

 J. ICT Res. Appl., Vol. 16, No. 3, 2022, 281-299 281

Received August 14th, 2022, Revised October 12th, 2022, Accepted for publication November 17th, 2022.
Copyright © 2022 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2022.16.3.6

Cognitive Complexity Applied to Software Development:
An Automated Procedure to Reduce the Comprehension

Effort

Dinuka R. Wijendra1,* & K. P. Hewagamage2

1Department of Information Technology, Sri Lanka Institute of Information
Technology, SLIIT Malabe Campus, New Kandy Rd, Malabe 10115, Sri Lanka

2Department of Information Engineering, University of Colombo School of Computing,
UCSC Building Complex, 35 Reid Avenue, Colombo 00700, Sri Lanka

*E-mail: dinuka.w@sliit.lk

Abstract. The cognitive complexity of a software application determines the
amount of human effort required to comprehend its internal logic, which results in
a subjective measurement. The quantification process of the cognitive complexity
as a metric is problematic since the factors representing the computation do not
represent the exact human cognition. Therefore, the determination of cognitive
complexity requires expansion beyond its quantification. The human
comprehension effort related with a software application is associated with each
phase of its development process. Correct requirements identification and accurate
logical diagram generation prior to code implementation can lead to proper logical
identification of software applications. Moreover, human comprehension is
essential for software maintenance. Defect identification, correction and handling
of code quality issues cannot be maintained without good comprehension.
Therefore, cognitive complexity can be effectively applied to demonstrate human
understandability inside the respective phases of requirements analysis, design,
defect tracking, and code quality optimization. This study involved automation of
the above-mentioned phases to reduce the manual human cognitive load and
reduce cognitive complexity. It was found that the proposed system could enhance
the average accuracy of requirements analysis and class diagram generation by
14.44% and 9.89% average accuracy incrementation through defect tracking and
code quality issues compared to manual procedures.

Keywords: cognitive complexity; cognitive load; comprehension; software development;
subjectivity.

1 Introduction

Numerous studies have been carried out to express software complexity.
Software complexity was found to be declared through the human comprehension
level [1-3]. Along with that, research works have been conducted to examine the
factors that influence the comprehension level of computer programs to express
software complexity. Consequently, the concept of cognitive complexity was
introduced. The cognitive complexity of a software application defines the

282 Dinuka Wijendra & K.P. Hewagamage

amount of human effort required to comprehend the internal logic of a given
software application [1-5]. Since the expression of software complexity
elaborates the level of difficulty associated with understandability, it can be
claimed to have a direct impact on the human comprehension effort and the
cognitive load [6]. Therefore, cognitive complexity can be considered as a direct
parameter for evaluating overall software application complexity, as human
comprehension and cognitive load are the major determinants behind cognitive
complexity.

Human comprehension efforts depend on the individual who performs a task in a
given software application. The capability of each individual to handle software
applications is different, so that cognitive complexity should be a subjective
dimension. However, previous research works were conducted to quantify the
cognitive complexity as a form of metric to increase its usability and to make the
complexity comparison process easier. Hence, a cognitive complexity metric has
been introduced according to quantifiable source code aspects through a set of
equations. The architectural aspect of the source code, namely the number of
operators, operands, input output parameters, attributes, basic control structures
(BCS), method callings [1,2,7-9], spatial capacity [10,11] and consideration of
quantifiable object-oriented concepts [12-15] can be observed in these
computations. Further, the subjectivity of human comprehension has been
expressed through the cognitive weightage concept, which is a numerical value
to indicate the comprehension effort related to a corresponding data category
[7,12,16]. Each method is based on different quantifiable aspects so that cognitive
complexity is denoted by different sets of equations resulting in different
quantifications, which are hard to generalize into a single measurement.
Nevertheless, the non-standardized nature of cognitive weightages emphasizes
the problem of their validity as they do not represent the entire user population.
In most contexts, they are merely assumptions or limited to a specific user group
that does not represent the understandability of actual users [2,10,17]. Moreover,
the limitation of cognitive complexity calculation only based on source code
aspects can be stated as another major drawback, as cognitive complexity should
be evaluated through personal and software-based aspects as well. In other words,
the consideration of personal and software factors cannot be observed in these
computations, which makes cognitive complexity measurement unstable.

The performance of these computations is achieved by evaluating the guidelines
mentioned in standard complexity metrics frameworks by ensuring their usage in
real applications. Accordingly, some computations have been evaluated through
Weyuker properties [18,19] and the guidelines in Briands’ framework [20], but
the problems related with subjectivity, non-standarization and limited factors
have remained unchanged. Surprisingly, none of the proposed metrics have been
tested against their accuracy levels as a quantitative performance measurement,

 Cognitive Complexity with Software Development 283

which is the major rationale behind the cognitive complexity being proposed for
standardization in the near future.

As a solution, we strongly suggest the significance of managing cognitive
complexity not only with a system’s source code but also with the whole software
development process. Accordingly, cognitive complexity is not confined to a set
of quantifiable measurements and is represented through the computational
background to demonstrate its meta factors. The computational process is
implemented through pre and post software development processes. We verified
that the comprehension effort associated with a given source code can be reduced
by referring to its requirements analysis and design stages. Thereby, for the pre-
software development process, automation of the requirements analysis and the
design stages was implemented. Furthermore, we analyzed the possibility of
applying the cognitive complexity assessment method to the maintenance
process, since user understandability is essential for system maintenance [21].
Consequently, automation of defect tracing and code quality optimization inside
the maintenance process was implemented as a post-software development
process to assist the human cognitive load. Thus, the proposed system is capable
of retrieving the requirements using POS tagging, generating class diagrams
using the PlantUML library, tracing coding defects that are not identified through
FindBugs tracking and optimizing Java code smells. Moreover, the system was
proven to reduce the human comprehension effort by mitigating the cognitive
load through incremented accuracies, thereby reducing the software application’s
cognitive complexity and increasing its usability.

The remaining sections of this paper are structured as follows. Section 2 outlines
the methodology used for the proposed system and the functionalities. The
analysis of the system components is elaborated in Section 3. In Section 4, the
results and the discussion are presented. Finally, the conclusion and future works
are mentioned in Section 5.

2 Methodology

The proposed system mainly aims to demonstrate the applicability of cognitive
complexity assessment through pre and post software development processes.
The reduction of the human cognition effort through system components is
another goal of the proposed functionalities. Thereby, some drawbacks of the
current cognitive complexity metrics, namely the lack of consideration of
qualitative factors, the incapability of illustrating the subjectivity and the usage
of non-standardized measurements, are expected to be solved. The overall
architecture of the system is shown in Figure 1.

284 Dinuka Wijendra & K.P. Hewagamage

Figure 1 Proposed system architecture.

2.1 System Requirements Automation

A proper requirements analysis of any software implementation would lead to the
processing of other phases inside the Software Development Life Cycle (SDLC)
more easily than a software application with complex and non-analyzed
requirements [22]. Additionally, non-analyzed and error-prone requirements
would lead to complex processing, which could create a complex source code.
The analysis process of the requirements is basically a manual process, which
consumes a substantial amount of human effort. It is therefore essential to
examine the significance of analyzing these requirements computationally.

Generally, the requirements are preliminarily documented under the project
proposal. The non-existence of a standard format for the project proposal
document leads to the problem of defining a proper mechanism of analyzing the
project proposal documents computationally and to finalize the requirements
specified by the customer. Therefore, the proposal document was converted into
a common outline consisting of five sections. The Introduction section outlines a
brief explanation of the overall system. The Problem Definition section describes
the problem which is expected to be addressed by the system. The Solution
section defines the expected characteristics of the software. The expected
requirements of the software are listed under the Functionalities section. Finally,
the details of the software development process and the team are listed under the
Team Profile section. Thus, the system requirements can be gathered by referring
to the Functionalities section. However, retrieving the same requirements
specified in the Functionalities section would not help the visualization
component, as class diagram generation requires the possible class names to be
inputted. Therefore, it is aimed at extracting the class names mentioned in the
Functionalities section as requirements. Class names are basically identified by

 Cognitive Complexity with Software Development 285

extracting the nouns in the Functionality section due to the high probability of
using nouns as the names for the classes [23]. High frequency nouns listed in the
requirements were targeted to be accessed as possible class names, which can be
used in the diagram generation process. The nouns in the requirements are filtered
through Part Of Speech tagging (POS) [24]. Each word mentioned inside the
Functionality section is assigned with related tags based on POS. The identified
nouns are based on highest frequency, which is passed through a Python script
and stored in a text file. The logic of identifying the class names of a given
specification with respect to the given frequency level by classIdentification.py
is given in Algorithm 1.

2.2 Class Diagram Generation

The analyzed requirements should be converted to different visual
representations that demonstrate the internal logic of the software to be
implemented. This process is usually a manual process, as the relevant source
codes will be implemented by referring to those representations [22]. The
conversion of the requirements to respective logical diagrams as a manual process
can include failures and error-prone activities. This could be one of the reasons
why the generated source codes could turn out more complex and error-prone
than expected. Meanwhile, the existing automation tools for logical diagram
generation cannot be used for this purpose, as the generated source code has to

Algorithm 1: Algorithm used in classIdentification.py to generate class names

Input: The text file contains the functionality specification
Output: Class names (mostly recurrent nouns with a given threshold value)
1: Let file objects are f and file
2: f = open(“//include the path of functionality.txt”)
3: Let lines represents the content read by functionality.txt
4: lines =f.read()
5: Let tokenized represent each word inside the lines
6: tokenized = nltk.word_tokenize(lines)
7: foreach word ϵ lines && if is_noun(pos == ‘NN’)
8: Let counter be the frequency of each noun
9: counter = collections.Counter(nouns)
10: end foreach
11: Let x be the threshold counter for most frequently occurring nouns
12: counter.most_common(x) //retrieve the most common x nouns
13: Let listToStr be the combination of all class names
14: foreach elm ϵ counter.most_common(x)
15: listToStr =' '.join(str(elm)) //convert elm into a string and join each class name with a
white space
16: end foreach
17: file=open(“//include the path of the file to be written”, “w”)
18: file.write(listToStr) //write the content to the file object
19: file.close() //close the file object

286 Dinuka Wijendra & K.P. Hewagamage

be inputted for diagram generation [25]. By considering this situation, the
proposed system was outfitted with a component to generate the class diagrams
prior to source code generation.

Table 1 Types of relationships based on cosine similarities.

Cosine similarity range Type of the relationship Notation
80<= similarity <100

Similarity = 100 implies the
same word is compared

Inheritance “<|--"

70<= similarity <80 Composition “*--”
60<= similarity <70 Aggregation “o--”
25<= similarity <60 Association “--”

Similarity < 25 No relation Not applicable

The class names recognized by the requirements analyzer is the major input for
this task. The relationships and the similarity levels of each class name have to
be studied, as the class diagram generation requires the logical association with
each class. Global Vectors for Word Representation (GloVe) [26] was used to
compute the relationships between each class name. The relationships among
each of two class names are then evaluated through cosine similarity [27]. The
Torchtexti library supported by the PyTorch machine learning framework has
been used to achieve GloVe vector representations and cosine similarity [27].
Then, the necessity of deriving the types of the relationships was analyzed.
Consequently, we defined five types of relationship categories based on the range
of cosine similarities. Accordingly, the component is capable of generating a
class diagram by referring to the types of relationships. The class diagram
generation was performed through the PlantUML library [25]. Each relationship
type is uniquely represented using different notations. Table 1 specifies the types
of relationships and the notations used to denote different types of relationships.

The class names with high similarity levels imply more common behavior, which
can be considered a parent-child relationship [28]. Hence, the relationships with
the highest cosine similarity values are considered under the inheritance category.
The composite relationship indicates a parent entity, which owns the child entity
with a stronger association. Nevertheless, its behavior is not stronger than the
inheritance [29]. The aggregation indicates a parent, which maintains a relation
with its child with a weaker association level, so that the similarity value scale
has to be smaller than the similarity range used for composition [30]. An
association relation maintains a weaker connectivity among the classes, so the
similarity range has to be smaller than the inheritance, composition and
aggregation[31]. Class names smaller than 25 similarity level were considered
unnecessary relationships, which do not imply a strong connection among them.

 Cognitive Complexity with Software Development 287

Then, PlantUML statements were written with class names, their relationship
types along with the corresponding notations given as input. Then, these
statements are compiled to generate the class diagram. The coded diagrams are
then converted into a Portable Network Graphic (PNG) image using GraphVizii
and stored inside the project directory for reference. The internal logic of
generating the class diagram by generateClassDiagram() is shown in Algorithm
2. The proposed system was evaluated using different types of system
specifications and Figure 2 demonstrates the class diagrams generated for some
system specifications.

Algorithm 2: Function generateClassDiagram() to generate the class diagram
Input: The list of class names obtained through requirements automation
Output: Class diagram
1: Let Relationship be a separate class created to handle pairs of class names with their
similarity values
2: Let reList is the list created from Relationship class
3: call function assignRelationshipType(reList) //refer Table 1
4: Let classA and classB represent the class names in r
5: Let plantUmlSource be the object created from StringBuilder class
6: plantUmlSource.append("@startuml\n") //start writing the plantUML syntax
7: foreach r ϵ reList
8: append classB, relevant notation, classA and ”/n” to plantUmlSource // refer Table 1
9: end foreach
10: convert the diagram structure to a string to generate the diagram
11: store the diagram inside the path specified as a PNG file

Figure 2 Generated class diagrams for (a) a hospital management system, (b) a
hotel management system, (c) a human resources system, (d) an online shopping
system.

288 Dinuka Wijendra & K.P. Hewagamage

2.3 Defect Tracking Automation

A defect or a bug is an unexpected event that occurs in a source code and results
in a non-functioning state of the system [32]. Therefore, the occurrence of a defect
should be resolved to resume the functioning of the source code to obtain the
expected outcomes. The usage of compilers and bugs trackers assists in
identifying possible coding defects, so that the user can identify and correct them
to produce a smooth execution of the given source code. However, available bug
trackers do not have the ability to recognize all types of coding defects.

A non-recognized bug would create an unexpected scenario of source code
execution, resulting in the user having to manually identify the cause of the
unexpected outcome and taking necessary actions to rectify it. This process
consumes a considerable amount of comprehension effort. Thereby, a mechanism
must be implemented to identify possible defects that existing bug trackers could
not identify to reduce the cognitive complexity associated with the source code.
The proposed system is implemented with Apache NetBeans Integrated
Development Environment (IDE)iii 12.5 with Java Maven. The FindBugs bugs
tracker is applicable for NetBeans IDE, so that it was installed as a plugin, which
is supported to track coding defects [33]. The proposed defect tracking
component was applied to detect bugs that cannot be handled by the FindBugs
tracker. The types of bugs exposed by the proposed component are shown in
Table 2.

Table 2 Types of bugs (code defects) detected by the system.

Identified bug Bug description
Division by zero The denominator of any mathematical division is zero, which

derives infinity as the answer
Multiple return statements Multiple return statements in a single method

Array storing error Incompatible values are stored inside an array (the data types
of the array and the values do not match)

Unsupported operations Add new values to a list, which is already assigned with values
Illegal state error .next(), .set() and .remove() methods are called in an incorrect

order as follows:
next(), remove(), set() / set(), next(), remove() / set(), remove(),
next() / remove(), next(), set() / remove(), set(), next() / set(),

next() / remove(), next() / remove(), set() / set(), remove()
Number formatting errors Incompatible values are passed to the parse methods

Illegal arguments A null parameter is passed as a parameter in any method
Illegal thread states Attempt to start or call sleep method to the same thread

multiple times
Illegal monitor state Call thread.wait() method many times for the same method
Unsupported cloning .clone() method is used without implementing a cloneable

interface
Class casting error Create an instance of the parent class

Illegal thread run method thread.run() method is called to the same thread multiple times

 Cognitive Complexity with Software Development 289

The Java source code is inputted for the component and stored inside an array list
and checks the appearance of any defects listed in Table 2 by assessing the source
code content. Detection of a bug is indicated by its line number to be able to locate
the bug without difficulty.

Moreover, the recommendation procedure consists of displaying the identified
bug category and suggestions for correcting the bug. Because of this, the user has
less effort in finding, locating and comprehending a particular defect. Therefore,
the suggested component automates the precise procedure for manual bug
detection and correction, which reduces the cognitive complexity of the inputted
source code.

2.4 Automation of Code Quality Optimization

Software applications should be maintained to ensure their quality, as they are
not handled by the same set of users in its duration of usage [34]. Quality software
can be handled easily by different users with less human effort, resulting in low
cognitive complexity. The proposed system was implemented to recognize code
quality issues aligned with Java code smells [35].

The direct verification of code quality issues without having to upload the source
code into existing external quality analyzers such as SonarQube and SonarLint
[36] is the main advantage of the proposed component.

The feature of displaying a specific code smell, its location, recommendations to
fix the issues were implemented within the quality optimization functionality.
Java source code is considered as the input and Java reserved key words,
identifiers, operators, numbers, classes, methods, variables and escape characters
inside the inputted source code are identified as code elements. Then, their
appearance and the structure are verified against the standard code smells. The
types of quality issues handled by the component is listed in Table 3.

Once a code smell is recognized, the type of code smell and the recommendation
of the procedure to correct it is displayed. A separate log file with the class name
is created inside the current project directory so that the user can view the changes
made under quality optimization.

More significantly, the feature of auto fixing code smells for unused import
detection and redundant modifiers in interfaces was also introduced in this
functionality to minimize the manual effort associated with correcting quality
issues by referring to recommendations.

290 Dinuka Wijendra & K.P. Hewagamage

Table 3 Types of quality issues (code smells) detected by the system.

3 Analysis of System Components

We have identified that the complexity related to understanding a source code
logic can be reduced by referring to its requirements analysis and design phases.
It is evident that the time taken to perform a task inside a given source code is
reflected by its comprehension effort. Accordingly, we examined the time taken
to perform a given set of tasks by referring only to the original source code and
by referring to its requirements analysis and design phases without its source code
through a set of users. The selection of users was conducted, followed by
execution of the experiment performed in [37]. A computer-based questionnaire
was conducted among a group of computing-related final-year BSc university
students to examine their coding expertise. Students who scored more than 60%
were selected as the target user group. Those students were classified into another
four groups based on score levels of 60%-70%, 70%-80%, 80%-90% and 90%-
100% respectively. Source codes, modeled class diagrams, and specified user
requirements of ten different software applications were considered as input for
the analysis. The duration for task completion was obtained through a Moodle
environment.

Figure 3 represents the analytical outcomes obtained. The average duration spent
for the reverse process decreased from 110.12 minutes to 86.28 minutes, equal to
13.83% reduction. This implies that the comprehension effort was reduced
through backward navigation from the source code creation process. Along with

Code smell Description
Unused import

detection
Import statements that have not been used inside the source code.

Can automatically be fixed by the component.
Redundant modifier
usage in interface

detection
An interface access modifier is used again for declarations inside the

interface. Can automatically be fixed by the component.

Invalid usage of
generics in constructor

detection

Generics are declared in constructors when the declaration also is
expressed as generic. To address this, the diamond operator can be

used. Can automatically be fixed by the component.

Ternary operator
detection Usage of ternary operators can be replaced with if-else conditions

Nested ternary
operator detection Usage of nested ternary operators has to be minimized

Invalid modifier
declaration order

detection

Modifier declaration has to be performed in the following order:
public, protected, private, abstract, static, final, transient, volatile,

synchronized, native, strictfp

 Cognitive Complexity with Software Development 291

this, automation of requirements analysis and class diagram visualization was
included to reduce the manual comprehension effort, thus, lower cognitive
complexity was expected.

Figure 3 Average duration variation for source code and reverse processing.

Since cognitive complexity as a metric is not standardized, it is impossible to
denote the comprehension effort utilized by system components as a metric and
to compare it with manual processing. The duration reduction of the system
components cannot be granted as a direct parameter of cognitive complexity
reduction, as any automation reduces the duration compared to manual
processing. Hence, along with the duration, the accuracy levels have to be
computed and verified against manual processing. Consequently, a set of
equations was formed to compute the accuracy levels in each component. As
such, the requirements analysis’ accuracy (accuracyRA) is denoted by Eq. (1). The
number of specifications is denoted by k. Let Ni be the correct number of class
names and ni be the identified number of class names in the ith specification.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦() = ∑ () ∗ 100 (1)

Similarly, the accuracy of the visualization of the class diagram (accuracyVC) was
computed as follows:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦() = ∑ () ∗ 100 (2)

Note that the correct number of class name pairs was identified through niC2. The
correct number of relationship types identified through each pair of classes in the

292 Dinuka Wijendra & K.P. Hewagamage

ith specification is denoted by mi. The Eq. (2) can be further simplified and used
as shown in Eq. (3):

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑣𝑐) = ∑ (
∗()!∗ !

!
) ∗ 100 (3)

The efficiency of the defect tracing component was also retrieved by maintaining
the accuracy level. As such, the accuracy of defect tracing (accuracyDT) was
calculated with Equation (4). The number of software systems tested is denoted
by k. Let DTi be the actual coding defects inside the ith source code and dti be the
number of defects that have been solved correctly.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦() = ∑ () ∗ 100 (4)

Similarly, the accuracy of code quality optimization (accuracyCQ) was computed
with Equation (5), where CQi is the actual number of code smells inside the ith
source code and cqi is the number of correctly solved code smells.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦() = ∑ () ∗ 100 (5)

In order to obtain the accuracies of both manual and automated processing, thirty
different software systems were considered. The written specifications and
implemented source codes for each system were inputted for the accuracy
computations of the pre and post software development processes, respectively.
The same four user groups were used as target user group to stabilize the
comprehension effort. Firstly, thirty specifications were given to each user group,
requesting them to analyze the requirements as class names and model the class
diagrams manually. The same procedure was followed through the proposed
system by inputting the system specifications and calculate the accuracies using
Eqs. (1), (2) and (3). Thus, the procedure of comparing the accuracies generated
for the pre-software development process was accomplished. Then, the source
codes generated for the thirty systems were given to the test subjects, requesting
them to manually analyze and fix the coding defects and quality smells.
Simultaneously, the same process was done automatically through the proposed
system, obtaining the output codes to analyze the accuracies with Eqs. (4) and
(5), which can be used to represent the performance of the post-software
development process.

4 Results and Discussion

4.1 Pre-Software Development Process

The accuracy levels obtained for requirements analysis by both manual
processing and the proposed system can be seen in Figure 4. It is noteworthy that

 Cognitive Complexity with Software Development 293

the average accuracy levels of the four different user groups for each software
specification were computed and shown.

Figure 4 Average accuracy for the requirements analysis phase.

It can be clearly observed that the average accuracy levels of the requirements
analysis phase were comparatively higher than with manual processing. This
indicates the reduction of the cognitive load that each individual should have
through the analysis process, which in turns reduces the comprehension effort.
On average, the manual processing accuracy was 66.29%, while 75.29% accuracy
was achieved by the system component. The accuracy increment of the system
component was computed as 13.58% with respect to manual processing. Thus,
we can state that the automated requirements analysis helped to reduce the
cognitive complexity while achieving accurate outcomes.

The average accuracy levels obtained through class diagram visualization can be
seen in Figure 5. Manual processing for the class diagram visualization attained
66.39% accuracy, while 76.55% accuracy was obtained by the system
component. Hence, an increase of 15.3% accuracy was achieved by the proposed
system compared to manual processing. Along with both components, it can be
stated that the average accuracy increase of the pre-software development phases
provided by the software was 14.44%. Based on these accuracy increases, it can
be stated that the usage of the proposed system components can optimize the
requirements analysis and class diagram visualization in pre-software
development. This can be considered as an essential achievement in generating
accurate source code as accurate source code is an outcome of properly executed
requirements analysis and design phases. Moreover, an accurate source code
should decrease the cognitive complexity affected by it, as the amount of human

294 Dinuka Wijendra & K.P. Hewagamage

comprehension effort to understand its logic should be comparatively low with
complex source codes. Hence, along with the automation procedure and accuracy
increase, the amount of human comprehension effort and cognitive load involved
can be stated as having decreased by using the proposed components to ensure
lower cognitive complexity.

Figure 5 Average accuracy for class diagram generation phase.

4.2 Post-Software Development Process

The analytical outcomes for the thirty source code implementations with average
accuracies of the four different user groups for defect tracing and quality
optimization are shown in Figures 6 and 7 respectively.

Figure 6 Average accuracy of defect tracking.

 Cognitive Complexity with Software Development 295

Based on both figures, it can be clearly observed to have a higher accuracy
through the automated procedures than manual processing. Figure 6 shows an
average accuracy of 84.54% for manual defect tracing and an accuracy of 92.83%
for automated defect tracing. Further, the average accuracy increase of automated
defect racing over manual processing was 9.8%.

In Figure 7, 87.52% and 96.25% accuracy increases can be observed for manual
and automated code quality optimization, respectively. Therefore, the accuracy
increase of code quality optimization can be stated as 9.97% over manual
processing. Consequently, the average accuracy increase obtained by the system
in the post-software development phases can be stated as 9.89%.

An accurate outcome through automated functionalities can reduce the
comprehension effort more compared to erroneous output since a considerable
human effort has to be utilized for handling such defects. Hence, the verification
of the system components to reduce the cognitive complexity in the post-software
development can be emphasized.

Figure 7 Average accuracy for code quality optimization.

5 Conclusion and Future Works

The main purpose of this research was to express the cognitive complexity of
software through the phases in the software development process. Most related
works on cognitive complexity were based on limited and quantifiable source
code aspects regardless of subjectivity. We identified the significance of
cognitive complexity without confining it to a quantitative measurement.

296 Dinuka Wijendra & K.P. Hewagamage

Consequently, we have introduced a system which includes the automated
features of the requirement analysis, class diagram designing, bug identification,
and code quality optimization.

To act as a guidance for the human comprehension effort and to reduce the
cognitive complexity of software are the major objectives behind the proposed
system. The system was tested for thirty different software specifications by four
different user groups with a hundred users in each user group. The cognitive
complexity reduction was verified using the percentages of accuracy for each
component of the system. On average, it can be stated that the proposed system
was capable of achieving 14.44% and 9.89% improved accuracy levels for pre-
software and post-software development processes, respectively. Therefore, we
can state that the suggested system components can be used to increase human
cognition by mitigating the cognitive complexity associated with a given software
application. Nevertheless, the number of coding defects and quality smells
identified by the proposed system is limited. Moreover, the system is capable of
handling source code written only in Java. Therefore, in future work, we expect
to expand the number of defects identified by the system, and to introduce a
mechanism to automate refactoring techniques with a recommendation system to
enhance code quality optimization. Finally, we plan to evaluate the system
through current complexity metrics to accentuate the complexity reduction.

References

[1] Campbell, G.A., Cognitive Complexity: An Overview and Evaluation,
2018 International Conference on Technical Debt, pp. 57-58, May 2018.
DOI: 10.1145/3194164.3194186.

[2] Misra, S., A Complexity Measure Based on Cognitive Weights,
International Journal of Theoretical and Applied Computer Sciences, 1(1),
pp. 1-10, 2006.

[3] Barón, M.M., Wyrich, M. & Wagner, S., An Empirical Validation of
Cognitive Complexity as a Measure of Source Code Understandability,
14th ACM IEEE Int. Symp. Empir. Softw. Eng. Meas. ESEM, pp. 1-12,
Oct. 2020. DOI: 10.1145/3382494.3410636.

[4] Winter, M., Pryss, R., Probst, T., Bass, J. & Reichert, M., Measuring the
Cognitive Complexity in the Comprehension of Modular Process Models,
IEEE Trans. Cogn. Dev. Syst., pp. 1-18, 2020. DOI:
10.1109/TCDS.2020.3032730.

[5] Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A.E. & Li, S., Measuring
Program Comprehension: A Large-Scale Field Study with Professionals,
IEEE Trans. Softw. Eng., 44(10), pp. 951-976, Oct. 2018. DOI:
10.1109/TSE.2017.2734091.

 Cognitive Complexity with Software Development 297

[6] Saborido, R., Ferrer, J., Chicano, F. & Alba, E., Automatizing Software
Cognitive Complexity Reduction, IEEE Access, 10, pp. 11642-11656,
2022. DOI: 10.1109/ACCESS.2022.3144743.

[7] Campbell, G.A., A New Way of Measuring Understandability,
SonarSource S A, 2016/2021.

[8] Kushwaha, D.S. & Misra, A.K., Improved Cognitive Information
Complexity Measure: A Metric that Establishes Program Comprehension
Effort, ACM SIGSOFT Software Engineering Notes, 31(5), pp. 1-7, 2006.
DOI: 10.1145/1163514.1163533

[9] Wang, Y., On the Cognitive Complexity of Software and Its Quantification
and Formal Measurement, Int. J. Softw. Sci. Comput. Intell., 1(2), pp. 31-
53, Apr. 2009. DOI: 10.4018/jssci.2009040103.

[10] Chhabra, J.K., Code Cognitive Complexity: A New Measure, The World
Congress on Engineering, July 2011.

[11] Gold, N.E., Mohan, A.M. & Layzell, P.J., Spatial Complexity Metrics: an
Investigation of Utility, IEEE Trans. Softw. Eng., 31(3), pp. 203-212, Mar.
2005. DOI: 10.1109/TSE.2005.39.

[12] Chhillar, U. & Bhasin, S., A New Weighted Composite Complexity
Measure for Object-Oriented Systems, International Journal of Information
and Communication Technology Research, 1(3), pp. 101-108, July 2011.

[13] Misra, S., Adewumi, A., Fernandez-Sanz, L. & Damasevicius, R., A Suite
of Object Oriented Cognitive Complexity Metrics, IEEE Access, 6, pp.
8782-8796, 2018, DOI: 10.1109/ACCESS.2018.2791344.

[14] Gupta, V. & Chhabra, J. K., Object-Oriented Cognitive-Spatial Complexity
Measures, the World Academy of Science, Engineering and Technology,
3(3), pp. 972-979, 2009, DOI: 10.5281/zenodo.1072347.

[15] Misra, S. & Akman, I., Applicability of Weyuker’s Properties on OO
Metrics: Some Misunderstandings, Comput. Sci. Inf. Syst., 5(1), pp. 17-
23, 2008. DOI: 10.2298/CSIS0801017M.

[16] Shao, J. & Wang, Y., A New Measure of Software Complexity Based on
Cognitive Weights, Can. J. Electr. Comput. Eng., 28(2), pp. 69-74, Apr.
2003. DOI: 10.1109/CJECE.2003.1532511.

[17] Misra, S., Koyuncu, M., Crasso, M., Mateos, C. & Zunino, A., A Suite of
Cognitive Complexity Metrics, Computational Science and Its
Applications, 7336, pp. 234-247, 2012. DOI: 10.1007/978-3-642-31128-
4_17.

[18] Misra, A.K., Evaluating Cognitive Complexity Measure with Weyuker
Properties, Third IEEE International Conference on Cognitive
Informatics, pp. 103-108, 2004, DOI: 10.1109/COGINF.2004.1327464.

[19] Kushwaha, D.S. & Misra, A.K., Robustness Analysis of Cognitive
Information Complexity Measure Using Weyuker Properties, ACM
SIGSOFT Softw. Eng. Notes, 31(1), pp. 1-6, Jan. 2006, DOI:
10.1145/1108768.1108775.

298 Dinuka Wijendra & K.P. Hewagamage

[20] Briand, L. C. & Morasca, S., Property Based Software Engineering
Measurement, IEEE Trans. Softw. Eng., 22(1), pp. 68-86, Jan 1996, DOI:
10.1109/32.481535.

[21] Scalabrino, S., Bavota, G., Vendome, Linares-Vasquez, M., Poshyvanyk,
D. & Coliveto, R., Automatically Assessing Code Understandability, IEEE
Trans. Softw. Eng., 47(3), pp. 595-613, Mar. 2021, DOI:
10.1109/TSE.2019.2901468.

[22] Mishra, A. & Dubey, D., A Comparative Study Of Different Software
Development Life Cycle Models in Different Scenarios, Int. J. Adv. Res.
Comput. Sci. Manag. Stud., 1(5), pp. 64-69, Oct. 2013,

[23] Rquez, L.M., Padro, L. & Rodriguez, H., A Machine Learning Approach
to POS Tagging, Machine Learning, 39, pp. 59-91, 2000, DOI:
10.1023/A:1007673816718

[24] Marquez, L., Rodriguez, H., Carmona, J. & Montolio, J., Improving Pos
Tagging Using Machine-Learning Techniques, pp. 52-63.
https://aclanthology.org/W99-0608.pdf, (8 March 2020)

[25] Deeptimahanti, D.K. & Babar, M.A., An Automated Tool for Generating
UML Models from Natural Language Requirements, IEEE/ACM
International Conference on Automated Software Engineering, pp. 680–
682, Nov. 2009. DOI: 10.1109/ASE.2009.48.

[26] Pennington, J., Socher, R. & Manning, C., Glove: Global Vectors for Word
Representation, Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, 2014. DOI: 10.3115/v1/D14-1162.

[27] Li, B. & Han, L., Distance Weighted Cosine Similarity Measure for Text
Classification, Intelligent Data Engineering and Automated Learning –
IDEAL, pp. 611–618, 2013. DOI: 10.1007/978-3-642-41278-3_74.

[28] Egenhofer, M.J. & Frank, A.U., Object-Oriented Modeling in CIS:
Inheritance and Propagation, pp. 588-598, 2008.

[29] Dey, D., Storey, V.C. & Barron, T.M., Improving Database Design
through the Analysis of Relationships, ACM Trans. Database Syst., 24(4),
pp. 453–486, Dec. 1999. DOI: 10.1145/331983.331984.

[30] Renguo, X., Dillon, T. S., Rahayu, W., Chang, E. & Gorla, N., An Indexing
Structure For Aggregation Relationship In OODB, Database and Expert
Systems Applications, 1873, pp. 21–30, 2000, DOI: 10.1007/3-540-44469-
6_3

[31] Han, J. & Fu, Y., Discovery of Multiple-Level Association Rules from
Large Databases, 21st VLDB Conference, 1995.

[32] Rutar, N., Almazan, C.B. & Foster, J.S., A Comparison of Bug Finding
Tools for Java, 15th International Symposium on Software Reliability
Engineering, pp. 245-256, 2004. DOI: 10.1109/ISSRE.2004.1.

[33] Hovemeyer, D. & Pugh, W., Finding Bugs is Easy, Static Anal., 2004.
[34] Aggarwal, K.K., Singh, Y. & Chhabra, J.K., An Integrated Measure of

Software Maintainability, Annual Reliability and Maintainability

 Cognitive Complexity with Software Development 299

Symposium. 2002 Proceedings (Cat. No.02CH37318), pp. 235–241, 2002.
DOI: 10.1109/RAMS.2002.981648.

[35] Java Code Smell | Java Code Analyzer,
https://rules.sonarsource.com/java/type/Code%20Smell/ (Dec. 02, 2020).

[36] García-Muñoz, J., García-Valls, M. & Escribano-Barreno, J., Improved
Metrics Handling in SonarQube for Software Quality Monitoring,
Advances in Intelligent Systems and Computing book series (AISC), 474,
pp. 463-470, 2016. DOI: 10.1007/978-3-319-40162-1_50.

[37] Aloysius, A. & Arockiam, L., Coupling Complexity Metric: A Cognitive
Approach, Int. J. Inf. Technol. Comput. Sci., 4(9), pp. 29-35, Aug. 2012.
DOI: 10.5815/ijitcs.2012.09.04.

i https://pytorch.org/text/stable/index.html, December 2021
ii https://graphviz.org/, October 2021
iii https://netbeans.apache.org/, January 2020

