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Abstract. The cognitive complexity of a software application determines the 
amount of human effort required to comprehend its internal logic, which results in 
a subjective measurement. The quantification process of the cognitive complexity 
as a metric is problematic since the factors representing the computation do not 
represent the exact human cognition. Therefore, the determination of cognitive 
complexity requires expansion beyond its quantification. The human 
comprehension effort related with a software application is associated with each 
phase of its development process. Correct requirements identification and accurate 
logical diagram generation prior to code implementation can lead to proper logical 
identification of software applications. Moreover, human comprehension is 
essential for software maintenance. Defect identification, correction and handling 
of code quality issues cannot be maintained without good comprehension. 
Therefore, cognitive complexity can be effectively applied to demonstrate human 
understandability inside the respective phases of requirements analysis, design, 
defect tracking, and code quality optimization. This study involved automation of 
the above-mentioned phases to reduce the manual human cognitive load and 
reduce cognitive complexity. It was found that the proposed system could enhance 
the average accuracy of requirements analysis and class diagram generation by 
14.44% and 9.89% average accuracy incrementation through defect tracking and 
code quality issues compared to manual procedures. 

Keywords: cognitive complexity; cognitive load; comprehension; software development; 
subjectivity. 

1 Introduction 

Numerous studies have been carried out to express software complexity. 
Software complexity was found to be declared through the human comprehension 
level [1-3]. Along with that, research works have been conducted to examine the 
factors that influence the comprehension level of computer programs to express 
software complexity. Consequently, the concept of cognitive complexity was 
introduced. The cognitive complexity of a software application defines the 
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amount of human effort required to comprehend the internal logic of a given 
software application [1-5]. Since the expression of software complexity 
elaborates the level of difficulty associated with understandability, it can be 
claimed to have a direct impact on the human comprehension effort and the 
cognitive load [6]. Therefore, cognitive complexity can be considered as a direct 
parameter for evaluating overall software application complexity, as human 
comprehension and cognitive load are the major determinants behind cognitive 
complexity.  

Human comprehension efforts depend on the individual who performs a task in a 
given software application. The capability of each individual to handle software 
applications is different, so that cognitive complexity should be a subjective 
dimension. However, previous research works were conducted to quantify the 
cognitive complexity as a form of metric to increase its usability and to make the 
complexity comparison process easier. Hence, a cognitive complexity metric has 
been introduced according to quantifiable source code aspects through a set of 
equations. The architectural aspect of the source code, namely the number of 
operators, operands, input output parameters, attributes, basic control structures 
(BCS), method callings [1,2,7-9], spatial capacity [10,11] and consideration of 
quantifiable object-oriented concepts [12-15] can be observed in these 
computations. Further, the subjectivity of human comprehension has been 
expressed through the cognitive weightage concept, which is a numerical value 
to indicate the comprehension effort related to a corresponding data category 
[7,12,16]. Each method is based on different quantifiable aspects so that cognitive 
complexity is denoted by different sets of equations resulting in different 
quantifications, which are hard to generalize into a single measurement. 
Nevertheless, the non-standardized nature of cognitive weightages emphasizes 
the problem of their validity as they do not represent the entire user population. 
In most contexts, they are merely assumptions or limited to a specific user group 
that does not represent the understandability of actual users [2,10,17]. Moreover, 
the limitation of cognitive complexity calculation only based on source code 
aspects can be stated as another major drawback, as cognitive complexity should 
be evaluated through personal and software-based aspects as well. In other words, 
the consideration of personal and software factors cannot be observed in these 
computations, which makes cognitive complexity measurement unstable.  

The performance of these computations is achieved by evaluating the guidelines 
mentioned in standard complexity metrics frameworks by ensuring their usage in 
real applications. Accordingly, some computations have been evaluated through 
Weyuker properties [18,19] and the guidelines in Briands’ framework [20], but 
the problems related with subjectivity, non-standarization and limited factors 
have remained unchanged. Surprisingly, none of the proposed metrics have been 
tested against their accuracy levels as a quantitative performance measurement, 
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which is the major rationale behind the cognitive complexity being proposed for 
standardization in the near future.         

As a solution, we strongly suggest the significance of managing cognitive 
complexity not only with a system’s source code but also with the whole software 
development process. Accordingly, cognitive complexity is not confined to a set 
of quantifiable measurements and is represented through the computational 
background to demonstrate its meta factors. The computational process is 
implemented through pre and post software development processes. We verified 
that the comprehension effort associated with a given source code can be reduced 
by referring to its requirements analysis and design stages. Thereby, for the pre-
software development process, automation of the requirements analysis and the 
design stages was implemented. Furthermore, we analyzed the possibility of 
applying the cognitive complexity assessment method to the maintenance 
process, since user understandability is essential for system maintenance [21]. 
Consequently, automation of defect tracing and code quality optimization inside 
the maintenance process was implemented as a post-software development 
process to assist the human cognitive load. Thus, the proposed system is capable 
of retrieving the requirements using POS tagging, generating class diagrams 
using the PlantUML library, tracing coding defects that are not identified through 
FindBugs tracking and optimizing Java code smells. Moreover, the system was 
proven to reduce the human comprehension effort by mitigating the cognitive 
load through incremented accuracies, thereby reducing the software application’s 
cognitive complexity and increasing its usability. 

The remaining sections of this paper are structured as follows. Section 2 outlines 
the methodology used for the proposed system and the functionalities. The 
analysis of the system components is elaborated in Section 3. In Section 4, the 
results and the discussion are presented. Finally, the conclusion and future works 
are mentioned in Section 5.        

2 Methodology 

The proposed system mainly aims to demonstrate the applicability of cognitive 
complexity assessment through pre and post software development processes. 
The reduction of the human cognition effort through system components is 
another goal of the proposed functionalities. Thereby, some drawbacks of the 
current cognitive complexity metrics, namely the lack of consideration of 
qualitative factors, the incapability of illustrating the subjectivity and the usage 
of non-standardized measurements, are expected to be solved. The overall 
architecture of the system is shown in Figure 1. 
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Figure 1 Proposed system architecture. 

2.1 System Requirements Automation 

A proper requirements analysis of any software implementation would lead to the 
processing of other phases inside the Software Development Life Cycle (SDLC) 
more easily than a software application with complex and non-analyzed 
requirements [22]. Additionally, non-analyzed and error-prone requirements 
would lead to complex processing, which could create a complex source code. 
The analysis process of the requirements is basically a manual process, which 
consumes a substantial amount of human effort. It is therefore essential to 
examine the significance of analyzing these requirements computationally. 

Generally, the requirements are preliminarily documented under the project 
proposal. The non-existence of a standard format for the project proposal 
document leads to the problem of defining a proper mechanism of analyzing the 
project proposal documents computationally and to finalize the requirements 
specified by the customer. Therefore, the proposal document was converted into 
a common outline consisting of five sections. The Introduction section outlines a 
brief explanation of the overall system. The Problem Definition section describes 
the problem which is expected to be addressed by the system. The Solution 
section defines the expected characteristics of the software. The expected 
requirements of the software are listed under the Functionalities section.  Finally, 
the details of the software development process and the team are listed under the 
Team Profile section. Thus, the system requirements can be gathered by referring 
to the Functionalities section. However, retrieving the same requirements 
specified in the Functionalities section would not help the visualization 
component, as class diagram generation requires the possible class names to be 
inputted. Therefore, it is aimed at extracting the class names mentioned in the 
Functionalities section as requirements. Class names are basically identified by 
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extracting the nouns in the Functionality section due to the high probability of 
using nouns as the names for the classes [23]. High frequency nouns listed in the 
requirements were targeted to be accessed as possible class names, which can be 
used in the diagram generation process. The nouns in the requirements are filtered 
through Part Of Speech tagging (POS) [24]. Each word mentioned inside the 
Functionality section is assigned with related tags based on POS. The identified 
nouns are based on highest frequency, which is passed through a Python script 
and stored in a text file. The logic of identifying the class names of a given 
specification with respect to the given frequency level by classIdentification.py 
is given in Algorithm 1. 

2.2 Class Diagram Generation 

The analyzed requirements should be converted to different visual 
representations that demonstrate the internal logic of the software to be 
implemented. This process is usually a manual process, as the relevant source 
codes will be implemented by referring to those representations [22]. The 
conversion of the requirements to respective logical diagrams as a manual process 
can include failures and error-prone activities. This could be one of the reasons 
why the generated source codes could turn out more complex and error-prone 
than expected. Meanwhile, the existing automation tools for logical diagram 
generation cannot be used for this purpose, as the generated source code has to 

Algorithm 1: Algorithm used in classIdentification.py to generate class names 

Input: The text file contains the functionality specification  
Output: Class names (mostly recurrent nouns with a  given threshold value) 
1: Let file objects are f and file 
2: f = open(“//include the path of functionality.txt”) 
3: Let lines represents the content read by functionality.txt 
4: lines =f.read() 
5: Let tokenized represent each word inside the lines 
6: tokenized = nltk.word_tokenize(lines) 
7: foreach word ϵ lines && if is_noun(pos == ‘NN’) 
8:       Let counter be the frequency of each noun 
9:       counter = collections.Counter(nouns) 
10: end foreach 
11:    Let x be the threshold counter for most frequently occurring nouns 
12:    counter.most_common(x) //retrieve the most common x nouns  
13: Let listToStr be the combination of all class names 
14: foreach elm ϵ counter.most_common(x) 
15:      listToStr =' '.join(str(elm)) //convert elm into a string and join each class name with a 
white space 
16: end foreach 
17: file=open(“//include the path of the file to be written”, “w”) 
18: file.write(listToStr) //write the content to the file object 
19: file.close() //close the file object 
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be inputted for diagram generation [25]. By considering this situation, the 
proposed system was outfitted with a component to generate the class diagrams 
prior to source code generation.  

Table 1 Types of relationships based on cosine similarities. 

Cosine similarity range Type of the relationship Notation 
80<= similarity <100 

Similarity = 100 implies the 
same word is compared 

Inheritance “<|--" 

70<= similarity <80 Composition “*--” 
60<= similarity <70 Aggregation “o--” 
25<= similarity <60 Association “--” 

Similarity < 25 No relation Not applicable 

The class names recognized by the requirements analyzer is the major input for 
this task. The relationships and the similarity levels of each class name have to 
be studied, as the class diagram generation requires the logical association with 
each class. Global Vectors for Word Representation (GloVe) [26] was used to 
compute the relationships between each class name. The relationships among 
each of two class names are then evaluated through cosine similarity [27]. The 
Torchtexti library supported by the PyTorch machine learning framework has 
been used to achieve GloVe vector representations and cosine similarity [27]. 
Then, the necessity of deriving the types of the relationships was analyzed. 
Consequently, we defined five types of relationship categories based on the range 
of cosine similarities. Accordingly, the component is capable of generating a 
class diagram by referring to the types of relationships. The class diagram 
generation was performed through the PlantUML library [25]. Each relationship 
type is uniquely represented using different notations. Table 1 specifies the types 
of relationships and the notations used to denote different types of relationships. 

The class names with high similarity levels imply more common behavior, which 
can be considered a parent-child relationship [28]. Hence, the relationships with 
the highest cosine similarity values are considered under the inheritance category. 
The composite relationship indicates a parent entity, which owns the child entity 
with a stronger association. Nevertheless, its behavior is not stronger than the 
inheritance [29]. The aggregation indicates a parent, which maintains a relation 
with its child with a weaker association level, so that the similarity value scale 
has to be smaller than the similarity range used for composition [30]. An 
association relation maintains a weaker connectivity among the classes, so the 
similarity range has to be smaller than the inheritance, composition and 
aggregation[31].  Class names smaller than 25 similarity level were considered 
unnecessary relationships, which do not imply a strong connection among them. 
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Then, PlantUML statements were written with class names, their relationship 
types along with the corresponding notations given as input. Then, these 
statements are compiled to generate the class diagram. The coded diagrams are 
then converted into a Portable Network Graphic (PNG) image using GraphVizii 
and stored inside the project directory for reference. The internal logic of 
generating the class diagram by generateClassDiagram() is shown in Algorithm 
2. The proposed system was evaluated using different types of system 
specifications and Figure 2 demonstrates the class diagrams generated for some 
system specifications. 

Algorithm 2: Function generateClassDiagram() to generate the class diagram 
Input: The list of class names obtained through requirements automation 
Output: Class diagram 
1: Let Relationship be a separate class created to handle pairs of class names with their 
similarity values  
2: Let reList is the list created from Relationship class  
3: call function assignRelationshipType(reList) //refer Table 1 
4: Let classA and classB represent the class names in r  
5: Let plantUmlSource be the object created from StringBuilder class  
6: plantUmlSource.append("@startuml\n") //start writing the plantUML syntax 
7: foreach r ϵ reList  
8:   append classB, relevant notation, classA and ”/n” to plantUmlSource // refer Table 1 
9: end foreach 
10: convert the diagram structure to a string to generate the diagram 
11: store the diagram inside the path specified as a PNG file    

 

Figure 2 Generated class diagrams for (a) a hospital management system, (b) a 
hotel management system, (c) a human resources system, (d) an online shopping 
system. 
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2.3 Defect Tracking Automation 

A defect or a bug is an unexpected event that occurs in a source code and results  
in a non-functioning state of the system [32]. Therefore, the occurrence of a defect 
should be resolved to resume the functioning of the source code to obtain the 
expected outcomes. The usage of compilers and bugs trackers assists in 
identifying possible coding defects, so that the user can identify and correct them 
to produce a smooth execution of the given source code. However, available bug 
trackers do not have the ability to recognize all types of coding defects.  

A non-recognized bug would create an unexpected scenario of source code 
execution, resulting in the user having to manually identify the cause of the 
unexpected outcome and taking necessary actions to rectify it. This process 
consumes a considerable amount of comprehension effort. Thereby, a mechanism 
must be implemented to identify possible defects that existing bug trackers could 
not identify to reduce the cognitive complexity associated with the source code. 
The proposed system is implemented with Apache NetBeans Integrated 
Development Environment (IDE)iii 12.5 with Java Maven. The FindBugs bugs 
tracker is applicable for NetBeans IDE, so that it was installed as a plugin, which 
is supported to track coding defects [33]. The proposed defect tracking 
component was applied to detect bugs that cannot be handled by the FindBugs 
tracker. The types of bugs exposed by the proposed component are shown in 
Table 2.   

Table 2 Types of bugs (code defects) detected by the system. 

Identified bug Bug description 
Division by zero The denominator of any mathematical division is zero, which 

derives infinity as the answer 
Multiple return statements Multiple return statements in a single method 

Array storing error Incompatible values are stored inside an array (the data types 
of the array and the values do not match) 

Unsupported operations Add new values to a list, which is already assigned with values 
Illegal state error .next(), .set() and .remove() methods are called in an incorrect 

order as follows: 
next(), remove(), set() / set(), next(), remove() / set(), remove(), 
next() / remove(), next(), set() / remove(), set(), next() / set(), 

next() / remove(), next() / remove(), set() / set(), remove() 
Number formatting errors Incompatible values are passed to the parse methods 

Illegal arguments A null parameter is passed as a parameter in any method 
Illegal thread states Attempt to start or call sleep method to the same thread 

multiple times 
Illegal monitor state Call thread.wait() method many times for the same method 
Unsupported cloning .clone() method is used without implementing a cloneable 

interface 
Class casting error Create an instance of the parent class 

Illegal thread run method thread.run() method is called to the same thread multiple times 
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The Java source code is inputted for the component and stored inside an array list 
and checks the appearance of any defects listed in Table 2 by assessing the source 
code content. Detection of a bug is indicated by its line number to be able to locate 
the bug without difficulty.   

Moreover, the recommendation procedure consists of displaying the identified 
bug category and suggestions for correcting the bug. Because of this, the user has 
less effort in finding, locating and comprehending a particular defect. Therefore, 
the suggested component automates the precise procedure for manual bug 
detection and correction, which reduces the cognitive complexity of the inputted 
source code. 

2.4 Automation of Code Quality Optimization 

Software applications should be maintained to ensure their quality, as they are 
not handled by the same set of users in its duration of usage [34]. Quality software 
can be handled easily by different users with less human effort, resulting in low 
cognitive complexity. The proposed system was implemented to recognize code 
quality issues aligned with Java code smells [35].  

The direct verification of code quality issues without having to upload the source 
code into existing external quality analyzers such as SonarQube and SonarLint 
[36] is the main advantage of the proposed component.  

The feature of displaying a specific code smell, its location, recommendations to 
fix the issues were implemented within the quality optimization functionality. 
Java source code is considered as the input and Java reserved key words, 
identifiers, operators, numbers, classes, methods, variables and escape characters 
inside the inputted source code are identified as code elements. Then, their 
appearance and the structure are verified against the standard code smells. The 
types of quality issues handled by the component is listed in Table 3. 

Once a code smell is recognized, the type of code smell and the recommendation 
of the procedure to correct it is displayed. A separate log file with the class name 
is created inside the current project directory so that the user can view the changes 
made under quality optimization.  

More significantly, the feature of auto fixing code smells for unused import 
detection and redundant modifiers in interfaces was also introduced in this 
functionality to minimize the manual effort associated with correcting quality 
issues by referring to recommendations. 
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Table 3 Types of quality issues (code smells) detected by the system. 

3 Analysis of System Components 

We have identified that the complexity related to understanding a source code 
logic can be reduced by referring to its requirements analysis and design phases. 
It is evident that the time taken to perform a task inside a given source code is 
reflected by its comprehension effort. Accordingly, we examined the time taken 
to perform a given set of tasks by referring only to the original source code and 
by referring to its requirements analysis and design phases without its source code 
through a set of users. The selection of users was conducted, followed by 
execution of the experiment performed in [37]. A computer-based questionnaire 
was conducted among a group of computing-related final-year BSc university 
students to examine their coding expertise. Students who scored more than 60% 
were selected as the target user group. Those students were classified into another 
four groups based on score levels of 60%-70%, 70%-80%, 80%-90% and 90%-
100% respectively. Source codes, modeled class diagrams, and specified user 
requirements of ten different software applications were considered as input for 
the analysis. The duration for task completion was obtained through a Moodle 
environment.  

Figure 3 represents the analytical outcomes obtained. The average duration spent 
for the reverse process decreased from 110.12 minutes to 86.28 minutes, equal to 
13.83% reduction. This implies that the comprehension effort was reduced 
through backward navigation from the source code creation process. Along with 

Code smell Description 
Unused import 

detection 
Import statements that have not been used inside the source code. 

Can automatically be fixed by the component. 
Redundant modifier 
usage in interface 

detection 
An interface access modifier is used again for declarations inside the 

interface. Can automatically be fixed by the component. 

Invalid usage of 
generics in constructor 

detection 

Generics are declared in constructors when the declaration also is 
expressed as generic. To address this, the diamond operator can be 

used. Can automatically be fixed by the component. 

Ternary operator 
detection Usage of ternary operators can be replaced with if-else conditions 

Nested ternary 
operator detection Usage of nested ternary operators has to be minimized 

Invalid modifier 
declaration order 

detection 
 

Modifier declaration has to be performed in the following order: 
public, protected, private, abstract, static, final, transient, volatile, 

synchronized, native, strictfp 
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this, automation of requirements analysis and class diagram visualization was 
included to reduce the manual comprehension effort, thus, lower cognitive 
complexity was expected. 

 

Figure 3 Average duration variation for source code and reverse processing. 

Since cognitive complexity as a metric is not standardized, it is impossible to 
denote the comprehension effort utilized by system components as a metric and 
to compare it with manual processing. The duration reduction of the system 
components cannot be granted as a direct parameter of cognitive complexity 
reduction, as any automation reduces the duration compared to manual 
processing.  Hence, along with the duration, the accuracy levels have to be 
computed and verified against manual processing. Consequently, a set of 
equations was formed to compute the accuracy levels in each component. As 
such, the requirements analysis’ accuracy (accuracyRA) is denoted by Eq. (1). The 
number of specifications is denoted by k. Let Ni be the correct number of class 
names and ni be the identified number of class names in the ith specification. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦( ) = ∑ ( ) ∗ 100                                        (1) 

Similarly, the accuracy of the visualization of the class diagram (accuracyVC) was 
computed as follows:  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦( ) = ∑ ( ) ∗ 100                                    (2)                                   

Note that the correct number of class name pairs was identified through niC2. The 
correct number of relationship types identified through each pair of classes in the 
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ith specification is denoted by mi.  The Eq. (2) can be further simplified and used 
as shown in Eq. (3): 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣𝑐) = ∑ (
∗( )!∗ !

!
) ∗ 100                           (3)                      

The efficiency of the defect tracing component was also retrieved by maintaining 
the accuracy level. As such, the accuracy of defect tracing (accuracyDT) was 
calculated with Equation (4). The number of software systems tested is denoted 
by k. Let DTi be the actual coding defects inside the ith source code and dti be the 
number of defects that have been solved correctly. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦( ) = ∑ ( ) ∗ 100                                                (4) 

Similarly, the accuracy of code quality optimization (accuracyCQ) was computed 
with Equation (5), where CQi is the actual number of code smells inside the ith 
source code and cqi is the number of correctly solved code smells. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦( ) = ∑ ( ) ∗ 100                                                (5) 

In order to obtain the accuracies of both manual and automated processing, thirty 
different software systems were considered. The written specifications and 
implemented source codes for each system were inputted for the accuracy 
computations of the pre and post software development processes, respectively. 
The same four user groups were used as target user group to stabilize the 
comprehension effort. Firstly, thirty specifications were given to each user group, 
requesting them to analyze the requirements as class names and model the class 
diagrams manually. The same procedure was followed through the proposed 
system by inputting the system specifications and calculate the accuracies using 
Eqs. (1), (2) and (3). Thus, the procedure of comparing the accuracies generated 
for the pre-software development process was accomplished. Then, the source 
codes generated for the thirty systems were given to the test subjects, requesting 
them to manually analyze and fix the coding defects and quality smells. 
Simultaneously, the same process was done automatically through the proposed 
system, obtaining the output codes to analyze the accuracies with Eqs. (4) and 
(5), which can be used to represent the performance of the post-software 
development process.   

4 Results and Discussion 

4.1 Pre-Software Development Process 

The accuracy levels obtained for requirements analysis by both manual 
processing and the proposed system can be seen in Figure 4. It is noteworthy that 
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the average accuracy levels of the four different user groups for each software 
specification were computed and shown.   

 

Figure 4 Average accuracy for the requirements analysis phase. 

It can be clearly observed that the average accuracy levels of the requirements 
analysis phase were comparatively higher than with manual processing. This 
indicates the reduction of the cognitive load that each individual should have 
through the analysis process, which in turns reduces the comprehension effort. 
On average, the manual processing accuracy was 66.29%, while 75.29% accuracy 
was achieved by the system component. The accuracy increment of the system 
component was computed as 13.58% with respect to manual processing. Thus, 
we can state that the automated requirements analysis helped to reduce the 
cognitive complexity while achieving accurate outcomes.    

The average accuracy levels obtained through class diagram visualization can be 
seen in Figure 5. Manual processing for the class diagram visualization attained 
66.39% accuracy, while 76.55% accuracy was obtained by the system 
component. Hence, an increase of 15.3% accuracy was achieved by the proposed 
system compared to manual processing. Along with both components, it can be 
stated that the average accuracy increase of the pre-software development phases 
provided by the software was 14.44%. Based on these accuracy increases, it can 
be stated that the usage of the proposed system components can optimize the 
requirements analysis and class diagram visualization in pre-software 
development. This can be considered as an essential achievement in generating 
accurate source code as accurate source code is an outcome of properly executed 
requirements analysis and design phases. Moreover, an accurate source code 
should decrease the cognitive complexity affected by it, as the amount of human 
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comprehension effort to understand its logic should be comparatively low with 
complex source codes. Hence, along with the automation procedure and accuracy 
increase, the amount of human comprehension effort and cognitive load involved 
can be stated as having decreased by using the proposed components to ensure 
lower cognitive complexity. 

 
Figure 5  Average accuracy for class diagram generation phase. 

4.2 Post-Software Development Process 

The analytical outcomes for the thirty source code implementations with average 
accuracies of the four different user groups for defect tracing and quality 
optimization are shown in Figures 6 and 7 respectively. 

 

Figure 6 Average accuracy of defect tracking. 
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Based on both figures, it can be clearly observed to have a higher accuracy 
through the automated procedures than manual processing. Figure 6 shows an 
average accuracy of 84.54% for manual defect tracing and an accuracy of 92.83% 
for automated defect tracing. Further, the average accuracy increase of automated 
defect racing over manual processing was 9.8%.  

In Figure 7, 87.52% and 96.25% accuracy increases can be observed for manual 
and automated code quality optimization, respectively. Therefore, the accuracy 
increase of code quality optimization can be stated as 9.97% over manual 
processing. Consequently, the average accuracy increase obtained by the system 
in the post-software development phases can be stated as 9.89%.  

An accurate outcome through automated functionalities can reduce the 
comprehension effort more compared to erroneous output since a considerable 
human effort has to be utilized for handling such defects. Hence, the verification 
of the system components to reduce the cognitive complexity in the post-software 
development can be emphasized. 

 

Figure 7 Average accuracy for code quality optimization. 

5 Conclusion and Future Works 

The main purpose of this research was to express the cognitive complexity of 
software through the phases in the software development process. Most related 
works on cognitive complexity were based on limited and  quantifiable source 
code aspects regardless of subjectivity. We identified the significance of 
cognitive complexity without confining it to a quantitative measurement. 
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Consequently, we have introduced a system which includes the automated 
features of the requirement analysis, class diagram designing, bug identification, 
and code quality optimization.  

To act as a guidance for the human comprehension effort and to reduce the 
cognitive complexity of software are the major objectives behind the proposed 
system. The system was tested for thirty different software specifications by four 
different user groups with a hundred users in each user group. The cognitive 
complexity reduction was verified using the percentages of accuracy for each 
component of the system. On average, it can be stated that the proposed system 
was capable of achieving 14.44% and 9.89% improved accuracy levels for pre-
software and post-software development processes, respectively. Therefore, we 
can state that the suggested system components can be used to increase human 
cognition by mitigating the cognitive complexity associated with a given software 
application. Nevertheless, the number of coding defects and quality smells 
identified by the proposed system is limited. Moreover, the system is capable of 
handling source code written only in Java. Therefore, in future work, we expect 
to expand the number of defects identified by the system, and to introduce a 
mechanism to automate refactoring techniques with a recommendation system to 
enhance code quality optimization. Finally, we plan to evaluate the system 
through current complexity metrics to accentuate the complexity reduction. 
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