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Abstract  

Development of a Video-based  

Work Pose Entry System for  

Ergonomic Postural Assessment 

 
 

Gyungbhin Kim 

Department of Industrial Engineering 

The Graduate School 

Seoul National University 

 

Work-related musculoskeletal disorders are a crucial problem for the worker’s safety 

and productivity of the workplace. The purpose of this study is to propose and 

develop a video-based work pose entry system for ergonomic postural assessment 

methods, Rapid Upper Limb Assessment(RULA) and Rapid Entire Body 

Assessment(REBA). This study developed a work pose entry system using the 

YOLOv3 algorithm for human tracking and the SPIN approach for 3D human pose 

estimation. The work pose entry system takes in a 2D video and scores of few 

evaluation items as input and outputs a final RULA or REBA score and the 

corresponding action level. An experiment for validation was conducted to 20 

evaluators which were classified into two groups, experienced and novice, based on 

their level of knowledge or experience on ergonomics and musculoskeletal disorders. 
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Participants were asked to manually evaluate working postures of 20 working videos 

taken at an automobile assembly plant, recording their scores on an Excel worksheet. 

Scores were generated by the work pose entry system based on individual items that 

need to be inputted, and the results of manual evaluation and results from the work 

pose entry system were compared. Descriptive statistics and Mann-Whitney U test 

showed that using the proposed work pose entry system decreased the difference 

and standard deviation between the groups. Also, findings showed that experienced 

evaluators tend to score higher than novice evaluators. Fisher’s exact test was also 

conducted on evaluation items that are inputted into the work pose entry system, 

and results have shown that some items that may seem apparent can be perceived 

differently between groups as well. The work pose entry system developed in this 

study can contribute to increasing consistency of ergonomic risk assessment and 

reducing time and effort of ergonomic practitioners during the process. Directions 

for future research on developing work pose entry systems for ergonomic posture 

assessment using computer vision are also suggested in the current study.  

 

Keywords: Work-related musculoskeletal disorders, Rapid Upper Limb 

Assessment, Rapid Entire Body Assessment, Computer vision, Semi-automated 

posture assessment  

Student Number: 2020-20716 
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Chapter 1 

 

Introduction 
 

1.1 Background 

Musculoskeletal disorders are injuries or disorders of the muscles, nerves, tendons, 

joints, cartilage, and spinal discs(CDC, 2020). According to CDC, when work 

environment and performance of work contribute significantly to the condition or 

the condition is made worse or persists longer due to work conditions, the disorder 

is referred to as a work-related musculoskeletal disorder (WMSD). As WMSDs occur 

from accumulated load from repetitive inappropriate postures and movements, it is 

important to assess the posture and movements of workers to prevent and decrease 

the risk of WMSDs. Some of the working conditions that may lead to WMSDS are 

routine lifting of heavy objects, daily exposure to whole-body vibration, routine 

overhead work, work with the neck in a chronic flexion position, or performing 

repetitive forceful tasks(Bernard & Putz-Anderson, 1997). Different body parts can 

suffer from WMSDs depending on the type of task performed. For example, pain is 

likely to occur in the upper arm, lower arm, wrists, shoulders, and neck, when the 

task is mostly performed using the upper body. 

 

WMSDs are a serious problem in terms of workers’ safety and the productivity of 

the workplace. In the United States, there were 247,620 cases of WMSDs in private 

industries in the year of 2020, involving a median of 14 days away from work(U.S. 
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Bureau of Labor Statistics, 2020). It is also estimated that the annual direct cost of 

workers’ compensation with MSDs is approximately $20 billion(Kang et al., 2014). 

Moreover, indirect costs, which involve costs related to hiring and training 

replacement workers were as 5 times the direct cost(Kang et al., 2014). WMSDs 

were ranked second worldwide in shortening people’s working years(Sebbag et al., 

2019). The situation is not much different in South Korea. According to the Korea 

Occupational Safety and Health Agency(KOSHA), 87.4% of all work-related 

diseases in South Korea were WMSDs as of 2021. As shown in Figure 1, the number 

of work-related musculoskeletal diseases has kept increasing for the past 10 years. 

Therefore, there is no doubt that ergonomic risk assessment is necessary to prevent 

WMSDs. 

 

 
Figure 1 Work-related Diseases in South Korea (2012-2021) 
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Various methods have been proposed and design for postural evaluation in the 

workplace. These techniques can be classified as the following: self-reports, 

observational methods, direct methods(David, 2005; Vignais et al., 2017). 

 

Self-reports methods include worker diaries, interview, questionnaires and are useful 

when data of large population is needed in short time. However, a major drawback 

of self-reports is that the data can lack reliability since the data relies on the 

subjective difficulty of the worker. Also, interpretation of the requires certain skills, 

which can result in costs relevant to analysis. Observational methods require an 

ergonomic expert evaluator to manually partition body parts and evaluate the 

posture of the worker being observed on different risk factors which include 

repetitive movements, duration, and muscle force (Andrews et al 2012). Several 

observational tools have been proposed by previous studies, including Rapid Upper 

Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), and Ovako 

Working Postures Analysis System (OWAS). These methods differ in the scales the 

posture is measured with and the body segments being measured. The main 

drawback of observational methods is that the assessment process is time-consuming 

and depends on the proficiency and viewing angle of the evaluator, leading to intra- 

and inter-evaluator variability. Moreover, these techniques require a trained 

evaluator to perform the assessment, making the method costly. These methods are 

also suitable for static postures only. Lastly, the direct methods aim to assess 

postural risk by using advanced technologies such as the inertial measurement units 

(IMU) and Kinect-based depth cameras. Direct methods are useful for gathering 

large amount of data and has the advantage of not requiring the manual 

segmentation of body parts. However, as attaching sensors to the body of workers 

is not always possible, this may not be an appropriate method to use in the real 
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workplace environment. These techniques also require high initial cost for 

purchasing the equipment, as these anthropometric devices are quite expensive. 

 

The worksheet-based human observation posture assessment system is cumbersome 

and prone to human error. Additionally, this process focuses only on a single posture 

image chosen by the evaluator, which may be insufficient to include the all 

movements occurring in the working cycle of a certain task. The proposed method 

aims to address these issues by developing a video-based work pose entry system 

for ergonomic postural assessment, which can be used by any evaluator regardless 

of the amount of knowledge or experience with RULA or REBA with videos taken 

in the real workplace by a single-camera. The work pose entry system generates 

postural evaluation results based on a video, which evaluates all possible postures 

taken in a single work cycle.  

 

1.2 Research Ob jectives  

The purpose of this study is to develop a video-based work pose entry system for 

ergonomic postural assessment to evaluate postures based on the RULA and REBA 

assessment tool. To be more specific, this study is about developing a system that 

can generate scores from the videos of workers in real workplace conditions 

performing occupational tasks. The proposed work pose entry system generates 

RULA/REBA scores with little input required from the investigator and the Euler 

angle of each relevant joint, which is automatically computed by computer vision 

algorithms. The reliability of the proposed tool is validated by comparing manual 

evaluation results and results from the proposed system between two groups with 

different experience or knowledge on ergonomic posture analysis. This method is 
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expected to reduce time and effort of ergonomic analysts in RULA, REBA 

evaluation as only little manual input is required, which are easy to determine.   

 

1.3 Organization of the Thesis  

The thesis is composed of 5 chapters. In Chapter 2, we review literatures and 

important concepts related to the present study. Chapter 3 contains the design of 

the proposed work pose entry system developed in the current study. Chapter 4 

presents the methodology and results of the validation experiment. Chapter 5 

contains a discussion of the results of the experiment. Finally, in Chapter 6, we give 

concluding remarks and possible future research directions of this thesis.  
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Chapter 2 

 

Literature Review  

 

2.1 Overview  

This chapter provides concepts, definitions, and important findings from previous 

research that relates to the scope of this research. As the main goal of this study is 

to develop a video-based work pose entry system for RULA and REBA, basic 

concepts and research regarding work-related musculoskeletal disorders and 

ergonomic posture assessment are discussed first. After that, definitions and various 

methods relevant to 3D human pose estimation are presented.  

2.2 Work-related M usculoskeletal Disorders 

Musculoskeletal diseases(MSD) are injuries or pain that affects the body’s joints, 

ligaments, muscles, nerves, tendons, and structures that support limbs, neck, and 

back(Hadler, 2005). MSDs can occur from many reasons, examples of which are 

awkward working posture, repetitive tasks, insufficient recovery time, excessive force 

exertion, and vibration. Not only can MSDs undermine the performance of the 

worker, they can also inflict permanent disability. In cases where MSDs are induced 

or aggravated by working conditions in a workplace, they are referred to as work-

related musculoskeletal disorder(Schneider et al., 2010). Some examples of WMSDs 

are low back pain, carpal tunnel syndrome, tendinitis, and epicondylitis(Da Costa 

& Vieira, 2010). 
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2.3 Ergonomic Posture Analysis 

According to International Ergonomics Association, ergonomics is the scientific 

discipline concerned with the understanding of interactions among human and other 

elements of a system, and the profession that applies theory, principles, data, and 

methods to design in order to optimize human well-being and overall system 

performance(IEA). Techniques for ergonomics posture analysis can be classified into 

self-reports, observational methods, direct methods, and vision-based methods.  

 

2.3.1 Self-reports 

Self-report methods collect data by using worker diaries, interview, and 

questionnaires. These methods have the advantage of being able to be applied in a 

wide range of context, and useful for surveying a large population. However, a major 

drawback of these methods is that the perceptions of workers have been found to 

be imprecise and unreliable(David, 2005). Moreover, the problem of there being 

different levels of understanding of the job being done may increase the difficulty of 

using such methods(Spielholz et al., 2001). 

 

2.3.2 Observational M ethods 

Human-observation risk assessment methods require investigators to assess the 

working posture of workers in real-time or by videos containing the work-cycle of a 

certain job. Investigators manually segment each body part and assign the score 

based on the worksheet of a postural assessment tool. Various postural assessment 

tools have been developed, such as the Ovako Working Posture Analysis System 

(OWAS), Rapid Upper Limb Assessment (RULA), and Rapid Entire Body 
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Assessment (REBA). These tools differ in purpose, relevant body parts, input 

needed for scoring, and the output generated by the method. 

Ovako Working Posture Analyzing System (OWAS) 

Developed in 1973 in the steel industry OVAKO OY(Helsinki, Finland), the OWAS 

method analyzes work postures by observing the frequency and duration of each 

posture in a single work-cycle(Karhu et al., 1977). Each posture is described by a 

three-digit code and is classified into one of the 252 possible combinations of the 

back, upper limb, and lower limb, and the weight of load or amount of force exerted. 

Four postures of the back, 3 postures of the upper limbs, and 7 postures for the 

lower limbs are identified, and the load or force is classified into 3 categories(Figure 

2). 

 

Figure 2 List of items classified by OWAS (Source: Karhu et al., 1977) 
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The classified posture is then re-classified into 4 categories, which were named 

operative classes. The larger the number of the class, the more uncomfortable the 

posture is. Each class indicates the severity of injury and action needed to be 

taken(Table 1). 

 

Table 1 Operative class of OWAS 

Operative class  Implication  

Class 1 Normal postures which do not need any special 

attention, except in some special cases 

Class 2 Postures must be considered during the next 

regular check of working methods 

Class 3 Postures need consideration in the near future 

Class 4 Postures need immediate consideration 

 

As OWAS is relatively easy to use and is applicable in a wide range of occupations, 

OWAS has been used in different industries, such as manufacturing, healthcare, and 

agriculture(Brandl et al., 2017; Herzog et al., 2015; Sakamoto et al., 2017). However, 

a major limitation of the OWAS method is that it only includes the posture 

evaluation of the back, upper limb, and lower limb, and that the repetition or 

duration information is not included.  

 

 

 

 



 

 

 

10 

Rapid Upper Limb Assessment (RULA) 

RULA is a survey-based ergonomic risk assessment tool developed to investigate 

work-related upper limb disorders(McAtamney & Corlett, 1993). This tool has the 

advantage of requiring no special equipment in providing a quick assessment of 

postures of the neck, trunk, and upper limbs along with muscle function and external 

loads.  

 

When using RULA, the investigator must segment the relevant body parts. The 

relevant body parts are divided into two groups, where Group A consists of upper 

arm, lower arm, and wrist, and Group B includes the neck, trunk, and legs. The 

investigator first assigns position scores for each relevant body part. After that, the 

Muscle Use score, which concerns whether the posture is static or repeated, and 

Load/Force score, which concerns how much load is exerted on the body, is added 

to the position scores of each group. Lastly, the combination of each group’s score 

decides the grand score, which is then categorized into 4 action levels(Table 2). The 

action levels indicate what level of investigation and modification is needed in the 

observed operations. The scoring methodology of RULA is shown in Figure 3. 
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Figure 3 Scoring methodology of RULA 

 

 

 

 

 

Table 2 Action Levels of RULA 

Action 

Level 

Score 

range 
Implication 

1 1-2 The posture is acceptable if it is not maintained or repeated for 

long periods. 

2 3-4 Further investigation is needed and changes may be required. 

3 5-6 Investigation and changes are required soon. 

4 7+ Investigation and changes are required immediately. 
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As RULA is simple to use and applicable in many different areas where repetitive 

tasks using the upper limbs take place, it has been used in a variety of domains in 

previous studies (Azizi et al., 2019; Ekinci et al., 2019; Li et al., 2019; Ratzlaff et 

al., 2019; Tang & Webb, 2018).In fact, total of 19 categories were found to have 

been using RULA in a study, where the field of manufacturing had the most studies, 

total of 74(Gómez-Galán et al., 2020). It was followed by 38 studies on human 

health and social work activities. 

 

Kee (2020) conducted a study to compare three observational techniques, OWAS, 

RULA, and Rapid Entire Body Assessment(REBA). The author conducted an 

experiment with 15 participants to measure discomfort, where hand height, hand 

distance, and external load were used as independent variables. Load scores for 48 

postures by the three assessment methods were generated, and the significance and 

effects of the independent variables were investigated. Results showed that the 

RULA grand score reflected the effects of the independent variables. Moreover, the 

score was the most linearly proportional to the whole-body comfort, which is a 

measure of postural loads.  

     

However, the RULA method has some limitations as well. First, only the left or 

right side is assessed at a time. The observer may assess the other side when 

undecided, but the fundamental process of RULA only takes one side into 

account(McAtamney & Corlett, 1993). Also, it does not consider how much time it 

takes for the worker to complete the task(Takala et al., 2010). 
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Rapid Entire Body Assessment (REBA) 

REBA is a survey-based postural analysis system developed to be sensitive to 

unpredictable working postures found in health care and other service 

industries(Hignett & McAtamney, 2000). This tool has the advantage of being cost-

effective and easy to apply, requiring only pen and paper for collecting data. REBA 

differs from other methods in that it considers the lower extremities of the body.  

 

Like RULA, REBA requires the investigator to divide the body in to segments to 

be coded individually, with reference to movement planes. The relevant body parts 

are divided into two groups, where Group A consists of the trunk, neck, and legs, 

and Group B includes the upper arms, lower arms, and wrist. The investigator first 

assigns position scores for each relevant body part. After that, the Load/Force score, 

which concerns how much load is exerted on the body, is added to scores of Group 

A, and the coupling score is added to scores of Group B. Activity Scores are also 

adjusted based on muscle activity. Score C is then calculated based on Score A and 

Score B, and the final score results to sum of Score C and Activity Score. At last, 

action level indicating risk level and urgency is provided(Table 3). Figure 4 shows 

the scoring methodology of REBA. 
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Figure 4 Scoring methodology of REBA 

 

 

 

 

Table 3 Action Levels of REBA 

Action 

Level 

Score 

range 
Risk level Action 

0 1 Negligible  None necessary 

1 2-3 Low May be necessary  

2 4-7 Medium Necessary  

3 8-10 High Necessary soon 

4 11-15 Very high Necessary NOW 
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As REBA is cost-effective and easy to apply, it has been used in many areas, such 

as manufacturing(Abaraogu et al., 2016; Boulila et al., 2018; Gönen et al., 2018; 

Yoon et al., 2016) and agriculture(Das & Gangopadhyay, 2015; Das et al., 2013; 

Houshyar & Kim, 2018). The method has been mainly used for analysis of forced 

postures rather than repetitive movements(Hita-Gutiérrez et al., 2020). 

 

The main limitation of REBA, however, is that the method does not consider the 

duration of tasks or the repetition of certain postures. Moreover, like RULA, 

separate assessment of the left and right sides is required for the investigator. REBA 

was also shown to underestimate postural loads in a study comparing OWAS, 

RULA, and REBA (Kee et al. 2020). 

 

2.3.3 Direct M ethods 

Direct methods are useful and convenient in that they do not require the 

investigator to manually segment and perform evaluation on each relevant body 

part. In addition, compared to the observational methods, direct methods are more 

likely to excel in terms of speed and accuracy. Previous studies on direct methods 

can be classified into wearable device-based studies and Kinect-based studies.  

 

Peppoloni et al. (2016) proposed a wearable wireless system for assessing muscular 

efforts and postures of the upper limb, using surface EMG sensors and inertial 

measurement units (IMUs). The method scores for ergonomic risk according to 

RULA and Strain Index (SI). For application and testing the accuracy of the system, 

data is collected from supermarket cashiers performing real-life operations and 

compared with the results of two human investigators’ results. A major limitation 
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of this study is, however, that the positions of the neck, trunk, and leg were 

considered to be constant throughout each work cycle. Vignais et al. (2017) 

performed ergonomic analysis of a filter cleaning task by combining subtask video 

analysis and RULA score calculation using a motion capture system which consists 

of IMU and electro goniometers. IMUs were used to collect data of the upper arm, 

forearm, head, trunk, pelvis, and the electro goniometers were used to record wrist 

angles. Maurer-Grubinger et al. (2021) conducted analysis on two work routines in 

dentistry using kinematic data recorded from using inertial sensors. RULA scores 

were analyzed in terms of RULA score, relative RULA score distribution, RULA 

steps score, relative RULA steps score occurrence, and relative angle distribution. 

Subjects had to wear a measuring suit, with 17 sensors attached. A major limitation 

of a wearable device-based assessment is, however, that having to attach body 

sensors on a worker’s body or having the workers wear a certain measuring suit 

may be difficult and intrusive to implement in real workplace environment in many 

domains(Abobakr et al., 2017). 

 

Another direct method involves using the Microsoft Kinect. Manghisi et al. (2017) 

presented a semi-automatic RULA evaluation software based on the Microsoft 

Kinect v2 depth camera. The system was validated by conducting two experiments. 

In the first experiment, RULA scores of 15 static postures generated by the proposed 

system were compared with those obtained from a reference optical motion capture 

system, and in the second experiment, the scores were compared by the scores of a 

RULA expert evaluator. Plantard et al. (2017) proposed and evaluated Kinect-

based RULA assessment method in real work conditions. As occlusions were the 

main problem of the Kinect-based methods, different levels of occlusions were tested 

by using a box. In addition, the proposed method was evaluated within a real 
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workplace, at a car manufacturer factory. Results showed that the method 

accurately calculates the RULA score in various environments. The drawback of 

the Kinect-based assessment is that it may suffer from noisy information of the 

hand joints. In fact, wrist and neck related information needed to be manually 

set(Manghisi et al., 2017; Plantard et al., 2017). Another drawback concerns light 

condition. As the Kinect is based on infrared technology, accuracy can be unstable 

depending on the light conditions of the environment(Humadi et al., 2021; Plantard 

et al., 2017). 

 

2.3.4 Vision-based M ethods 

Computer vision-based approaches have been made to generate ergonomic postural 

analysis scores from images. Yan et al. (2017) developed an ergonomic posture 

classification system based on OWAS and 2D human pose estimation framework. 

Three classifiers in terms of arms, back, and legs were trained using different 

machine learning algorithms. Similarly, Zhang et al. (2018) proposed a method using 

3D view-invariant features from a single 2D camera for recognition of hazardous 

postures at the workplace, where classifiers were trained using machine learning 

models as well. However, the limitation of these studies is that recognition of 

postures is not sufficient for ergonomic posture assessment.  

 

Li et al. (2020) explored a deep learning-based algorithm for RULA, which takes 

normal RGB images as inputs and outputs the RULA action level. It consists of a 

2D pose detector built on OpenPose(Cao et al., 2017), a popular open-source 

technology for 2D human pose estimation, and a RULA estimator which infers 

action level from 3D joint coordinates by a second deep neural network. For training 
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and evaluation, posture data from Human 3.6 dataset and lifting postures collected 

in laboratory were used. RULA scores were obtained from manual evaluation of two 

experimenters with experiences in ergonomics risk assessment. An accuracy of 93% 

was achieved. A limitation of this study was that wrist score, muscle use, and 

workload were assumed uniform. Moreover, only static postures were examined, not 

considering body movement frequency and level of muscle use. In similar fashion, 

MassirisFernández et al. (2020) presented an OpenPose-based system for computing 

RULA. Given an input image, workers’ skeletons are detected, body-joint positions 

are inferred, and RULA scores are computed. Drawbacks of this study were that as 

angles were calculated from 2D projections, projective distortions may occur, and 

that wrist scores were manually set. Kim et al. (2021) also proposed an OpenPose-

based system for computing joint angles and RULA/REBA scores and validated 

against the reference motion capture system, and compared its performance to the 

Kinect-based system. Results showed that OpenPose-based method shows good 

performance at conditions with intended occlusions or tracked from non-frontal 

views, but a limitation of this study was that manual scoring was given for upper 

arm rotation, wrist twisting, and neck twisting due to lack of body keypoints for 

calculating joint angles.  

 

Recently, Nayak and Kim (2021) developed an automated RULA-based posture 

assessment system using a CNN-based neural model, DeepPose(Toshev & Szegedy, 

2014) to estimate RULA scores, including scores for wrist posture. For training and 

validation, Whole-Body Human Pose Estimation in the Wild dataset was used. 

Images in the dataset were of people in various postures in common, real-life 

activities. Validation of the system were done on common occupational workplace 

posture images that have been manually evaluated by two ergonomic experts. 



 

 

 

19 

Drawbacks of this study are that shoulder raising score was fixed at 0, and that 

joint angles were calculated from 2D joint locations, which can result in projective 

distortions. Moreover, the reliability of the algorithm depends on the recordings of 

the postures. Also, the process of validating the method against scores of ergonomic 

analysts is questionable.  

 

2.4 3D Human Pose Estimation  

Human pose estimation refers to the process of estimating the configuration of the 

body from a single, typically monocular image or video(Sigal, 2020). As it can be 

applied in various fields including motion analysis, action detection, human-

computer interaction, and extended reality, the field of human pose estimation has 

been receiving significant attention from the scientific community especially in the 

past decade. With the advancement of Convolutional Neural Networks(CNN) and 

popular human pose datasets such as Microsoft Common Objects in 

Context(COCO)(Lin et al., 2014), MPII human Pose dataset(Rohrbach et al., 2015), 

and Human 3.6M(Ionescu et al., 2013), the field has progressed dramatically. 

Human pose estimation can be classified as 2D Pose estimation and 3D pose 

estimation, which is based on whether the location of body keypoints are predicted 

in 2D space or 3D space.  

 

3D human pose estimation can be classified into model-free approaches and model-

based approaches. A model-free approach is a method of directly estimating the 

location of each vertex. On the other hand, the model-based approach is a method 

of estimating the parameters of the human model from input images or videos 

instead of estimating the location of each vertex. 
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In this thesis, we focus on the various methods and studies on the Skinned Multi-

Person Linear(SMPL) model, which is widely used in recent 3D human pose 

estimation and used in the system proposed in the current study. The SMPL model 

is a skin vertex-based model trained in thousands of 3D scans, which allows accurate 

representation of various body joints and shapes in natural poses(Loper et al., 2015). 

 

2.4.1 M odel-free Approaches  

Model-free approach for pose estimation was first introduced through GraphCMR, 

which was proposed by Kolotouros, Pavlakos and Daniilidis (2019). In this approach, 

the feature extracted from the input image is embedded in the graph network to 

estimate 3D coordinates of the human mesh. Here, the number of nodes in the graph 

is equal to the number of vertices of the human mesh model. Moon and Lee (2020) 

proposed I2LMeshNet, which consists of Posture Network (PoseNet) and MeshNet. 

PoseNet estimates a three-dimensional Gaussian heat map of a single RGB image, 

representing a three-dimensional joint position. The output of the algorithm is the 

final human mesh, which is acquired by receiving the features extracted from the 

first part of PoseNet and the last estimated three-dimensional Gaussian heat map 

as input. Recently, Lin et al. (2021) proposed a method for restoring human meshes 

using a self-attention transformer-based encoder network called METRO, which 

extracts features from a given single RGB image using CNN. The extracted image 

features are merged with the three-dimensional joint and vertex coordinates of the 

SMPL human template, and generate joint queries and vertex queries to be 

processed in the transformer. The transformer encoder network then receives joint 

queries and vertex queries and outputs three-dimensional joint coordinates and 

vertex coordinates in parallel.  
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2.4.2 M odel-based Approaches  

The model-based approach refers to the process of estimating posture and shape 

parameters of the human model without directly estimating the location of each 

vertex.  These approaches have been used in numerous recent studies(Biggs et al., 

2020; Bogo et al., 2016; Kolotouros, Pavlakos, Black, et al., 2019; Li et al., 2021; 

Pavlakos et al., 2018). Model-based approaches have shown remarkable results and 

can be reclassified into direct and indirect estimation methods. 

 

Indirect pose estimation 

In this approach, input images are converted to keypoints, human mask, or 

Gaussian heat maps before estimating SMPL parameters. Bogo et al. (2016) 

proposed SMPLify, in which DeepCut(Pishchulin et al., 2016) takes in an image to 

estimate a two-dimensional posture. The estimated two-dimensional posture is then 

used as an input to a fitting algorithm, where posture and shape parameters of 

SMPL are fitted to the 2D posture estimated by DeepCut by minimizing errors in 

the projected joints, postures, and features in the SMPL model. The error function 

is minimized through repetitive methods by the fitting algorithm.  

 

Pavlakos et al. (2018) proposed a CNN-based method for estimating SMPL 

parameters from a single image, which is composed of an initialization module, a 

feature module, and a posture module. The initialization module simultaneously 

estimates a two-dimensional thermal map and a silhouette from the input image 

based on the multi-task learning paradigm. After that, a two-dimensional heat map 

is entered into the posture module to estimate the posture parameters, and the 
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silhouette is used to estimate the shape parameters in the shape module. 

Direct pose estimation 

Direct pose estimation methods estimate SMPL parameters directly from the input 

image. Kanazawa et al. (2018) proposed human mesh recovery (HMR). Instead of 

using a single CNN network, HMR used Generative Adversarial Networks (GANs) 

to design the network. The generation network estimates the SMPL parameters 

from a single image by using a discriminator to determine whether the estimated 

human mesh is real or fake to prevent the creation of unreliable human meshes. 

 

Kolotouros, Pavlakos, Black, et al. (2019) proposed SMPL oPtimization IN the loop 

(SPIN), a mixture of CNN-based and optimization-based methods. In general, CNN-

based methods show fast and satisfactory performance in estimating mesh, but do 

not perform well compared to well-designed optimization-based methods. On the 

other hand, the optimization-based method shows good fitting performance, but its 

performance depends a lot on the initial prediction value and is very slow. The main 

idea of SPIN is to input images into CNN networks to estimate the initial SMPL 

parameters. The initial parameters typically exhibit about half the performance of 

the result of the SPIN model. The optimization technique performs repetitive fitting 

using parameters estimated by CNN as a starting point for optimization. This allows 

the SPIN to significantly reduce the time required for optimization 
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Chapter 3 

 

Proposed System Design  

 

3.1 Overview  

This chapter discusses the architecture and details of the work pose entry system 

proposed in the current study. The structure of the work pose entry system is 

depicted in the figure below(Figure 5). 

 
Figure 5 Overview of the proposed work pose entry system 
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3.2 Human Tracking 

The first step of the proposed system involves tracking the worker of interest in the 

video. This process is necessary as most videos taken in the real workplace context 

would typically capture multiple workers simultaneously. Yet, ergonomic posture 

assessment is designed for one worker at a time. The human tracking process 

therefore gets rid of needless background information and other workers that aren’t 

targeted for analysis.   

 

This system employs the convolutional neural network(CNN)-based algorithm 

YOLOv3(You Only Look Once, Version3) for tracking, as it has balanced 

performance in terms of detection speed and accuracy(Redmon & Farhadi, 2018). 

The core of YOLOv3 algorithm is to reconstruct object detection as a logistic 

regression problem. The input image is divided into a w*k grid and for each part of 

the grid some number of bounding boxes around objects are predicted. Using logistic 

regression, the algorithm predicts whether the objects is in the box. The proposed 

system defines the worker for assessment as one with the largest bounding box that 

exists in more than 1 3⁄  of the input video.  

 

3.3 3D Human Pose Estimation  

This step concerns reconstructing the 3D human body from the 2D input video to 

identify and classify the joints. This tool adopts the SPIN(SMPL oPtimization IN 

the loop) approach. which is based on the SMPL model(Loper et al., 2015). The 

SMPL is a skinned vertex-based model learned from thousands of 3D body scans, 

which can thus represent a wide variety of body joints and shapes. It represents the 
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human skeleton by a hierarchy of 24 joints (Ha, 2018). The hierarchy is defined by 

a kinematic tree based on relative rotations from parent joints. Originally, rotation 

is encoded by an axis-angle representation of 3 scalar values, but to reflect the 

scoring criteria of RULA and REBA, angle representation is converted to Euler 

angles.  

 

The SPIN approach uses a collaboration of a regression method and an 

optimization-based method for training deep network for 3D human pose and shape 

estimation. When an input image with a person is given, CNN regresses the full 3D 

shape of the person. Then iterative optimization is done to fit the body to 2D joints 

in the training loop. Therefore, a self-improving cycle is made, resulting in low 

recognition error(Kolotouros, Pavlakos, Black, et al., 2019)(Figure 6). The approach 

has been shown to have low mean per joint position error(MPJPE) compared to the 

state-of-the-art. 

 

Figure 6 Overview of SPIN (Source: Kolotouros, Pavlakos, Black, et al., 2019) 
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3.4  Score Calculation 

3.4.1  Posture Score Calculation 

After the joints are detected from pose estimation, the rotation angle of targeted 

joints for each assessment tool is calculated. In this study, θx, θy, θz defines the 

rotation angle with respect to the x-axis, y-axis, z-axis as shown in Figure 7. 

 

 

Figure 7 Location of the x,y,z-axis for calculating Euler angles 

 

 

Thresholds were quantified as defined in previous studies(Nayak & Kim, 2021; 

Vignais et al., 2017) or newly quantified where it was necessary. The following 

evaluation items are automatically calculated by the proposed tool, and example 

images of each item is shown also(Figure 8,Figure 9,Figure 10,Figure 11,Figure 12). 
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Upper arm position(flexion/extension): θy of the shoulder joint was used to 

calculate upper arm flexion/extension angles. 

Upper arm abduction: θz of shoulder joint was used to calculate upper arm 

abduction. The upper arm was considered to be abducted when θz was above 45 °. 

Upper arm rotation: θx of shoulder joint was used to calculate upper arm 

abduction. The upper arm was considered to be abducted when θx of the shoulder 

was above 10 °. 

Raised Shoulder: θz of the thorax joint was used to calculate raised shoulder. 

The shoulder was considered to be raised if θz was above 10°.  

Lower arm position: θy and θz of the elbow joint was used to calculate lower 

arm position. Score was given depending on the larger value between the two 

rotation angles. 

Lower arm across the midline/bent out to side: θx of the thorax joint was 

used to calculate whether the lower arm is across the midline or bent out to the 

side. 

Wrist position(flexion/extension): θx of the wrist joint was used to calculate 

wrist flexion/extension. 

Wrist side-bending(radial/ulnar deviation): θx of the wrist joint was used 

to calculate wrist side-bending. The wrist was considered side-bent when the 

rotation angle is larger than 10°. 

Wrist twist(pronation/supination): θx of the wrist joint was used to calculate 

wrist twist.  

N eck position(flexion/extension): θx of the neck joint was used to calculate 

neck flexion/extension. 
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Neck side-bending: θz of the neck joint was used to calculate neck side-bending. 

The neck was considered side-bent when the rotation angle is larger than 10°. 

N eck twist: θy of the neck joint was used to calculate neck twist. The neck was 

considered twisted when the rotation angle is larger than 10°. 

Trunk position(flexion/extension): θx of the torso joint was used to calculate 

trunk flexion/extension. 

Trunk side-bending: θz of the torso joint was used to calculate trunk side-

bending. The trunk was considered side-bent when the rotation angle is larger than 

10°. 

Trunk twist: θy of the torso joint was used to calculate trunk twist. The trunk 

was considered twisted when the rotation angle is larger than 10°. 

Leg angle: θy of the knee joint was used to calculate leg bending angle 

 

The rest of the evaluation items require input information from the evaluator: 

RULA: 

- Group A: Muscle Use(L), Muscle Use(R), Arm support(L), Arm support(R), 

Load/Force(L), Load/Force(R) 

- Group B: Load/Force, Muscle Use, Legs posture scores 

 

REBA: 

- Group A: Load/Force, Legs posture scores, Sitting 

- Group B: Arm support(L), Arm support(R), Coupling  

- Activity Score 
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Figure 8 Example images of Upper Arm Bending, Upper Arm Abduction, Upper Arm 

Rotation 

 

 

 

 

Figure 9 Example images of Lower arm bending, Lower arm across the midline,  

Lower arm bent to side 

 

 

 

 

Figure 10 Example images of Wrist flexion, Wrist side-bending, Wrist twist 
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Figure 11 Example images of Neck flexion, Neck twist, Neck side-bending 

 

 

 

 

Figure 12 Example images of Trunk flexion, Trunk twist, Trunk side-bending 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Example image of bent leg 
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3.4.2  Output of the Proposed System  

The output of the proposed system is a video showing score for each joint and 

RULA or REBA score for each frame. In addition, the final RULA/REBA score, 

which is the highest score calculated in the video, and the corresponding action level 

and action is outputted in a text file(Figure 14).   

 

 

Figure 14 Example of the output of the system 
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Chapter 4 

 

Validation Experiment 

4.1 Hypotheses 

An experiment for validation of the proposed system was conducted based on the 

following hypotheses: 

1) The difference in evaluation scores between two groups with different level 

of knowledge or experience with ergonomic posture assessment should 

decrease by the proposed system. 

2) Items for manual input should not be different between groups with different 

level of knowledge or experience with ergonomic posture assessment. 

 

4.2 M ethods 

4.2.1 Participants 

A total of 20 evaluators, 11 males and 9 females were recruited to participate in an 

ergonomic posture assessment experiment. The average age of the participants was 

approximately 28(min=24, max=35). The participants were classified into 

experienced group and novice group based on their experience or level of knowledge 

on ergonomic posture assessment. Participants were considered as experienced 

evaluators if they are currently a Ph.D student majoring in ergonomics or have prior 

experience in conducting RULA or REBA, and were considered novice evaluators if 

they have successfully completed the ergonomics course on a graduate level or is 
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currently a Master’s student majoring in ergonomics. As a result, 15 participants 

were classified as novice evaluators and 5 participants were classified as experienced 

evaluators. 

 

4.2.2 Apparatus 

A worksheet was made with Microsoft Excel to make simultaneous evaluation using 

both tools possible(Figure 15). Since RULA and REBA share many evaluation items, 

the worksheet was made to require input for only one tool when the evaluation item 

exits in both tools. As the experiment was conducted remotely, participants used 

their own personal computer where they can watch videos and use Microsoft Excel 

to record scores for each video. 

 

4.2.3 Procedure 

An online survey using Google Forms was conducted to investigate the level of 

knowledge or experience the participant has on ergonomic posture analysis. Each 

participant was instructed to watch a 30-minute introductory video on RULA and 

REBA on YouTube. After that, participants conducted ergonomic posture analysis 

for 20 videos of automobile assembly plant workers using RULA and REBA. 

Participants were instructed to conduct evaluation on what they consider the most 

dangerous posture in the video, and to record scores for both left and the right side 

of the body where required. Weight information of the load in each video were given. 

The example image of each video is in Figure 16 and Figure 17. 
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Figure 16 Example images of videos evaluated in the experiment 
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Figure 17 Example images of videos evaluated in the experiment (Cont.) 
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4.2.4 Data Analysis 

Data were analyzed using the Statistical Package for Social Sciences (SPSS Inc., 

Chicago, IL). Between-group differences were analyzed in Grand Scores and Action 

Levels using Mann-Whitney U Test due to the small sample size and the normality 

of the data did not appear. In addition, Fisher’s exact test was conducted to 

determine if there was significant association between level of experience and the 

evaluation items that require input from the investigator while using the proposed 

system. 
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4.3 Results 

4.3.1 RULA  

Grand score 

Table 4 Descriptive statistics of RULA Grand Scores (Mean(SD)) 

Vid

. 

M anual System 

Novice Expert All Novice Expert All 

1 6.27(±0.88) 6.8(±0.45) 6.4(±0.82) 6.93(±0.26) 7(±0) 6.85(±0.22) 

2 5.4(±1.45) 6.6(±0.55) 5.7(±1.38) 6.67(±0.49) 6.6(±0.55) 6.8(±0.49) 

3 5.67(±1.23) 5.8(±0.84) 5.7(±1.13) 6.27(±0.46) 6.2(±0.45) 6.7(±0.44) 

4 6.33(±1.11) 7(±0) 6.5(±1) 6.93(±0.26) 7(±0) 6.85(±0.22) 

5 4.93(±1.28) 6.6(±0.55) 5.35(±1.35) 7(±0) 7(±0) 6.8(±0) 

6 4.8(±1.66) 5.2(±1.64) 4.9(±1.62) 7(±0) 7(±0) 6.7(±0) 

7 5.73(±1.44) 6.8(±0.45) 6(±1.34) 6.33(±0.49) 6.8(±0.45) 6.9(±0.51) 

8 6.53(±0.83) 7(±0) 6.65(±0.75) 6.73(±0.46) 7(±0) 6.9(±0.41) 

9 3.87(±1.19) 5.4(±1.34) 4.25(±1.37) 6.73(±0.46) 6.6(±0.55) 6.8(±0.47) 

10 3.93(±1.28) 5.2(±1.3) 4.25(±1.37) 6.53(±0.52) 6.2(±0.45) 6.9(±0.51) 

11 4.4(±1.5) 5.2(±1.79) 4.6(±1.57) 7(±0) 7(±0) 6.8(±0) 

12 6(±1.2) 7(±0) 6.25(±1.12) 6.8(±0.41) 7(±0) 6.55(±0.37) 

13 5.27(±1.33) 5.8(±1.3) 5.4(±1.31) 7(±0) 7(±0) 6.9(±0) 

14 4.6(±1.3) 5.4(±1.34) 4.8(±1.32) 6.27(±0.46) 6.6(±0.55) 6.85(±0.49) 

15 4.73(±1.58) 6.2(±0.45) 5.1(±1.52) 6.87(±0.35) 7(±0) 6.85(±0.31) 

16 6.53(±1.06) 7(±0) 6.65(±0.93) 7(±0) 7(±0) 6.9(±0) 

17 6(±1.25) 6.8(±0.45) 6.2(±1.15) 7(±0) 7(±0) 6.7(±0) 

18 6.47(±0.83) 6.6(±0.89) 6.5(±0.83) 7(±0) 7(±0) 6.75(±0) 

19 6.47(±0.92) 6.4(±0.89) 6.45(±0.89) 7(±0) 7(±0) 6.9(±0) 

20 5.53(±1.3) 6.2(±1.3) 5.7(±1.3) 7(±0) 7(±0) 6.9(±0) 
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Figure 18 Mean of RULA Grand Scores (Manual Evaluation) 

 

 

 

 
Figure 19 Mean of RULA Grand Scores (Proposed System) 
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Table 5 Results of Mann-Whitney U Test for difference in RULA Grand Scores between 

novice and experienced evaluators 

Vid. 
Sig. 

M anual System 

1 0.186 0.564 

2 0.076 0.564 

3 0.926 0.564 

4 0.104 0.564 

5 0.016* 1.000 

6 0.417 1.000 

7 0.099 0.077 

8 0.149 0.208 

9 0.048* 0.583 

10 0.065 0.206 

11 0.342 1.000 

12 0.047* 0.290 

13 0.447 1.000 

14 0.233 0.187 

15 0.063 0.402 

16 0.210 1.000 

17 0.162 1.000 

18 0.569 1.000 

19 0.797 1.000 

20 0.200 1.000 

* p<.05 
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Significant differences between groups in RULA Grand Scores were found in video 

5,9,12 when evaluation was done manually(Table 4). There was also a general trend 

that experienced evaluators had higher mean RULA Grand Scores compared to the 

novice evaluators(Figure 18). For data generated by the proposed system, there 

were no significant differences between groups within each video(Table 5). Standard 

deviation of all evaluators for RULA scores decreased with the proposed system 

compared to manually generated scores. 
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Action Level  

Table 6 Descriptive statistics of RULA Action Levels (Mean(SD)) 

Vid. 
M anual System  

Novice Expert All Novice Expert All 

1 3.4(±0.63) 3.8(±0.45) 3.5(±0.61) 3.93(±0.26) 4(±0) 3.95(±0.22) 

2 3.07(±0.7) 3.6(±0.55) 3.2(±0.7) 3.67(±0.49) 3.6(±0.55) 3.65(±0.49) 

3 3.07(±0.7) 3.2(±0.45) 3.1(±0.64) 3.27(±0.46) 3.2(±0.45) 3.25(±0.44) 

4 3.53(±0.64) 4(±0) 3.65(±0.59) 3.93(±0.26) 4(±0) 3.95(±0.22) 

5 2.6(±0.74) 3.6(±0.55) 2.85(±0.81) 4(±0) 4(±0) 4(±0) 

6 2.67(±0.82) 2.8(±1.1) 2.7(±0.86) 4(±0) 4(±0) 4(±0) 

7 3.2(±0.77) 3.8(±0.45) 3.35(±0.75) 3.33(±0.49) 3.8(±0.45) 3.45(±0.51) 

8 3.6(±0.63) 4(±0) 3.7(±0.57) 3.73(±0.46) 4(±0) 3.8(±0.41) 

9 2.2(±0.68) 2.8(±0.45) 2.35(±0.67) 3.73(±0.46) 3.6(±0.55) 3.7(±0.47) 

10 2.2(±0.56) 2.8(±0.84) 2.35(±0.67) 3.53(±0.52) 3.2(±0.45) 3.45(±0.51) 

11 2.53(±0.83) 3(±1) 2.65(±0.88) 4(±0) 4(±0) 4(±0) 

12 3.27(±0.8) 4(±0) 3.45(±0.76) 3.8(±0.41) 4(±0) 3.85(±0.37) 

13 2.93(±0.7) 3.2(±0.84) 3(±0.73) 4(±0) 4(±0) 4(±0) 

14 2.47(±0.64) 2.8(±0.84) 2.55(±0.69) 3.27(±0.46) 3.6(±0.55) 3.35(±0.49) 

15 2.6(±0.83) 3.2(±0.45) 2.75(±0.79) 3.87(±0.35) 4(±0) 3.9(±0.31) 

16 3.67(±0.62) 4(±0) 3.75(±0.55) 4(±0) 4(±0) 4(±0) 

17 3.33(±0.72) 3.8(±0.45) 3.45(±0.69) 4(±0) 4(±0) 4(±0) 

18 3.53(±0.64) 3.8(±0.45) 3.6(±0.6) 4(±0) 4(±0) 4(±0) 

19 3.6(±0.63) 3.6(±0.55) 3.6(±0.6) 4(±0) 4(±0) 4(±0) 

20 3(±0.65) 3.4(±0.89) 3.1(±0.72) 4(±0) 4(±0) 4(±0) 
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Figure 20 Mean of RULA Action Levels (Manual Evaluation) 

 

 

 

 

Figure 21 Mean of RULA Action Levels (Proposed System) 
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Table 7 Results of Mann-Whitney U Test for difference in RULA Action Levels between 

novice and experienced evaluators 

Vid. 
Sig. 

M anual System 

1 0.196 0.564 

2 0.138 0.792 

3 0.817 0.771 

4 0.102 0.564 

5 0.018* 1.000 

6 0.884 1.000 

7 0.114 0.077 

8 0.149 0.208 

9 0.035* 0.583 

10 0.120 0.206 

11 0.295 1.000 

12 0.046* 0.290 

13 0.477 1.000 

14 0.377 0.187 

15 0.118 0.402 

16 0.210 1.000 

17 0.185 1.000 

18 0.404 1.000 

19 0.876 1.000 

20 0.254 1.000 

* p<.05 
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Significant differences between groups in RULA Action Levels were found in video 

5,9,12 when evaluation was done manually(Table 7). There was a general trend that 

experienced evaluators had higher mean RULA Action Levels compared to the 

novice evaluators(Figure 20). For data generated by the proposed system, there 

were no significant differences between groups within each video(Table 7). Standard 

deviation of all evaluators for RULA Action Levels decreased with the proposed 

system compared to manually generated scores(Table 6, Figure 21). 
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4.3.2 REBA  

Grand scores 

Table 8 Descriptive statistics of REBA Grand Scores (Mean(SD)) 

Vid

. 

M anual System 

Novice Expert All Novice Expert All 

1 8.13(±2.1) 9.6(±2.79) 8.5(±2.31) 12(±1.22) 10.6(±1.24) 10.95(±1.36) 

2 7.2(±2.83) 9.8(±2.49) 7.85(±2.92) 10.6(±1.34) 9.53(±1.19) 9.8(±1.28) 

3 8.27(±2.31) 9(±1.22) 8.45(±2.09) 8.8(±0.84) 8.33(±1.18) 8.45(±1.1) 

4 8.33(±2.26) 11(±1) 9(±2.32) 10(±1) 9.27(±0.59) 9.45(±0.76) 

5 5.07(±1.79) 7.6(±2.07) 5.7(±2.13) 11.4(±0.89) 9.6(±1.06) 10.05(±1.28) 

6 5.13(±2.42) 7.2(±3.49) 5.65(±2.78) 9.8(±1.92) 8.8(±1.01) 9.05(±1.32) 

7 7.13(±2.42) 10.6(±2.07) 8(±2.75) 10(±0.71) 8.13(±1.25) 8.6(±1.39) 

8 9.87(±3.07) 10.8(±2.28) 10.1(±2.86) 11.2(±1.1) 10.87(±1.06) 10.95(±1.05) 

9 3.73(±1.71) 6.4(±1.95) 4.4(±2.09) 8.2(±1.48) 7.8(±1.37) 7.9(±1.37) 

10 4.93(±1.79) 7.4(±2.07) 5.55(±2.11) 9.4(±1.34) 8.67(±0.62) 8.85(±0.88) 

11 7.47(±2.72) 9.2(±1.79) 7.9(±2.59) 11(±1) 11.6(±1.12) 11.45(±1.1) 

12 8.13(±2.75) 10(±1.58) 8.6(±2.6) 9.2(±1.3) 9.07(±0.96) 9.1(±1.02) 

13 6(±2.54) 8.4(±1.52) 6.6(±2.52) 9.2(±0.84) 8.8(±0.77) 8.9(±0.79) 

14 5.93(±2.71) 7.6(±0.89) 6.35(±2.48) 8.2(±0.45) 7.87(±0.83) 7.95(±0.76) 

15 5(±2.33) 7.8(±1.79) 5.7(±2.49) 9.4(±0.55) 8.93(±1.1) 9.05(±1) 

16 9(±2.54) 12(±2.65) 9.75(±2.83) 13(±1.22) 11.6(±0.91) 11.95(±1.15) 

17 7.93(±2.58) 7.8(±2.39) 7.9(±2.47) 11(±0.71) 10.33(±0.9) 10.5(±0.89) 

18 9.67(±2.38) 11.4(±2.3) 10.1(±2.43) 12(±0.71) 12.13(±0.92) 12.1(±0.85) 

19 11(±2.45) 10(±3.16) 10.75(±2.59) 11.2(±2.05) 11.67(±1.18) 11.55(±1.39) 

20 10.07(±1.87) 10.8(±2.77) 10.25(±2.07) 12.2(±0.84) 11.93(±1.03) 12(±0.97) 
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Figure 22 Mean of REBA Grand Scores (Manual Evaluation) 

 

 

 

 

Figure 23 Mean of REBA Grand Scores (Proposed System) 
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Table 9 Results of Mann-Whitney U Test for difference in REBA Grand Scores between 

novice and experienced evaluators 

Vid. 
Sig. 

M anual System 

1 0.402 0.049* 

2 0.071 0.089 

3 0.859 0.494 

4 0.014* 0.120 

5 0.030* 0.007* 

6 0.181 0.272 

7 0.017* 0.009* 

8 0.568 0.582 

9 0.036* 0.621 

10 0.033* 0.242 

11 0.124 0.300 

12 0.217 0.963 

13 0.070 0.328 

14 0.186 0.374 

15 0.027* 0.488 

16 0.033* 0.024* 

17 0.965 0.149 

18 0.166 0.816 

19 0.564 0.719 

20 0.215 0.677 

* p<.05 
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Significant differences between groups in REBA Grand Scores were found in video 

4,5,7,9,10,15,16 when evaluation was done manually(Table 8). For data generated 

by the proposed system, significant difference between groups were found only in 

video 1,5,7,16(Table 9). Standard deviation of all evaluators for REBA scores 

decreased with the proposed system compared to manually generated scores(Table 

8, Figure 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

50 

Action Level 

Table 10 Descriptive statistics of REBA Action Levels (Mean(SD)) 

Vid. 
M anual System 

Novice Expert All Novice Expert All 

1 2.73(± 0.59) 3(± 1) 2.8(± 0.7) 3.53(± 0.52) 3.8(± 0.45) 3.6(± 0.5) 

2 2.6(± 0.83) 3.2(± 0.84) 2.75(± 0.85) 3.27(± 0.46) 3.4(± 0.55) 3.3(± 0.47) 

3 2.73(± 0.7) 3.2(± 0.45) 2.85(± 0.67) 2.73(± 0.46) 3(± 0) 2.8(± 0.41) 

4 2.8(± 0.86) 3.6(± 0.55) 3(± 0.86) 3(± 0) 3.4(± 0.55) 3.1(± 0.31) 

5 1.93(± 0.59) 2.6(± 0.55) 2.1(± 0.64) 3.2(± 0.41) 3.8(± 0.45) 3.35(± 0.49) 

6 2(± 0.85) 2.8(± 1.1) 2.2(± 0.95) 3(± 0.38) 3.2(± 0.45) 3.05(± 0.39) 

7 2.47(± 0.74) 3.6(± 0.55) 2.75(± 0.85) 2.67(± 0.62) 3.2(± 0.45) 2.8(± 0.62) 

8 3.27(± 0.8) 3.6(± 0.55) 3.35(± 0.75) 3.6(± 0.51) 3.8(± 0.45) 3.65(± 0.49) 

9 1.47(± 0.83) 2(± 0.71) 1.6(± 0.82) 2.6(± 0.51) 2.8(± 0.45) 2.65(± 0.49) 

10 1.8(± 0.68) 2.4(± 0.55) 1.95(± 0.69) 3(± 0) 3.2(± 0.45) 3.05(± 0.22) 

11 2.53(± 0.74) 3.2(± 0.84) 2.7(± 0.8) 3.8(± 0.41) 3.6(± 0.55) 3.75(± 0.44) 

12 2.8(± 0.77) 3.4(± 0.55) 2.95(± 0.76) 3(± 0.38) 3.2(± 0.45) 3.05(± 0.39) 

13 2.13(± 0.74) 2.8(± 0.45) 2.3(± 0.73) 3(± 0) 3(± 0) 3(± 0) 

14 2.07(± 0.8) 2.8(± 0.45) 2.25(± 0.79) 2.6(± 0.51) 3(± 0) 2.7(± 0.47) 

15 1.93(± 0.8) 2.6(± 0.55) 2.1(± 0.79) 2.87(± 0.35) 3(± 0) 2.9(± 0.31) 

16 3(± 0.85) 3.8(± 0.45) 3.2(± 0.83) 3.87(± 0.35) 4(± 0) 3.9(± 0.31) 

17 2.8(± 0.68) 2.8(± 0.84) 2.8(± 0.7) 3.47(± 0.52) 3.8(± 0.45) 3.55(± 0.51) 

18 3.27(± 0.8) 3.8(± 0.45) 3.4(± 0.75) 4(± 0) 4(± 0) 4(± 0) 

19 3.47(± 0.64) 3.4(± 0.89) 3.45(± 0.69) 3.8(± 0.41) 3.6(± 0.55) 3.75(± 0.44) 

20 3.27(± 0.59) 3.6(± 0.89) 3.35(± 0.67) 3.87(± 0.35) 4(± 0) 3.9(± 0.31) 
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Figure 24 Mean of REBA Action Levels (Manual Evaluation) 

 

 

 

  
Figure 25 Mean of REBA Action Levels (Proposed System) 
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Table 11  Results of Mann-Whitney U Test for difference in REBA Action Levels between 

novice and experienced evaluators 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* p<.05 

 

 

Vid. 
Sig. 

M anual System 

1 0.566 0.304 

2 0.179 0.583 

3 0.161 0.208 

4 0.062 0.012* 

5 0.041* 0.018* 

6 0.136 0.325 

7 0.009* 0.088 

8 0.444 0.429 

9 0.218 0.429 

10 0.090 0.083 

11 0.106 0.383 

12 0.122 0.325 

13 0.071 1.000 

14 0.042* 0.099 

15 0.080 0.402 

16 0.041* 0.402 

17 0.962 0.206 

18 0.173 1.000 

19 1.000 0.383 

20 0.210 0.402 
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Significant differences between groups in REBA Action Levels were found in video 

5,7,14,16 when evaluation was done manually(Table 10). There was a general trend 

that experienced evaluators had higher mean REBA Action Levels compared to the 

novice evaluators(Figure 24). For data generated by the proposed system, significant 

difference between groups were found only in video 4,5. Standard deviation of all 

evaluators for REBA Action Levels decreased with the proposed system compared 

to manually generated scores(Table 10, Figure 25). 
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4.3.3 Evaluation Items for M anual Input  

RULA 

Group A: 

- Muscle Use(L): There was not a statistically significant association between 

experience and muscle use(L) score in any videos. 

- Muscle Use(R): Statistically significant association between experience and 

muscle use(R) score was found in video 9 (two-tailed p=.038). 

- Arm support(L): There was not a statistically significant association 

between experience and arm support(L) score in any videos. 

- Arm support(R): Statistically significant association between experience 

and arm support(R) score was found in video 8 (two-tailed p=.038). 

- Load/Force(L): Statistically significant association between experience and 

load/force(L) score was found in video 1 (two-tailed p=.006). 

- Load/Force(R): Statistically significant association between experience and 

load/force(R) score was found in video 7 (two-tailed p=.032). 

Group B: 

- Load/Force: Statistically significant association between experience and 

load/force score was found in video 1(two-tailed p=.001), video 5(two-tailed 

p=.017), video 9(two-tailed p=.035), and video 17(two-tailed p=.032). 

- Muscle Use: There was not a statistically significant association between 

experience and muscle use score in any videos. 

- Legs posture scores: Statistically significant association between experience 

and legs posture scores was found in video 15(two-tailed p=.014) and video 

16(two-tailed p=.005). 
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REBA 

Group A: 

- Load/Force: Statistically significant association between experience and 

load/force score was found in video 1(two-tailed p=.032). 

- Legs posture scores: Statistically significant association between experience 

and legs posture scores was found in video 15(two-tailed p=.014) and video 

16(two-tailed p=.005). 

- Sitting: There was not a statistically significant association between 

experience and sitting in any videos. 

 

Group B: 

- Arm support(L): There was not a statistically significant association 

between experience and arm support(L) score in any videos. 

- Arm support(R): Statistically significant association between experience 

and arm support(R) score was found in video 8 (two-tailed p=.038). 

- Coupling: Statistically significant association between experience and 

coupling scores was found in video 10(two-tailed p=.019) and video 13(two-

tailed p=.018). 

 

Activity Score: Statistically significant association between the experience and 

activity score was found in video 1(two-tailed p=.024) and video 10(two-tailed 

p=.029). 
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Chapter 5 

 

Discussion  
The goal of this study is to develop a video-based work pose entry system for RULA 

and REBA. To conduct validation on whether using the proposed work pose entry 

system yields consistent results regardless of the experience or knowledge the 

investigator has on ergonomic posture assessment, an experiment was conducted. 

20 videos of jobs at an automobile assembly plant were evaluated by experienced 

and novice evaluators. As expected, results showed that the difference in scores 

between the two groups decreased when the proposed system was used compared 

to when evaluation was done manually. Furthermore, group difference in evaluation 

items for manual input when using the proposed system was explored as well. 

Details of the findings are discussed in the current chapter. 

 

5.1 Group Difference  

Results of the experiment conducted for validation revealed difference in how 

evaluators with different level of knowledge or experience with ergonomic posture 

assessment provide scoring when evaluation was manually done or scores are 

generated by the proposed system. 
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5.1.1 RULA  

In terms of RULA Grand Scores, significant difference between the experienced 

group and novice group were found in 3 videos(Video 5,9,12) from manual evaluation. 

Although not all significantly different, a general trend showed that experienced 

evaluators scored higher than the novice evaluators. This finding goes in line with 

(Im et al., 2011). The reason may be that the experienced group is more familiar 

with musculoskeletal disease-related risk working postures covered by RULA or 

REBA than the novice group, so it is judged that the image containing the 

problematic risk working posture is selected well. When the score was generated by 

the proposed system, significant difference was not found in any videos. 

 

Likewise, in terms of RULA Action Levels, significant difference between the two 

groups of evaluators occurred in 3 videos(Video 5,9,12). Action levels also showed a 

general trend where experienced evaluators scored higher than novice evaluators. 

This finding goes in line with (Cheon & Jung, 2020). Moreover, no significant 

difference between groups were found in scores by the proposed system. 

 

5.1.2 REBA  

Significant difference between the two groups in REBA Grand Scores were found in 

7 of the 20 videos evaluated (Video 4,5,7,9,10,15,16) in manual evaluation. 

Experienced evaluators scored higher than the novice evaluators, except for Video 

20. For scores generated by the proposed system, significant difference was found in 

4 of the 20 videos (Video 1,5,7,16). Further investigation is needed on how 

significant different was shown while using the proposed system when difference 

wasn’t shown in manual evaluation(Video 1). Another interesting finding was that 
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the scores of novice evaluators when using the proposed system turned out to be 

higher than scores of experienced evaluators in videos where significant difference 

was found, while in manual evaluation, scores of experienced evaluators were higher. 

Further research should look into how and why individual scores of REBA occurs 

differently between each group while using the proposed system. In terms of action 

levels, significant difference between the two groups were found in 3 videos (Video 

5,7,14,16). As for scores generated by the proposed system, significant difference 

was found only in video 4 and 5. 

 

5.2 Evaluation Items for M anual Input 

Evaluation items for manual input when using the proposed system were explored 

to determine how the scores of these items can contribute to outputting different 

scores. 

 

Although the evaluators were given the same information on the weight of the load 

in each video, Load/Force scores were found to have significant relationship with 

experience in 4 videos in RULA, and 1 video in REBA. This result suggests that 

given the same load weight, evaluators can perceive differently about the physical 

load that may affect the work being performed. 

 

In addition, in REBA, significant relationship with experience were found in 2 videos 

for Coupling, and 2 videos for Activity Score as well. It can be inferred that the 

appropriateness of coupling and the muscle activity of the worker can be perceived 

differently between evaluators with different experience. To the best of my 

knowledge, how coupling or activity scores vary between evaluators have not been 
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explored yet and account for further analysis. 

 

Moreover, cases where significant relationship with experience for leg postures were 

found in 2 videos also. This implies that in terms of ergonomic posture assessment, 

the effect of position of the legs on the working posture may also be perceived 

differently depending on the evaluator. 

 

5.3 Proposed Work Pose Entry System  

Compared to scores from manual evaluation, standard deviation of all evaluators 

for both RULA and REBA scores and action levels decreased when scores were 

generated with the proposed system. For RULA, while significant difference between 

the two groups of evaluators was found in 3 videos in manual evaluation, significant 

difference was not found in any videos when scores were generated by the proposed 

system. In the case of REBA grand scores, the number of videos showing significant 

difference decreased from 7(manual) to 4(proposed system). This implies that using 

the proposed system can be helpful in decreasing the difference between different 

evaluators and contribute to generating consistent results. 

 

While previous studies used existing human posture dataset or used videos images 

taken for the purpose of experimenting, this study is meaningful in that validation 

was conducted with videos taken freely at a real workplace. Thus, interesting results 

and insights on areas with room for improvement were obtained. 

 

First, after examining the output videos of the proposed system, it was observed 

that the proposed system can be useful for videos taken at a real workplace in the 
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sense that most videos may include multiple workers. As can be seen in Figure 26, 

in most cases, the proposed system was able to detect the worker of interest while 

the video included more than 2 people. However, there was also a case(Video 7) 

where the system detected the wrong person for evaluation(Figure 27). Thus, further 

research seems to be needed for providing a guideline on recording videos at the 

workplace with multiple workers. Although guidelines to record postures in a 

workplace for better analysis is discussed in Lowe et al. (2014), specific details are 

not provided for taking recordings where recording cannot avoid including multiple 

workers. 

 

 

Figure 26 Examples of videos where detection for worker of interest was successful 

(Left: Video 12, Right: Video 4) 

 

 

 

Figure 27 Example of video where detection for worker of interest failed 
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Figure 28 Examples of videos where workers wore certain headgear 
 

Moreover, the proposed system has shown that it can be used in contexts where 

workers wear specific gear needed for the job being performed. In videos where the 

worker of interest wore headgear or a mask(Figure 28), problem for detection or 

generating posture scores has not occurred. Therefore, the proposed system can be 

used in various type of workplaces in natural context without being intrusive to the 

work being performed. 
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Chapter 6 

 

Conclusion  
 

6.1  Conclusion  

This study discusses a computer vision-based method to assist ergonomic 

practitioners in generating ergonomic posture scores from 2D videos at occupational 

workplaces by receiving manual input of only few items that are rather easy to 

determine, and reconstructing the human body and identifying the relevant 3D 

joints. The work pose entry system reflects all movements occurring in a work cycle 

of a job, where the final score is defined as the highest score. To validate the 

proposed system in terms of consistency, an experiment was conducted where 

evaluators with different level of experience or knowledge performed ergonomic 

posture assessment on 20 videos taken at an automobile assembly plant. Scores were 

compared in terms of grand scores and action levels. In summary, it was found that 

the number of videos showing significant difference between the two groups 

decreased when using the proposed system compared to manually evaluation, for 

both RULA and REBA.   

 

6.2 Limitation, Contribution, and Future Direction  

The current study proposed a new method for ergonomic posture assessment. 

Moreover, it provides insight on how results of RULA and REBA can vary between 

evaluators with different experience or knowledge on work-related musculoskeletal 



 

 

 

63 

disorders and ergonomic posture assessment, when it is done manually and when it 

is done with the proposed system.  

 

However, the present research has some limitations. First, the accuracy of detecting 

and computing joint angles should be examined more thoroughly. Although the 

SPIN approach has been evaluated on different datasets and have been shown to 

outperform the state-of-the-art, future studies should compare the computed joint 

angles and scores with that of the reference motion capture system on occupational 

posture datasets, which can help validate the accuracy of the proposed work pose 

entry system. Another limitation of the current study is that although the 

experiment was conducted with evaluators with different experience or knowledge 

on ergonomic posture analysis, better insights may have been provided if an actual 

ergonomic practitioner was included in the experiment. Moreover, the small sample 

size and the unbalanced ratio of participants in each group are also limitations in 

this study. And lastly, future studies may include whether the scores generated by 

the proposed system is correlated to the subjective discomfort of the worker that is 

being investigated. 

 

The current study contributes to research on ergonomic posture assessment and 

workplaces safety. The output of the proposed system can be used to assess various 

movements and postures involved in a work cycle, without the time-consuming 

process that includes the evaluator to manually segment each relevant body part 

and calculate each joint angle. This thus leads to decreasing the cognitive workload 

and time of the evaluator, requiring scoring for only few items that are relatively 

easy to determine. In addition, instead of just evaluating a single posture or image, 

the proposed work pose entry system outputs the final score based on the highest 
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score, reflecting all postures and corresponding scores in the video. Moreover, as 

using this method decreases the difference in results between evaluators, the time 

and cost for training an ergonomic practitioner will be reduced as well. The last 

contribution of the study is that validation was conducted with videos taken at an 

actual, natural workplace environment, which can thus provide future research 

directions related to using computer vision techniques for ergonomic posture 

assessment with working images taken in relatively uncontrolled situations. 
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국문초록 

 
작업 관련 근골격계 질환은 근로자의 안전과 작업장의 생산성 향상에 중요한 

문제다. 본 연구의 목적은 인간공학적 자세 분석에 사용되는 대표적인 방법인 

Rapid Upper Limb Assessment(RULA) 및 Rapid Entire Body 

Assessment(REBA)를 위한 비디오 기반의 작업 자세 입력 시스템을 제안하는 

것이다. 본 연구는 영상 내 사람 탐지 및 추적을 위한 YOLOv3 알고리즘과 3차원 

사람 자세 추정을 위한 SPIN 접근법을 사용하는 시스템을 개발했다. 해당 작업 

자세 입력 시스템은 2차원 영상과 몇 개의 평가 항목 점수를 입력으로 받아 최종 

RULA 또는 REBA 점수와 해당 조치수준(Action level)을 출력한다. 본 연구에서 

제안하는 작업 자세 입력 시스템이 일관적인 결과를 산출하는지 알아보기 위해 

인간공학 및 근골격계 질환에 대한 지식이나 경험을 기준으로 숙련된 평가자와 

초보 평가자의 두 그룹으로 분류된 평가자 20명을 대상으로 검증 실험을 진행했다. 

참가자들은 국내 자동차 조립 공장에서 찍은 20개의 작업 영상의 작업 자세를 

수동으로 평가하여 Excel 워크시트에 점수를 기록하였다. 시스템 사용 시 

입력해야 하는 개별 항목을 기준으로 시스템을 통한 점수를 생성하고 기존의 

전통적인 방법으로 평가한 결과와 시스템에서 얻은 결과를 비교하였으며, 기술 

통계와 Mann-Whitney U test는 제안된 시스템을 사용하면 그룹 간의 차이와 표준 

편차가 감소한다는 것을 보여주었다. 또한, 경험이 많은 평가자들이 초보 

평가자들보다 더 높은 점수를 받는 경향이 있다는 것을 보여주었다. 시스템에 

입력되는 평가 항목과 경험 정도와의 관계를 확인하기 위해 Fisher’s exact test를 
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수행하였으며, 결과는 명백해 보일 수 있는 일부 항목도 그룹 간에 다르게 인식될 

수 있음을 보여주었다. 이 도구에서 개발된 작업 자세 입력 시스템은 인간공학적 

자세 평가의 일관성을 높이고 평가 과정 중 중에 인간공학적 평가자의 시간과 

노력을 줄이는 데 기여할 수 있다. 또한 컴퓨터 비전을 활용한 인간공학적 자세 

평가를 위한 작업 자세 입력 시스템 개발에 대한 향후 연구 방향도 이번 연구에서 

제시된다. 

 

주요어: 작업 관련 근골격계 질환, RULA, REBA, 컴퓨터 비전, 반자동 자세 평가 
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