are affected by gas return.

Furthermore, based on the above findings about relationship between Ethereum

gas and Ethereum-based tokens, we constructed the two factor models having cryp-

tocurrency market return and Ethereum gas return as factors. In the same line

with relationship analysis, we constructed the factor model each in pre-EIP-1559

and post-EIP-1559 period. The empirical result show that the performance of fac-

tor model evaluated by the R square and absolute value of intercept increases after

EIP-1559 adoption for Ethereum and ERC-20 tokens. From the result, we confirm

that the EIP-1559 has made Ethereum gas price more stable and predictable, and

thus it can explain the excess return of Ethereum-based tokens better than before

EIP-1559 adoption. In addition, the performance of two-factor model for ERC-721

tokens in collectible field decreases after EIP-1559 adoption. Even though there is

no clear evidence of decrease in explanation power of gas return on ERC-721 token

returns, we guess that it can be explained as there exists no explanation power or

dependency between Ethereum gas return and ERC-721 tokens return.
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Chapter 6

Conclusion

6.1 Contributions

Research on constructing a model that explains the excess return of assets enables

measuring the efficiency of the market. Furthermore, the asset pricing model can

explain how the risk of an asset is composed and how much each asset is compen-

sated for the following risk. Among various approaches for asset pricing studies,

we concentrated on the factor model. The factor model explains the expected ex-

cess return of assets with the factors and beta coefficients. Factor models can be

largely divided into macro factor models, fundamental factor models, and latent

factor models. Each model is classified according to which variables to estimate the

factor and beta, of which this dissertation focuses mainly on latent factor models.

While conventional latent factors models utilize a large set of firm characteristics to

estimate latent factors, most models cannot reflect the network structure of assets.

Connected dynamics of asset returns implies that asset returns affect each other,

which implies that pricing of certain asset return should be done with other asset

returns in a graph-based manner.

This dissertation aims to develop an AI-based empirical asset pricing model that

can reflect the connectedness between assets. First, we developed the graph neu-
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ral network-based multi-factor asset pricing model for U.S individual stocks, which

estimated the connectedness between assets as the Pearson correlation coefficients

of excess returns. Also, we developed the realized volatility prediction model using

volatility spillover index and spatial-temporal graph neural network because volatil-

ity is one of the major components for analyzing the nature of asset return. Based on

previous approaches, we constructed the graph neural network-based asset pricing

model with time-varying volatility prediction. Finally, we showed that the connected

assets can have common characteristics and they can be used as the observable factor

of the macroeconomic factor model as an application in the cryptocurrency market.

It is done in cryptocurrency market where certain tokens are issued on the same

blockchain, and thus the gas price of that blockchain can become the macroeco-

nomic factor. The detailed contribution of each work is explained as follows:

1. We proposed the graph-based multi-factor asset pricing model for U.S individ-

ual stocks. The proposed model directly reflects the connectedness between as-

sets through the graph neural network-based structure. Graph neural network

can solve the high dimension problem of firm characteristics. The adjacency

matrix of assets, which becomes the definition of connectedness of assets as

the input of graph neural network, is estimated as the Pearson correlation co-

efficients of excess returns with cutoff value. The empirical results show that

the proposed model effectively estimated beta coefficients and factors both in

terms of statistical performance and economic value of factors.

2. We proposed the volatility prediction model with a spatial-temporal graph

neural network and volatility spillover index. Even though there exist many
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evidence that the volatility of assets has a close relationship, conventional

volatility prediction models cannot directly reflect the measured relationship

because of their AR-based structure. We utilized the spatial-temporal graph

neural network that can take pre-defined relations as input for volatility predic-

tion of global market indices’ volatility. We estimated the relationship between

volatility by the pairwise volatility spillover index. The empirical results show

that the proposed model outperforms benchmark models in short- and mid-

term forecasting. In addition, a market with a high spillover effect on other

markets can highly help making a prediction on other markets.

3. We proposed the neural network-based asset pricing model that allows time-

varying volatility. To relax the time-unvarying volatility constraint of conven-

tional factor models, we proposed the model that predicts the time-varying

realized volatility using LSTM and constructed the training loss as the mean

square error between true and estimated excess return divided by predicted

volatility. The asset pricing part of the proposed model is constructed as the

graph-based multi-factor model to reflect the connected structure of assets.

The empirical result on U.S individual stocks shows that the statistical per-

formance of the proposed model highly increases in a low volatility period and

constructed factors can estimate efficient stochastic discount factor.

4. We investigated the common factor that connected assets in the cryptocur-

rency market can have. Ethereum-based tokens can be clearly identified as

connected assets since they exist and be traded on the same blockchain. We

showed that the Ethereum gas price, which is the transaction cost on the
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Ethereum blockchain, Granger-causes the Ethereum and ERC-20 tokens re-

turns after the EIP-1559 adoption, where EIP-1559 is the protocol that aims to

make the gas price more structured and predictable. Furthermore, we showed

that after EIP-1559, Ethereum gas return can act as a factor of the two-factor

model with the market return.

6.2 Future Work

This dissertation constructed an asset pricing model that reflects the graph struc-

ture of assets, but it leaves additional research challenges in the estimation of the

graph structure of assets. In this dissertation, we used Pearson correlation coeffi-

cients and volatility spillover index as the estimation for the adjacency matrix of

the graph consisting of assets. The used methods are based on return or volatility,

which are both primarily derived from the asset price. However, considering that

various firm characteristics are used when constructing an asset pricing model to

explain asset returns, there is ample room for additional use of firm characteristics

other than price when configuring the graph of assets. The extended research topic

can consider the more complex model for graph estimation using multi-dimensional

variables. Moreover, deep learning can be used for graph estimation based on the

asset pricing model. Kipf et al. (2018) showed the possibility of inferring the graph

from the interactive data using a graph neural network. Therefore, assuming that

asset returns are data that fully reflect dynamics between them, the development of

the model in the form of an autoencoder that estimates graph structure with sep-

arate graph neural networks and then estimates it through graph neural networks

for asset pricing will also have great value as a future research topic.
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국문초록

금융 자산은 언제나 리스크에 노출되어 있다. 이 리스크의 크기와, 각 자산이 리스크에

대해 얼마나 보상받는 지를 정확히 측정하는 것은 자산의 특성을 이해하는 데 중요

한 문제이다. 자산가격결정모형 (asset pricing model)은 자산의 리스크와 그 보상을

통해서 금융자산의 수익률을 설명하려 하는 모형이다.본 연구에서는 여러 자산가격결

정모형의 형태 중 팩터 모델에 집중하였다. 팩터 모델은 초과 수익률을 팩터와 베타로

분리해서설명하는모델이다.전통적인팩터모델들은거시금융변수나기업변수등을

통하여 팩터와 베타를 추정하는데, 이 때 자산 간의 연결관계를 고려하는 연구는 많이

진행되지 않았다. 금융 자산들은 서로 영향을 주는 관계에 있기 때문에 각각의 수익률

또한 개별적이 아니라 자산 간의 그래프 구조를 고려하며 동시에 평가되어야 한다.

본 논문은 팩터 모델에 자산 간의 연결 구조를 반영하기 위한 인공지능 기반 실증적

자산가격결정모형을 제안한다. 이를 위해 먼저 그래프 인공신경망 (GNN)을 바탕으로

한 멀티 팩터 모델을 개발하였다. 이 때 모델의 구조를 결정하는 것 만큼이나 중요한

것은자산간그래프구조를어떻게정의할것인가라는문제이다. GNN은그입력변수

로서 잘 정의된 그래프 구조를 요구하지만 자산 간의 연결 구조는 명확하게 정의되지

않았기 때문에, 본 연구에서는 자산 간의 연결성을 피어슨 상관계수를 이용하여 추정

하고 이를 특정 임계값을 통해 0과 1로 이진화 시키는 방식을 사용했다. 제안한 모델의

구조는 베타를 추정하는 부분과 팩터를 추정하는 부분으로 나뉘어지는데, 각각 기업

변수와, 수익률을 이용해서 추정한다. 1957년부터 미국에 상장된 주식들을 대상으로

한 실증 실험 결과, 제안한 모델은 설명력과 예측 성능 측면에서 벤치마크 모델들보다

우수한 성능을 보였다. 또한 통계적 성능 이외에도 팩터의 경제적 의미를 측정하는 면

에서, 제안한 모델로부터 추정한 팩터가 가장 효율적인 확률적 할인요소 (stochastic
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discount factor)를 추정할 수 있다는 점 역시 확인하였다.

자산가격결정모형의 가장 중요한 목적은 수익률이지만, 변동성 또한 금융 자산의

움직임을 설명하는 데 중요한 성질이다.많은 사전 연구에서 밝혀졌듯 수익률과 변동성

사이에는 상관관계가존재하기 때문에 변동성은 수익률을 설명하는 요인이 될 수 있다.

자산가격결정모형에서와 마찬가지로 자산들 간의 연결 구조를 고려하는 것은 변동성

예측에서도 성능 향상에 큰 영향을 미칠 수 있다. 변동성 분석에서는 여러 자산의 변동

성이 서로 영향을 미치는 것을 스필오버 (spillover)라 부른다. 본 논문에서는 스필오버

효과를 직접적으로 반영하는 변동성 예측 모델을 개발하였다. 제안한 모델은 변동성의

측면에서 자산 간 연결 구조를 변동성 스필오버 지수로 구성한 인접행렬로 정의하며,

모델의 구조로는 시공간적 그래프 인공신경망 (spatial-temporal GNN)를 사용하였다.

글로벌 시장 지수들에 대한 실증 실험을 통해서 제안한 모델은 단기와 중기 변동성

예측에서 벤치마크 모델에 비해 가장 좋은 예측 성능을 보이고, 다른 시장에 큰 영향을

주는 시장을 이용하여 다른 시장에 대한 예측 성능을 크게 높일 수 있음을 보였다.

자산가격결정모형에 변동성을 직접적으로 반영하기 위해서는 모형 내에서 변동성

이 어떻게 정의되는가를 먼저 살펴보아야 한다. 변동성은 자산가격결정모형 내에서

잔차의 표준편차로 해석할 수 있다. 그러나 시계열 기반 방법론을 사용하여 추정하는

기존의 자산가격결정모형은 시간에 따라 불변하는 변동성을 가정한다. 본 논문에서는

시간에 따라 변하는 변동성을 예측 모델을 이용하여 추정하고, 이를 팩터 모델의 손실

함수에 정규화로 사용함으로써 시간에 따라 변화하는 변동성의 특성을 반영하는 팩터

모델을 제안하였다. 미국 상장 주식에 대한 실증 실험 결과 제안한 모델은 시간 불변

변동성 조건을 완화하지 않은 모델에 비해 변동서이 낮은 시기에서 통계적 성능이 큰

폭으로 상승함을 확인하였다.

현재 무시할 수 없는 규모로 성장한 가상화폐 시장에는 구조적으로 확실하게 연

결된 자산이 존재한다. 같은 블록체인 상에 존재하는 토큰들은 해당 블록체인 위에서
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발행되고거래되므로 네트워크 구조 상으로 연결성을 지닌다.본 연구에서는 앞서 진행

된 연구에 대한 응용으로, 명확히 구조적으로 연결된 자산들이 초과 수익률을 설명할

수 있는 측정 가능한 공통된 팩터를 가짐을 보이고자 했다. 연구의 대상을 이더리움

블록체인 상의 토큰들로 제한하여 실증 실험을 진행한 결과, EIP-1559 적용 이후에

이더리움가스수익률이시장수익률과함께토큰의수익률을설명할수있는팩터로서

작용함을 보였다. 또한, 이더리움 가스 수익률은 토큰의 변동성에 영향을 주는 요소로,

토큰 변동성 예측에도 도움을 줄 수 있는 요소임을 스필오버 기반 변동성 예측 모델을

통해 확인하였다.

본 논문은 자산 간의 연결성을 고려한 자산가격결정모형을 구성하였으며, 이를 통

해서 금융 자산들이 갖는 그래프 구조가 실질적으로 수익률에 영향을 미침을 확인할

수 있다. 이 연구결과는 향후 새로운 금융 시장에 대해서도 적용 가능한 확장성 있는

모델이며,금융자산의 평가에 있어여러 자산을 동시에 상관관계를 고려하며 평가해야

한다는 함의점을 제공하고 있다.

주요어: 자산가격결정모형, 변동성 예측, 그래프 인공신경망

학번: 2017-27701
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