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ABSTRACT 

 

 
Deep learning-based detection technology for 
vortex-induced vibration of a ship’s propeller 

 

 

Do Hyeong Lim  

School of Mechanical and Aerospace Engineering  

The Graduate School  

Seoul National University 

 

 

Due to the International Maritime Organization’s (IMO) regulations on carbon 

emission reduction, the shipbuilding and shipping industry increases the size of 

ships and adopts energy-saving devices (ESD) on ships. Accordingly, design 

changes of underwater structures such as propellers, rudders, and ESD of ships are 

required in line with these trends. The lock-in phenomenon caused by vortex-

induced vibration (VIV) is a potential cause of vibration fatigue and singing of the 

propellers of large merchant ships. The VIV occurs when the vibration frequency 

of a structure immersed in a fluid is locked in its resonance frequencies within a 

flow speed range. Here, a deep learning-based algorithm is proposed for early 



 

 

 

 

ii 

detection of the VIV phenomenon. A salient feature in this approach is that the 

vibrations of a hull structure are used instead of the vibrations of its propeller, 

implying that indirect hull structure data relatively easy to acquire are utilized. The 

RPM-frequency representations of the measured vibration signals, which stack the 

vibration frequency spectrum respective to the propeller RPMs, are used in the 

algorithm. The resulting waterfall charts, which look like two-dimensional image 

data, are fed into the proposed convolutional neural network architecture. To 

generate a large data set needed for the network training, we propose to 

synthetically produce vibration data using the modal superposition method without 

computationally-expensive fluid-structure interaction analysis. This way, we 

generated 100,000 data sets for training, 1,000 sets for hyper-parameter tuning, and 

1,000 data sets for the test. The trained network was found to have a success rate of 

82% for the test set. We collected vibration data in our laboratory's small-scale ship 

propulsion system to test the proposed VIV detection algorithm in a more realistic 

environment. The system was so designed that the vortex shedding frequency and 

the underwater natural frequency match each other. The proposed VIV detection 

algorithm was applied to the vibration data collected from the small-scale system. 

The system was operated in the air and found to be sufficiently reliable. Finally, the 

proposed algorithm applied to the collected vibration data from the hull structure of 

a commercial full-scale crude oil carrier in her sea trial operation detected the 
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propeller singing phenomenon correctly.  

 

Keywords:  Ship propeller vibration, Vortex-induced vibration(VIV),   

Vibration-based monitoring, Deep learning(DL),  

Convolution neural network(CNN) 
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CHAPTER 1.  

INTRODUCTION 

 

 

1.1. Motivation  
 

 

Due to the increase in international trade, exhaust gas from ships is pointed 

out as the main cause of environmental pollution, and the demand for eco-friendly 

ships is also increasing rapidly in the shipbuilding and offshore field. The 

International Maritime Organization (IMO) aims to reduce the carbon emissions of 

ships by more than 30% compared to 2008 by 2025 and by more than 70% by 2050. 

Accordingly, various efforts are being made in all directions in the shipbuilding and 

shipping industry to respond to IMO regulations. Eco-friendly fuel, electric 

propulsion system, autonomous navigation technology including route optimization, 

installation of stern attachments to reduce fuel, and enlargement of ship size are 

some of these efforts. The first is the design change of underwater structures. 

Also, as the size of the vessel progressed rapidly, as shown in the Fig. 1.1, 10 

years ago, it was the largest vessel capable of carrying up to 10,000 20ft container 

boxes, but more than 22,000 very large container carriers have been built and 

operated in recent years. Fig. 1.2 shows the propeller of a super-large ship over 

10m that did not exist before. Design changes due to the rapid increase in size are 

causing various design problems that were not previously present. Most structural 



 

 

 

 

２ 

damage problems occur in underwater structures such as propellers, rudders, and 

ESD (Energy Saving Device) as shown in the Fig. 1.3. In the case of an underwater 

structure, since the specific gravity of water is 1,000 times greater than that of air, 

the size of the applied load is large, and for efficiency, it has a slender airfoil shape, 

so it is structurally weak. Recent advances in CAE technology are filtering out 

most of the vibration and fatigue strength issues at the design stage. However, in 

the case of fatigue problems of underwater structures, it is difficult to accurately 

predict fatigue damage because large-sized structures have to be solved due to fluid 

and structural coupling problems. In particular, as shown in Fig. 1.3, in the case of 

a ship with ESD installed, the flow field is much more complicated than that 

without ESD, making it difficult to analyze and has a high probability of structural 

damage. 

Fig. 1.4 shows a typical underwater structure design procedure. Since the 

size of the structure has increased significantly compared to the previous one, and 

additional structures was added, a careful review is required at the design stage. 

The basic design of a structure usually uses a calculation sheet containing design 

know-how. In this calculation sheet, the necessary values to satisfy the 

performance and structural strength according to the design requirements should be 

entered. When the 3D shape is derived through the design program, the 

hydrodynamic performance is reviewed through computational fluid analysis. In 

the case of propellers, cavitation problems must also be filtered out at this stage. 

Since the performance of the propeller is most important, it should be verified 
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through a model test in a water tank. Static and dynamic loads calculated through 

computational fluid dynamics are used to calculate static and fatigue strength of 

underwater structures. In addition, it is designed to avoid resonance with main 

vibratory forces and structures through vibration analysis. When it is confirmed 

that the structure has a sufficient fatigue life, the construction of the structure 

begins. In the case of propellers, they are made of casting, and defects are detected 

and repaired through various non-destructive tests. The final stage is the ship 

commissioning stage. In the trial run stage, the performance of the structure, such 

as the speed of the ship, is verified, and the design feasibility is verified by 

comparing the predicted vibration value with the measured value. 

The propeller of a ship works by turning the blades in the shape of airfoil 

and generating lift using the rotational energy generated by the main engine. The 

propeller of a large merchant ship, as shown in Fig. 1.5 [1], is made of copper 

casting and is designed to have a sufficient structural safety factor during the 

lifespan of the device, taking into account the static load and variable load applied 

to the structure [2]. Nevertheless, in some cases, propellers that are exposed to 

severe loads under diverse operating conditions are damaged before the projected 

lifespan comes to an end [3]. Fig. 1.5 shows examples of damage to other 

underwater structures such as ESD and rudder as well as propellers. 

Fig. 1.6 shows the procedure for identifying the cause of damage to 

underwater structures. In order to understand the root cause of damage to 

underwater structures, the first step is to inspect the damaged surface. Damage 



 

 

 

 

４ 

surface examination plays an important role in the analysis of the cause of damage. 

The second process is to verify the load acting on the actual structure. It is very 

important to accurately understand the load on the structure, and damage occurs 

when a load greater than the assumed design load acts on the structure for various 

reasons. Methods of measuring the load of a structure will be dealt with in the next 

chapter. When a load with different characteristics from the design load is 

measured, the structural strength and fatigue life are recalculated using the 

measured load. Through this calculation, it is possible to estimate whether the 

damage to the underwater structure is a design problem or a manufacturing defect.  

Usually, the cause of damage to a propeller that has not reached the end of its 

design life is a manufacturing defect, an incorrectly selected material, or an 

incorrectly assumed design load. In particular, in the case of damage to underwater 

structures, most of the cases are caused by incorrectly assumed design loads, 

because it is difficult to sufficiently consider the load characteristics of underwater 

structures at the design stage. In general, the static load can be predicted relatively 

accurately because it is proportional to the power of the propeller. However, in the 

case of dynamic load, the change in size is very large due to changes in the 

complex surrounding flow field or structural differences due to production 

tolerances. 

One of the main causes of underwater structural failure is vortex-induced 

vibration (VIV) [3]. Fig. 1.7 shows the vortex shedding phenomenon in a 2D 

cylinder [4]. The cycle of vortex shedding is constant at a specific flow velocity, 
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and it excites the structure on a constant cycle. Fig. 1.8 shows the formula for 

calculating the vortex shedding frequency. The vortex shedding frequency is 

proportional to the Strouhal number, a dimensionless number related to the shape 

of the structure, proportional to the inflow velocity of the flow, and inversely 

proportional to the effective thickness of the trailing edge. When the foil shape and 

flow velocity are determined, the vortex shedding frequency is calculated. 

Empirically, the range of the actual frequency is 90%~110% of the predicted value 

due to the uncertainty of each variable. 

If the vortex shedding frequency coincides with the natural frequency of the 

structure, the excitation force caused by vortex shedding excites the vibration mode 

of the structure, greatly increasing the vibration response. The vibration of the 

structure, thus increased, makes the vortex shedding phenomenon stronger, which 

also increases the vibration response. When VIV occurs in an underwater structure, 

the resonance frequency at which the initial VIV is generated is maintained even 

though the operating conditions change slightly due to the strong interaction 

between the flow and the structure; this effect is referred to as the “lock-in 

phenomenon” [5,6]. Fig. 1.9 explains the concept of lock-in phenomenon that 

occurs when the vortex shedding excitation frequency coincides with the natural 

frequency of the structure. Large amplitude oscillations occur when the vortex 

shedding and the structural vibration frequencies coincide, a condition referred to 

as ‘lock-in’. The lock-in condition can occur over a range of oncoming flow 

velocities and the vortex shedding frequency can be driven relatively far from the 
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Strouhal frequency, which results from the von Kármán instability behind a 

stationary cylinder; this phenomenon of frequency entrainment is described as 

‘wake capture’. The lock-in phenomenon is a kind of self-excited vibration in 

which the coupling between flow and propeller structure vibration is strongly 

generated. As shown in Fig. 1.10, the resonance caused by lock-in has a wider 

range than general resonance, and it has hysteresis characteristics with different 

vibration patterns when the operation speed increases and when the operation 

speed decreases. 

High-frequency VIV in the propeller of a large merchant ship causes a 

propeller singing phenomenon, which is a common abnormal noise problem 

associated with ships, whereas low-frequency VIV causes an engine room vibration 

problem and leads to damage caused by vibration fatigue rather than a noise 

problem as the vibration displacement is large [3,7,8]. That is to say, when the 

vibration fatigue exceeds the fatigue limit of the material due to the lock-in caused 

by propeller VIV, vulnerable parts of the ship get damaged. Accordingly, though it 

is important to design propellers to prevent lock-in, it is very difficult to predict 

whether VIV and lock-in will occur or not during the design phase as the flow 

coming into a propeller is not uniform due to the complicated shape of the stern as 

shown in Fig. 1.11[3].  

In addition, since the vibration response in a structure where resonance 

occurs rapidly increases at the resonance point, even propellers manufactured with 

the same design have large variations in vibration response depending on 
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manufacturing tolerances, etc. This is the reason why the damaged propeller and 

the non-prone propeller coexist in 10 propellers manufactured with the same design.  

Accordingly, resonance avoidance design is done during the design phase in 

a shipyard using a vortex shedding frequency that is predicted with an empirical 

formula, and whether the lock-in phenomenon will occur is assessed by 

measurements taken during the ship’s sea trial. If lock-in caused by propeller VIV 

is found in the sea trial phase, the vortex shedding frequency is changed (because it 

is difficult to change other design conditions of the propeller), usually by changing 

the air foil trailing edge of the propeller, to solve the resonance problem as shown 

in Fig. 1.12[7]. Fig. 1.13 shows an example of lock-in caused by propeller VIV; the 

vibration problem was fixed by correcting the trailing edge of the propeller. 

Measuring the vibration when lock-in has occurred shows that a high response is 

maintained at a specific frequency even when the rotational speed of the propeller 

changes. If the lock-in phenomenon is not screened for during the sea trial process, 

the ship will be delivered to its owner as is, leading to enormous financial loss to 

the shipyard as a result of reproduction and redocking of the propeller because the 

propeller will fail before it reaches the intended lifespan. Accordingly, it is very 

important to check whether or not lock-in caused by propeller VIV occurs during 

the sea trial phase of a ship [7]. 
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1.2 Research Objectives  
 

The purpose of this paper is to find a method to easily and accurately 

measure structural vibration, which is a vortex, which is a representative cause of 

damage to underwater structures. To this end, we would like to propose a technique 

for diagnosing vortex induced vibration based on deep learning, which shows 

excellent performance in the recent image detection field. Because it is difficult to 

obtain measurement data for underwater structures where vortex induced vibration 

occurs and it is difficult to obtain sophisticated prediction data by solving the fluid-

structure coupling problem, a simple model based on vibration theory is used to 

obtain 10,000 data sets required for learning. was able to obtain In addition, we 

want to show that it is possible to generate a vortex-like vibration through a 

reduced model test and detect it through the algorithm proposed in the paper. In 

addition, we intend to verify the applicability of the proposed algorithm using the 

structural vibration values measured in actual large commercial ships.  
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1.3 Outline of thesis  
 

Since it is difficult to confirm the VIV problem at the design stage, it is 

absolutely necessary to check it through measurement in the test run stage just 

before delivery of the ship. In Chapter 2, we reviewed the vibration measurement 

method of structures, and in particular, the method of measuring vibration of 

underwater structures, which is very difficult to measure because radio waves are 

not transmitted, was considered. The traditional method of measuring the load 

acting on a structure is to directly measure the strain of the structure by installing a 

strain gauge on the structure and installing an underwater telemetry, but the 

problem is that it takes a lot of money for measurement and the probability of 

measurement failure is very high. there is In this paper, we proposed a method to 

indirectly detect vortex induced vibration, which is a major cause of damage to 

propellers of large merchant ships, through hull vibration measurement in the test 

operation stage. If the specific VIV is a problem, when the vortex shedding 

frequency at the flow rate matches the natural frequency of the structure, the vortex 

shedding strength increases due to resonance and the lock-in phenomenon occurs 

in which the vortex shedding frequency is maintained even if the flow speed 

increases. This is because indirect measurement can explicitly confirm this. To this 

end, iterative vibration measurement and evaluation process by a vibration expert is 

required. Chapter 3 describes the development of deep learning algorithms for VIV 

diagnosis. In this study, a CNN (Convolution Neural Network) algorithm, which is 
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widely used for image-based object detection, was used to automate diagnostic 

VIV detection. In this study, object detection is performed but classification is not 

required, so to develop a specialized CNN model, 30 CNN models were reviewed 

by adjusting the hyperparameter to increase the hidden layer. Finally, detection 

performance without overfitting We proposed a model with this high five hidden 

layers. In order to generate large-scale data required for CNN learning, a simple 

ship model based on the vibration mode superposition method was proposed and 

propeller vibratory force was simulated. Using a simple model, 10,000 pieces of 

data showing vibration characteristics similar to the actual vibration measurement 

results were generated and used for learning. As a result of testing using 1,000 

pieces of data, it was able to show a diagnosis success rate of over 82%. In Chapter 

4, a reduced model test was performed to verify the proposed diagnostic system. 

Using a reduced model of the ship propulsion system including a 1/10 scale 

propeller designed to match the vortex shedding frequency and the underwater 

natural frequency of the blade, vortex induced vibration is generated from the 

propeller, and the Vibration was measured. It was confirmed that the detection 

system developed in this study can detect VIV generated in the reduced model. In 

Chapter 5, the feasibility of the developed diagnostic system was verified using the 

vibration values of the hull structure measured in the engine room during the trial 

operation of a 3,000-ton crude oil carrier that had a propeller VIV problem, and its 

applicability to actual ships was also confirmed. In Chapter 6, the conclusion 

remarks for this research will be presented. 
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Fig. 1.1 Increase of maximum capacity of container carrier 
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Fig. 1.2 Ship propeller [1] 
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Fig. 1.3 Change of the flow field around the stern structure by installing energy 

saving device
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Fig. 1.4 Underwater structure design process
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Fig. 1.5 Damage of underwater structure



 

 

 

 

１６ 

 

Fig. 1.6 Root cause analysis for structural failure 
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Fig. 1.7 Vorticity of 2D cylinder (coordinates normalized by cylinder diameter) 

[4] 
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Fig. 1.8 Calculation of vortex shedding frequency
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Fig. 1.9 Concept of vortex shedding excitation and lock-in phenomena  
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Fig. 1.10 Vortex shedding lock-in oscillation[4]  
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Fig. 1.11 Complexity of the flow field around stern structures 
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Fig. 1.12 Example of propeller trailing edge modification 
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(a) 

 
(b) 

Fig. 1.13 Vibration measurements before and after propeller modification 

(a) Lock-in caused by ship propeller VIV; (b) After propeller trailing edge 

modification 



 

 

 

 

２４ 

CHAPTER 2.  

PROPELLER VORTEX-INDUCED VIBRATION 

MEASUREMENT METHOD 

 

2.1. Structural vibration measurement methods   
 

A method of measuring the vibration of a structure includes a method of 

measuring a displacement of a structure or a method of measuring velocity and 

acceleration. In general, the measurement method is determined according to the 

ease of sensor installation, the frequency of interest, and the magnitude of the 

vibration. The most general type of vibration sensor is an accelerometer, and there 

are two types: a cantilever type with a strain gage installed inside and a piezo-

electric type using piezoelectric phenomenon. When the frequency is relatively low, 

an electro-magnetic velocity meter that directly measures the speed is sometimes 

used, but it is a method that is not used much these days. A general method to 

measure the velocity is a method using a laser doppler velocimeter (LDV), which 

measures the surface velocity of a structure using the Doppler effect. The last 

method is to measure displacement. Eddy current type or capacitive type non-

contact displacement sensors are often used to measure the displacement of 

structures. Recently, because of the ease of installation, the displacement is often 
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measured using a laser. Also, recently, there is a case in which a high-speed camera 

is used to measure the vibration of a low-frequency structure with a large 

displacement. IMU (Inertia Measuring Unit) is often used for small structures. It is 

mainly used for control purposes, but it is also used for monitoring purposes. The 

most representative purpose of measuring the vibration of a structure is to predict 

the lifespan of the structure, and therefore the most direct vibration measurement 

method is to directly measure the dynamic strain using a strain gage. The measured 

dynamic strain is used to calculate the fatigue safety factor of the structure. 
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2.2. Direct measurement method for propeller vibration   
 

Underwater structures such as propellers, rudders, and ESD are important 

structures for ships, and vibration measurement is necessary for design verification 

or life prediction. For vibration measurement of underwater structures, shipyards 

are considering various measurement methods and using them. The traditional 

method of measuring the lock-in phenomenon generated by a propeller and the 

resulting stress acting on the structure is shown in Fig. 2.1 [2]. After strain gauges 

are installed on a rotating propeller and the cables of the strain gauges are 

connected to the ship’s interior through a hollow shaft, information is delivered to a 

stationary data storage device through telemetry or a slip ring. Though underwater 

telemetry has the advantage of not necessitating the hollow shaft, it has a 

limitation: cables for signal transmission must penetrate the shell of a ship. As a 

highly variable amount of pressure is applied to the surface of a propeller, to make 

strain gauges stick tightly to the propeller without creating a waterlogging problem, 

specialized equipment such as a welding gauge or techniques such as silicone 

application are required. Despite such efforts, as it is difficult to measure the stress 

of a rotating underwater structure and attempts to do so often fail, this cannot truly 

be regarded as an efficient and promising method of checking propeller lock-in in 

the sea trial phase of a ship because it must be repeated several tens of times per 

year. Another method to directly measure the vibration of the propeller is to make a 
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transparent observation window on the bottom of the hull where the structure is 

visible and measure the vibration of the structure using a laser velocimeter as 

shown in Fig. 2.2. In order to observe the cavitation of the propeller, some 

shipowners make a transparent observation window at the bottom of the ship. The 

idea is to measure the vibration of the propeller with a laser velocimeter through 

this observation window. In order to measure the vibration of a rotating propeller, a 

signal processing technique that uses a tracing device or performs sampling 

according to the number of rotations is also required, and there is a problem in that 

it is affected by turbidity of seawater or floating matter. Also, above all else, the 

biggest problem is the need to make an observation window due to the problem of 

water leakage and structural strength. 
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2.3. Indirect measurement method for propeller vibration 
 

The calculation of the vortex shedding frequency is much more elaborate 

and requires 3D flow field analysis [9] and, if the vibration displacement is large, it 

is difficult to analytically predict the vortex shedding frequency as fluid-structure 

interaction analysis is required [10]. Accordingly, we need a simple and highly 

reliable measurement method that can replace the strain gauge-based direct 

measurement method of assessing the occurrence of VIV in the sea trial phase of 

the ship such that the appropriate actions can be taken before delivery of the ship.  

Fig. 2.3 explains the mechanism by which the flow field is excited by the 

vortex induced vibration and the vibration is transmitted to the accelerometer as the 

flow field excites the hull structure. Because the propeller flow field is large 

enough to generate the thrust of the ship, the propeller fluctuating pressure 

becomes one of the main vibratory forces exciting the hull. Therefore, when an 

abnormal vibration component occurs in the propeller, the vibration component 

excites the surrounding flow field, and the generated fluctuating pressure is 

transmitted to the inside of the hull in the form of structural vibration. In the 

shipyard, it was confirmed empirically that, when vortex induced vibration 

occurred, the vibration component generated by VIV in the ship's internal structure 

could be clearly measured. In addition to the vibration component transmitted 

through fluid excitation, as shown in Fig. 2.3, there may be vibration components 
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transmitted through the propeller, shaft system, bearing, and hull path. As a result 

of the test using the reduced model in Chapter 4, it was found that the magnitude of 

the propeller vibration component transmitted through the shaft system with very 

high impedance is very small, and the component transmitted through fluid 

excitation is the main component of the internal acceleration of the vessel. 

Fig. 2.4 shows a sample vibration spectrum measured at the hull by an 

accelerometer inside a ship. Vibration of the propeller component, which is the 

dominant component of the ship’s stern, is readily observed; the vibration is 

generated as a result of vibration of the propeller, which is delivered to the hull 

when the hull structure is excited through the fluid, and by exciting the structure 

through the shaft and bearing. This result suggests that occurrence of propeller VIV 

can be assessed by measuring the vibration of the hull points near the propeller. 

When VIV grows and structure-fluid coupling vibration occurs, lock-in 

occurs, and most fatigue damage problems are related to this. Therefore, the 

occurrence of lock-in itself is a problem, and it is possible to determine whether 

lock-in has occurred using the waterfall chart. Fig. 2.5 shows a typical waterfall 

diagram when lock-in occurs. As the natural frequency of the propeller coincides 

with the vortex shedding frequency, the magnitude of the vibration increases 

rapidly, and the resonance frequency is maintained despite the change in the 

rotation speed of the propeller. can be clearly identified. For lock-in diagnosis, an 
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expert's evaluation is required, and the expert examines the measured waterfall 

chart one by one to determine whether resonance and lock-in occurs. This 

consumes time and money, and there are cases where the lock-in phenomenon 

cannot be detected due to human error due to repetitive tasks. In the case of large 

shipyards, since more than 100 ships are built a year and it is difficult to determine 

whether lock-in has occurred by collecting and analyzing long-term data each time, 

a diagnostic system that can automatically determine whether or not lock-in occurs 

from data acquisition is required. To this end, we will introduce artificial 

intelligence technology. In this study, it is necessary to find out not only whether 

lock-in has occurred, but also the frequency and propeller rotation speed at which 

lock-in has occurred. So general machine learning classification methods used for 

machinery diagnosis, such as Support Vector Machine (SVM), Logistic Regression, 

and K-Nearest Neighbors (KNN), are not appropriate. 

 In this study, occurrence of VIV is determined through waterfall charts. It 

takes a great deal of time and money to grasp whether resonance or lock-in occurs 

by reviewing waterfall charts one by one and, in some cases, a lock-in phenomenon 

may be missed due to human error. Accordingly, there is a need for a diagnostic 

system that allows easy installation of sensors and automatic measurement of the 

occurrence of VIV. To this end, in this study, we aimed to develop a deep learning-

based VIV diagnostic system using a waterfall chart instead of human expert as 
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shown in Fig. 2.6. In other words, the role of deep learning network in this study is 

not to replace the signal processing method, but to replace the role of experts in 

determining whether a Lock-in phenomenon occurs using the signal processing 

results. As deep learning CNN technology shows excellent performance for image 

recognition [11], we thought that deep learning CNN technology may also be 

effective for VIV detection because waterfall chart is 2-dimensional data like an 

image. To detect lock-in on a waterfall chart, the frequency and RPM that cause a 

vibration problem must be recognized. We developed a lock-in detector by 

regarding this as an object detection problem.   

Though deep learning has been used to solve multi-physics problems for 

prediction of vortex-induced vibration resulting from interactions between fluids 

and structures [12], it seems to be of limited use in solving an actual 3D propeller 

lock-in problem. In some cases, computer vision and deep learning have been 

utilized with a large amount of data to diagnose the integrity of a mechanical 

structure. Some cases make use of time data measured by sensors [13,14], while 

other cases use an image of the structure [15]. Recently, deep learning algorithms 

have been used along with existing artificial intelligence algorithms to troubleshoot 

machines that contain mechanical elements, such as gears, bearings, etc. The faults 

of mechanical systems have been diagnosed by utilizing timing signals from the 

vibration of the system [16-18], and the causes of mechanical system failures have 
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been diagnosed using the input values of diverse physical quantities, including 

vibration [19,20]. Many methods of illustrating time and frequency vibration data – 

as a 2D image through STFT (short time Fourier transform), waterfall chart, or 

wavelet transform, for example – and applying deep learning algorithms to 

diagnose a mechanical system have recently been proposed [21-26]. Deep learning-

based troubleshooting and fault diagnostic methods that rely on 2D images are used 

in diverse fields; similar methods should be applicable to VIV detection.         
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Fig. 2.1 Strain measurement method for a ship propeller [2] 
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Fig. 2.2 Laser doppler velocimeter measurement method for a ship propeller 
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Fig. 2.3 Transmission path of propeller induced vibration 



 

 

 

 

３６ 

 

 

Fig. 2.4 Harmonic component of propeller vibration measured at the stern  
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Fig. 2.5 Example of measured vibration spectrogram when lock-in occurs 
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Fig. 2.6 Schematic of CNN based VIV detection system 
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CHAPTER 3. 

DEEP LEARNING NETWORK FOR VIV 

IDENTIFICATION 

 

3.1. Convolution Neural Network  
 

Among the many deep learning technologies, the Convolutional Neural 

Network (CNN) has been widely used in the various engineering fields due to its 

advantages such as parameter sharing, local connectivity, and the ability to 

consider high-dimensional information within the input data. CNN consists of a 

combination of several layers, including convolutional layers and pooling layers. 

Unlike traditional fully connected neural networks, CNNs use weight matrices of 

smaller dimensions than the input data, called kernels or filters. Therefore, CNNs 

have local connectivity properties that allow them to learn local patterns within 

small regions of the input data. Additionally, CNNs use multidimensional kernels 

to extract features, allowing them to consider high-dimensional information within 

the input data. In a convolutional layer, an output layer, called a feature map, with a 

depth equal to the number of kernels, is produced by sliding a kernel within the 

input data and performing a convolution operation. Based on these convolution 

operations, features are extracted from the input data. CNNs also use kernels with 
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equal weight values for these convolution operations within the entire input data. 

This is called parameter sharing. As a result, CNNs can significantly reduce the 

number of parameters to be trained and increase computational efficiency. Several 

types of convolutional layers are available depending on the dimensions of the 

input data. In general, a one-dimensional CNN using a one-dimensional kernel and 

a two-dimensional CNN (2D-CNN) using a two-dimensional kernel are used. A 

pooling layer pools a specific value (maximum or average) in a subregion. So the 

functional map of the previous layer is collapsed. Also, like other traditional neural 

networks, nonlinear functions are trained using nonlinear activation functions such 

as Rectified Linear Units (ReLUs). Finally, a fully connected layer that acts as a 

classifier follows. By stacking multiple combinations of these components, 

different CNN architectures can be achieved. Due to the advantages described 

above, the CNN method is widely used in various research fields such as face 

recognition, disease diagnosis, and natural language processing. Typical CNN 

structures are shown in Fig. 3.1.  

 

Convolution Layer 

The Convolutional layer consists of a set of filters. The values of these filters 

are the learnable parameters of the layer. The idea of a convolution when talking 

about CNNs is to extract the features from an image preserving the spatial 
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connection from the pixels and the learned features inside the image with the use of 

small equally-sized tiles. For an input image with size MN3 and the first 

convolutional layer K filters of size IJ where I <<< N and 3 represents the color 

channels. The learned features are a consequence of a mathematical operation 

between each element from the input image and the filter matrix. This is defined as:  

 

                       (3.1) 

 

Where  is the value of feature map after convolution operation and before 

activation function, A is the height of a convolution filter, B is the width of a 

convolution filter,  is the weight parameter of convolution filters in the lth layer, 

is the value of input image data in the lth layer, and is a bias in the lth 

layer. In other words, the filter (also known as feature detector), slides through all 

elements of the image and is multiplied by each one producing the sum of 

multiplication that produces a single matrix named Feature Map. The depth 

together with the stride will control the size of the Feature Map matrix. Fig. 3.2 

shows a convolution of a 55 image with a 33 filter matrix and stride of 1. 

Additionally, an operation called ReLU (Rectified Linear Unit) is usually 

used as an activation function that adds non-linearity into the CNNs allowing it to 
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learn nonlinear models. It is an operation on top of each pixel that replaces all 

negative pixels inside the feature map by zeros. This rectifier technique is mostly 

used when compared with Hyperbolic Tangent or Sigmoid Functions since ReLU 

improves significantly the performance of CNNs for object recognition. ReLU 

function is described as follows. 

 

                                       (3.2) 

 

The output of the ReLU function is higher than one when the input value is 

higher than one.  

  

Pooling Layer 

As mentioned previously, pooling is one of the CNN distinctive concepts. 

The idea of the pooling step is to reduce the dimensionality of each feature map, 

eliminating noisy and redundant convolutions, and computation network yet 

retaining most of the important information.  

 

                      (3.3) 

Where  is the value of feature map after convolution operation, A is the 
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height and width of a pooling area, is the value of a feature map after activation 

function. There are multiple types, like, Max, Sum or Average, however the most 

common and preferred one is max-pooling. In max-pooling it is defined a spatial 

neighborhood and gets the max unit from the feature map based on that filter 

dimension that can be, for example, a 22 window. Fig. 3.3 shows an example of 

max-pooling operation, with a 22 window and stride of 2 taking the maximum of 

each region reducing the dimensionality of the Feature Map. 

 

Fully Connected Layer  

Being one of the latest layers of a CNN, coming right before the output layer, 

the Fully Connected layer (FC) works like a regular Neural Network at the end of 

the convolutional and pooling layers. Every neuron from the layer before the FC 

layer is connected to every neuron on the fully connected one. The FC Layer 

purposes is to use the output features from the previous layer (that can be a 

convolution or a pooling layer) and classify the image based on the training dataset. 

Basically, the fully connected layers of a CNN behave as a classifier with 

convolutional layers outputs as the classifiers input. 
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Training 

To achieve low error rates, it is recommended that a CNN is trained on a 

massive database of images. Backpropagation is used to train the CNN by 

calculating a gradient that is needed in the updating of the weights in the network. 

To train the CNN there are a few different steps depending on which layer that is 

being trained. Fig. 3.4 shows an example of object detection and classification 

convolution neural network.  

In shipyards, various CNN application technologies are being developed for 

vision-based object recognition. Fig. 3.5 is the case of using CNN for machine 

diagnosis. This is a case where the vibration signal of an electrical motor is imaged 

as a spectrogram and the types of failure are classified using CNN. The CNN 

method showed higher performance than the conventional machine learning 

methods. Fig. 3.6 shows the case of using CNN for fire monitoring in the engine 

room of a ship. Although the fire monitoring sensor array is installed on the ceiling 

of the engine room, there is a problem that it takes up to 5 minutes or more for 

smoke to be detected by the sensor when a fire occurs. It was possible to detect a 

fire in real time based on CNN using smoke images in the engine room. The last 

case using CNN is shown in Fig. 3.7, it is an obstacle detection technology for 

autonomous navigation. There are traditional sensors such as radar and AIS on 

ships, but obstacles that cannot be detected by existing sensors are detected by 
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CNN using camera images. In addition, for quality inspection and safety 

monitoring, CNN is being widely applied in shipyards. 
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3.2. Data generation using mode superposition  
 

A large amount of data is required to develop a deep learning-based VIV 

detection algorithm. As the amount of VIV data that can be obtained by measuring 

an actual ship or through systems analysis is greatly limited, we thought that it 

would be difficult to obtain the data required for deep learning with data 

augmentation technology. For this reason, we simulated a VIV phenomenon and 

utilized the result as training data. A 3D fluid-structure interaction analysis of a 

propeller is problematic in that the analysis would take a long time. Accordingly, 

we propose a method of generating a large amount of data by creating a vibration 

model based on the modal-superposition method that produces a result similar to 

that of a fluid-structure interaction analysis. In summary, the method is as follows:            

 

Training data generation process 

1. Natural frequencies and mode shapes are randomly generated to simulate the 

vibration characteristics of diverse ships.    

2. Natural frequencies and mode shapes of underwater structures are also 

randomly generated.   

3. The excitation force of the RPM order component is applied to simulate the 

excitation force of the main engine and the propeller. The magnitudes of the 

excitations are set to proportional to RPM. The phases of the excitations are 
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randomly set. 

4. The excitation force at a constant frequency is applied to simulate the 

excitation forces of the auxiliary machines. On/off is randomly set. The 

magnitudes and phases of the excitations are randomly set.     

5. The occurrence of lock-in is randomly set. (There is a case in the learning 

data in which no VIV occurs.)     

6. The range of RPM and the strength of the excitation force at the time at 

which lock-in occurs are randomly set.    

7. Measurement noise is taken into account. 

 

Calculation process 

1. A system matrix [H] is constructed from the randomly generated mode 

characteristics.  

2. An excitation vector {F} is organized from the information about the main 

excitation force of the ship, the excitation forces of the auxiliary machines, 

and the excitation forces of the underwater structure.    

3. Calculation of the vibration velocity response and conversion to a time 

signal is carried out and noise is taken into account; {V}=jω[H]{F} and 

v(t)=|V|  cos(ωt+φ)+n(t) where j=√(-1). 

4. The linear spectrum of the v(t) signal is calculated for each RPM.   
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5. A waterfall chart (1 set) is generated for one ship by accumulating the 

spectrum at different RPMs.   

6. RPM range: 1 rpm steps from 21 – 80 rpm (60 points along the RPM axis) 

7. Frequency range: 0.125 Hz steps from 0.125 – 100 Hz (800 points along the 

frequency axis) 

8. A waterfall chart of 60 x 800 size is generated. 

9. Data on several ships are generated by repeating steps 1 to 5.   

 

In this study, the number of grids is 60X800, and there is a problem that the 

number of horizontal grids is too small compared to vertical. In other words, it 

means that the rpm resolution is lower than the frequency resolution. This is 

because it is necessary to measure the steady vibration in order to sufficiently 

express the lock-in phenomenon caused by the vortex deviation, so it is measured 

and stored for 1 minute or more at each operation speed. to be. In other words, 

during the test operation of the ship, the vibration is measured by sweeping the 

rotation speed of the ship's main engine at 1 rpm intervals. In order to increase the 

RPM resolution, it is possible to obtain a spectrogram from the continuously 

measured signal, but empirically, the signal obtained through the quick bypass 

operation is often lower in magnitude than the vibration value measured at 1 rpm 

intervals. There is a method that can measure vibration while driving at an rpm 
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interval that is finer than 1 rpm interval, but it is judged that it is difficult to apply 

from a practical point of view. Finally, in this study, the number of grids was 

decided to be 60X800. 

Though a waterfall chart generated through a simplified model is not the 

result of a fluid-structure interaction analysis, it seems to properly simulate the 

characteristics of an empirically observed waterfall chart. The above process is 

used to generate 10k training sets for parameter learning, 1k validation sets are 

used for hyper-parameter tuning, and 1k test sets are used for the final performance 

evaluation. The data generated are shown in Fig. 3.8. The X data are waterfall chart 

as the input data, and Y data are utilized as the label data for supervised learning, 

showing the frequency and RPM at which lock-in occurs. The value of Y at the 

RPM and frequency where lock-in occurs is 1; it is 0 in any other case. During the 

learning process, the lock-in frequencies and RPMs marked as 0 and 1 will be 

converted to the parameters of the bounding box. 
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3.3. Structure of the proposed CNN model 
 

An algorithm was developed that can detect VIV from waterfall charts based 

on CNN-based object detection technique. Though the object detection algorithms 

currently used for image recognition technology classify objects that have been 

detected, in this study, as the purpose is to detect only the lock-in phenomena, a 

classification function is not required. To train VIV detection algorithm, the loss 

function of the bounding parameters was utilized and accuracy was assessed using 

intersection of union (IoU). The bounding box which is rectangle can be 

parameterized with two central coordinates, height and width. In an object 

detection algorithm, 2D data are divided into several grids and the probability that 

the center of the bounding box can be found inside each grid is denoted Pc. The 

center of the bounding box inside a grid for which Pc = 1 is expressed with a value 

between 0 and 1; in this study, this value is expressed as Br (center coordinate 

along RPM axis within a grid cell) and Bf (center coordinate along frequency axis 

within a grid cell). The rpm range of the bounding box is defined as Rr along 

overall RPM axis and has a value between 0 and 1. Each parameter is shown in Fig. 

3.9. A VIV detector that accepts waterfall charts as inputs produces bounding box 

parameters Pc, Br, Bf, and Rr as outputs. 

The IoU concept cannot be yet applied because a bounding box is not a 

rectangle, but a straight line with no area. Accordingly, a range (Rf) must also be 
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set for the frequency axis. In this study, this value is set as a constant ±1 Hz. For 

such a bounding box, the IoU with the bounding box which corresponds to the 

ground truth is calculated. The definition of IoU is shown in Fig. 3.10. When it is 

accurately identified, it has a value of 1, and if there is no overlap, it has a value of 

0. In this study, performance is evaluated based on IoU = 0.5. That is, the inference 

bounding box is judge to be correct when IoU is higher than 0.5. 

The pseudo-code of the loss function for learning is shown in Fig. 3.11. The 

basic structure of the loss function is the square error for the parameters of the 

bounding box. If no bounding box center is inside a grid cell, the errors for Br, Bf, 

and Rr are not reflected in the loss function calculation and the algorithm is taught 

that only the value of Pc is 0. If a bounding box center exists inside a grid cell, the 

algorithm is taught that Pc is 1 and Br, Bf, and Rr are their true values.    

In this study, a waterfall chart with a size of 60 x 800 is divided into 30 x 50 

grid cells. That is to say, one waterfall chart has 1,500 grids. For the waterfall 

charts in which VIV exists among the learning data, the algorithm should learn that 

the Pc values of 1,499 of the 1,500 grids are 0, and that of only one grid is 1. 

Learning may be difficult as the loss function does not change significantly even 

when the algorithm learns that Pc is 0 in all grid cells. In consideration of this 

problem, the ratio of the number of grid cells where no bounding box center exists, 

n0, to the number of the grids where a bounding box center exists, n1, is balanced 
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from 1,499:1 to 1:1. In an object detection algorithm, a weight (Lcoord or Lnoobj) 

is applied to the cases where a bounding box exists inside a grid and to the cases 

where no center exists, respectively. In this study, a trial-and-error process 

identified Lcoord = 1 and Lnoobj = 10 as appropriate values.  
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3.4. Deep neural networks  
 

Networks that have been widely used for object detection problems recently, 

such as SSD and YOLO, show excellent performance in mapping general images, 

but since the problem in this paper is relatively simple, we tried to use a simple 

CNN as much as possible. In the case of judging voice signals or diagnosing 

machine failures using spectrogram, a simple network is used as much as possible 

and the method of increasing the convolution layers one by one is generally used as 

needed. However, since this paper is the first research case in which a deep 

learning methodology is applied for VIV exploration, the network has room for 

optimization. In the future, if measured data from actual ships are accumulated, 

follow-up studies are required. We subjected 15 models to the learning process 

while changing the hyperparameters. The performance of the model presented in 

Fig. 3.12 was found to be superior to the others. Fig. 3.13 ~ Fig. 3.14 shows the 

deep learning model created using Tensorboard and the monitoring results of the 

weight change. A brief explanation of the relevant model is as follows: The input 

data are 2D data, the waterfall charts, of single channel with a size of 60 x 800 are 

input without being converted into images. In the meantime, as the vibration level 

may appear to be very low or very high, pre-processing is applied to the input data 

using a log function to make big values small and small values big, and then the 

data are normalized so that all values lie between 0 and 1. The hidden layers are 
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comprised of only convolution layers and the activation function is an ELU 

(Exponential Linear Unit) function. The type of activation functions was 

considered as one of the hyperparameters during the development of VIV detection 

algorithm. In this study it was found that the accuracy became lower as ReLU 

(Rectified Linear Unit) function was utilized although ReLU function has been 

typically utilized for image recognition network models. The size of the input data, 

60 x 800, is gradually reduced by applying max pooling so that the final output 

data are 30 x 50 in size. The size, 30 x 50, is the same as the size of the grid 

mentioned earlier. As the output layer should output the parameters of the bounding 

box (Pc, Br, Bf, and Rr for each of 30 x 50 grid cells), the output data are set to 

consist of 4 channels with a size of 30 x 50. As the output values of Pc, Br, Bf, and 

Rr should be between 0 and 1, a sigmoid function that produces values between 0 

and 1 is used as the activation function of output layer. There may be multiple lock-

in’s for a waterfall chart; it means that Pc values are 1 for the many grid cells. 

Considering the sum of output values from softmax function is always 1 while the 

output values from sigmoid function is between 0 and 1 at each node, sigmoid 

function is more desirable for the calculation of Pc. Rf is introduced only for 

evaluation of IoU and does not affect learning. The work of drawing a bounding 

box on a waterfall chart from the bounding box parameters Pc, Br, Bf, Rr and Rf is 

done using the post-processing code. 
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3.5. Training and diagnosis steps 
 

The training phase utilized random mini-batches of 100 sets with a dropout 

rate of 0.1. The loss function value and the accuracy of the VIV detector are shown 

in Fig. 3.15. The training was stopped before overfitting occurred, which is when 

the loss function value for the training set is very low but the value for the 

validation set becomes high. For the inference bounding box, which is used to 

determine accuracy, the parameters of the bounding box with the maximum Pc 

value among all Pc values for 30 x 50 grid cells were plotted. The accuracy for the 

training set is 92%, the accuracy for the validation set is 87%, and the accuracy for 

the test set is 82%. Model organization and learning were done with 

Python/Tensorflow, and Tensorboard was used to monitor the learning process [27]. 

The detailed prediction results for the training, validation and test sets are shown in 

Table 3.1. The false-positive rate for the test sets was 18.8%, and the false-negative 

rate was 6.5%. In the case of false-positives, which occur at a relatively high rate, 

no serious situation arises because the waterfall chart will be closely reviewed by 

the experts. Although the false-negative rate is relatively low, serious problem may 

occur in the future because there is no chance for the experts to closely review it. In 

future work, it is desirable to develop the VIV detection algorithm so that the false 

negative rate is further lowered. 
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3.6. Performance of the diagnostic model 
 

Typical examples of VIV detection for the test sets are shown in Fig. 

3.17~Fig. 3.19. In Fig. 3.17, an explicit lock-in phenomenon is detected, which can 

even be seen visually, and in Fig. 3.18, a very small lock-in component that is 

difficult to visually detect is present. In Fig. 3.19, a lock-in phenomenon which 

looks similar to the vibration component of a ship auxiliary machine is also 

detected.   

The VIV detection system utilized learning data in which no lock-in occurs 

or lock-in occurs only at one frequency. In some cases of actual ship data, lock-in 

phenomena occur at many frequencies. Though such a difference may raise 

concerns that the VIV detector may detect only one lock-in frequency, as the filter 

of the convolution layer sweeps 2D input data and sends the output to the next 

layer, it seems that multiple lock-ins can in fact be detected. For actual use of the 

detection algorithm, the bounding box will be drawn for Pc values higher than a 

reference Pc value which is empirically defined by user. 

 

  

  



 

 

 

 

５７ 

Table 3.1 Detailed prediction results for learning data sets 

Training set  

(Accuracy = 91.5%) 

Validation set  

(Accuracy = 87.3%) 

Test set  

(Accuracy = 82.4%) 

 Positive Negative  Positive Negative  Positive Negative 

True 91.4% 92.1% True 86.5% 94.5% True 81.2% 93.2% 

False 8.6% 7.9% False 13.5% 5.5% False 18.8% 6.8% 
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Fig. 3.1 Typical structure of convolution neural networks 
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Fig. 3.2 Example of convolution operation 
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Fig. 3.3 Example of pooling layer operation(max) 
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Fig. 3.4 Example of object detection and classification using CNN 



 

 

 

 

６２ 

 

Fig. 3.5 Example of CNN application in shipyard: diagnosis of electric motor damage using vibration spectrogram
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Fig. 3.6 Example of CNN application in shipyard: image-based engine room 

smoking detection 
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Fig. 3.7 Example of CNN application in shipyard: image-based obstacle 

detection for ship navigation 
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Fig. 3.8 Examples of generated data sets 
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Fig. 3.9 Bounding box parameters (a) Definition of bounding box parameters; 

(b) Data structure of bounding box parameters for training 
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Fig. 3.10 Definition of intersection of union (IoU) 
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Fig. 3.11 Pseudo-code of loss function
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Fig. 3.12 Deep neural network architecture for VIV detection
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Fig. 3.13 Development of Neural Network Model Using Tensorboard: A Neural 

Network Model with 6 Layers 
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Fig. 3.14 Monitoring weight change using Tensorboard: Weight (W,b) changes 

as training progresses 
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Fig. 3.15 Loss function and accuracy for the training (magenta) and validation 

(green) data sets 

(a) Loss function; (b) Accuracy 

(b)  

 

Fig. 3.16 Validation loss function and overfitting criteria 
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Fig. 3.17 VIV detection results for the test data set (red box: ground truth; blue 

box: inference) 
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Fig. 3.18 VIV detection results for the test data set (red box: ground truth; blue 

box: inference) 
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Fig. 3.19 VIV detection results for the test data set (red box: ground truth; blue 

box: inference) 
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CHAPTER 4. 

EXPERIMENTS AND RESULTS 

 

The VIV detector was developed using learning data generated by simulating 

only the apparent characteristics of lock-in phenomena, and its performance must 

be tested by applying a detector developed using actual data, for which the ground 

truth are known. To this end, substantiation of the developed detector was 

conducted using a reduced-scale model of a ship propulsion system.      

 

4.1. Experimental apparatus and data collection 
 

In the reduced-scale model test device used to reproduce VIV phenomena, 

the propulsion shafting system of a real ship is simulated, as shown in Fig. 4.1. It is 

comprised of a motor, reduction gear, shaft, and propeller; the propeller rotates 

inside a cylindrical water tank. As vortex shedding may be interrupted by 

unnecessary flow inside the short cylindrical water tank when propeller thrust 

occurs, the propeller was designed to prevent thrust. The cross-sectional shape of 

the propeller blade is NACA0009, as shown in Fig. 4.2, and the trailing edge is a 

blunt edge with a thickness of 3.22 mm. According to data in the literature [28], the 

vortex shedding frequency for flow velocity is approximately f/U = 60 Hz/m/s, 

which means that a vortex shedding frequency of 207.6 Hz occurs under the 
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operational condition of 80 rpm when the diameter of the propeller is taken into 

account, as shown in Table 4.1. In the meantime, through finite element analysis of 

one blade, a vibration analysis conducted for a propeller built of an aluminum 

material under the condition that the propeller is under water showed that the 

torsional mode is 204 Hz, as shown in Fig. 4.3. Torsional mode is important 

because it is the vibration mode that is most easily excited by vortex shedding. To 

summarize the propeller design, it is a design in which 204 Hz vibration occurs 

under the operational condition of 80 rpm. The reduced-scale model that was 

produced is shown in Fig. 4.4.   
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4.2. Results and discussion  
 

Given that propeller VIV is readily detectable on the side shell in an actual 

ship, the vibration of the reduced-scale model is measured using a 3-axis 

accelerometer located on the wall of the water tank containing the propeller, which 

corresponds to the side shell. In addition, 3-axis acceleration was installed in the 

bearing supporting the shaft to determine the vibration transmission path. Fig. 4.5 

shows the sensor installation location and sensor orientation. At the bottom of Fig. 

4.5, an example of the vibration value measured by each sensor is shown. Data 

were obtained for a total of 60 operating speeds at intervals of 2 rpm in the range 

from 42 to 160 rpm with the propeller under water. The spectrum is acquired in 800 

lines, and the waterfall chart is acquired with an input size of 60 x 800, which can 

be input into the VIV detector.  

When the vibration value measured at the tank wall and the vibration value 

measured at the top of the bearing are compared, the frequency component 

according to the rotation of the propeller is clearly observed in the tank wall, 

whereas the rotational speed component of the shaft is observed in the bearing, but 

the propeller component is not observed. it can be seen that It seems that the 

vibration of the blade was not transmitted to the shaft due to the high impedance of 

the shaft, and it is considered appropriate to measure the tank wall vibration rather 

than the bearing vibration for propeller monitoring. This trend can also be 
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confirmed for real ships. 

The waterfall charts acquired as in Fig. 4.6 ~ Fig. 4.8 showed that frequency 

components other than the integer multiples of the propeller shaft operating speed 

appear near 80 RPM and 204 Hz. This suggests that torsional mode lock-in 

phenomena caused by vortex shedding, as intended in the design, appeared. Three 

similar frequency components occur near 204 Hz, likely because there are three 

propeller blades that are very similar to each other, though they are not exactly the 

same. The results of applying the VIV detector to the waterfall charts of the 

vibration signals acquired from the reduced-scale model are shown in Fig. 4.9 

through Fig. 4.11 with reference Pc is 0.9. These results show that bounding boxes 

are commonly generated at a frequency where lock-in occurs and at the operating 

rpm. However, bounding boxes also form where no lock-in phenomenon occurs. 

As they form with no consistency by channel, they can be distinguished from the 

true bounding boxes for actual lock-in phenomena. In this regard, if a VIV detector 

is developed in an architecture with waterfall charts of different channels can be 

input at the same time, the performance is expected to improve.   

Fig. 4.12 through Fig. 4.14, the Pc value, which is the probability that the 

bounding box will be located inside the grid, is displayed next to the bounding box. 

It means the probability that VIV exists in the grid. In the theoretical model, 0.9 

was used as the threshold value, but in the reduced model, it seems that a different 
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threshold is needed to distinguish it from the operating frequency and resonance of 

local equipment. Since the Pc value in the lock-in condition is higher than that of 

other components, it may be helpful in discriminating the actual lock-in 

phenomenon, but it will be difficult to generalize because the threshold may be 

different in other measurement conditions.  

As shown in Fig. 4.15, the lock-in of the reduced model has a characteristic 

that the frequency changes slightly depending on the propeller rotation speed, but 

the data used for training the network model is that the frequency is constant. Since 

the lock-in frequency of the actual ship data is almost fixed, the training data is 

configured that way. Although lock-in is reproduced in the reduced model, it tends 

to be a little different from the lock-in of the actual ship, and accordingly, the 

detection performance of the network model seems to be slightly lowered. It is 

presumed that the fluctuation of the lock-in frequency is because the propeller 

natural frequency is strongly coupled with the vortex due to the low rigidity of the 

test blade in the scaled model test as shown in Fig. 4.16. 
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Table 4.1 Calculated vortex shedding frequency 

Vortex shedding frequency calculation* 

Description Coefficient Hub Radius 
Propeller 

Radius 
Radius Rotation Speed Flow Velocity 

Vortex 

Shedding 

Symbol Cs r_hub r_prop 
r_hub < r < 

r_prop 
RPM U fv 

Unit (Hz/(m/s)) (mm) (mm) (mm) (Rev./Min.) (m/s) (Hz) 

1/10  

scaled 

60 65 500 500 80 4.2 251.3 

60 65 500 413 80 3.5 207.6 

60 65 500 326 80 2.7 163.9 

60 65 500 239 80 2.0 120.1 

60 65 500 152 80 1.3 76.4 

60 65 500 65 80 0.5 32.7 

*  Reference: NACA0009 w/ 100 mm cord length, 10 mm maximum thickness, 3.22 t truncated trailing edge 
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Fig. 4.1 Schematics of test rig for vortex-induced propeller vibration  
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Fig. 4.2 Selected airfoil and its vortex shedding frequency 
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Fig. 4.3 Natural frequency of the designed propeller in water (finite element analysis results) 
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Fig. 4.4 Test rig for propeller VIV 
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Fig. 4.5 Measurement position and sensor directions and examples of reduced-

scale model test result  
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Fig. 4.6 Vibration measurement data (Horizontal direction) and observed lock-in 

phenomena  
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Fig. 4.7 Vibration measurement data (Axial direction) and observed lock-in 

phenomena 
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Fig. 4.8 Vibration measurement data (Vertical direction) and observed lock-in 

phenomena 
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Fig. 4.9 Results of applying the VIV detection algorithm (Horizontal direction) 
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Fig. 4.10 Results of applying the VIV detection algorithm (Axial direction) 

 



 

 

 

 

９２ 

 

Fig. 4.11 Results of applying the VIV detection algorithm (Vertical direction) 
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Fig. 4.12 Bounding box with probability score (Horizontal direction) 
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Fig. 4.13 Bounding box with probability score (Axial direction) 
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Fig. 4.14 Bounding box with probability score (Vertical direction) 
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Fig. 4.15 Comparison of lock-in frequency by data type 
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Fig. 4.16 Comparison of lock-in phenomenon according to fluid structure 

coupling type 
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CHAPTER 5.  

ENHANCEMENT OF DETECTION 

PERFORMANCE USING MULTI-CHANNEL 

APPROACH  

 

As a result of the reduced model test, it was found that many false positive 

signals can occur. False positives are signals that appear in the vertical direction in 

the time-frequency spectrum. Examples of vertical signals that can be detected as 

false positives are summarized in Table 5.1 and Fig. 5.1. Candidates for signals that 

can appear in a vertical form in the waterfall diagram are lock-in, auxiliary 

machinery local vibration, local structure resonance, and low frequency forced 

vibration. The characteristics of each are shown in Table 5.1. Among them, 

auxiliary machinery local vibration and local structure resonance are localized, so 

they are easily distinguished from the lock-in observed in the entire stern part, and 

low frequency forced vibration is easily distinguishable because it is not perfectly 

vertical.    

The reason for developing a lock-in detection solution is to automatically 

detect all lock-ins that occur on a ship using vision artificial intelligence technology. 

A false negative is a dangerous situation in that it is necessary to filter out problems 

at the trial run stage, and it is necessary to minimize false negatives by 
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appropriately adjusting the Pc value, which indicates the probability of the 

existence of a bounding box in the grid, if possible. In this case, the number of 

false positives may increase, which may not be appropriate from the point of view 

of having to judge the problem conservatively.  

A method for robustly detecting the signals measured in the stern part 

without adjusting the Pc value is needed. Previously, vertical vibration components 

due to local structural resonance or operation of auxiliary machinery appeared only 

in some sensors in the stern part, whereas in the case of lock-in, it is characterized 

in that it is measured in the entire stern part. Using this, this study reviewed the 

multi-channel sensor fusion method. Multi-channel sensor fusion methods include 

early fusion and late fusion methods as shown in Fig. 5.2. However, since the data 

theoretically generated for training in this study is one-channel data, it would be 

difficult to utilize multi-channel input, so the Late Fusion method was applied here. 

In this case, only the Bounding Box in which the intersection over union(IoU) of 

each channel is 0.8 or more is left, and an algorithm that determines if it is detected 

in 90% or more of the total combinations is applied as VIV. Fig. 5.3 shows the 

concept of the multi-channel voting system applied in this study, and Fig. 5.4 

shows the detection result with the reduced model test 3-axis data as input. The 

false positive disappears, and the lock-in phenomenon is properly detected. 
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Table 5.1 Examples of vertical signals that can be detected as false positives 

Vertical signal Cause Frequency range 
Detection 

range 
Signal characteristics 

Lock-in 

Resonance between structural 

natural frequency and vortex 

shedding frequency 

Mid, High frequency global 

Occurs in a wider rpm range compared to 

general structural resonance, prediction is 

difficult, and hysteresis characteristics 

Machinery 

vibration 

Auxiliary machinery local 

vibration(Generator, motor, 

turbine, pump, etc.) 
60Hz, 30Hz, 15Hz… local 

Narrow band frequency, predictable 

Occurs in all rpm range 

Structural 

resonance 

Local structure resonance by low 

frequency propeller random 

excitation 

Low frequency local 
Broad band frequency, difficult to predict 

Can occur at multiple operating rpm 

Low freq. 

excitation 

Forced vibration by propeller and 

shaft low frequency excitation 
Low frequency global 

Frequency change with rpm, predictable, 

Easily distinguishable because it is not perfectly 

vertical 
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Fig. 5.1 Examples of vertical signals that can be detected as false positives 
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(a) Early Fusion Method 

 

(b) Late Fusion 

Fig. 5.2 Two kinds of muti-channel approach 
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Fig. 5.3 Concept of multi-channel based lock-in detection system 
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Fig. 5.4 Multi-channel based lock-in detection system for scaled model data 
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CHAPTER 6.  

VORTEX-INDUCED VIBRATION 

IDENTIFICATION IN THE PROPELLER OF A 

CRUDE OIL CARRIER  

 

The vibration data from a crude oil carrier in which VIV occurred during the 

sea trial phase were applied to the VIV detector. Fig. 6.1 shows a typical Very 

Large Crude Oil Carrier. In the case of the crude oil carrier in the picture, it is sized 

to carry about 300k dead weight ton of crude oil. Fig. 6.2 shows an example of 

vibration measured at the stern. As it is difficult to predict the location in a hull at 

which a propeller vibration component can be observed, measurements were taken 

at 6 points on the hull structure near the propeller.   

Fig. 6.3 shows the vibration values (waterfall charts) measured at 6 points on 

the stern of the ship. The rotational speeds of the propeller, secured through the sea 

trial test, range from 50 to 75 RPM at intervals of between 2 or 3 RPM not 1 RPM. 

In order to make the measured waterfall chart to input data format, linear 

interpolation was applied in the range of 50 to 75 RPM. Also, in order to use the 

detector with the input data in the range of 21 to 80 RPM, the speed values lower 

than 50 RPM and higher than 75 RPM were padded with the smallest value among 

the data in the range of 50 to 75 RPM.  
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Fig. 6.4 through Fig. 6.6 show the result of applying the VIV detection 

algorithm with reference Pc = 0.9. Though the results vary by measurement 

location, it is evident that lock-in frequencies and RPMs are detected. In particular, 

the Ch. 2 data measured at the stern tube are detected despite the difficulty with 

visual observation of the lock-in phenomenon. This data confirms the performance 

of the detector. Furthermore, some bounding boxes are detected in some sections 

even though they do not represent lock-in phenomena. These boxes can be 

distinguished from the ones associated with lock-in phenomena because the former 

lack consistency by channel. Thus, if a VIV detector is developed in a structure 

where waterfall charts of different channels are input at the same time, the 

performance is expected to improve as mentioned in section 4.2.    

Figure 6.7 shows the enhancement of detection performance results using 

multichannel approach proposed in the previous chapter to remove the false 

positive signal caused by local vibration. 
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Fig. 6.1 Example of very large crude oil carrier 
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Fig. 6.2 Example vibration measurement at the stern wall 
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Fig. 6.3 Post-processing vibration measurement results
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Fig. 6.4 VIV detection algorithm results (Ch. 1) 
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Fig. 6.5 VIV detection algorithm results (Ch. 2) 
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Fig. 6.6 VIV detection algorithm results (Ch. 5) 

 

 



 

 

 

 

１１３ 

 

 

Fig. 6.7 Enhancement of detection performance using multichannel approach 
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CHAPTER 6. 

CONCLUSION 

 

To inspect the VIV phenomenon of ship propellers, it is necessary to 

review the waterfall chart carefully. The waterfall chart is obtained by 

classical signal processing on the measured vibration signal. This study’s 

deep learning-based VIV detection algorithm was developed to play the 

expert’s role of reading the waterfall chart to detect the lock-in phenomenon. 

Noting that the waterfall chart is regarded as a kind of image, we applied the 

deep learning technology that is effective for image recognition for the 

present underwater structure diagnosis. This research showed the feasibility 

of using deep-learning-based detection to detect the VIV phenomenon. In 

addition, it was shown that VIV-related data, which are difficult to measure 

directly from rotating propellers, can be acquired indirectly using the 

vibrations of the in-board stationary structure. 

We developed a deep learning algorithm to detect the VIV, a potential 

cause of the vibration fatigue or singing of the propellers of large merchant 

ships. Specifically, a CNN (convolutional neural network) was used to 

automate the VIV detection. A method based on modal superposition is 

proposed to generate the large amount of data required for training the 
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network needed in a deep learning algorithm. We used 100,000 data sets and 

1,000 data sets for the training and validation of the network, respectively. A 

subsequent test using 1,000 data sets shows that the diagnostic success rate 

of the proposed algorithm reaches 82%. The developed algorithm was 

successfully tested using vibration data acquired in a small-scale system 

built in a laboratory and applied to a commercial ship during her sea trial 

operation with satisfactory accuracy.  Some findings from the present study 

and the limitations of the proposed VIV detection algorithm using the 

proposed method in the actual operational environment of commercial ships 

may be summarized as follows.  

It is essential to identify VIV within the sea trial period as much as 

possible because it is difficult and costly to resolve the VIV-related issue 

when it is discovered after the trial operation. Nevertheless, VIV monitoring 

is necessary even after the sea trial. Depending on the loading conditions of 

the ship, the draft of the ship changes, and the occurrence of vortex shedding 

also changes. Because sea trials are conducted in ballast conditions, and full 

load conditions are included in actual sailing conditions, vortex shedding 

may vary. Therefore, the monitoring system developed in this study is 

expected to be usefully used for monitoring after the vessel’s delivery. 

The proposed VIV detection algorithm is not perfect or fully 
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developed because it was trained using only artificial data. In addition, its 

inference accuracy obtained with the test data was 82%, but it may be lower 

when applied to real data acquired from actual ships. Therefore, the VIV 

detection algorithm of this research needs to be further tuned or refined and 

improved in the future. However, it appears that it can still be used for 

alarming purposes. It was also noted that the false-negative and false-

positive ratios depend on the reference Pc value; the false-positive rate 

increases as the reference Pc value becomes lower, while the false-negative 

rate increases as the reference Pc value is higher. Lowering the false-

negative rate remains an issue to be further overcome for the practical 

application of the developed algorithm. For example, further studies are 

needed to determine the Pc threshold to lower the false-negative rate even if 

the false-positive rate is slightly higher and propose a more elaborate 

objective function for the training of the VIV detection algorithm. To further 

increase diagnostic accuracy, it is necessary to accumulate real data labeled 

by experts and use them to train the VIV detection algorithm. 

Although several different network models may be used for 

monitoring abnormalities as considered in this study, we employed a 

relatively simple CNN network model. Therefore, considerations of different 

network models and even developments of new network models will be 
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worth further investigation. However, we used a simple CNN network model 

because it has been successful in similar problems to those considered here 

and its characteristics are also quite well-known. In that this study 

investigates the feasibility of using a deep-learning-based method for VIV 

detection, which has not yet been explored, the use of a simple network 

model may be justified.  It is also remarked that the proposed efforts to 

establish a method to synthesize data for network buildup using a relatively 

simple yet accurate engineering approach can be another step towards the 

development of a practically-applicable VIV detection method.  

The contribution of this paper may be summarized as follows. 

1. A real-time VIV monitoring method using indirect vibration signals 

that are relatively easy to measure experimentally is proposed.  

2. Although the employed network model is relatively simple, we 

proposed a systematic VIV detection method based on a deep-

learning-based data approach.  

3. The validity of the proposed model was experimentally confirmed. 

Thus, the present study opens a new possibility of using big-data 

approaches for VIV detection in real ships during their sea tests or in 

their operations.  

 



 

 

 

 

１１８ 

REFERENCES 

[1]    Hyundai Heavy Industries, Hyundai Heavy Industries produces 5,000th 

propeller. 

http://www.hyundaiengine.com/about/about12.asp?table=Press&doi

ng=view&idx=11515, 2017 (accessed 13 May 2020). 

 

[2]   J. Carlton, Marine propellers and propulsion, second ed., Butterworth-

einemann, Oxford, 2007.  
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ABSTRACT (KOREAN) 

딥러닝 기반 와류기인 선박 프로펠러 진동 

탐지 기술 

임 도 형  

서울대학교 대학원  

기계항공공학부 

국제해사기구(IMO)의 탄소 배출량 저감 규제 등의 규제에 따라 

조선 해운업계는 선박의 초대형화와 에너지 저감장치(ESD) 등 

친환경 장치 적용으로 대응하고 있다. 이에 따라 선박의 프로펠러, 

러더, ESD 등 수중 구조물의 설계 변화가 요구되고 있다. 새로운 

설계 요구조건에 맞춰 주요 제원이 결정되며 전산유체해석 및 

수조시험을 통한 성능설계, 진동해석 및 구조강도해석을 통한 

구조설계가 진행된다. 수중구조물 제작 이후에는 품질검사를 거쳐 

시운전 중에 성능과 진동평가를 마치면 선박이 인도된다. 친환경 

장치가 설치된 대형 상선의 선미 구조물은 형상이 복잡하여 유동 및 

진동특성의 설계 민감도가 크고 생산 공차에 따른 피로수명의 산포가 

크기 때문에 초기 설계단계에서 모든 품질문제를 걸러 내기 어려운 

문제가 있다. 특히 유동장에 있는 수중구조물의 경우 특정 유속에서 

와류 이탈이 발생하게 되며 와류 이탈 주파수가 구조물의 

고유진동수가 일치하는 경우 공진에 인한 와류기인진동(Vortex 

Induced Vibration; VIV) 문제가 종종 발생되어 수중구조물 

피로손상의 원인이 되고 있다. VIV 문제가 있는 상태로 선박이 
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인도될 경우 설계수명을 만족하지 못하고 단기간에 파손이 되는 

경우가 많아 조선소에 큰 피해를 주기 때문에 선박 인도 직전인 선박 

시운전 단계에서 진동이나 응력 계측을 통해 VIV 발생 여부의 확인이 

필요하다. 구조물에 작용하는 하중을 계측하는 전통적인 방법은 

구조물에 스트레인게이지를 설치하고 수중 텔레미터리를 설치하여 

구조물의 스트레인을 직접 계측하는 방법이지만 계측을 위해 많은 

비용이 소요되고 계측 실패의 가능성이 매우 높다는 문제가 있다. 본 

논문에서는 대형 상선 프로펠러의 대표적인 손상 원인인 Vortex 

Induced Vibration을 시운전 단계에서 선체 진동 계측을 통해 

간접적으로 검출할 수 있는 방법을 제안하였다. 특정 VIV가 문제가 

되는 경우는 유속에서 와류 이탈 주파수가 구조물의 고유진동수가 

일치하는 경우 공진에 의해 와류이탈 강도가 증가하고 유속이 

증가하더라도 와류이탈 주파수가 유지되는 Lock-in 현상이 

발생하는 경우로 간접 계측을 통해 이를 명시적으로 확인할 수 있다. 

이를 위해서는 진동 전문가의 반복적인 진동 계측 및 평가 

프로세스가 필요한데 본 연구에서는 전문가를 대신한 딥러닝 

알고리즘을 이용한 VIV 탐지 시스템을 제안하였다. 진동 분석과 VIV 

검출 자동화를 위해 이미지 기반의 Object detection을 위해 널리 

이용되고 있는 CNN(Convolution Neural Network) 알고리즘을 

이용하였다. 본 연구에서는 Object detection을 수행하되 

Classification은 수행하지 않아도 되는 특징이 있어 이에 특화된 

CNN 모델 개발을 위해 Hyper parameter를 조정하여 Hidden 

Layer를 증가하는 방법으로 30개의 CNN모델을 검토하였고 

최종적으로 과적합이 없이 탐지 성능이 높은 5개의 Hidden layer 
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가진 모델을 제안하였다. CNN 학습을 위해 필요한 대규모의 데이터 

생성을 위해 진동 모드 중첩법 기반의 간이 선박 모델을 제안하였고 

프로펠러 기진력을 모사하였다. 간이 모델을 이용하여 실제 진동계측 

결과와 유사한 진동 특성을 보이는 10,000개의 데이터를 생성하여 

학습에 이용하였고 1,000개의 데이터를 이용하여 테스트한 결과 

82%이상의 탐지 성공률을 보였다. 제안된 탐지시스템의 검증을 위해 

축소모델 시험을 수행하였다. 프로펠러에서 Vortex shedding 

주파수와 블레이드의 수중 고유진동수가 일치하도록 설계된 1/10 

스케일의 선박 추진 시스템 축소 모델을 이용하여 프로펠러에서 

Vortex Induced Vibration을 발생시키고 프로펠러 주변 구조물에서 

가속도계를 이용하여 Lock-in 현상에 의한 진동을 측정하였다. 이 

신호를 이용하여 개발된 시스템으로 VIV의 검출이 가능함을 보였다. 

마지막으로 VIV문제가 발생했던 원유운반선의 시운전 중 기관실 

내에서 계측된 선체 구조 진동값을 이용하여 개발된 탐지 시스템의 

타당성을 검증하고 실제 선박에서의 적용 가능성도 확인하였다. 

개발된 시스템은 VIV 검출은 위한 자동화 시스템으로 활용이 가능할 

것으로 보이며 향후 실선 데이터가 확보될 경우 유용성이 증가할 

것으로 기대된다. 

   

주요어: 선박 프로펠러 진동, 와류 기인 진동, 진동 기반 모니터링, 

딥러닝(DL), 합성곱 신경망(CNN)  
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