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Abstract

Graph-based Empirical Asset Pricing :
Impact of Network Connectedness

Bumho Son
Department of Industrial Engineering

The Graduate School

Seoul National University

Financial assets are always exposed to risks. It is important to evaluate the risk
properly and figure out how much each asset is compensated for its risk. Asset pric-
ing model explains the behavior of financial asset return by evaluating the risk and
risk exposure of asset return. We focused on factor model structure among asset
pricing models, which explains excess return through factor and beta coefficients.
While conventional factor models estimate factor or beta through various macroe-
conomic variables or firm-specific variables, there exist fewer studies considering the
connectedness between assets. Since financial assets have connected dynamics, asset
returns should be priced simultaneously considering the graph structure of assets.
In this dissertation, we proposed the Al-based empirical asset pricing model to
reflect the connected structure between assets in the factor model. We first proposed
the graph neural network-based multi-factor asset pricing model. As important as
the structure of the model in constructing an asset pricing model that reflects the

structure of the connection between assets is, how to define the connectivity. Graph



neural network requires a well-defined graph structure. We defined the connected-
ness between assets as the binary converted Pearson correlation coefficients of asset
returns by the cutoff value. The proposed model consists of a beta estimation part
and a factor estimation part, where each part is estimated with firm characteris-
tics and excess returns, respectively. The empirical analysis of U.S equities reveals
that the proposed model has more explanatory power and prediction ability than
benchmark models. In addition, the most efficient stochastic discount factor can be
estimated from the estimated factors.

While return is the main object of asset pricing, volatility is also important prop-
erty for explaining the behavior of financial assets. Volatility can be the factor in
explaining return since many studies point out that return and volatility are corre-
lated. As with the asset pricing model, considering the connected structure between
assets in volatility prediction can be of great help in explaining the dynamics of
assets. In the volatility analysis, what affects between volatility is called spillover.
In this aspect, we proposed the volatility prediction model that can directly reflect
this spillover effect. We estimated the graph structure between asset volatility using
the volatility spillover index and utilized the spatial-temporal graph neural network
structure for model construction. From the empirical analysis of global market in-
dices, we confirm that the proposed model shows the best performance in short- and
mid-term volatility forecasting.

To include volatility in the asset pricing discussion, it is necessary to focus on how
volatility is defined in the asset pricing model. In the asset pricing model, volatility
can be interpreted as the variance of the residual of the model. However, asset

pricing models with time-series estimation mostly have time-unvarying volatility
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constraints. We constructed an asset pricing model with time-varying volatility by
estimating variability using the prediction model and reflecting it in the training loss
of the asset pricing model. We identify that the proposed model can improve the
statistical performance during the low volatility period through an empirical study
of U.S equities.

Currently, there are clearly structurally connected assets in the cryptocurrency
market, which has grown to a scale that cannot be ignored. All of the same blockchain-
based tokens are issued and traded on that blockchain, so they have strong structural
connectivity. We tried to identify that an observable factor for explaining excess re-
turn exists in such connected tokens as an application of previous studies. We limited
the analysis target to Ethereum-based tokens and showed that the Ethereum gas
price became a factor for the macroeconomic factor model after the application
of EIP-1559. Furthermore, we applied the volatility spillover index-based volatility
prediction model using gas return and showed that gas return can increase the pre-

diction performance of certain tokens’ volatility.

Keywords: Asset pricing, Volatility prediction, Graph neural network

Student Number: 2017-27701
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Chapter 1

Introduction

1.1 Motivation of the Dissertation

Financial markets around the world have experienced several financial crises in the
past century. There was great repression of the 1930s in the distance, and great
repression of 2007-2010 from subprime mortgages can be found nearby. In particular,
the Great Recession began with the bankruptcy of leading financial companies such
as Bear Steans, Lehman, and AIG, causing a worldwide stock price plunge, and it
took more than three years to recover. The fact that the stock market is exposed to
risks easily like this suggests that we should be able to properly evaluate and manage
the risk of stocks. Institutions and individuals must be able to correctly determine
what the return on individual stocks is determined by and how the factors that
determine the return relate to each other to form a risk-management portfolio.

In this aspect, explaining the behavior of financial assets is one of the main goals
of financial asset management. Especially, the approaches that try to explain the
behavior of return of financial assets is called asset pricing problem. This makes
it possible to evaluate how much an asset is exposed to risk and how valuable the
exposure is. In modern portfolio theory Markowitz (1952)), Markowitz argued that

firm risk is divided into systemic risk and idiosyncratic risk. The former is the risk



dependent on the market to which the firm belongs, and the latter is the risk that
the firm has uniquely regardless of the market. Systematic risk can be removed by
constructing a portfolio to gain a diversification effect. However, the idiosyncratic
risk still remains after constructing the portfolio.

Various studies of asset pricing have been done to explain the idiosyncratic risk.
The beginning of the asset pricing study can be seen as the capital asset pricing
model (CAPM) proposed by [Sharpe, (1964) and Lintner| (1965). CAPM claimed
that the pricing of firm return is determined by beta coefficient and market excess
return, where beta coefficient denotes the idiosyncratic risk. The beta coefficient is
also known as risk exposure. This implies that the excess return of a firm is given
as compensation for the risk of the firm.

Although CAPM proposed a method of structurally interpreting an excess return
of a firm, studies to establish an empirically more accurate model continued. Among
various literature, we concentrate on factor models. The factor model clarifies the
factor that explains excess return. In the case of CAPM, it can be also seen as the
factor model with one factor, the market excess return. Research trends on factor
models can be classified into three categories: macroeconomic factor model, funda-
mental factor model, and latent factor model. The macroeconomic factor model uses
macroeconomic variables as factors. CAPM is also part of the macroeconomic factor
model because it uses a macroeconomic feature, market excess return. [Chen et al.
(1986) proposed a macroeconomic multi-factor model. They showed that unexpected
changes in macroeconomic variables such as industrial production and inflation have
an exogenous influence on asset return.

The most important factor in the construction of the macroeconomic factor
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model is which macro variable to choose. It is important to select macroeconomic
variables containing the unique characteristics of a market as factors for a macroeco-
nomic factor model targeting assets in a certain market. For instance, oil prices play
an important factor in the asset pricing of stocks in the oil refining industry sector,
but oil prices may not have a significant impact on stocks in the banking sector
that does not deal with consumer goods. Therefore, when evaluating an asset, it is
possible to identify which connected network the asset belongs to, such as a sector
in the case of stock, and to construct a macroeconomic factor model by selecting
the macroeconomic variable corresponding to that network.

In recent years, the size of the digital asset market, including cryptocurrency, has
grown so fast that the evaluation of digital assets has also emerged as one of the im-
portant research topics. Asset pricing models that use factors such as mining cost and
reward have been developed to reflect the unique characteristics of cryptocurrency
based on blockchain. However, these studies are attempts to judge cryptocurrency
as a unified market without classifying it. In fact, multiple cryptocurrencies can be
issued on a single chain, so it is reasonable to assume that each chain to which it
belongs has network connectedness. Therefore, assets belonging to a single layer one
blockchain, such as Ethereum-based tokens, can have a good explanatory power to
construct a macroeconomic factor model using the unique properties of the network
to which they belong as macroeconomic variables.

Unlike the macroeconomic factor model, which considers all firms to be affected
by the same variable, the fundamental factor model is a model in which each firm
considers its unique characteristic as a factor. |Fama and French| (1992)) identified

that the market excess return, the excess return of firms with smaller market capi-



talization versus large firms (Small minus big; SMB), and the spread between value
stocks and growth stocks (High minus low; HML) are the three factors that explain
the excess return of individual firms. While macroeconomic factor models use lin-
ear regression to estimate risk exposure to factors, Fama and French| (1992) uses a
two-step procedure consisting of cross-sectional analysis and time-series regression.
First, they sort firms based on firm characteristics and construct long-short port-
folio which takes a long position on the top quantile and takes a short position on
the low quantile. The return of the long-short portfolio becomes factor. Second, the
time-series regression is done based on the constructed factor and estimates risk ex-
posure. Starting with the Fama-French three-factor model, there are parts where the
model does not fully explain access return, and many studies have been proposed to
present additional factors to explain this. |Carhart| (1997) proposed the four-factor
model, which shows that the momentum factor explains the excess return that is
not fully explained by the Fama-French three-factor model. Furthermore, [Fama and
French (2015) suggested additionally using robust minus weak (RMW) and conser-
vative minus aggressive (CMA) factors to the Fama-French three-factor model and
thus proposed the five-factor model.

The macroeconomic factor model and fundamental factor model both consti-
tute factors with variables that are observable while the latent factor model aims to
build an unobserved latent factor from the observed data. Unlike fundamental factor
models, which usually have no more than six factors, latent factor models have the
advantage of being able to utilize a larger number of observable variables to make
them a smaller number of latent factors. In other words, for a latent factor model,

projecting high-dimensional observable variables into a low-dimensional latent fac-



tor while maintaining as many variations as possible in the covariance matrix of

the dataset is a problem to be solved. Connor and Korajczyk| (1986 and |Connor|

and Korajczyk| (1988) developed asymptotic principal component analysis (APCA).

APCA estimates n latent factors as the first n eigenvectors of the covariance matrix
of asset return.
In recent years, there have been many related studies of latent factor model re-

search that certain firm characteristics have the explanatory power to explain risk

exposure, which can explain access return. Kelly et al.| (2019)) showed empirical evi-

dence that asset characteristics (also called anomalies) can estimate the time-varying

risk exposure. The asset pricing model, instrumented PCA (IPCA), proposed by

Kelly et al. (2019) assumes that risk exposure beta can be estimated as the linear

function of firm characteristics. However, many theoretical studies (e.g. |Campbell

iand Cochrane| (1999)), Bansal and Yaron| (2004)) claim that risk exposure can have a

nonlinear complex structure of firm characteristics. To overcome the linear structure

limitation, Gu et al.| (2020a)) introduced autoencoder formation that allows nonlin-

earity of risk exposure by using a nonlinear activation function in neural network

structure. The authors of |Gu et al.| (2020al) generalized the PCA method often used

for asset pricing by deep learning-based autoencoder because PCA is theoretically

same with one layer autoencoder.

Even though |Gu et al. (2020a)) adopted a neural network for the asset pricing

model, there exist only a few numbers of asset pricing studies based on deep learning.
However, considering the characteristics of the latent factor model, the latent factor
model has a curse of dimensionality problem because it deals with high-dimension

features, and the neural network is an effective way to solve this problem (Bengio
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et al. (2006)), Eoggio et al| (2017)), so further research needs to be done. As far

as we know, (Chen et al.| (2019), |[Feng et al| (2020), and |Gu et al| (2020a) are the

only attempts to use neural networks as the estimation function for the asset pricing
model. All of the above studies have a problem that the relationship between assets
cannot be considered in the model since the propagation rule of basic neural network

structure only supports column-wise or row-wise calculation. Since

Walden| (2011) and Herskovic| (2018) have shown empirically that excess return of

firms exchange relationships with each other, identifying the connection relationship
between assets can help improve the performance of the asset pricing model.

Deep learning technology has developed various models that fit the characteris-
tics of each domain, such as convolution neural network (CNN) in the image recog-

nition field and recurrent neural network (RNN) in the NLP field. To handle data

that each component has a relational structure, Kipf and Welling| (2016]) proposed

the graph convolution network (GCN). GCN takes the adjacency matrix of graph-

structured data as input and produces linked output considering the multi-step

linkage between data components. While [Kipf and Welling] (2016) used citation data

with a clear graph structure because the linkage between papers can be defined as

quotation status, GCN can be applied to data with no pre-defined graphical struc-

ture. |Cai et al| (2019) and Doosti et al.| (2020) estimated the adjacency matrix of

objects from the data and utilized it as the input of GCN. Therefore, the asset re-
turn data also does not have a clearly pre-defined relation, but GCN can be applied
if the adjacency matrix is estimated in an appropriate way.

While asset pricing studies mostly concentrate on asset return itself, volatility

is also the feature to be considered. Many researches as (2017); Berument and|
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T)ogan (2011)) and |Li (2011]) showed that there exists a negative relationship between

return and volatility. Therefore, volatility can be a useful factor that explains excess

return. In this perspective, Herskovic et al.| (2016) pointed out that shocks to the

common idiosyncratic volatility high affect asset return. However, the limitation is
that it uses historical volatility to construct factors. Considering the time-varying

property of volatility, using predicted future volatility to explain future return can

have more explanatory power. (Engle III and Ng| (1991))).

Volatility prediction is being actively conducted in the field of time-series analy-
sis. One of the biggest features of volatility research is that it should start with how
to define volatility. Volatility is considered as the latent feature of asset return. The
generalized autoregressive conditional heteroskedasticity (GARCH) model, proposed
by , defined volatility as a hidden process embedded in the residual term
of the autoregressive (AR) model for asset return. GARCH-based models as expo-

nential GARCH and integrated GARCH predict daily volatility effectively (Nelson

(1991)); [Engle and Bollerslev| (1986). Numerous estimation methods for latent volatil-

ity have been proposed alongside GARCH volatility, as well as stochastic volatility

(SV) and exponentially weighted moving average (EWMA) (see (2008) and

(199).
However, Bollerslev| (1987); Malmsten et al.| (2010) and |Carnero et al.| (2004)

pointed out that latent factors cannot capture decreasing autocorrelations in the
squared returns, which is one of the important dynamics of return. Misunderstand-

ing return dynamics can lead to the inadequate prediction of volatility. In this sense,

'‘Andersen and Bollerslev| (1998) introduced the concept of observable realized volatil-

ity. While GARCH volatility is estimated by the AR model, the realized volatility is
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directly calculated by the squared sum of returns. Theoretical results from Barndorfl

NNielsen and Shephard| (2002); |Andersen et al. (2003]) and Meddahi| (2002) claim that

observable volatility allows better prediction performance of volatility than latent
volatility in high-frequency return data. To predict observable realized volatility
(RV), proposed the heterogeneous autoregressive model for realized
volatility (HAR-RV). HAR-RV has a formulation of AR model with daily lagged
RV, weekly averaged lagged RV, and monthly averaged lagged RV as independent

variables. Empirical prediction results of HAR-RV type models proposed by

and Ghysels (2011) and Patton and Sheppard| (2015) showed good performance on

global stock markets.
In volatility prediction, it is important to consider the connection relationship
between assets as in asset pricing. The connection relationship between volatility is

expressed as spillover, which indicates the effect of the impact on the volatility of

other markets when an impact is applied to each market. Karolyi| (2001) and Diebold|

and Yilmaz| (2009) reported that there both exists a volatility spillover effect in indi-

vidual stocks and global stock markets. Liang et al,| (2020) and Wilms et al.| (2021))

showed that the volatility spillover effect also affects volatility prediction. Attempts
to utilize the volatility spillover effect for realized volatility prediction mainly at-

tempted to extend the HAR-RV model to a multivariate structure, as shown in

Bubak et al.| (2011) and |Degiannakis et al. (2018). The limitation of these models

is that they do not use well pre-defined volatility spillover. Although the multivari-
ate model reflects the spillover effect in that it also uses the volatility of another

asset when predicting the volatility of one asset, it does not reflect its exact degree.

Diebold and Yilmaz (2009) and Diebold and Yilmaz| (2012) measured the volatil-
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ity spillover based on the error decomposition of the vector autoregressive model
and defined the volatility spillover index. Therefore, employing well-defined volatil-
ity spillover index for volatility prediction have the potential to improve prediction
performance.

The mixture of asset pricing and volatility prediction begins with considering the
role of volatility in the asset pricing model. While traditional asset pricing models
such as CAPM and Fama-French factor models assume constant volatility of model
since they use linear regression for model parameter estimation, empirical evidence
shows that volatility varies over time (see Justiniano and Primiceri (2008]); Lee and
Ohk| (1992)); Lewis (2021))). Kim and Kim (2016) proposed CAPM with a time-
varying volatility framework to overcome this limitation, but it models volatility as
latent volatility. Utilizing time-varying realized volatility for asset pricing model can
guarantee better volatility prediction accuracy and thus more accurate asset pricing
on return.

In this dissertation, we first focus on developing a deep learning-based asset
pricing model that captures connectedness between assets. This study explores how
the relationship between assets can be estimated and how the relationship can be
reflected in the model structure. Next, we developed a volatility prediction method
to explore return dynamics by considering the volatility spillover effect. Based on the
previously proposed models, we proposed a deep learning-based asset pricing model
with time-varying volatility prediction. Finally, we identified the macroeconomics

factor for connected assets in the cryptocurrency market as an application.



1.2 Aims of the Dissertation

This thesis aims to develop an Al-based asset pricing model reflecting the network
connectedness of assets. We first suggest a graph convolutional network-based asset
pricing model that reflects the graphical relationship between assets. After develop-
ing the graph-based multi-factor asset pricing model, this thesis focuses on realized
volatility prediction that contains volatility spillover effect. Then, we utilized the
proposed methods to develop an asset pricing model with network connectedness
and time-varying realized volatility. Finally, we showed that the connected assets in
the cryptocurrency market have a common macroeconomic factor of gas fee as an
application in the cryptocurrency market. The detailed summaries of this thesis are

presented as follows:

Graph-based multi-factor asset pricing model (Chapter In this chapter,
we propose the graph-based multi-factor asset pricing model to make asset pricing
model reflect the connectedness between assets. We estimate the network structure
of assets by the Pearson correlation coefficients of asset returns and cutoff value for
binary classification. Estimated adjacency matrix of assets is used as the input of
proposed graph convolutional network-based asset pricing model. Subsequently, we
propose the forward stagewise adaptive factor constructing algorithm for sequential
factor modelling. We performed experiments on individual U.S. equities. The results
demonstrate that our proposed method outperforms benchmark models in terms of

explanatory power, prediction power, and Sharpe ratio of factor portfolio.
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Volatility prediction with volatility spillover index (Chapter Consid-
ering the volatility spillover effect in multivariate volatility forecasting is widely
known to improve the prediction performance as it reflects the linkages between asset
volatility. In this chapter, we propose a method that uses the volatility spillover in-
dex to construct a graph between global market indices and apply the graph directly
through the spatial-temporal graph neural network model. An empirical analysis is
conducted on eight representative global market indices. From the out-of-sample
results, we found the following features. First, the proposed spatial-temporal GNN
spillover model outperforms the benchmark models in short- and mid-term forecast-
ing. Second, the forecasting accuracy highly depends on the inclusion of the market
index with a high volatility spillover effect. Including SPX, which contains the high-
est net spillover index, effectively helps to forecast the volatility of other markets.
Third, setting the mid-term KPPS step for constructing the graph performs the
best for mid- and long-term forecasting tasks because the volatility spillover effect

persists up to the mid-term.

Graph-based multi-factor model with time-varying volatility (Chapter [4))
Allowing factor model to have time-varying volatility can improve the conformity to
the real data of the model. In this chapter, we propose the graph-based multi-factor
asset pricing model with the relaxation of the fixed volatility constraint. Realized
volatility estimation is used for time-varying volatility prediction and worked as a
regularization term of the training loss. The empirical analysis result on U.S indi-
vidual stocks shows that the proposed model has a large increase in explanation and

prediction power during the low volatility period. Furthermore, the proposed model
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estimates factors that can construct the most efficient stochastic discount factor
among benchmark models, which can be confirmed as the Sharpe ratio of tangency

factor portfolios.

Macroeconomic factor model and spillover-based volatility prediction for
ERC-20 tokens (Chapter In this chapter, we extend the literature on iden-
tifying internal factors in cryptocurrencies by demonstrating that Ethereum-based
token prices have a relationship with Ethereum gas prices. We applied the volatility
prediction model with a volatility spillover index based on the identified relationship
between tokens’ volatility and gas return. Based on the relationship analysis, we con-
structed the macroeconomic two-factor model of market return and Ethereum gas
return. An empirical analysis was performed using daily data from Ethereum, five
ERC-20 tokens, and seven ERC-721 tokens. The results are shown in two periods
divided by EIP-1559. The empirical results highlight the following features: First,
the gas returns and the Ethereum returns and volatility are strongly correlated;
Second, Ethereum and ERC-20 tokens’ returns Granger-causes gas returns in the
pre-EIP-1559 period, whereas gas returns have a causal effect on ERC-20 tokens’
returns in the post-EIP-1559 period; Third, Ethereum volatility is the only asset
volatility with predictive power for gas returns over the entire period; Fourth, the
ERC-721 tokens did not show any constant pattern in their influence on the gas
returns; and finally, the constructed two-factor model reveals that the EIP-1559 has
made Ethereum gas price as the consistent factor for connected assets on Ethereum

blockchain.
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1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In chapter [2| we pro-
pose a graph-based multi-factor asset pricing model that reflects the graph struc-
ture of asset return. In chapter [3, we propose a volatility prediction model using a
spatial-temporal graph neural network and volatility spillover index. In chapter [4]
we propose a multi-factor model with time-varying volatility. Chapter [5] investigates
the existence of observable factors for connected tokens in the cryptocurrency mar-
ket as an application of research from previous chapters. Chapter [6] concludes the

dissertation along with the contribution and future plan of the research.
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Chapter 2

Graph-based multi-factor asset pricing model

2.1 Chapter Overview

“What determines the excess return of assets?” is a long-standing problem. Asset
pricing models try to explain why different assets have different expected returns.
Fama and French| (2015)) claim that firm characteristics such as market excess return,
size and B/E ratio can explain expected asset returns proposing a three-factor model.
Sanusi and Ahmad (2016) provide empirical evidence of a multi-factor model for
stocks in specific sectors and research on the magnitude of each factor in the model
was also conducted by Bank and Insam (2019). In addition to the study of observable
factor models, study of latent factor models has also been conducted (Chamberlain
and Rothschild (1982) and |Connor and Korajczykl (1988))). Kelly et al.| (2019)) and
Gu et al.| (2020a)) showed that firm characteristics affect risk exposure rather than
risk factors.

Finding out the exact function to estimate risk exposure from firm characteristics
is a difficult issue to solve using conventional asset pricing models, because observable
firm characteristics have very high dimensions. Deep neural networks are known to
perform well on similar tasks that deal with high-dimensional data (Goodfellow et al.,

2016)). Therefore, studies such as |Gu et al.| (2020a) and |Chen et al. (2019)) have tried
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to adopt a deep learning approach to estimate excess returns from high-dimension
asset characteristics.

However, deep-learning-based studies have thus far had two problems. First, the
connectedness between firms is not reflected in the previously proposed models.
Ozsoylev and Walden| (2011) and |[Herskovic| (2018) showed that the excess return
of an individual firm is affected by those of other firms connected to it, and some
asset pricing factors can be determined by the network structure of assets. However,
recent deep-learning-based approaches, like those in |Gu et al. (2020a) and Feng
et al. (2020), have used an architecture in which different firms do not affect each
other during layer-wise propagation. Second, as the number of factors increases, the
influence of the added factors cannot be accurately measured, because the (K + 1)-
factor model does not inherit the factors of the K-factor model. Because existing
deep-learning-based models start learning from a new initialization point each time,
they cannot remember the factors from the previous model. Research on observable
factor models has been conducted by adding a new factor to the existing model and
checking whether it has explanatory power. For example, |Carhart| (1997) added the
momentum factor to |[Fama and French (1992)’s three-factor model and determined
whether the added factor explained the part of the data that the existing factors
could not explain, as regards expected returns. In research on the statistical latent
factor model, PCA-based models such as |Lettau and Pelger| (2020b)) and Kelly et al.
(2019) have performed empirical analysis by adding factors starting with a one-factor
model to find the sufficient number of factors. This makes it difficult to compare an
observable factor model or PCA-based latent factor models with a deep-learning-

based latent factor model according to the number of factors on the same line.
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In this chapter, we estimated the multi-factor asset pricing model of individ-
ual US equities using firm-specific information and deep learning architecture. Our
contribution is two-fold. First, to reflect the connectedness between asset returns
for risk exposure estimation, we used a graph convolutional network (GCN), which
takes into account the graph structure between firms, rather than a simple neural
network. We also presented a way to construct a graph of firms that fits our goal, as-
set pricing, using the correlation of returns. Second, we proposed a forward stagewise
modeling architecture that sequentially adds latent factors to inherit factors from
the latent factor model of the previous step, such as an observable factor model or
PCA-based latent factor model. Moreover, we can accurately evaluate the value of a
newly added factor as the increase in the model’s explanatory power and prediction
performance while increasing the number of factors because the (K +1)-factor model
and the K-factor model share the same K factors.

Empirically, we conducted an analysis of 119 individual U.S. equities. In the out-
of-sample analysis, our proposed graph factor model shows 29% explanatory power
and 5.7% prediction R?, and thus outperforms every other benchmark model. In
terms of economic implications, we showed that our proposed model achieves the
highest Sharpe ratio of the tangency factor portfolio.

This chapter is organized as follows: Section describes background of our pro-
posed model. In Section [2.3] we represent our proposed model. Section presents
the data for the empirical analysis, benchmark models, and the empirical results.

Finally, Section [2.5| explains the corresponding discussion.
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2.2 Preliminaries
2.2.1 Graph Neural Network

Lots of variations of artificial neural network, such as convolutional neural network
and recurrent neural network, have been proposed for different purposes. However,
most of those approaches are not specialized to deal with graph data, where nodes
and their edges contain features and certain relationship information between nodes.

Proposed by |Scarselli et al. (2008), the graph neural network (GNN) applies
neural networks in graph data that is cyclic, directed, or undirected, such as social
links and citation networks. Its framework attaches a state at each node based on
its features, neighborhood information, and relationships with its neighbors. Node
states x,, are calculated through function f,, with neighbor states and labels of

nodes, edges, and neighbors, each denoted as ¢, ln, leofn]s Inefn]-

Tp = fw (lna lco[n] s Lneln] lne[n]) (21>

Node representations are iteratively propagated by contraction maps until they reach
a stable fixed point. |Khamsi and Kirk! (2011 supported the existence and uniqueness
of convergence using Banach’s fixed-point theorem.

Node states are used to compute their outputs, and the cost function can be set

by the difference between their outputs and real outputs.

ey

i=1 j

(tij — dw(Giy i) (2.2)

q
=1

The gradient-descent algorithm is then applied to update the weights until the state
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converges.

2.2.2 Graph Convolutional Network

GNN was later developed to apply the concepts of convolution in graph data by
stacking multiple graph convolutional layers to extract node representations, which
is known as GCN. GCN is based on the first order approximation of spectral graph

convolution. Spectral convolutions on graph is defined as follows:
goxx=UggUTx (2.3)

where gy denotes filter, U denotes eigenvector matrix of the normalized graph Lapla-
cian, and « is the signal. Since gg can be approximated by a Chebyshev polynomials,

Equation [2.3] can be written in K-th order Chebyshev polynomials formulation:
K ~
goxx~ Y O Ti(L)x (2.4)
k=0

where T}, is k-th order Chebyshev polynomial, A = ﬁ/\ — Iy, A is a diagonal
matrix with eigenvalues of L, and A4, is the largest eigenvalue of L. By assuming

Amaz =~ 2 and k = 1, Equation becomes as follows:

go*x ~ Oyx + 01 (L — IN)z
— Oz — 0D 2AD 2z (2.5)

—0(Iy+ D 2AD %)z

where 0 = 0, — 6.
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Then, the layer-wise propagation rule of GCN for graph G with corresponding

adjacency matrix A is derived from Equation [2.5] as follows:
H = ¢ (D*%AD*%HUZ)W“)) (2.6)

Here, H ) and W are the matrix of hidden state and trainable weight in the ¢t}
layer, respectively. A = A + I is the self-connection-added adjacency matrix, and
[),-Z- => y /L-j is the normalization matrix of A. ¢ is an activation function, such as

sigmoid, ReLU, or tanh.

2.3 Methodology

2.3.1 Multi-factor asset pricing model

It is well-known (Back| (2010)) that under the no arbitrage assumption, a stochastic

discount factor (SDF) satisfying the unconditional asset pricing equation exists:

R;
Eimep1Rigr1] =0 & Ei[R;p41] = covilimnt, Ri) <_ Vart(mtﬂ)) , o (2.7)

varg (m¢1) E¢[m11]

where R; ;41 denotes the excess return of asset ¢ at time ¢ + 1, orthogonal to the

_varelmiry) §o the

R; T
SDF, myy1. Bigx = cove(mer,Rier1) implies risk exposure, and \ = o]

vare(me4+1)
price of risk.
Given random variable F', the orthogonal projection of R; ;1 on the span of F

and constant is:

Ee[Rit41] + Bi(Fir — Ee[Frpa]) (2.8)

where §;; = Z}_«}il Cov(Ft, R;t+1). The existence of factor model with factor F is
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equivalent as the existence of A;y1 such that,
Et[Ris41] = M1 Bi. (2.9)

We can find that the formulation of Equation 2.7] and Equation [2.9] derive the same
result. If there is a factor model with factor F, the affine function of the factor F'

becomes an SDF. It leads to the following multi-factor model:

Riji1 = @T,tFtH + €itt1, (2.10)

where 8;; € REXY, Fiiq € REX1 €401 € R and Eyle;111] = Eies p41Fi1] = 0.
Recent literature, like|Gu et al.| (2020al); Feng et al.| (2020) and Kelly et al.| (2019),
has tried to estimate 8 or F' using firm characteristics Z. In this chapter, we follow

this trend and use Z to estimate the risk exposure .

Ripr1 = B(Zit) Frra (2.11)

In this form, 5 becomes the embedding function of firm characteristics Z; ; € REX1
We expand Eq. (2.11)) to make function 5 conditioned by the characteristics of

firms related to firm <.

Rigsr=B(Zji 4o Zji 1) Fra, (2.12)

where firms ji, ..., j% are the firms that have a relationship with firm i. If we consider
the relation of firms as graph G with adjacency matrix A, where nodes are firms and

edges mean the connected nodes have a relationship, Eq. (2.12)) can be expressed as

20
I

A 2-t}] &

11’



follows:

Riy1 = B(Z, A)Fyia, (2.13)

where Ry11 = (Rit41, -, By +1)T € RV*L B(Z, A) € RV*E whose i-th row vector

is IB(ij,tv N ijl,t)/'
2.3.2 Proposed method

The purpose of this chapter is to estimate the time-varying risk exposure from firm
characteristics and connectivity between firms. To develop a deep-learning-based
model for Eq. , we constructed a graph factor model (GF) consisting of two
parts: a risk exposure model and a factor model similar to |Gu et al.| (2020al).
Figure shows the architecture of our proposed model. We considered the GCN
to estimate the risk exposure function S and set factors as a linear combination of
excess returns using a single-layer neural network. The mathematical representation

of the layer-wise risk exposure model is as follows:

HO" =7, ,
HO = ¢(D 2 AD 2 HDWED) =1, Ly (2.14)
B, , = Hs)

Notations here are the same as those in chapter ¢ can be any activation
function. In this study, we used ReLU activation to afford non-linearity in the model.
When Lg = 2, the model can be interpreted as a network that utilizes characteristics
of other firms that are neighbors of firm i or are connected to a neighbor of firm ¢

to calculate the 3; of firm 1.

21



In a traditional graph convolutional network, A denotes the adjacency matrix of
the graph. However, we do not know the exact connectivity between firms because
there is no agreement to come up with a clear definition of connectivity. To address

this issue, we estimated the adjacency matrix A using the correlation matrix of R.

1, if rank(|pi;]) > ¢
Ay = , (2.15)

0, otherwise

where p;; is the correlation of R; o ., and Rj . 4. rk(z) denotes the percentile
rank of z, and c is the cutoff value.
We used a simple neural network structure for the factor model to estimate

factors as a linear combination of excess returns. The recursive formula is as follows:

SO = R,
SO = pt=V 4 WD oLy (2.16)
fr= 800,

where S ¢ RN*1, W(Z) e RVXE and b e REXL are the hidden state vector,
trainable weight matrix, and bias vector in the ¢! layer, respectively.

The output of Eq. is the factor exposure matrix B, ; € RV*K and the
output of Equation is factor vector f; € RE*1. Finally, we dot product B, ;

and f; as in Eq. (2.11]) to produce a prediction of asset return.

Ry = (H"))s"1) = 8, _, f; (2.17)
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2.3.3 Forward stagewise additive factor modeling

We proposed a forward stagewise additive factor modeling architecture that main-
tains K factors from the K-factor model while constructing the (K +1)-factor model.
Because our graph factor model is constructed of neural networks, we set the train-
ing initialization point of the (K + 1)-factor model as the K-factor model that has
undergone training. Then, we made corresponding gradients of K factors that were
to be newly trained as not trainable, which makes the K factors stay the same

when training the (K + 1)-factor model. The entire training process can be seen in

Algorithm

Algorithm 1: Forward stagewise additive factor modeling

set Kpaz;

while K <= K4, do

if K =1 then

train 1-factor model R = g (),

else

load (K — 1)-factor model’s factor f(E—1);
initialize f&)’s 1 (K — 1) part with f&E-1);

set fE)g 1 (K — 1) part as requires_grad = False;

train K-factor model R = g¥) f(K).

end

end
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2.4 Empirical Studies
2.4.1 Data

We analyzed the monthly return data of firms from March 1957 to December 2016.
Asset returns are collected from CRSP. The object of data collection is firms in
NYSE, AMEX, and NASDAQ), which existed throughout the 60-year window, total-
ing 119 firms. Even though previous studies, |Gu et al.| (2020a)); [Kozak et al.| (2017)),
and |Gu et al.| (2020b)) used all available firms over the past 60 years, we have to select
certain firms because our proposed model needs a fixed number of firms during the
training, validation, and test periods. We used the three-month Treasury bill rate
as the risk-free rate, which is also collected from CRSP. The average price of target
assets are shown in Figure [2.2]

For firm characteristics, we used the dataset of |Gu et al.| (2020b)). It includes
94 characteristics; the full list and details of characteristics are presented in Tables
and We rank-normalized each firm characteristics from (-1, 1) in each
timestep.

We set data from 1957 to 1974 as the training set, the 1975 to 1986 data as the
validation set, and the 1987-2016 data as the test set. The validation set is used to

tune the hyperparameter of the model without observing any data in the test set.

2.4.2 Benchmark models

We chose the conditional autoencoder model of (Gu et al.| (2020al) for the benchmark
of the latent factor model, and chose the Fama-French factor model for the bench-
mark of the observable factor model. The conditional autoencoder model has the

same factor network structure as our proposed model, and uses a multi-layer per-
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Table 2.1: List and reference of firm characteristics

Variable name

Firm characteristic

Reference

absacc
acc
aeavol
age

agr
baspread
beta
betasq
bm
bm_ia
cash
cashdebt
cashpr
cfp
cfp_a
chatoia
chesho
chempia
chinv
chmom
chpmia
chtx
cinvest
convind
currat
depr
divi
divo
dolvol
dy

ear

Absolute accuruals

Working capital accruals

Abnormal earning announcement volume
Number of years since first Compustat coverage
Asset growth

Bid-ask spread

Beta

Beta squared

Book-to-market

Industry-adjusted book-to-market

Cash holdings

Cash flow to debt

Cash productivity

Cash flow to price ratio
Industry-adjusted cash flow to price ratio
Industry-adjusted change in asset turnover
Change in shares outstanding
Industry-adjusted change in employees
Change in inventory

Change in 6 month momentum
Industry-adjusted change in profit margin
Change in tax expense

Corporate investment

Convertible debt indicator

Current ratio

Depreciation

Dividend initiation

Dividend omission

Dollar trading volume

Dividend to price

Earnings announcement return

Bandyopadhyay et al.l (120101)

Sloan| (1996)

Lerman et al.l d2007lb

Jiang et al.|(2005

Cooper et al.|(2008

Amihud and Mendelsonl d1989b

Fama and MacBeth| (1973

Fama and MacBeth| (1973

Rosenberg et al.l (]1985l)

Asness et al.l 2000l)

Palazzol (12012

Ou and Penmanl (]1989}1

Chandrashekar et al,|(12009b

Desai et al.| (2004)

Asness et al. (12000b

Soliman| (2008)

Pontiff and Woodgatel d2008b

Asness et al.l dZOOOb

Thomas and Zhang| (2002)

Gettleman and Marksl (12006b

Soliman| (2008)

e

Thomas and Zhang 2011b

Titman et al.l (]2004

Valta| (2016)

Ou and Penmanl (]1989}»

Holthausen and Larcker|(11992lb

Michaely et al.| (1995

Michaely et al.|(1995

Chordia et al.l 2001b

Litzenberger and Ramaswamyl(ll%?b

Brandt ot a1.|<|2008b
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Table 2.2: List and reference of firm

characteristics (Continued)

Variable name

Firm characteristic

Reference

egr
ep

gma

grCAPX
grltnoa

herf

hire

idiovol

ill

indmom

invest

lev

lgr

maxret
mom12m
momlm
mom36m
mom6m

ms

mvell

mve_ia

nincr

operprof
orgeap
pcheapx_ia
pcheurrat
pchdepr
pchgm_pchsale
pchquick
pchsale_pchinvt
pchsale_pchrect

Growth in commom shareholder equity

Earnings to price

Gross profitability

Growth in capital expenditures

Growth in long term net operating assets

Industry sales concentration

Employee growth rate

Idiosyncratic return volatiltiy

Illiquidity

Industry momentum

Capital expenditures and inventory

Leverage

Growth in long-term debt

Maximum daily return

12 month momentum

1 month momentum

36 month momentum

6 month momentum

Financial statement score

Size

Industry adjusted size

Number of earnings increases

Operating profitability

Organizational capital

Indstury adjusted percentage change in capital expenditures
Percentage change in current ratio

Percentage change in depreciation

Percentage change in gross margin - percentage change in sales
Percentage change in quick ratio

Percentage change in sales - percentage change in inventory

Percentage change in sales - percentage change in A/R

Basul (11977

Novy-Marx 2013l

Richardson et al.|12005b

'Anderson and Garcia—FeijooI (2006)

Fairfield et al.|(2003)
Hou and Robinson| (2006

Moskowitz and Grinblattl (11999

Richardson et al.

Bali et al.|(2011
Jegadeesh| (1990

Jegadeesh and Titman

Jegadeesh and Titman

Jegadeesh and Titman

Mohanram

‘Fama and French

(2o15)

Fisfeldt and Papanikolaou|(2013)

Abarbanell and Busheel (1998

Ou and Penmanl (11989b

Holthausen and Larckerl 1992

Abarbanell and Busheel 1998

Ou and Penmanl (11989b

Abarbanell and Bushee| (1998

Abarbanell and Bushee| (1998
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Table 2.3: List and reference of firm characteristics (Continued)

Variable name

Firm characteristic

Reference

pchsale_pchxsga
pchsaleinv
pctacc
pricedelay
ps

quick

rd

rd_mve
rd_sale
realestate
retvol
roaq
roavol
roeq

roic

rsup
salecash
saleinv
salerec
secured
securedind
sgr

sin

sp
std_dolvol
std_turn
stdacc
stdcf

tang

th

turn

zerotrade

Percentage change in sales - percentage change in SG&A
Percentage change sales-to-inventory
Percent accruals

Price delay

Financial statements score

Quick ratio

R&D increase

R&D to market capitalization

R&D to sales

Real estate holdings

Return volatility

Return on assets

Earnings volatility

Return on equity

Return on invested capital

Revenue surprise

Sales to cash

Sales to inventory

Sales to receivables

Secured debt

Secured debt indicator

Sales growth

Sin stocks

Sales to price

Volatility of liquidity (in dollar trading volume)
Volatility of liquidity (in share turnover)
Accrual volatility

Cash flow volatility

Debt capacity / firm tangibility

Tax income to book income

Share turnover

Zero trading days

Abarbanell and Busheel (11998}

Ou and Penmanl (11989b

Hafzalla et al.l (12011}

Hou and Moskowitzl (12005b

Piotroski| (2000)

Ou and Penmanl d1989b

Eberhart et al.l 2004b

Guo et al.|(2006

Guo et al.|(2006

Tuzel| (2010

Ang et al.| (2006

Balakrishnan et al.l (I?OlOb

Francis et al.| (2004

Hou et al.|(2015

Brown and Rowel (12007b

Kamal (2009)

Ou and Penman| (1989

Ou and Penman| (1989

Ou and Penman| (1989

Valta| (2016

Valta| (2016

Lakonishok et al.l (11994

Hong and Kacperczykl 2009

Barbee Jr et al.l(11996b

Chordia et al.| (2001

Chordia et al.| (2001

Bandyopadhyay et al.l (12010}

Huang| (2009)

Almeida and Campellol (IQOO?b

Lev and Nissim| (2004)

Datar et al. (1998b

Liu| (2006
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ceptron for a factor exposure network, while our model uses a graph convolutional
network. For a fair comparison, we used the best-performing hyperparameters noted
in Gu et al.| (2020a)).

The Fama-French factor model has varying factors from one to six; the six factors
in turn are excess market returns, SMB, HML, CMA, RMW, and UMD. The Fama-
French K-factor model we used for comparison in this study is composed of K factors
described above. The factor returns are collected from Ken French’s website.

We compared our graph factor model while changing the parameter ¢, which

determines the sparsity of the asset graph’s adjacency matrix as in Equation

2.4.3 Empirical results

We performed the model performance evaluation through out-of-sample data to
ascertain the true explanatory power and predictive power of our proposed model.
Revisiting Euler equation the asset pricing model is the explanation model for

individual firms. We used R?Ot . b0 evaluate statistical explanatory power.

> ineoos it — Bii-1ft)?
Z(z‘,t)eoos Rzz,t

Rt20tal =1- (218)

As deep-learning-based models are known to be good at prediction tasks, we
evaluated the predicted performance by replacing ft as B@t_l = t_% Do BALS, which

is the time series mean of fi.;_1.

> neoos(Bit — Big—1frit—1)?
> ineoos By

R g=1- (2.19)

To achieve robust result and show confidence interval, we used bootstrap method
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with 200 repeats. We computed the p-value of performance difference between graph
factor model with cutoff value 0.9 and conditional autoencoder model by Welch’s
t-test using the empirical distribution from bootstrapping.

The results are shown in Table In terms of the out-of-sample total R? and
the prediction R?, respectively, the graph factor model with a cutoff value of 0.9 and
six factors showed the best performance, at 29% and 5.7%. The Fama-French factor

model is known to explain characteristic-sorted portfolios, but shows little explana-

2

tory power for individual assets. The R;j

; of the conditional autoencoder model
with four factors is 28.05%, which outperforms the graph factor model with cutoff
values of 0.1 and 0.5. At the same time, p-value 0.75 shows that conditional au-
toencoder model with four factors has similar performance with graph factor model

with cutoff value 0.9. However, in terms of Rg the conditional autoencoder model

red>
shows worse prediction performance than the graph factor model for all factor counts.
Overall, the graph factor model with a cutoff value of 0.9 outperformed all other
models. Table shows additional metrics for evaluating goodness of fit and Table
shows significance of average coefficients of each model with six factors.

The cutoff value ¢ of the graph factor model determines the sparsity of the firm
graph’s adjacency matrix. When ¢ = 0.9, only 10% of firms are connected. We can
see the visualization of the adjacency matrix with various cutoff values in Figure
Recalling that our proposed model estimates firm ¢’s risk exposure by firm
characteristics connected across up to two edges from firm i, ¢ = 0.1, and ¢ = 0.5,
all firms’ risk exposures are affected by nearly all other firms. The fact that the

graph factor model with ¢ = 0.9 dominates those with ¢ = 0.1 and ¢ = 0.5 in terms

of R? from Figure shows that the graph factor model requires a sparse, clear
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Table 2.4: Comparison of Out-of-sample R?Oml and R}%

red

# of Factors 1 2 3 4 5 6
FF 0.25 0.33 0.41 0.41 0.62 0.63
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)
CA 23.21  27.76 275 28.05 2584 26.32
(0.12) (0.35) (0.2) (0.24) (0.27) (0.83)
GF 0.1 21.36 2248 229 24.28 24.72 25.42
Out-of-sample ’ (0.12) (0.08) (0.31) (0.19) (0.19) (0.17)
total R-square (%) GF 0.5 23.93 2546 26.69 27.78 27.46 275
’ (0.09) (0.21) (0.13) (0.14) (0.25) (0.18)
GF 0.9 24.94 27.9 29 28 28.52 28.93

(0.1)  (0.15) (0.19) (0.11) (0.31) (0.11)
t-statistic 204 076 802 -0.32 1594 6.05

p-value 0.00* 045 0.00* 0.75  0.00* 0.00*
FF <0 <0 <0 <0 <0 <0
CA 1.13 2.72 2.98 3.28 2.63 2.56

(0.13) (0.31) (0.14) (0.2) (0.21) (0.44)
245 358  4.02 416 437  4.83

GF 0.1 0.1) (0.08) (0.16) (0.13) (0.12) (0.13)

Out-of-sample
rediction B.square (%) GF 05 314 423 46 454 474 533
P ' (0.11) (0.13) (0.08) (0.09) (0.16) (0.13)
GF 0.9 3.79 4.98 5.21 558 5.64 5.7

(0.09) (0.12) (0.14) (0.16) (0.1) (0.15)
t-statistic 32.38 13.75  20.52 18.7 23.96 13.33
p-value 0.00*  0.00* 0.00* 0.00* 0.00* 0.00*
Notes. The upper part of table represents the empirical results of out-of-sample total R2
and lower part represents the out-of-sample prediction R?. 95% confidence intervals derived
by bootstrapping are in parenthesis. In the second column, FF, CA, and GF each denotes
Fama-French model, conditional autoencoder, and graph factor model. GF 0.1 means graph
factor model with cutoff value 0.1. The best performing models along the fixed number
of factors are shown in bold. For each metric, t-statistic and p-value are derived from
comparison between CA model and GF 0.9 model. We marked * to p-value<0.05

adjacency matrix to be trained as intended.

Moreover, we can see that the RIQW g Of the graph factor model subsequently in-
creases as the number of factors increases, while that of the conditional autoencoder
model decreases when the number of factors increases from four to five. This is due
to the proposed forward stagewise additive modeling scheme. Maintaining the pre-

vious stage model’s factors produces more consistent predictive power in statistical
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Table 2.5: Comparison of MAE, RMSE, RAE, and RSE

# of Factors 1 2 3 4 5 6
FF 0.074 0.074 0.074 0.074 0.074 0.074
Out-of-sample CA 0.056 0.053 0.054 0.053 0.055 0.054
MAE GF 0.1 0.057 0.057 0.057 0.056 0.055 0.054
GF 0.5 0.055 0.054 0.054 0.053 0.053 0.053
GF 0.9 0.054 0.053 0.053 0.053 0.052 0.052
FF 0.116 0.116 0.116 0.116 0.116 0.116
Out-of-sample CA 0.1 0.096 0.097 0.096 0.098 0.097
RMSE GF 0.1 0.101 0.1 0.1 0.099 0.098 0.098
GF 0.5 0.099 0.098 0.097 0.096 0.097 0.097
GF 0.9 0.098 0.096 0.096 0.096 0.096 0.096
FF 1.061 1.06 1.057 1.058 1.057 1.055
Out-of-sample CA 0.811 0.766 0.772 0.769 0.794 0.774
RAE GF 0.1 0.825 0.815 0.814 0.8 0.791 0.781
GF 0.5 0.798 0.779 0.773 0.759 0.764 0.759
GF 0.9 0.787 0.76 0.758 0.763 0.753 0.751
FF 1.04 1.038 1.036 1.036 1.036 1.034
Out-of-sample CA 0.876 0.85 0.851 0.848 0.861 0.858
RSE GF 0.1 0.887 0.88 0.878 0.87 0.868 0.864
GF 0.5 0.872 0.863 0.856 0.85 0.852 0.851
GF 0.9 0.866 0.849 0.843 0.849 0.845 0.843

Notes. This table shows four metrics for evaluating goodness of fit. The first of the
four sections in the table represents the out-of-sample Mean Absolute Error (MAE)
1

= v 2R — Bi,t,l ft| The second, third, and fourth section each shows out-of-sample

Root Mean Squared Error (RMSE) = \/% S (Rix — Bi,t,lft)Q, Relative Absolute Error

(RAE) = W, and Relative Standard Error (RSE) = %M For each

metric, the best performing models along the fixed number of factors are shown in bold.

terms.

R? evaluation measures statistical evidence on asset pricing models. We can
evaluate the economic meaning of the factor models through the Sharpe ratio test
of the factor portfolio. According to Hansen and Jagannathan (1991)), SDF is the
linear span of excess returns. Since we estimated factors as a linear combination of

excess returns in the graph factor model, SDF becomes the linear span of factors
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Table 2.6: Significance of average coefficient of each factor

t-statistics of average coefficient of
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

FF
Mean 0.037 -0.073 -0.058 -0.108 0.374 0.016
Std error 0.014 0.019 0.031 0.043 0.044 0.015
t-statistic | 2.696* -3.89* -1.866 -2.534* 8.55* 1.052

CA
Mean -0.004 0.008 0.006 0.023 0.052 0.1
Std error 0.001 0.001 0.005 0.01 0.017 0.009
t-statistic -28.2% 116.6* 14.096* 24.71* 33.381*  122.244*
GF 0.1

Mean 0.631 0.322 0.345 -1.991 -0.087 -0.349
Std error 0.069 0.025 0.096 0.149 0.355 0.038
t-statistic | 9.122* 12.693* 3.593*  -13.337*  -0.243 -9.211%

GF 0.5

Mean -0.382 -0.075 0.057 -0.109 0.031 -0.007
Std error 0.012 0.017 0.009 0.015 0.004 0.006
t-statistic | -33.069*  -4.295* 6.507* -7.189* 7.164* -1.201

GF 0.9

Mean -0.118 -0.09 0.091 0.322 0.153 0.173
Std error 0.009 0.006 0.034 0.026 0.015 0.031
t-statistic | -13.705*  15.817* 2.632* 12.427*  10.163* 5.596*

Notes. This table shows mean, standard error and t-statistic of coefficients of FF, CA,

and GF model with six factors. The mean coefficient is the cross-sectional average of ng)7

which is the time-series average of each firm’s model coefficient ﬁflz) In the same way, the

standard error is calculated from [7§k), vees BJ(\],C)] and the t-statistic is the mean coefficient

divided by its standard error. t-statistics with its p-value smaller than 0.05 are marked as *

according to [Kozak et al.| (2017)). Therefore, we construct the factor portfolio as
the mean-variance efficient portfolio, considering each factor as asset returns, and
analyzed the annualized Sharpe ratio. Table shows the results. The Fama-French
factors produce a maximum of 0.82, with six factors. The models with time-varying

betas (CA and GF) showed much higher Sharpe ratios than the Fama-French model.
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The best performing model is the graph factor model with factors more than four.
Compared to the graph factor model, with a cutoff value of 0.9, the conditional
autoencoder model produced a 1.74 Sharpe ratio. Through this analysis, we are able
to confirm that the graph factor model produces factors that are closer to SDF than

benchmark models.

Table 2.7: Comparison of tangency portfolio sharpe ratio

# of Factors 1 2 3 4 5 6

FF 0.51 0.41 0.53 071 0.71 0.82
CA 0.52 1.2 095 1.6 1.77  1.74
GF 0.1 047 162 184 1.8 1.86 1.89
GF 0.5 0.52 178 1.78 179 1.79 1.98
GF 0.9 0.52 2.04 2.04 2.05 2.05 2.05

Notes. Results in table denotes the annual Sharpe ratio of tangency portfolio of factors.
The best performing models along the fixed number of factors are shown in bold.

2.5 Chapter Summary

In this chapter, we have proposed a new asset pricing model that estimates risk ex-
posure by individual firm characteristics considering the connectivity between firms.
We estimated the graph structure of assets using the correlation of asset returns and
applied a graph convolutional network architecture using the estimated relationship
between assets. To clearly evaluate the statistical and economic value of a new factor,
we proposed a turn-based method of making a model while accumulating factors.
Our empirical analysis is performed on monthly data for individual US equities. The
results show that our graph factor model achieves 29% of the total R-squared and
5.7% of prediction R-squared, and thus that it dominates the Fama-French factor

model and the conditional autoencoder model. The graph factor model has a large
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cutoff value of 0.9, which means estimating the graph structure of assets as a sparse
matrix outperformed others. This shows that considering connectivity between as-
sets helps to estimate the risk exposure and helps explain excess returns. In terms of
the economic meaning of the model, the graph factor model shows a 2.05 Sharpe ra-
tio of the tangency factor portfolio, while the conditional autoencoder model shows a
1.74. Through these results, we can confirm that our graph factor model can generate

stochastic discount factor by spanning model factors.
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Chapter 3

Volatility prediction with volatility spillover index

3.1 Chapter Overview

Stock market volatility highly affects the decision-making of market participants.
Individual investors and hedge funds particularly care about managing their portfolio
weight based on the volatility of assets to manage the risk level of the portfolio
(Engle| (1993). Volatility is also important for pricing options and derivatives, where
stochastic volatility is used as the main component of pricing models (Ball and Roma;
(1994); Bouchaud and Potters| (2003))).

Future volatility is more important than historical volatility. For example, the
latter is used to find the maximum Sharpe ratio portfolio and efficient frontier for the
portfolio optimization problem, but it cannot guarantee its efficiency in the future
because it is not a sufficient estimate for future volatility (Choudhury et al.|(2014))).
Therefore, accurate volatility forecasting is one of the most important problems in
managing risk.

The autoregressive conditional heteroskedasticity (ARCH) class of models was
first widely used for forecasting volatility. Bollerslev| (1986) introduced the gener-
alized autoregressive conditional heteroskedasticity (GARCH) model, and Nelson

(1991) proposed the exponential GARCH (EGARCH) model to solve some draw-
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backs of GARCH as a negative correlation between current returns and future volatil-

ity. [Engle and Bollerslev| (1986) followed this research and introduced integrated

GARCH (IGARCH). While GARCH class models show good performance for daily

volatility, as shown in Harrison and Moore| (2012)), they do not perform well for

high-frequency intraday volatility data. |Andersen and Bollerslev| (1998) introduced

realized volatility (RV), which is constructed as the summation of squared intraday
returns. RV is a highly efficient estimator of latent return volatility. For empirical
forecasting of RV, proposed a heterogeneous autoregressive type of
model (HAR-RV). Despite its simple structure, the HAR-RV model showed good

empirical performance. Numerous studies have proposed extensions of the HAR-RV

model to improve forecasting accuracy (e.g. [Wang et al.| (2017)), Andersen et al,

(2007)), |Chen and Ghysels (2011)), Patton and Sheppard| (2015))). In particular, our

research focuses on |[Liang et al. (2020)) and [Wilms et al| (2021), who highlighted

that volatility spillover between assets affects the prediction of realized volatility.

Engle III et al. (1988)); Baillie and Bollerslev| (1991); Forbes and Rigobon| (2002)

and Bhar and Hamori (2003) suggested that when certain assets or markets expe-

rience shocks, the effect spreads to other assets or markets, which is known as the
volatility spillover effect. Therefore, including the volatility spillover information in

the forecasting model would increase the prediction performance.

BEKK-GARCH (Engle and Kroner| (1995)) and HVS-GARCH (Wang et al.

(2018))) represent GARCH-type models that successfully capture volatility spillover
effects and generate accurate forecasts. They divided volatility from the return pro-
cess into two components and constructed one component as a spillover compo-

nent. However, they cannot be used for forecasting observed high-frequency real-
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ized volatility because a GARCH-based structure is designed for unobserved latent
volatility. To address this problem, various studies have proposed a multivariate
HAR-based model that reflects spillover between different assets. Bubak et al.| (2011))
generalized multivariate HAR by allowing the error term to follow a multivariate
GARCH process and analyzed volatility transmission between Central European
currencies and the EUR/USD foreign exchange. While Bubak et al.| (2011) concen-
trated on changing the model structure, |Liang et al.| (2020) and Wilms et al.| (2021)
utilized different predictive information in addition to the realized variance. Follow-
ing |Degiannakis et al.| (2018), Liang et al.| (2020) demonstrated that the information
flow of implied volatility (IV) offers better performance in forecasting underlying
volatility than RV. |Garvey and Gallagher| (2012) empirically shows that implied
volatility is an effective metric of volatility across medium-term horizons. [Wilms
et al.| (2021) extended the multivariate HAR model to allow jump, continuous, and
IV information as components of volatility. These recent studies only capture the
volatility spillover effect through a multivariate model structure.

In this chapter, we focus on implying the spillover effect directly in the fore-
casting model. Diebold and Yilmaz| (2012)) suggested a measure of the directional
spillover index using a decomposition of error variance from a vector autoregressive
regression (VAR) framework. As they successfully characterized the spillover effect
across different market domains to the net pairwise spillover index, we designed a
volatility forecasting model that involved volatility and the net pairwise spillover in-
dex as well. When we want to directly reflect the net pairwise spillover index in the
model, HAR-based models can only use it as an additional variable in the regression

equation, as in the HAR-RV-KS model of |Liang et al.| (2020). This causes the model
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to consider only the spillover effect of each asset adjacent to the asset, and not the
spillover effect that leads to multiple stages. As an extension of this discussion, we
adopted a deep-learning-based model graph convolution network (GCN) to apply
the spillover effect as a graph. The GCN structure can reflect the spillover effect of
each market linked in multiple steps because these can be represented as multiple
link connections between nodes in a graph.

Along with the success of deep-learning models in computer vision tasks, long
short-term memory recurrent neural networks (LSTM-RNN) have gained popular-
ity for time-series forecasting (Gers et al.| (2000))) because of their ability to capture
both long- and short-term memory in time-series data. Liu (2019) and Hu et al.
(2020) suggested that LSTM-RNN can be used for volatility prediction of stocks and
copper. On the other hand, deep-learning has also been developed to learn graphi-
cal relationships for relational data. |[Kipf and Welling| (2016) proposed a GCN for a
semi-supervised classification task on graph-structured data. Furthermore, [Seo et al.
(2018) and [Li et al.| (2017) designed a spatial-temporal GNN, the model combining
RNN and GCN, to deal with multivariate time-series data where agents have physical
or geological relationships. |Chen et al. (2021a) and |Chen et al.| (2018)) demonstrated
that the graph convolutional approach can successfully capture the relationship be-
tween corporations, thus leading to better stock price or trend prediction. However,
the major problem of applying the GCN approach to financial time-series data is
constructing a graph. Unlike citation data or traffic data, financial volatility does
not originally contain a graphical relationship. Therefore, defining and construct-
ing graph relationships between markets has become the most important task. As

a solution, we propose using the volatility spillover index as the graph structure of
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global market indices.

In this chapter, we design a spatial-temporal GNN-based model for forecasting
the volatility of global market indices. We propose a method for constructing graph
edges of market indices with a net pairwise spillover index |Diebold and Yilmaz
(2012) and compare it to the method using Pearson correlation coefficients, which
is a common approach. We conducted an empirical analysis of eight global market
indices and present out-of-sample results. Out-of-sample analysis indicates that our
proposed spatial-temporal GNN model using the spillover index outperforms other
benchmark models in short- and mid-term forecasting. We also highlight that the
results of our proposed model are highly affected by the inclusion of markets with
large spillover effects on others.

The remainder of this chapter is organized as follows. In Section [3.2] we explain
benchmark time-series models, deep-learning models, and volatility spillover mea-
surements. Section [3.3] presents the data for the empirical analysis, the proposed
prediction methodology, and the empirical results. Finally, concluding remarks are

presented in Section [3.4

3.2 Preliminaries

3.2.1 Realized Volatility

Andersen and Bollerslev| (1998) introduced realized variance to approximate the
integrated variance of intraday high-frequency return data . It is defined as the sum

of intraday squared returns with equal time intervals. The mathematical formula for
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the realized variance at day t is as follows:

M
RV, =Y r}, (3.1)
=1

where ;7 is the time interval and ry; represents the return between (i — 1)M and

iM. As discussed in |Andersen et al. (2007), the standard deviation form of RV is
closer to normal distribution. Therefore, we used (RV;;)'/? as the realized volatility

for the remainder of the paper.

3.2.2 Volatility Spillover Measurements

With the growing need to measure the financial market volatility spillovers, |Diebold
and Yilmaz (2009) introduced a general framework for measuring linkages between
asset return volatilities, also known as volatility spillovers. Their framework is based
on forecast error variance decomposition from VAR models, and it is capable of cap-
turing spillover trends and cycles across individual assets, portfolios, markets, and
so on. However, this framework has some limitations. First, the measuring of the
volatility spillover is dependent on the order of the variables. Second, it only mea-
sures the total spillovers; therefore, one cannot examine the directional spillovers of
a particular market. As a result, |[Diebold and Yilmaz| (2012) extended the previous
framework to measure the directional spillovers in a generalized VAR framework,
which solves the variable ordering dependency problem (the DY framework here-
after).
A covariance stationary N-variable VAR (p) model can be defined as z; = Zfil P, i+

€¢, where € ~ (0, X) is an independently and identically distributed disturbance. The

moving average of such a VAR(p) model can be expressed as x; = > o) Ai€—;
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where A; represents the coefficient matrices that satisfy A; = ®14;_1 + ®24;_o +
<-4 ®pA;_,, with Ay being an identity matrix and 4; = 0 for ¢ < 0. The DY
framework exploits the generalized VAR model by Koop et al.| (1996) and Pesaran
and Shin| (1998)) (KPPS) to solve the variable ordering dependency problem of the
previous framework, as the KPPS produces variance decompositions that are in-
variant to the variable ordering. The KPPS H-step ahead forecast error variance

decompositions Hfj(H ) are given as:

A= 2

o > (ejApXe;)
h=0

H-1

hz—:o (efApX AL e;)

99.([—_]) =

vy

(3.2)

where 0;; is the standard deviation of the error term for the j-th equation, e; is the
selection vector with one in the i-th element and zero otherwise, Ay, is the coefficient
matrix of the VAR model, and 3 is the variance matrix of the error e. However, the
KPPS approach does not orthogonalize the shocks of each variable, so the row sum
of the elements of the variance decomposition may not be equal to one. Therefore,

normalization by the row sum of the variance decomposition matrix is required:

61, (H)

= (3.3)
> 0%(H)
j=1

07, (H) =

Then, Y3, 6;(H) = 1and 3., 6%,(H) = N.

Using éfj (H), the directional volatility spillover by market i from all other mar-
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kets j can be measured as:

!
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In addition, the directional volatility spillover of market i to all other markets j can

be measured as:

= =

S9(H) = 17! 100 = 2 100 (3.5)
2 O5(H)
,)=

By netting the directional volatility spillovers related to market ¢, the net spillover

of market ¢ can be expressed as follows:

SI(H) = S%(H) — §¢(H) (3.6)

Lastly, to examine the net volatility spillovers between individual markets, the net

pairwise volatility spillovers is defined as:

i (H) i (H)
SHH) = | —— %= -100
D> e (H) > ?k(H) (3.7)
i,k=1 7,k=1
<~jgz H) - ézgj(H >
= N 100
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3.2.3 Benchmark Models

Time-series Models

HAR-RV The heterogeneous autoregressive model of realized volatility (HAR-
RV) proposed by |Corsi (2009)), is an autoregressive volatility model in which realized
volatilities over different time horizons are considered. The HAR-RV model is a
direct extension of the HARCH model by Miiller et al| (1997), which assumes the
existence of heterogeneity across market participants, also called the heterogeneous
market hypothesis. The HAR-RV model finds the general pattern in the volatility
structure within three different time interval sizes: daily (one day), weekly (5 days),
and monthly (22 days). Daily, weekly, and monthly volatility reflects the behavior of
short-, mid-, and long-term traders, respectively. Even though the HAR-RV model
does not formally belong to the class of long-memory models, it is still capable of
capturing the long-memory behavior of volatility in a very intuitive way. The original

HAR-RV model can be expressed as

RViy = Bio+ Bi,aRVii—1 + BiwRVii—1:4—5 + BimBRVit—1:0—20 + €5 (3.8)

where RV;; is the realized volatility of stock market index 7 on day ¢, RV;;—1.t—p is
the simple average across the realized volatilities of stock market index i over time

horizon ¢ — 1 to t — n. Therefore, RV;;_1.4—5, and RV;;_1.4—22 can be calculated as
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follows:

t—1
1
RVipris =< >, RVir (3.9)
T=t—-5
1 t—1
RVig—14-22 = o5 Z RV (3.10)
T=t—-22

However, |Andersen et al.| (2007)) argue that non-linear HAR models in logarith-
mic forms and standard deviation show better fitting capabilities compared to linear
HAR models. As a result, we modify the original HAR-RV model into the standard
deviation form, similar to the model suggested in |Liang et al.| (2020)). The standard
deviation form of the HAR-RV model can be written as:

(RVi)'/® = Bio + Bia(RVis-1) + Bin(RVi-14-5)'/* (3.11)

+ Bim(RVig—1:4-29)/* + €is
HAR-RV-KS |Liang et al.| (2020) also consider the impact of global information
flows of the realized volatility using a ”kitchen sink” (KS) model, which incorporates

all of the realized volatilities from other markets to the standard deviation form of

the HAR-RV model. Therefore the HAR-RV-KS model can be written as follows:

(RV;)Y? = Bio + Bia(RVie1)Y? + Biw(RVig_1.4-5)"?

+ Bim(RVig_1.4-29)/% + Z Bra(RVis1)Y? + €t
kefl,..,N}i}

= Bio + Z Bra(RVit—1)? + Biaw(RVip—1:4—5) "/
(k=1,..N}

(3.12)

+ ﬁi,m(RVi,tflzt722)1/2 + €it
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Deep-learning-based Models

RNN & LSTM Artificial neural network (ANN) is designed to resemble human
brains and show good performance in generalizing and learning from experience. As
mentioned in Kaastra and Boyd|(1996), neural networks are data-driven self-adaptive
methods that do not require many assumptions. For these properties, ANN have
been proven very successful in many areas, including the finance domain, especially
in forecasting volatile financial data such as interest rates and stocks.

Recurrent neural network (RNN), a variant of neural networks, was first pro-
posed by Rumelhart et al.| (1986) to effectively deal with time-and order-dependent
data. For this purpose, RNN is used extensively in domains such as machine trans-
lation, speech recognition, or financial time series. RNN consists of a hidden state
h with input sequence z and an optional output y. Given an input sequence r =

(z1,x2,...,x7), hidden state hy = (hy, ho, ..., hy) is computed as follows:

ht = H(Whht—l + Wx(f(xt) + b) (313)

where ¢ is an activation function and b is a bias. These hidden states are used to
predict the outputs. The total error is defined by comparing the actual and desired
outputs. To minimize the error, gradients are computed and back-propagated during
the training phase. However, gradients of the RNN may quickly vanish or blow
up, also known as the gradient vanishing problem or gradient exploding problem,
respectively. To mitigate this problem, Hochreiter and Schmidhuber|(1997) proposed
LSTM using hidden layers containing memory blocks to store information and better

exploit long-range context. In most of the proposed LSTM structures, a memory
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block consists of three gates: input, output, and forget gates. Input gate controls
the flow of input activations to filter the irrelevant inputs. Similarly, the output gate
controls the output flow of cell activations to protect other units from perturbations.
The forget gate, introduced by |Gers et al.| (2000)), learns to reset memory contents
that are no longer required.

Due to their ability to capture the structure of the dynamic data over time,
LSTM have been used successfully in the prediction of stock returns and forecasting

time-series events.

Spatial-Temporal Graph Neural Networks GNN have also been used in fore-
casting node values or labels given dynamic node inputs with interdependency.
Among several GNN models proposed to handle dynamic input data, RNN-based
approaches pass filter inputs and states to a recurrent unit using graph convolutions.
This is known as spatial-temporal forecasting, and these approaches include graph
convolutional recurrent network (GCRN) by [Seo et al. (2018]), and diffusion con-
vlutional RNN (DCRNN) by [Li et al|(2017). GCRN uses an LSTM network with
CehbNet for graph convolutional layers. First introduced for traffic flow prediction,
DCRNN attempts to capture the spatial and temporal dependency by using gated
recurrent units (GRUs) and newly proposed diffusion convolutions. First proposed
by (Chung et al| (2014), GRU is a powerful variant of RNN, and it consists of a
reset gate and an update gate. Similar to LSTM, GRU gates adaptively capture
the dependencies of different time scales. In DCRNN, GRUs use diffusion convo-

lutions instead of only matrix multiplications, so those GRUs are called diffusion
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convolutional gated recurrent units. They are computed as follows:

r) = (0, %g [XU, HIZY 4+ 5,)] (3.14)

u® = 5(0, xg [XD, HEY 4+ b,,)] (3.15)

where xg denotes the diffusion convolutions to aggregate the spatial dependencies.
The diffusion convolution learns the graph representations using the graph node
features and edge features that contain relationship data between nodes. The filter
parameters of the reset and update gates are denoted as O, and ©,, respectively,
and these parameters are trained using back propagation during the training. The

reset gates and update gates are then used to compute the current hidden states.

C® = tanh(0¢ »g (XY, (r® @ HED)] + b, (3.16)

H(t) — u(t) 0 H(tfl) + (1 _ u(t)) ® C(t) (317)

where ® and C) denote the pointwise operation and candidate hidden states, re-
spectively. GRUs build diffusion convolutional recurrent layers, which are used to
encode and decode the graph signals to make predictions. The structure of the GRU

and the whole process of the DCRNN can be summarized as illustrated in Figure

B.1
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Figure 3.1: Diffusion Convolutional Gated Recurrent Unit and Diffusion Convolu-
tional Recurrent Neural Network

3.3 Empirical Studies
3.3.1 Data

In this paper, we focus on predicting the RV of global market indices. We included
both indices that are known to have a significant impact on other markets and
those that do not. Overall, eight market indices were selected for analysis: S&P 500
(SPX; United States), DAX (GDAXI; Germany), CAC 40 (FCHI; France), FTSE 100
(FTSE; United Kingdom), OMX Stockholm All Share (OMXSPI; Sweden), Nikkei

225 (N225; Japan), KOSPI (KS11; South Korea), and HANG SENG (HSI; Hong

Kong) index as in Liang et al,| (2020). Realized variance data were collected from

the Oxford-Man Institute’s Quantitative Finance Realized LibraryEl The sampling

frequency for calculating the realized variance is five minutes. Our sample begins in

"https://realized.oxford-man.ox.ac.uk/data
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October 2006 and ends in December 2018. We divide the data into training (October
2006-November 2012), validation (November 2012-December 2014), and test samples

(December 2014-December 2018) for proper training of our proposed model.

3.3.2 Descriptive Statistics

The descriptive statistics of the RV data are reported in Table [3.1] Augmented
Dickey-Fuller (ADF) statistics (Cheung and Lai (1995) indicate that the null hy-
pothesis of a unit root can be rejected at the 5% significance level for every realized
variance. Therefore, we can guarantee stationarity, which allows us to train the
HAR-RV model without taking logs or other transformations of data. The time-
series visualization of the data is illustrated in Figure Shaded areas are the
Global Financial Crisis and European Sovereign Debt Crisis. High volatile moments
are mostly located during these two periods.

Table 3.1: Descriptive statistics of realized variance data

Index Average Sta%ldz.xrd Skewness Kurtosis ADF
deviation

SPX 0.855 0.687 3.336 18.162 -4.168%**
GDAXI 1.011 0.614 3.379 20.629 -4.254%**
FCHI 1.009 0.577 3.154 18.805 -4.732%**
FTSE 0.941 0.615 3.862 31.846 -3.98THHK
OMXSPI 0.849 0.634 4.335 35.612 -3.6617%**
N225 0.856 0.529 3.332 17.326 -5.928%**
KS11 0.766 0.529 4.281 31.112 -4.852%**
HSI 0.866 0.516 3.546 21.31 -3.831%**

Notes. For ADF statistics, the asterisks *** denotes p-values smaller than 1%.
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Figure 3.2: Time series of realized volatility data

3.3.3 Proposed Method

We propose a spatial-temporal GNN-based model that constructs graphs of global
market indices with correlation or spillover index. Our model borrows the structure
of DCRNN. We estimated the graph G from Equations and Equation [3.16 as

follows.

RV a0y, RV ) i # )

fori,j € 1,..,N (3.18)

0 if i =j

Gij =

where G;; is the ij-th component of G, and RV; (1.7 is the length T' vector (RV; 1, ..., RV; r).
T is the maximum time step in the training sample, and N is the total number of in-
dices. f(,-) is the graph estimation function. The detailed structure of f is explained
in Section [3.3.3] For the remainder of this paper, we refer to the spatial-temporal
GNN model with graph estimation by the correlation method and volatility spillover

index method as the STG-Correlation model and STG-Spillover model, respectively.
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Graph construction

We constructed graphs between components using two types, correlation and spillover

index.

Correlation method The correlation method calculates the Pearson correlation
coefficients between realized volatility in the training period and uses it as a graph.
As a result, the correlation graph is a symmetric matrix with ones on the diagonal,
and it becomes an undirected graph. We defined the total correlation index T'C'I; of
each market ¢ as the sum of the correlation coefficients r between the market and

others.

TCL = i (3.19)
J#i

Volatility spillover index method In addition, we constructed total and di-
rected volatility spillover across global market indices Diebold and Yilmaz (2012).
The spillover index calculation is described in Section Volatility spillovers
are derived through variance decomposition of errors from the vector autoregres-
sive model. We used p = 4 and H = 5 for constructing VAR(p) and H-step ahead
forecasts to derive error variances.

Since our purpose is to determine the impact between different market volatil-
ities, we used the net pairwise spillover index for graph construction. In addition,
the net spillover index is used to determine which market influences other markets
and which market is affected by other markets. The constructed correlation graph
and spillover graphs are presented in Figure [3.3] Each value on the edge is the

Pearson correlation coefficient and the net pairwise spillover index, respectively. In
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Figure 3.3: Visualization of constructed graphs
Notes. Left figure shows the graph constructed by correlation method and right figure is
the one constructed by volatility spillover index method.

addition, the value inside each node represents the net correlation index and the net
spillover index. GDAXI has the highest net correlation index of 5.19 and OMXSPI
has the smallest net correlation index of 3.94. For the spillover graph, four market
indices (SPX, FCHI, FTSE, and GDAXI) have a positive net spillover index, and
four (KS11, OMXSPI, N225, and HSI) have a negative net spillover index. SPX has

the highest net spillover index of 4.62, and HSI has the smallest value of -3.3.

3.3.4 Empirical Results

We conducted an empirical analysis of eight global market indices. The training
dataset is used for training each model, and the validation dataset is used for
early stopping and hyperparameter tuning. The optimal hyperparameters obtained
through the validation set are as follows. We use number of filters as one, and set
number of neurons in first and second layer as 128 and 64, respectively. The dropout
rate of 0.5 is used to avoid overfitting and learning rate is 0.001. Finally, our analysis
focuses on out-of-sample analysis using a test dataset. Overfitting a training dataset

is one of the major problems in deep learning-based models. Therefore, out-of-sample
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analysis results provide more meaningful and accurate information about the fore-
casting model than the in-sample analysis. During the out-of-sample analysis, we
performed multi-step ahead forecasting. The forecasting steps are h = 1,5, 10, 22.
Each step represents short-term (a day), mid-term (one week and two weeks), and
long-term forecasting (a month). We did not construct separate models for each fore-
casting task. Rather, we predicted h-step ahead forecast of realized volatility in time
step t of market 7, (RAVinh)l/ 2 by repeatedly using the one-step ahead forecasting

model f(-).

(RVig40)"? = fA((RV; 1))
(3.20)

Viks (RVig1)Y? = F((RV 1))

The mean absolute forecast error (MAFE) is used for the evaluation metric. The

h-step ahead forecasting MAFE for market i is defined as:

T—h
1 N
MAFEZ-(h) = T_h+l E |(Rvi,t+h)1/2 - (RVi,t+h)1/2’ (3.21)
t=0

where T is the maximum time step in the test dataset.

This study confirms whether the spatial-temporal graph neural network-based
model performs good out-of-sample forecasts on global market index volatility, and
the spillover index is adequate for relation graph construction.

Out-of-sample results for multi-step ahead forecasting task for HAR-RV, HAR-
RV-KS, RNN, STG-Correlation, and STG-Spillover are reported in Table[3.2l HAR-
RV and HAR-RV-KS are used for the time-series based benchmark model, and RNN
is used for the deep-learning-based benchmark model. The results show the MAFEs
of each market index and the mean of MAFEs across the eight markets.

In the short- and mid-term horizons of h = 1, h = 5, and h = 10, the STG-
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Spillover model outperforms other benchmark models with MAFE of 0.162, 0.194,
and 0.211, respectively. In addition to the ST G-Spillover model, the STG-Correlation
model displays the best performance of MAFE 0.164 for short-term horizon h = 1.
The HAR-RV model is the second-best model for the mid-term horizon h = 5 and
h = 10. However, in the long-term horizon h = 22, the RNN model shows the best
MAFE of 0.237, followed by the STG-Spillover model with 0.24. During all horizons,
the STG-Spillover model always displays better results than the STG-Correlation
model. This indicates that the net pairwise spillover index properly captures the
relationship between market indices compared to the correlation coefficients.

Table 3.2: Out-of-sample results of five models on four different forecast horizons

Forecast horizon h

HAR-RV ~ HAR-RV-KS  RNN STG-Correlation  STG-Spillover HAR-RV ~ HAR-RV-KS ~ RNN STG-Correlation  STG-Spillover

SPX 0.167 0.167 0.199 0.166 0.175 0.228 0.226 0.24 0.231 0.225
GDAXI 0.188 0.184 0.203 0.184 0.181 0.22 0.224 0.231 0.237 0.212
FCHI 0.171 0.176 0.192 0.171 0.165 0.208 0.215 0.223 0.227 0.196
FTSE 0.201 0.191 0.187 0.197 0.188 0.232 0.235 0.217 0.247 0.219
OMXSPI 0.157 0.176 0.159 0.133 0.129 0.176 0.2 0.179 0.182 0.153
N225 0.199 0.183 0.228 0.198 0.201 0.247 0.232 0.251 0.259 0.239
KS11 0.108 0.114 0.177 0.104 0.103 0.127 0.136 0.191 0.14 0.123
HST 0.156 0.146 0.164 0.161 0.153 0.186 0.179 0.18 0.218 0.183
Mean 0.168 0.167 0.189 0.164 0.162 0.203 0.206 0.214 0.218 0.194
Forecast horizon h 10 2
HAR-RV ~ HAR-RV-KS  RNN STG-Correlation  STG-Spillover HAR-RV ~ HAR-RV-KS ~ RNN STG-Correlation  STG-Spillover

SPX 0.244 0.245 0.257 0.264 0.248 0.28 0.278 0.274 0.349 0.29
GDAXI 0.241 0.241 0.241 0.277 0.224 0.256 0.255 0.259 0.379 0.246
FCHI 0.224 0.229 0.24 0.275 0.211 0.255 0.254 0.255 0.385 0.244
FTSE 0.246 0.242 0.23 0.298 0.234 0.277 0.266 0.245 0.407 0.268
OMXSPI 0.181 0.206 0.19 0.224 0.164 0.196 0.217 0.196 0.343 0.187
N225 0.277 0.257 0.261 0.312 0.268 0.318 0.298 0.273 0.424 0.305
KS11 0.139 0.146 0.192 0.182 0.137 0.156 0.162 0.191 0.286 0.162
HST 0.205 0.196 0.189  0.275 0.203 0.223 0.222 0.205  0.394 0.221
Mean 0.220 0.220 0.225 0.263 0.211 0.245 0.244 0.237 0.371 0.240

Notes. This table reports out-of-sample MAFE of HAR-RV, HAR-RV-KS, RNN, STG-
Correlation, and STG-Spillover model on forecast horizons 1, 5, 10, and 22. For each
forecast horizon and market index, the best performing models are shown in bold.

To identify the statistical evidence of the performance difference between the

STG-Spillover model and other benchmark models, we conducted the Diebold-

Mariano (DM) test introduced by Diebold and Mariano (2002) and modified by
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Table 3.3: DM test results of four competing models versus STG-Spillover model

STG-Spillover vs HAR-RV STG-Spillover vs HAR-RV-KS STG-Spillover vs RNN STG-Spillover vs STG-Correlation

Forecast horizon h

DM statistic p-value DM statistic p-value DM statistic p-value DM statistic p-value
1 -17.59 <0.01 -10.04 <0.01 -24.45 <0.01 -13.25 <0.01
5 -10.3 <0.01 -6.55 <0.01 -8.59 <0.01 -18.83 <0.01
10 -7.61 <0.01 -3.59 <0.01 -5.03 <0.01 -17.54 <0.01
22 -0.85 0.398 0.69 0.493 -0.75 0.451 -15.21 <0.01

Notes. This table reports out-of-sample DM statistic and p-value of four pairs models, which
are STG-Spillover model versus HAR-RV, HAR-RV-KS, RNN, and STG-Correlation. A
negative DM statistic means that STG-Spillover model performs better than the competing
model.

Harvey et al. (1997). The DM statistic of two h-step ahead forecasts having errors

(e14,€2¢),t =1,...,T is expressed as follows:

DM = [Var(d)] 2d (3.22)

where d; = g(e1+) — g(e2) while g(e) is some kind of specified function and d =
+ Zthl d;. We selected the absolute function for g(e), which makes d; = |ej +| — ez
The following p-value is obtained from the null hypothesis of d = 0 from student’s
t-distribution with 7" — 1 degrees.

The DM-test results of the STG-Spillover model versus others on forecast hori-
zons of h = 1,5,10,22 are reported in Table The STG-Spillover model has
statistically sufficient evidence at the 1% level that it outperforms STG-Correlation
in terms of MAFE for every forecast horizon. For HAR-RV, HAR-RV-KS, and RNN,
the DM test result confirms that the STG-Spillover model has an improvement over
the three models in short- and mid-term forecasts. However, in the long-term, we
can check that there is no statistical difference between the STG-Spillover model
and the HAR-RV, HAR-RV-KS, and RNN models at the 5% level. Throughout

the analysis, we can suggest that the STG-Spillover model successfully captures
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the volatility spillover effect. Such effect measures the effect of a shock from a cer-
tain index, which decreases naturally over time. Therefore, the predominance of the
STG-Spillover model decreases as the forecast horizon becomes longer.

Table 3.4: Out-of-sample results of comparing MAFE between STG-Spillover model
trained on leave-one-out dataset and full dataset

1 5
Forecast horizon h MAFE MAFE Net spillover index
——— Difference (%) ————— Difference (%)
Leave-one-out Full Leave-one-out  Full
SPX 0.167 0.160  4.38 0.214 0.189  13.06 4.62
GDAXI 0.158 0.159  -0.63 0.198 0.191 3.66 1.15
FCHI 0.163 0.161 0.97 0.208 0.193  7.53 3.36
FTSE 0.159 0.158  0.54 0.201 0.190  5.71 1.6
Removed index
OMXSPI  0.169 0.167  1.46 0.208 0.200  4.22 -3.07
N225 0.156 0.156  -0.18 0.19 0.187  1.45 -2.35
KS11 0.171 0.170  0.42 0.207 0.204  1.54 -2.01
HSI 0.16 0.163  -1.93 0.192 0.195  -1.68 -3.3
10 22
Forecast horizon h MAFE MAFE Net spillover index
————— Difference (%) ———— Difference (%)
Leave-one-out  Full Leave-one-out  Full
SPX 0.246 0.206  19.50 0.304 0.233  30.31 4.62
GDAXI 0.222 0.209  6.22 0.266 0.240  10.83 1.15
FCHI 0.234 0.211 10.83 0.282 0.240  17.57 3.36
FTSE 0.228 0.208  9.69 0.28 0236 18.43 1.6
Removed index
OMXSPI  0.231 0.218  6.03 0.271 0.248  9.27 -3.07
N225 0.208 0.203 246 0.238 0231 297 -2.35
KS11 0.228 0222  2.84 0.268 0.252  6.53 -2.01
HSI 0.207 0.212  -249 0.233 0243  -4.17 -3.3

Notes. This table reports out-of-sample MAFE of STG-Spillover model trained on the
dataset that removed single market index and the model trained on the full dataset. The
last column presents the net spillover index of each index that can be also seen in Figure
A negative difference (%) means that the STG-Spillover model trained on LOO dataset
performs better. For each forecast horizon, the removed index with highest difference is
shown in bold. In addition, the removed index with highest net spillover index is also shown
in bold, too.

We conducted an experiment to determine the exact effect of the global mar-
ket index spillover graph. Specifically, we created datasets D_; excluding single
market index 4 from the original dataset D. A total of eight leave-one-out (LOO)

datasets are created because we use a total of eight market indices. For each dataset

D_;, we trained the STG-Spillover model and calculated the average MAFE loss
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MAF EE’;)(D_I-) across seven indices included in dataset D_;. Next, we observed the
difference between LOO MAFE loss MAFE" (D_;) and MAFE"™ (D), which is
the average MAFE of the same seven indices from the STG-Spillover model trained
over the original dataset. The overall procedure is as follows:

MAFEM (D_;) = % S MAFEM (D)

7 (3.23)

MAFE" (D) = % S MAFE (D)
i#i

where M AFE(_hZ-) (D_;) denotes the average MAFE of indices included in D_; and
derived from the model using the training set D_; and M AFE(_]? is the average
MAFE across the same indices from the model trained by training set D.
Out-of-sample results of single index removing analysis are reported in Table
For short-term forecast horizon, the three indices with the largest MAFE difference
are SPX, OMXSPI, and FCHI. SPX, FCHI, and FTSE are the top-three indices
with largest MAFE difference for mid- and long-term forecast horizons, which are
the indices with a positive net spillover index. It is evidence that indices with high
impact on other indices’ volatility play an important role in spatial-temporal GNN
spillover models. Specifically, SPX having the largest net spillover index of 6.32
mostly effects the prediction of other indices’ volatility. Overall, the performance
of the STG-Spillover model decreases significantly as the forecast horizon becomes
longer. Furthermore, we highlight two significant observations. First, GDAXI and
N225 removed model shows better average MAFE than the original model for h =
1 but performance worsens when the forecast horizon is over the mid- or long-

term. The spillover effect becomes more important for predicting volatility when
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the forecast horizon is longer than five days. Second, the HSI removed model is
the only model that demonstrates better performance compared to the not removed
model in all forecast horizon. HSI is the only market index in which every net
pairwise spillover has a negative value. We could check that a market that does not
contribute to volatility in other markets does not help predicting volatility of other
markets through the STG-Spillover model.

Table 3.5: Out-of-sample results of STG-Spillover model trained on spillover dataset
with different KPPS steps

Forecast horizon h 1 5 10 22

KPPS step H 1 5 10 22 1 5 10 22 1 5 10 22 1 5 10 22
SPX 0.167 0.175 0.169 0.173 0.223 0.225 0.221 0.223 0.242 0.248 0.24 0.245 0.284 0.29 0.278 0.285
GDAXI 0.182 0.181 0.182 0.181 0.219 0.212 0.217 0.214 0.237 0.224 0.233 0.227 0.275 0.246 0.266 0.251
FCHI 0.166 0.165 0.167 0.166 0.203 0.196 0.201 0.198 0.223 0.211 0.22 0.214 0.273 0.244 0.265 0.25
FTSE 0.189 0.188 0.189 0.189 0.225 0.219 0.222 0.22 0.244 0.234 0.241 0.237 0.29 0.268 0.284 0.273
OMXSPI 0.127 0.129 0.127 0.128 0.156 0.153 0.153 0.153 0.165 0.164 0.162 0.162 0.197 0.187 0.188 0.185
N225 0.198 0.201 0.2 0.2 0.243 0.239 0.241 0.24 0.278 0.268 0.274 0.27 0.332 0.305 0.323 0.31
KS11 0.1 0.103 0.1 0.102 0.12 0.123 0.118 0.12 0.133 0.137 0.13 0.133 0.158 0.162 0.15 0.155
HSI 0.153 0.153 0.153 0.153 0.188 0.183 0.186 0.184 0.214 0.203 0.21 0.206 0.244 0.221 0.235 0.224
Mean 0.160 0.162 0.161 0.162 0.197 0.194 0.195 0.194 0.217 0.211 0.214 0.212 0.257 0.240 0.249 0.242

Notes. This table reports the out-of-sample MAFE of STG-Spillover models trained on the
dataset constructed with different KPPS step H. For each forecast horizon and market
index, the best performing models are shown in bold.

In addition, we show the relationship between H in KPPS H-step ahead forecast
and the performance of the STG-Spillover model. H can be seen as the maximum
time step for the effect of the shock to maintain. Therefore, the performance of
the STG-Spillover model on short-, mid-, and long-term forecast horizons can be
affected by setting H as short-, mid-, or long-term. The net pairwise spillover index
and net spillover index calculated from each H are presented in Table The out-of-
sample results of STG-Spillover for different forecast horizons, trained by the dataset
in which the following graph is constructed by the spillover index with different H
for the KPPS H-step ahead VAR are presented in Table In the short-term

forecast horizon, the STG-Spillover model with KPPS step H = 1 showed the best
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performance. In the mid- and long-term forecast horizons, the H = 5 model is one of
the best performing, while the H = 22 model showed similar MAFE in the mid-term
of h = 5. From the analysis, we can conclude that short KPPS step H helps to train
the STG-Spillover model for predicting short-term ahead volatility, while long-term
H does not contribute much to long-term volatility forecasting. Furthermore, we
find that mid-term KPPS step H performs best when the forecast horizon is longer
than five. It is evident that the influence of shock for one market to others mainly

works until the mid-term.

3.4 Chapter Summary

We proposed a spatial-temporal GNN based model with a net pairwise spillover in-
dex graph. The out-of-sample results were analyzed on eight representative global
market indices. We suggest several key findings regarding the direct application of
the spillover effect in forecasting models. First, the STG-Spillover model demon-
strates the best out-of-sample prediction performance in the short- and mid-term
forecast horizons. Although the STG-Spillover model is not the best model for a
long-term forecast horizon, it still outperforms the STG-Correlation model. This
indicates that the net pairwise spillover index successfully reflects the volatility
spillover effect in the spatial-temporal GNN model in comparison to the Pearson
correlation coefficients. In addition, for the long-term forecast horizon, it was con-
firmed that the impact of the spillover effect decreased over time, and eventually
made the performance gap between the RNN model and the STG-Spillover model
almost non-existent. Second, the STG-Spillover model performs better when assets

with high volatility spillover effects are included in the dataset. When SPX with the
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largest net spillover is removed from the dataset, the short-term forecast accuracy
decreases by 4.38% and the long-term forecast accuracy decreases by 30.31%. In
contrast, when HSI, which has the smallest net spillover index and is only affected
by other indices, is removed from the dataset, the overall performance increases. We
suggest that this is because high-impact indices help predict the volatility of other in-
dices. We can confirm that the STG-Spillover model captures the volatility spillover
of each index well, and the model uses it to predict the volatility of other indices.
Finally, we empirically show that setting a short KPPS H-step for constructing a
net pairwise spillover index graph performs the best for short-term ahead forecast-
ing tasks, while the mid-term KPPS step is the best for mid-term ahead forecasting.
Interestingly, the long-term forecasts reveal distinct results: a graph using the mid-
term not the long-term KPPS step is optimal. Thus, we conclude that the volatility
spillover effect persists up to the mid-term horizon. Thus, constructing a graph of
market indices with mid-term KPPS step H will provide the best STG-Spillover
model fit for forecasting tasks with forecast horizon longer than five days.

In this chapter, we used a pre-defined volatility spillover measure in a spatial-
temporal GNN-based model. Because constructing a proper graph that captures the
relationship between input variables is an essential problem, some other variations
of the GNN-based model try to estimate the graph itself using the trained model. In
future research, measuring the spillover effect directly through the spatial-temporal
GNN would be a topic worth considering, similar to the neural relational inference

model introduced by [Kipf et al.| (2018).
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Table 3.6: Net pairwise spillover index and net spillover index of global market
indices with different KPPS steps

Net pairwise spillover index Net spillover index
Panel A : KPPS step H=1
To
SPX GDAXI  FCHI FTSE OMXSPI ~ N225 KS11 HSI
SPX - - - - 0.25 0.19 0.19 0.12 -0.3
GDAXI 0.28 - - - 0.54 0.36 0.32 0.52 1.92
FCHI 0.36 0.08 - 0.05 0.62 0.37 0.34 0.47 2.29
From FTSE 0.41 0.02 - - 0.75 0.41 0.3 0.18 2.02
OMXSPI - - - - - - 0.01 0.01 -2.22
N225 - - - - 0.08 - 0.34 0.27 0.64
KS11 - - - - - - - 0.01 -1.49
HSI - - - - - - - - -1.58
Panel B : KPPS step H=5
To
SPX GDAXI  FCHI FTSE OMXSPI ~ N225 KS11 HSI
SPX - 0.47 0.3 0.28 0.91 1.03 0.72 0.91 4.62
GDAXI - - - 0.09 0.63 0.42 0.55 0.28 1.15
FCHI - 0.35 - 0.31 0.89 0.75 0.58 0.78 3.36
From FTSE - - - - 0.8 0.7 0.31 0.47 1.6
OMXSPI - - - - - - 0.13 0.06 -3.07
N225 - - - - 0.03 - 0.21 0.31 -2.35
KS11 - - - - - - - 0.49 -2.01
HSI - - - - - - - - -3.3
Panel C : KPPS step H=10
To
SPX GDAXI  FCHI FTSE OMXSPI ~ N225 KS11 HSI
SPX - 0.86 0.44 0.32 1 1.17 1.23 1.3 6.32
GDAXI - - - - 0.54 0.33 0.31 0.22 -0.02
FCHI - 0.47 - 0.25 0.88 0.79 0.63 0.82 3.4
From FTSE - 0.09 - - 0.82 0.82 0.5 0.66 2.32
OMXSPI - - - - - 0.04 0.18 0.14 -2.88
N225 - - - - - - - 0.33 -2.97
KS11 - - - - - 0.15 - 0.86 -1.84
HSI - - - - - - - - -4.33
Panel D : KPPS step H=22
To
SPX GDAXI  FCHI FTSE OMXSPI ~ N225 KS11 HSI
SPX - 1.07 0.53 0.34 1.01 1.31 1.51 1.5 7.27
GDAXI - - - - 0.44 0.22 0.2 0.21 -0.76
FCHI - 0.52 - 0.19 0.85 0.82 0.82 0.91 3.58
From FTSE - 0.24 - - 0.83 0.94 0.86 0.9 3.24
OMXSPI - - - - - 0.12 0.34 0.25 -2.42
N225 - - - - - - - 0.37 -3.29
KS11 - - - - - 0.25 - 0.94 -2.54
HSI - - - - - - - - -5.08

Notes. This table reports the net pairwise spillover index and net spillover index. Four
panels each show indices created with the parameter KPPS step H = 1,5,10, and 22. The
number in the cell is the net pairwise spillover index ’from’ the market index in row and ’to’
the market index in column. For each panel, the last column represents net spillover index.

” 2 A Edst



Chapter 4

Graph-based multi-factor model with time-varying
volatility

4.1 Chapter overview

Asset pricing models focus on finding out the beta coefficient and factor that explains
the excess return of underlying assets. The development of the asset pricing model
over the last half century has many aspects, but we would like to view this as
a relaxation of the time-varying property conditions of the coefficients. The first
attempt at the asset pricing model, which can be seen as the capital asset pricing
model (CAPM) proposed by [Sharpe| (1964)) and Lintner| (1975)), tries to construct a
factor as market return. In this case, they assumed that the beta coefficient does not
vary over time. [Bollerslev et al.| (1988)) pointed out that the relationship between
market return and asset return may vary over time because of the restriction of
the market and proposed the CAPM model with time-varying covariances, which
typically denotes the time-varying beta coefficients.

Since most of the relevant researches adopted the idea of time-varying beta,
only a few research had focused on the time-variation of the volatility. Unlike asset
returns, which are directly observed and calculated from the rate of return derived
from the price, volatility is an intrinsic concept and has a characteristic that cannot

be directly observed. Therefore, the problem of discussing the volatility of the asset

64 !



must first begin with how to define the volatility. Referring to the GARCH process,
the most representative method of estimating volatility, volatility can be thought
of as the distribution of error terms of the model estimating return. The time-
varying volatility concept of the model has empirically important meaning because
the volatility of real data changes over time. Nelson| (1991)) found that a negative
correlation exists between the current return and future volatility. Furthermore, [Jin
(2017) pointed out that the negative return-volatility relationship varies over time.
The nature of this volatility is not reflected in linear regression-based models such
as CAPM, Fama-French three, and five-factor models. Following the idea, [Kim and
Kim| (2016) considered the framework of varying volatility based on the volatility of
error term in CAPM. The main idea is that supposing the error term of CAPM is
to follow a distribution with zero mean and time-varying volatility.

One of the major problems of relaxing the time-invariant volatility constraint
for the traditional asset pricing model is that it makes the estimation hard because
the terms to be estimated are added to beta, factor, and volatility. |[Kim and Kim
(2016)) employed the local-linear regression (Cleveland (1979); Stone| (1977))). This
methodology first estimates beta coefficients, and then obtains an estimated value
of volatility based on the estimated beta. Similar research is also done by [Ang et al.
(2006). They measured the volatility of assets as the standard deviation of residuals
from the Fama-French three-factor model.

All of these studies so far limit time-varying volatility to residuals within the
asset pricing model. This may be seen as an advantage of non-parametric volatil-
ity prediction, but since volatility is not predicted based on the parametric model,

there is a problem that the prediction performance itself may be degraded. This
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study estimates volatility as realized volatility, estimates it as a separate parametric
model from the asset pricing model, and suggests a method of reflecting it in the
asset pricing model. We adopted neural network architecture for realized volatility
prediction and asset pricing model. Deep-learning-based model architecture enables
effective handling of feature space when the size of the feature space is large. Fur-
thermore, compared to the linear regression model used in traditional asset pricing
models, deep learning-based models can be used to estimate beta and factor by
reflecting externally predicted volatility through modification of loss function. In
addition, the neural network model solves the problem of increasing the number of
parameters that the model must estimate by adding volatility as a variable, since it
can always be learned through the stochastic gradient descent methodology if only
the loss function is properly defined.

In this chapter, we propose the multi-factor asset pricing model with time-varying
volatility prediction. The proposed model is constructed of two parts, the factor
model part and the volatility prediction model part. The objective function of the
proposed model becomes the mean squared error between true excess return and
estimated excess return divided by estimated volatility plus the mean squared er-
ror between true volatility and estimated volatility. The volatility prediction model
part uses LSTM as an estimation function and the asset pricing model part utilizes
conditional autoencoder and graph neural network as estimation function.

The empirical analysis is done on monthly returns of 119 U.S individual stocks.
From the out-of-sample results, we could suggest important findings. First, the in-
crease in statistical performance of proposed time-varying volatility models during a

low-vol period is more than twice as large as time-unvarying volatility models. Sec-
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ond, the factors from five-factor graph-based factor model with time-varying volatil-
ity generate a tangency portfolio with the highest Sharpe ratio. It reveals that the
graph-based factor model with time-varying volatility can estimate the most efficient
stochastic discount factor.

The remainder of this chapter is organized as follows. Section illustrates
the background of time-varying volatility estimation. In Section we present the
structure and loss function of our proposed method. The data and benchmark models
for empirical analysis, and empirical results are shown in Section [£.4] Concluding

remarks are represented in Section

4.2 Preliminaries

4.2.1 Local-linear regression for time-varying parameter estimation

Unlike the traditional time-unvarying regression model, the time-varying regression

model can be expressed as the following general form:
Yyr =L Br + 0r€r (4.1)

where 7 = 1,2, ..., T is the discrete time-step, 3, is the coefficient and o, denotes the
time-varying volatility. e, is the residual that satisfies E[e,|x,] = 0 and E[e2|z,] =
1. To estimate 5 and ¢ as functions, B, and o, can be treated as the smoothly-
varying function by restricting domain in [0, 1]. The mathematical formulation can

be expressed as follows:

or=o(r/T), r=1,...T
(4.2)

Br=pB(r/T),r=1,..,T
where o(-) : [0,1] — R* and B(-) : [0,1] — RV,

The estimation of parameters in Equation requires estimation of both S(-)
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and o(-). Therefore, local-linear regression is used (Cleveland| (1979)). When 3(-)

has sufficient smoothness, §(-) and ’(+) can be local-linear estimated as:

T

T
(30 60)) = avging 30— a0~ eFmne = 712k () 4y

=1
where K (-) is a kernel function with finite support, even symmetry, and positive
value properties and b, is the bandwidth. After estimating /5(-), o(-) can be local-

linear estimated as follows:

T
() = 3 wr(t,7) (s — 7B, (4.4)
T=1

where wT(tﬂ') - K (t_hTT/T) Sa(t)—(t—7/T)S1(¢) and Sj(t) — Zle(t—T/T)jK <t—hTT/T>.

Sa(t)So(t)—S3(t)
ht denotes bandwidth.

4.3 Methodology

4.3.1 Time-varying volatility implied loss function

In this section, we define the loss function for training the asset pricing model with
time-varying volatility. Our proposed method is based on the multi-factor model

formation of an unconditional asset pricing equation:

Riiy1 = /Bij;tFt-‘rl + €41 (4.5)

where R; ;11 denotes the excess return of asset ¢ in time horizon t 4 1, 3 is the
beta coefficient as known as risk exposure, F;; is the factor, and ¢; ;41 denotes the

residual. The residual ¢; ;41 satisfies the following condition.

Etleit+1] = Et[€it+1F11] = 0 (4.6)
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However, when estimating Equation traditional approaches mostly use linear re-
gression, which assumes constant variance for residual that E, [6127t 1= o2, We relax
the constant variance condition by allowing residual to have time-varying variance

as follows:
E, [612,t+1] = Uz'2,t+1 (4.7)

where o; ;11 becomes the conditional volatility of asset 7 in time horizon ¢ + 1. Then

the multi-factor model can be written as the following equation.

T
Rity1 = BiFir1 + 0ip1€ 441 (4.8)

where Eq[e; ;1] = 0 and Et[e;’tHQ] =1

In chapter [2, we showed that when estimating Equation with a deep neural
network, the MSE loss | = (Rj+1 — BiT,tFtH)Q can be used. Since the MSE loss
minimizes the square of the residuals, it is the same target to be conceptually opti-
mized as linear regression, except that it is minimized using the stochastic gradient
descent methodology. However, the objective we need to minimize for Equation
is 612,t+1 = aztﬂe;’tﬂz. Therefore, we define the modified MSE loss I" to minimize

the residual with time-varying volatility as follows:

1 Z (Ri,t+1 - /B;'l:tpt-i-l)Q

"=
NT

(4.9)

N

it Oit+1

where BAZ”t,FAWtJ'_l, and 0;441 are the estimated values of B; 41, Fiy1, and 0; 441, re-
spectively. N and T denote the number of assets and total time length. The {" loss
implies that when asset volatility is expected to be high, the asset pricing model has
a more relaxed error criterion.

The problem of minimizing [" loss is estimating o; ;41. While 3; ; and F;; 1 can be
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estimated by using a multi-factor model structure, o; ;41 basically do not exists in the
traditional multi-factor asset pricing model. We regarded this volatility prediction
task as a separate task, and used it after estimating volatility from the outside
of the asset pricing model through the separate model. The independent volatility

prediction problem minimizes the [V loss as follows:

1 &m)?
V= — [ L 4.10
NT = < Tit41 (4.10)
The [Y loss has the structure of ratio formulation of MSE loss. It aims to make ¥
loss has the same scale as the {" loss.

By integrating the I” loss and the [? loss, we finally define the ! which will be

used for training the model.

It = wl” + wglt

1 (Rijt+1 — B;ftptﬂ)z 1 Oit+1
_ ) s 1 _ ]
w1 NT ; (5’2 + w2 NT ;

>2’ (4.11)

it Oit+1
where w1, ws are weight parameters for I and I?, respectively.
4.3.2 Proposed model architecture
The time-varying volatility asset pricing model has three parameters to estimate,
which are 3; 4, Fiy1, and 05 ¢4+1. When estimating ;; and Fy1, we follow the multi-
factor asset pricing approach used in chapter 2| §;; is estimated from firm charac-
teristics Z; ¢, and Fii1 is estimated by the portfolio of future returns, which is the

linear span of Ry1. We refer the estimation functions for §;; and Fiy; as g(-) and

h(-). Then the mathematical formulation of multi-factor model becomes as follows:

Rity1 = 9(Zit)h(Rev1) + €41 (4.12)
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For estimating future volatility, we use the time-series approach. ;41 is esti-
mated based on the historical volatility o;1.;. We refer to the estimation function
as f(-). Using g(+),h(-), and f(-) notation, the time-varying volatility asset pricing

model can be written as follows:

Rit1 = g(Zit)M(Rev1) + fleine)€; 141 (4.13)

Estimation of beta and factor

We used two approaches to estimate g(-) and h(-). The first approach is the con-
ditional autoencoder model proposed by |Gu et al. (2020a)). It estimates g(-) with
multi-layer perceptron with input Z;; and estimates h(-) with a single layer network
with input R:y; to make Fiiq as the linear combination of future return.

The second approach is the graph-based multi-factor model we proposed in chap-
ter[2l The graph-based structure aims to construct a graph between assets to capture
the relationship between assets and adopt it in the model. In this chapter, we used
Pearson correlation coefficients of asset returns as the proxy for the adjacency ma-
trix of assets. The cutoff value of Pearson correlation coefficients to construct binary

adjacency matrix is set as 0.1, which is the best parameter found in chapter

Estimation of volatility

We used the LSTM approach to estimate f(-) for volatility prediction. It is well
known that RNN-based approaches work well for time-series forecasting task. We
also showed that it works well in long-term volatility forecasting in chapter [3] Al-
though the objective of the volatility prediction task in this chapter is one-step ahead
forecast, the used realized volatility is monthly realized volatility. Therefore, in term

of the forecast horizon, the task can be assumed as long-term volatility forecasting.
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4.4 Empirical Studies
4.4.1 Data

We used the monthly return data of 119 firms on NYSE, AMEX, and NASDAQ
from March 1957 to December 2021. The targeted firms are those that have full data
during the above period. The 94 firm characteristics are from Gu et al.| (2020a), which
is the same dataset used in chapter [2| The list of firm characteristics is represented
in Tables and The monthly return data and three-month Treasury bill
rate are collected from CRSP. We divided the whole period into training, validation,
and test set. The training set is from 1957 to 1974, the validation set is from 1975

to 1986, and the test set is from 1987 to 2021.

4.4.2 Benchmark Models

For a fair comparison, we selected four models as benchmark models. As the bench-
mark for the fundamental factor model, we selected the Fama-French factor model
(Fama and French| (1992, 2015)). The K-factor Fama-French factor model consists
of the first K elements of (Excess market return, SMB, HML, RMW, CMA). The
varying volatility CAPM is used as the benchmark for the varying volatility macroe-
conomic factor model with the local-linear regression introduced in chapter 4.2.1
Since the CAPM is one-factor model, varying volatility CAPM is only applied in
one-factor model.

As the benchmark for latent time-unvarying volatility factor models, the condi-
tional autoencoder model and graph-based multi-factor model is used. Each model
is trained using the best parameters as mentioned in its originally proposed papers.

During the rest of this chapter, FF stands for Fama-French factor model, LLR
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stands for varying volatility CAPM with local-linear regression estimation, CA-UV
stands for conditional autoencoder with time-unvarying volatility model, GF-UV
stands for the graph-based multi-factor model with time-unvarying volatility model,
CA-VV stands for conditional autoencoder with time-varying volatility model, and
GF-VV stands for the graph-based multi-factor model with time-varying volatility

model.

4.4.3 Empirical Results

During the out-of-sample period, we compared the statistical performance of bench-
mark models and proposed models. Statistical performance includes both explana-
tion power and prediction power of excess return. Asset pricing models are basically
explanation models because the objective variables and independent variables are in
the same time step. Therefore, explanation power comparison is the proper evalua-
tion index for model comparison. Although the asset pricing model takes the form
of an explanatory model, it is also possible to change it to the form of a predictive
model through a time-series mean. Out-of-sample Rfatal and R;%r .q €ach are used for

explanatory and prediction performance indicators:

> (neoos(Bit — Bit1fe)?

R20 al = 1-
tot Z(i,t)EOOS Rz‘Q,t (4 14)
R 1 > ityeoos (Rt = Bip—1fri-1)*
red — +
! Z(i,t)GOOS Rzz,t

Table[d.T]shows the empirical results. CA-VV model shows the best out-of-sample
total R-square in the one-factor model, while the GF-UV model shows the best out-
of-sample total R-square in the two-, three-, and five-factor model. The GB-VV four-

factor model represents the highest out-of-sample total R-square of 32.28%. For the
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out-of-sample prediction R-square, the GF-UV model shows the best performance
in the two-, three-, and the five-factor model. The GF-VV model represents the
best performance in the one- and the four-factor model, where the 7.26% of the
four-factor model is the highest R-square. We can confirm that the graph-based
factor models, both unvarying volatility and varying volatility models, show better
performance than time-series models and conditional autoencoder models in terms
of prediction power.

Revisiting Equation the proposed training loss gets smaller when the pre-
dicted volatility decreases. It implies that the CA-VV and GF-VV model will be
trained more tightly in the low-vol period. To check the quantitative effect based
on volatility level, we compared the out-of-sample total R-square and prediction
R-square during the low-vol period and high-vol period. The low-vol and high-vol
period are defined by the time-series quantile of the average volatility of target assets.
We used five-quantile and the k-th quantile set is defined as follows:

N
S ={&1,...,07}, where 5, = N Zai’t
i=1 (4.15)
Ui = {o1lon < e, PriS < ] < 1)

Tables [£.2] and [4.3] each report the out-of-sample total R-square and prediction
R-square for U; and Uy. For comparison of performance difference between the whole
period and U period, Figure [£.1] shows the difference in percentage for CA-UV, GF-
UV, CA-VV, and GF-VV models. The results show that both total R-square and
prediction R-square for varying volatility models, CA-VV and GF-VV, increases far
more than unvarying volatility models in the low-vol period. In the low-vol period

of the four models, the average increase in total R-square for each factor is 1.22%,

74
I

.-';r'\-\.-! -;.:I- 1_] ."‘.l'l

11’



1.86%, 6.84%, and 7.19%, respectively. The average increase in prediction R-square
for each factor is 5.04%, 3.23%, 11.19%, and 9.54%, respectively. It shows that in the
low-vol period, the R-square of varying volatility models increases more than double
compared to unvarying volatility models. Looking at the absolute amount, not the
increase in performance, the model that produces the best performance for each
number of factors is mostly similar to the result in the total period, but is different
in the two-factor model. For the two-factor models in the low-vol period, the CA-VV
model shows the best performance in terms of out-of-sample total R-square. During
the high-vol period, out-of-sample total R-square and prediction R-square decreases
for every model. However, the rank of each metric between models does not change
compared to the whole period.

Alongside R-square metrics, the Sharpe ratio of factor tangency portfolio is also
used. While out-of-sample total R-square and prediction R-square evaluate the sta-
tistical performance of models, the Sharpe ratio of factor tangency portfolio is the
measure of the economic value of constructed factors. Following |Hansen and Jagan-
nathan (1991), the stochastic discount factor should be well estimated by the linear
span of factors. Therefore, the optimal mean-variance portfolio of well-constructed
factors should replicate the stochastic discount factor. Since the higher out-of-sample
Sharpe ratio of stochastic discount factor infers a more efficient stochastic discount
factor, the Sharpe ratio test of factor portfolios becomes the test of efficient stochas-
tic discount factor construction, which is the essential goal of asset pricing. Table
4.4) represents the results for the Sharpe ratio of tangency factor portfolios of each
model. For the two- and three-factor models, the GF-UV model shows the highest

Sharpe ratio of 2.07. GF-VV model shows the highest Sharpe ratio in one-, four-
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Table 4.1: Comparison of Qut-of-sample R? ; and R}%

tota red
# of Factors 1 2 3 4 5
FF 0.25 0.32 0.4 0.42 0.62
LLR 2.08 - - - -
Out-of-sample CA-UV 23.25 27.69 27.48 28.08 25.88
total R-square (%) GF-UV 2497 27.75 28.91 28.21 28.6

CA-VV 27.01 27.12 26.33 26.31 24.38
GF-VV 26.06 2533 2735 32.28 24.61

FF <0 <0 <0 <0 <0
LLR <0 - - - -
Out-of-sample CA-UV 1.17 2.67 2.97 3.3 2.64
prediction R-square (%) GF-UV 3.75 497 5.15 562  5.59

CA-VV 2.01 2.69 2.55 3.08 2.67
GF-VV 4.24  4.18 3.25 7.26 5.1
Notes. The upper part of table represents the empirical results of out-of-sample total R?
and lower part represents the out-of-sample prediction R?. In the second column, FF,
LLR, CA, and GF each denotes Fama-French model, time-varying volatility CAPM with
local-linear regression estimation, conditional autoencoder, and graph factor model. UV
and VV each denotes the time-unvarying volatility and time-varying volatility. The best
performing models along the fixed number of factors are shown in bold.

, and five-factor models. It is the similar result with the out-of-sample prediction
R-square result, except for the five-factor <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>