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Abstract. This empirical study calculated the network centralities of urban railway stations in 

Seoul using Social Network Analysis (SNA) and analyzed the effect of this value on the number of 

passengers and average travel distance at each station. Network centrality can be calculated 

using various methodologies. In this study, reach, betweenness, and closeness were used as 

network centrality indicators. A regression model was used with the characteristics of building 

use in the station catchment areas as control variables. This methodology was compared to 

previous studies’ methods for obtaining stations’ topology values. The adjusted R2 values 

increased by 0.272 and 0.220 for the respective models, explaining the number of passengers and 

the average travel distance, respectively; the number of significant variables also increased in 

both models. These results indicate that defining the network centrality obtained through SNA as 

the station’s topology could improve explanations of the number of passengers and the average 

travel distance by 27.2% and 22.0%, respectively, compared to previous studies. While this 

methodology is not new, this study demonstrated the advantages of using SNA to determine the 

centrality indices of urban railway stations. 

Keywords. Transit-Oriented Development; Social Network Analysis; Transit Ridership; Travel 

Distance; Topology of Station. 

Abstrak. Studi empiris ini menghitung keterpusatan (sentralitas) jaringan stasiun kereta api 

perkotaan di Seoul menggunakan Social Network Analysis (SNA) dan menganalisis pengaruh 

nilai ini terhadap jumlah penumpang dan jarak perjalanan rata-rata di setiap stasiun. Sentralitas 

jaringan dapat dihitung menggunakan berbagai metodologi. Dalam penelitian ini, reach, 

betweenness, dan closeness digunakan sebagai indikator sentralitas jaringan. Model regresi 

digunakan dengan karakteristik penggunaan bangunan di daerah tangkapan stasiun sebagai 

variabel kontrol. Metodologi ini dibandingkan dengan metode penelitian sebelumnya untuk 

mendapatkan nilai topologi stasiun. Nilai R2 yang disesuaikan meningkat sebesar 0,272 dan 

0,220 untuk masing-masing model, menjelaskan masing-masing jumlah penumpang dan jarak 

perjalanan rata-rata; jumlah variabel yang signifikan juga meningkat pada kedua model. Hasil 

ini menunjukkan bahwa mendefinisikan sentralitas jaringan yang diperoleh melalui SNA sebagai 

topologi stasiun dapat meningkatkan penjelasan jumlah penumpang dan jarak perjalanan rata-

rata masing-masing sebesar 27,2% dan 22,0%, dibandingkan dengan penelitian sebelumnya. 

Meskipun metodologi ini bukanlah hal baru, studi ini menunjukkan keuntungan menggunakan 

SNA untuk menentukan indeks sentralitas stasiun kereta api perkotaan. 
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Introduction 

In modern metropolitan cities, public transportation plays an important role in improving urban 

environments and reducing traffic energy consumption. An example of this is high-capacity urban 

rail, which is mainly constructed underground so traffic congestion is not aggravated and air 

pollution emissions are reduced compared with other means of transportation. Therefore, cities 

worldwide have built substantial urban rail systems with numerous lines and stations. For 

example, London has eleven routes with a total length of 402 km, and Tokyo has thirteen routes 

with a total length of 304 km of urban rail infrastructure. When infrastructure construction for 

urban rail reaches its limit, it is difficult to create new lines and stations. Therefore, it is important 

to increase the utilization efficiency and quality of transportation within the existing 

infrastructure. 

Research into urban planning has focused on increasing the number of urban rail users. Transit-

oriented development (TOD) in particular has become an important paradigm since the early 

2000s. TOD is the concept of increasing the number of station users by increasing the density and 

diversity of land use around the catchment area of urban rail stations and designing roads with 

easy access to the stations (Cervero et al., 2002). A number of empirical studies have been 

conducted to determine the impact of land-use density and diversity on the number of station users 

(Cervero, 1996; Cervero and Kockelman, 1997; Ewing and Cervero, 2001; Cervero and 

Murakami, 2009; Lin and Shin 2008; Sung et al. 2014; Yoo, 2013). These studies revealed that 

the land-use density of the station catchment area increases the transit utilization rate. The effect 

of diversity of land use on the public transportation utilization rate differed in each study. The 

station’s topology is another important factor that may affect the number of passengers. It has 

been found that stations in the same city perform different functions depending on whether they 

have a central or a suburban location.  

Prior research into topology differences between stations has taken several approaches. Some 

studies have analyzed the topology of each station using dummy variables for the downtown area 

and the outskirts of the city (Lee et al., 2013; Lyu et al., 2016). Other studies (Nasri and Zhang, 

2014; Arrington and Cervero, 2008) used the distance between the station and the central business 

district (CBD) and the number of urban railway lines passing through each station (Sohn and 

Shim, 2010; Jun et al., 2015). However, these methods are limited in their ability to calculate the 

spatial network centrality of each station, as even if the stations are located in the city center or 

have the same number of urban railway lines passing through them, they may have different 

spatial network centralities. Additionally, the distance from the CBD cannot be used as network 

centrality if the city has an atypical shape. Therefore, a method for calculating the spatial topology 

of each station based on its status in the urban railway network is necessary.  

We used social network analysis (SNA) to examine the relationship between objects through 

sociograms consisting of nodes and lines. The structure of the network in a sociogram is 

quantified by centrality indicators, which denote the degree of closeness and connectivity between 

each object. Various studies have been conducted on the centrality indicator methodology (Han, 

2010), and centrality indicators have been applied in urban studies, such as geographical analysis 

and transportation planning (Porta et al., 2009; Wang et al., 2011; Kang, 2015). However, no 

studies used centrality indicators for urban railways developed with SNA to analyze the number 

of passengers and the average distance traveled. 
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The number of passengers means the total number of passengers getting on and off at each station. 

The average distance is the average of the distance traveled by passengers boarding at each station. 

The average distance is obtained by calculating the total travel distance of the people who boarded 

at each station and dividing this by the number of passengers at each station. 

This study aimed to calculate the network centralities of urban railway stations in Seoul using 

SNA and analyze the effect of this value on the number of passengers and average travel distance 

from each station. The case study applied SNA centrality indicators to Seoul Metropolitan railway 

stations. We estimated a regression analysis model with the characteristics of building use in the 

station catchment areas as the control variables. Furthermore, we compared this methodology to 

methods of obtaining topology values used in previous studies.  

This study is different from previous studies in that it analyzed the factors affecting the average 

travel distance of passengers. The average travel distance of passengers is related to the service 

quality of public transportation. Existing studies (MVA Consultancy, 2008; Kato, 2014) have 

revealed that reducing the travel distance of passengers can alleviate congestion in train coaches 

and improve the quality of transportation services. Therefore, we included in the analysis the 

effect of network accessibility on the travel distance of passengers. Thus, this study analyzed not 

only the effect of network accessibility on increasing the amount of urban railroad usage but also 

the degree of impact on service quality. 

Literature Review  

We reviewed previous studies from three perspectives. First, we reviewed prior research on land 

use in the catchment areas of urban rail stations, which has been shown to have the greatest impact 

on the number of users at urban railroad stations. Both density and diversity of land use in station 

catchment areas have been considered important variables for predicting the number of station 

users in prior TOD research. These studies have identified variables that must be controlled for 

in this analysis. Second, we reviewed research into the spatial topology of urban railway stations, 

identifying a variety of methods for analyzing the spatial topology of urban railway stations. 

Noting these methods’ limitations, we demonstrate how the methodology of this study contributes 

to the literature. Finally, we review a prior urban planning study that used SNA. 

Prior Research on Land Use in the Catchment Area of Urban Rail Stations 

TOD consists of high land-use density, diverse land use, and a pedestrian-friendly design. 

Empirical studies on the effects of TOD have focused on how it shapes public transportation usage 

rates and non-motorized travel. Calthorpe introduced the concept of TOD in the late 1980s and 

developed its guidelines (Calthorpe, 1993). Cervero and Kockelman (1997) named the 

components of TOD the three Ds: density, diversity, and design. Analyzing land use and the effect 

of these indicators on travel patterns, they found that higher density and more diverse land use 

decreased car traffic. Additionally, public transportation increased when the city’s design 

elements were more pedestrian-friendly. Ewing and Cervero (2001) summarized a number of 

TOD studies and found that the socioeconomic characteristics of passengers as well as density, 

diversity, design, and local access, influenced travel demand. They added destination accessibility 

as a fourth element of TOD, creating the four Ds. Ewing et al. (2007) extended the concept from 

four Ds to five Ds, adding distance-to-transit (Ewing et al., 2007). Several studies (Li, 2012; 

Dirgahayani and Choerunnisa, 2018) have analyzed and evaluated TOD based on the five Ds. As 

an increasingly advocated concept supported by substantial empirical evidence from American 
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cities, TOD has become one of the key planning methods for managing urban growth intelligently 

in the twenty-first century (Ewing et al., 2007; Hamin and Gurran, 2009). 

TOD studies in Asian cities have been conducted since the early 2000s. TOD planning concepts 

have been applied in Asian cities experiencing suburbanization and traffic congestion, particularly 

in China. In a Hong Kong case study, Cervero and Murakami (Cervero and Murakami, 2009) 

concluded that TOD is more effective in increasing transit ridership than transit-adjacent 

development. In Taipei, Lin and Shin (2008) found that TOD planning increases ridership when 

the built environment is consistent with TOD principles. However, the impact of TOD, 

particularly the effect of diversity, may differ between American and Chinese cities because of 

cultural differences (Lin and Shin, 2008). One such example is provided by Zhang (2004) in a 

study that demonstrated that mixed land-use development near a transit center does not 

significantly impact transit mode choices. This analysis was not limited to Hong Kong. Sung et 

al. (2014) and Yoo (2013) discovered that mixed land use was a factor in lowering the demand 

for public transportation in Korea, contrary to its role in major US cities. Thus, it is necessary to 

identify the impacts of TOD planning concepts on transit mode choices and transit ridership in 

specific national contexts. 

Analysis of the effects of TOD factors on public transportation utilization reveals that the land-

use density of the station catchment area is a factor that increases the transit utilization rate, 

although there are differences among cities. On the other hand, the effect of diversity of land use 

on the public transportation utilization rate differed in each study. It was found to be a positive 

factor for the use of public transportation in North America. However, research has shown that 

diversity of land use negatively affects public transportation usage or has a negligible effect in 

Asia. 

Spatial Topology of Urban Railway Stations 

Several limitations have been identified in empirical studies that analyzed the relationship 

between TOD and public transport use. One of these is that station topology was not considered; 

existing studies have compared stations on the same basis, ignoring the functional characteristics 

arising from the area where the subway station is located. Therefore, these studies were not able 

to make objective judgements on the impact of land-use characteristics on public transport users. 

Further studies have been conducted to overcome this limitation, which can be divided into three 

types. 

First, there are studies that classified stations into several clusters based on their locations and 

characteristics and analyze the features associated with TOD for each cluster. Lee et al. (2013) 

classified subway stations based on the regional functions given in the urban planning using two 

clusters: one with three options (CBD, sub-central area, and fringe area) and one with four options 

(CBD, inner suburbs, outer suburbs, and periphery areas). For each cluster, they analyzed the 

relationship between TOD land use and ridership. The results indicated that subway riders from 

stations in CBD locations and from fringe or peripheral areas were most influenced by density, 

whereas riders from stations located in sub-central areas or inner and outer suburbs were most 

influenced by diversity of land use. Lyu et al. (2016) calculated the ‘transit’, ‘development’, and 

‘oriented’ indicators for urban rail stations located in the analysis area. They classified each 

station into six clusters based on the index. They analyzed the catchment area of each station for 

each cluster, revealing a difference in the indicators associated with TOD in each cluster. This 

method partially reflects the differences in the stations’ topologies, but the classification criteria 

for the clusters were ambiguous. Additionally, differences within the same clusters were not 

examined. 
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Second, there are studies that measured the topology of stations using the distance from the CBD 

to each subway station. Nasri and Zhang (2014) analyzed the effects of land-use characteristics 

of the catchment areas of stations on vehicle miles traveled (VMT) in Washington D.C. and 

Baltimore. The results of this study indicated that people living in TOD areas tended to drive less, 

reducing their VMT by around 38% in Washington, D.C. and by 21% in Baltimore compared to 

the residents of non-TOD areas, including areas with similar land-use patterns. They controlled 

for the topology of each station by including a variable measuring the distance from the CBD to 

analyze the effect of land use in the catchment areas on transit patterns. Arrington and Cervero 

(2008) analyzed seventeen TOD projects of varying sizes in four urban areas and found that 

people living in TOD areas used transit two to five times more often for commuting trips 

compared to those living in non-TOD areas. This study also measured the topology of each 

catchment area using the CBD distance along with the land-use density of each area. These studies 

(Nasri and Zhang, 2014; Arrington and Cervero, 2008) assumed that the distance between the 

CBD and each station affected the traffic patterns of passengers who used a station. In addition, 

the results showed that the longer the distance from the CBD, the greater the amount of traffic 

and the distance of the average ride. However, taking one point (the CBD) as reference point for 

the topology does not capture the variety of land uses that are prevalent throughout the city. 

Third, a number of scholars have used the possibility of transfer or the number of subway lines 

passing through to measure the topology of a station. Kuby et al. (2004), Zhao et al. (2013) and 

Sung et al. (2014) estimated regression models of rail use in the United States, China, and Korea, 

respectively. These studies used dummy variables indicating whether transfer was possible to 

capture the topology of each station. In contrast, Sohn and Shim (2010) and Jun et al. (2015) used 

the number of lines passing through each station, a continuous variable, to capture station 

topology. Despite differences in how the variables were measured, the above studies have shown 

that the number of passengers increases if transfer is possible at a station or if many lines traverse 

the station. However, this approach does not account for the geographical location of a station in 

the city, and it cannot consider a station’s relationship with other stations connected through the 

urban railway network. 

As discussed above, many studies have analyzed how the topology of stations affects ridership. 

Nevertheless, there are limitations in the way that topology has been operationalized. SNA is a 

new method that overcomes these limitations and quantifies the relationship among objects in a 

network. SNA concepts are theoretically grounded in the insights provided by Simmel (1950) and 

Durkheim (1984) and are methodologically grounded in classical graph theory (Moody and 

White, 2003). SNA treats social relationships as networks consisting of nodes and links (also 

called edges, ties, or connections). The nodes represent the individual actors within the network, 

and the links indicate the relationships between the actors. Research in a number of academic 

fields has shown that social networks are identifiable in many types of organizations—from 

families to nations—and they play a critical role in determining the way in which problems are 

solved, organizations are run, and the degree to which individuals succeed in achieving their goals 

(Passmore, 2011). SNA has been used in the social sciences and, increasingly, in the physical 

sciences. 

Prior Urban Planning Studies Used SNA 

Most studies using SNA in urban planning considered the relationship between network centrality 

and urban spatial structure. Porta et al. (2009) applied SNA to road networks to calculate the 

centroid index of a city and compared it with commercial distribution. They reported that streets 

where the centrality index was high had more retail outlets. Also using road networks to calculate 
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urban centrality indices, Wang et al. (2011) analyzed the influence of centrality on population and 

worker density, while Kang (2015) looked at its impact on the floating population. These studies 

showed how SNA can be used to calculate an urban centrality index using the elements that make 

up the city and the network connecting them. These calculated centrality indices can be used to 

analyze the impact on urban space or activity. This method can overcome the limitations 

associated with measuring the topology of stations, which have been continuously raised in TOD 

studies. Therefore, we performed SNA using railway networks and station points to determine 

the centrality index of each station. Moreover, we analyzed the effect of the centrality index and 

land-use characteristics of the catchment area on the number of passengers and distance traveled 

from each station. 

Through the first sub-session, we confirmed that the density and diversity of land use affects the 

number of people who use the urban railway. Therefore, we defined urban railway land-use 

characteristics as control variables. In the second sub-session, we confirmed that there are studies 

that took into account the spatial topology of urban railway stations. However, it was revealed 

that the methods used in these previous studies had limitations and that the method using SNA 

can overcome these. In other words, the usefulness of the methodology of this study was 

confirmed. Through the third sub-session, it was confirmed that the SNA methodology is 

gradually being tried out in the field of urban planning research. We confirmed that this analysis 

methodology can be used to quantify the structure of cities. Through this, it was revealed that this 

methodology can be utilized as a useful tool for urban rail network analysis. 

Materials and Methods 

Methodology for Calculating the Centrality Index 

The city of Seoul, the object city of this research, had a population of 9.73 million and 

employment of 5.87 million in 2022 in a land area of 605 km2. Seoul is surrounded by the province 

of Gyeonggi and the city of Incheon, which have populations of 13.59 million and 2.96 million, 

respectively, in a land area of 11,164 km2. Seoul is the central city of the SMA. Gyeonggi and 

Incheon as its hinterland have a strong socioeconomic dependency on Seoul (Jang et al., 2017), 

which leads to a great deal of daily traffic between the cities. According to Seoul’s long-term 

master plan for 2030 as the target year, Seoul consists of three main cores, seven regional centers, 

and twelve local centers (see Figure 1). 
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Figure 1. The city of Seoul and its long-term master plan for 2030. 

We defined an urban rail station as a node and a railway network as a line and calculated the 

centrality index of each station using the urban network analysis tool ArcGIS. The ArcGIS tool 

(Sevtsuk and Mekonnen, 2012) can be used to compute five types of network analysis measures: 

reach, gravity, betweenness, closeness, and straightness. We selected three of these centrality 

measures for our analysis: reach, betweenness, and closeness. Because gravity is conceptually 

similar to reach, their values tend to be highly correlated. For this reason, the value of gravity was 

excluded from the analysis. Straightness, which indicates the gap between Euclidean distance and 

network distance, is useful for the analysis of buildings on a road network but is considered 

unsuitable for station analysis on urban rail networks. Therefore, we also excluded this indicator.  

We calculated reach, betweenness, and closeness as follows. The reach measure captures how 

many surrounding nodes each station reaches within a given search radius in the network (Sevtsuk 

and Mekonnen, 2012). In other words, a station with a large value for this index has many stations 

located nearby. It is defined as,  
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𝐶𝑖
𝑅 =  ∑ 𝑗

𝑗∈𝐺−𝑖,𝑑[𝑖,𝑗]≤𝑟

 (1) 

where 𝐶𝑖
𝑅 ∶ Reach value of 𝑖 station 

𝑖, 𝑗 ∶ Origin (𝑖) and destination (𝑗) stations 

𝐺 ∶ All stations in the study area  

𝑑[𝑖, 𝑗] ∶ Shortest path distance between stations 𝑖 and 𝑗 in 𝐺  

𝑟: Radius of analysis 

The betweenness of a station is defined as the fraction of the shortest paths between pairs of other 

stations in the network that pass through station 𝑖 (Sevtsuk and Mekonnen, 2012). A station with 

a large value for this index is in a position where it can act as a transport hub. The betweenness 

measure is defined as,  

𝐶𝑖
𝐵 =  ∑

𝑛𝑗𝑘[𝑖]

𝑛𝑗𝑘
𝑗,𝑘∈𝐺−𝑖,𝑑[𝑖,𝑘]≤𝑟

 (2) 

where 𝐶𝑖
𝐵 ∶ Betweenness value of 𝑖 station 

𝑖, 𝑗, 𝑘 ∶ Stations 

𝑛𝑗𝑘[𝑖] ∶ Number of shortest paths from 𝑗 to 𝑘 that pass through station 𝑖 

𝑛𝑗𝑘 ∶ Total number of shortest paths from 𝑗 to 𝑘 

𝐺 ∶ All stations in the study area 

The closeness measure indicates how close a station is to all other surrounding stations within a 

given distance (Sevtsuk and Mekonnen, 2012). A station with a large value for this index is 

located near the center of the analysis site (Seoul). The closeness centrality is defined as,  

𝐶𝑖
𝐶 =

1

∑ 𝑑[𝑖, 𝑗]𝑗∈𝐺−{𝑖},𝑑[𝑖,𝑗]≤𝑟
 (3) 

where 𝐶𝑖
𝐶[𝑖] ∶ Closeness value of 𝑖 station 

𝑖, 𝑗 ∶ Origin (𝑖) and destination (𝑗) stations 

𝐺 ∶ All stations in the study area 

𝑑[𝑖, 𝑗] ∶ Shortest path distance between stations 𝑖 and 𝑗 in 𝐺 

𝑟: Radius of analysis  

Model Design 

We analyzed the impact of the urban rail network centralities and the land-use characteristics of 

station catchment areas on the number of passengers and the average distance traveled from each 

station using a multivariate linear regression model. The network centralities were divided into 

two groups: the distance from a station to the CBD and the number of lines traversing the station 

(which were used in Model 1), and the reach centrality, betweenness centrality, and closeness 
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centrality indices (which were used in Model 2). Each model analyzed the effect on the number 

of passengers (Model 1-1, Model 2-1) and the average distance traveled by passengers (Model 1-

2, Model 2-2). We compared the analysis results of Model 1 and Model 2 to confirm the utility 

of SNA. The multivariate linear regressions are expressed in the following equations, 

Model 1 (1-1, 1-2): 𝑦𝑖 =  𝛼0 +  𝛽𝑖𝐷𝑖
𝐶𝐵𝐷 +  𝛾𝑖𝑁𝑖

𝑙𝑖𝑛𝑒 + ∑ 𝛿𝑖𝐿𝑖
𝑙     (4) 

Model 2 (2-1, 2-2): 𝑦𝑖 =  𝛼0 +  ∑ 𝛽𝑖𝐶𝑖
𝑘 + ∑ 𝛿𝑖𝐿𝑖

𝑙       (5) 

where 𝑦𝑖 : dependent variables (𝑇𝑃𝑖 : Model 1-1 and 2-1; 𝐴𝐷𝑖 : Model 1-2 and 2-2); 𝑇𝑃𝑖 : total 

number of passengers at station i; 𝐴𝐷𝑖: average travel distance from station i to all other stations; 

𝛼0: constant value; 𝛽𝑖 , 𝛾𝑖  and 𝛿𝑖 : parameters; 𝐷𝑖
𝐶𝐵𝐷 : network distance from station 𝑖 to CBD 

(Euljiro 3-ga station); 𝑁𝑖
𝑙𝑖𝑛𝑒: number of urban rail lines passing through station 𝑖; 𝐿𝑖

𝑙 : land-use 

patterns (land-use characteristics) of station i’s catchment area (within a [Euclidean distance of 

500 m] radius from station i) 𝑙 = r (residential), c (commercial), b (business), p (public), o (other), 

den (density), and div (diversity land-use); 𝐶𝑖
𝑘: network centralities (SNA) of i station; k : R (reach 

centrality: radius of analysis limited to 10 km), B (betweenness centrality: radius of analysis 

limited to 10 km), and C (closeness centrality).  

The subway traffic data that was used as the dependent variable was taken from a report on the 

monthly passenger transport performance of the subway throughout 2011 provided by Korea 

Railroad (KORAIL). The independent variables were defined as the urban rail network 

centralities (Model 1: 𝐷𝑖
𝐶𝐵𝐷, 𝑁𝑖

𝑙𝑖𝑛𝑒or Model 2: 𝐶𝑖
𝑘) and the control variables were the land-use 

characteristics of the station catchment area (𝐿𝑖
𝑙 ). The shape information on urban rail lines and 

stations used to calculate network centrality was provided by the Korea Transport Institute 

(KOTI). The land-use characteristics for each urban rail station were calculated using building 

register data from Seoul. 

The land-use pattern of the station catchment areas was calculated as the sum of residential (𝐿𝑖
𝑅), 

commercial (𝐿𝑖
𝐶), business (𝐿𝑖

𝐵), public (𝐿𝑖
𝑃), and other (𝐿𝑖

𝑂) facilities’ floor space within a radius 

of 500 m (Euclidean distance) from each station. The density (𝐿𝑖
𝑑𝑒𝑛) was calculated by dividing 

the total floor area of all buildings within a radius of 500 m (Euclidean distance) from each station 

into the land area of the catchment. There are two reasons why this study used only building 

density, not population density and activity density. The first is the multicollinearity problem. 

Building density is an indicator that is very close to population and activity density. Second, while 

the density of a building can be directly controlled through planning, population and activity 

cannot. In order for the results of this study to be utilized in future urban planning, it was 

determined that variables that the planner can directly control were appropriate. Diversity (𝐿𝑖
𝑑𝑖𝑣) 

was calculated by defining the catchment area for each station in the same way and measuring the 

mix of land use using Shannon’s diversity index (SHDI) (Shannon, 1948). SHDI is widely used, 

and is defined as follows, 

SHDI = − ∑ 𝑃𝑖𝑙𝑛𝑃𝑖
𝑁
𝑖=1           (6) 

where N is the number of land-use types and 𝑃𝑖  the proportional abundance of the i-th type 

(Nagendra, 2002). 

Table 1 presents the list of variables used in this analysis, together with their names, descriptions, 

and sources. The structure of the analysis model is shown in Figure 2. 
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Table 1. Variables and descriptions 

Division of variables Symbol Description (unit) 
Source 

(year) 

Dependent 

variables 

(Model 1-1, 2-1) 𝑇𝑃𝑖 

Total number of passengers getting on 

and off urban rail station 𝑖  in 2011 

(people) 
KORAIL 

(2011) * 

(Model 1-2, 2-2) 𝐴𝐷𝑖 
Average travel distance to each urban 

rail station in 2011 (km) 

Independent 

variables 

Network 

centrality 

CBD and 

lines 

(Model 1) 

𝐷𝑖
𝐶𝐵𝐷  

Network distance from station 𝑖  to 

CBD (Euljiro 3-ga station) (m) 

KOTI** 

(2011) 

𝑁𝑖
𝑙𝑖𝑛𝑒 

Number of urban rail lines at station 𝑖 

(EA) 

Social 

network 

analysis 

(Model 2) 

𝐶𝑖
𝑅 Reach centrality value of station 𝑖  

𝐶𝑖
𝐵 

Betweenness centrality value of 

station 𝑖  

𝐶𝑖
𝐶 Closeness centrality value of station 𝑖  

Land-use 

characteristics 

𝐿𝑖
𝑟  

Total residential floor-space area in 

station 𝑖 ’s catchment area (500 m) 

(m2) 

Seoul 

building 

register 

data 

(2011) 

*** 

𝐿𝑖
𝑐 

Total commercial floor-space area in 

station 𝑖 ’s catchment area (500 m) 

(m2) 

𝐿𝑖
𝑏 

Total business floor-space area in 

station 𝑖 ’s catchment area (500 m) 

(m2) 

𝐿𝑖
𝑝
 

Total public floor-space area in station 

𝑖’s catchment area (500 m) (m2) 

𝐿𝑖
𝑜 

Total others floor-space area in station 

𝑖 ’s station catchment area (500 m) 

(m2) 

𝐿𝑖
𝑑𝑒𝑛 

Density of all land-use floor-space 

area in station 𝑖’s catchment area (500 

m) 

𝐿𝑖
𝑑𝑖𝑣 

Mixed land-use value (diversity) of 

station 𝑖’s catchment area (500 m) 

*Korea Railroad; **Korea Transport Institute; *** Electronic Architectural administration information 

system (EAIS) 
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Figure 2. Structure of the analysis model. 

Basic Statistics 

Table 2 presents the basic statistics for each variable. The average number of passengers using 

Seoul urban railway stations was 7,065,536, and the average travel distance was approximately 

12.45 km. The average distance from each station to the CBD station was 10.90 km, the minimum 

distance was 0 km, and the maximum distance was approximately 23.65 km. The reason that the 

minimum distance was 0 km is because that station is the CBD station itself. The average, 

maximum, and minimum number of urban rail lines passing through each station were 1.43 lines, 

6 lines, and 1 line, respectively. Figure 3 shows the average number of passengers and the average 

distance for each station.  

Table 2. Basic statistics 

Variables (units) Average SD Maximum Minimum 

Dependent 

variables 

Urban rail  

usage 

𝑇𝑃𝑖  (persons) 7,065,536 6,405,347 36,403,324 171,190 

𝐴𝐷𝑖 (km) 12.45 1.93 22.55 8.07 

Independent 

variables 

Network 

centrality 

(Model 1) 

𝐷𝑖
𝐶𝐵𝐷  (m) 10,899.97 5,351.23 23,651.31 0.00 

𝑁𝑖
𝑙𝑖𝑛𝑒 (EA) 1.43 0.77 6 1 

Network 

centrality 

(Model 2) 

𝐶𝑖
𝑅 77.57 29.82 126.00 16.00 

𝐶𝑖
𝐵 385.11 337.79 1,840.00 0.00 

𝐶𝑖
𝐶 8.472E-08 8.936E-09 9.69369E-08 6.30521E-08 

Land-use 

characteristics 

𝐿𝑖
𝑟  (m2) 582,567.46 362,364.94 2,658,406.12 0.00 

𝐿𝑖
𝑐 (m2) 250,594.38 282,320.61 2,526,286.11 263.52 

𝐿𝑖
𝑏 (m2) 204,691.61 353,035.61 2,387,842.12 0.00 

𝐿𝑖
𝑝
 (m2) 93,540.56 98,357.80 699,516.25 355.68 

𝐿𝑖
𝑜 (m2) 43,873.71 43,585.15 231,846.56 686.40 

𝐿𝑖
𝑑𝑒𝑛  170.71 66.30 513.81 23.11 

𝐿𝑖
𝑑𝑖𝑣 1.052 0.28 1.55 0.22 

SD, Standard Deviation 
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Figure 3. Dependent variables. 

The network centrality for each station was calculated using SNA. The radius of analysis for reach 

and betweenness was limited to 10 km because there was no significant difference between using 

10 km and 12.44 km. However, the radius for closeness was not limited to the analysis, because 

closeness was also used to analyze the spatial proximity to all nodes in the analysis area. As no 

limiting radius was imposed, stations located closer to the center of the graph obtained higher 

closeness values (Sevtsuk and Mekonnen, 2012). The average reach, betweenness, and closeness 

were 77.57, 385.11, and 8.472 × 10-8, respectively. For easy understanding of the various 

topologies for each station, the maps for each network centrality index are shown in Figures 4-6. 

 

 

Figure 4. Estimated reach value in Seoul. 
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Figure 5. Estimated betweenness value in Seoul. 

 

 

Figure 6. Estimated closeness value in Seoul. 

The reach centrality index is the number of stations in the analysis range for each station. This 

index is high in areas where urban stations are clustered. (Figure 4). The betweenness centrality 

index indicates the linkage with other stations in the analysis range for each station. The results 

of the calculation showed high levels for transfer stations (Figure 5). The closeness centrality 

indicates the proximity to the stations in all regions of the analysis area (in this study, Seoul). 
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High values for this index were obtained for stations in the downtown area, and low values were 

obtained for stations in the outskirts of the city (Figure 6). Stations located in the center of the 

city, but outside of the cluster, had relatively low reach centrality index values. However, the 

closeness value was high when a station was in the center of the city, regardless of the cluster 

area, and was low for stations in the outskirts of the city. The data classification method of the 

centrality index maps (Figure 4, 5, and 6) used natural breaks to maintain homogeneity within the 

same class and to maximize heterogeneity between classes. 

Results and Discussion 

Prior to the analysis, we verified the normality of the variables by using scatter plots. Seven 

variables (commercial, business, public and others floor-space area, density, number of 

passengers, and travel distance) showed non-normal distributions. To ensure homoscedasticity in 

the regression, we used natural log transformations for these variables. The results of the 

regression models are presented in three parts: first, Model 1 uses usual centrality; second, Model 

2 uses the SNA centrality measures; finally, we compared the two sets of results. Using SNA to 

measure network centrality led to an improvement in the explanatory power of the regression 

models of the number of passengers and average travel distance for each urban rail station. A 

more detailed interpretation of each analysis result follows below. 

Effects of Land-use Characteristic and Usual Network Centrality (Model 1) 

Table 3 presents estimates of the effects of land-use characteristics and usual network centrality 

on the number of passengers (Model 1-1) and their average travel distance (Model 1-2). The 

adjusted 𝑅2 values for Model 1-1 and Model 1-2 were 0.386 and 0.268, respectively. Variance 

inflation (VIF) is used to measure how much the variance of the estimated regression coefficient 

is inflated if the independent variables are correlated. VIF is calculated as follows: 

 𝑉𝐼𝐹 =  
1

1−𝑅2 =
1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
          (7) 

where, the tolerance is simply the inverse of VIF.  

The lower the tolerance, the more likely is the multicollinearity among the variables. A VIF value 

of 1 indicates that the independent variables are not correlated to each other. The VIF criteria for 

determining whether multicollinearity is present are different for each researcher. However, in 

most studies, the threshold value to deviate small from large is generally taken as 10 (Alin, A. 

(2010); Senaviratna, N. A. M. R., & Cooray, T. M. J. A. (2019); Kroll, C. N., & Song, P. (2013)). 

As a result of the analysis, the VIF value was derived below 10, so we judged that 

multicollinearity did not exist. 

In Model 1-1, the distance to the CBD from each station had a significant positive effect on the 

number of passengers and a significant positive effect on the average travel distance using an 

urban rail line, which was almost four times greater. The estimate for number of lines at the station 

(0.198) was similar to the result for distance to the CBD (0.211). 
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Table 3. Results of multivariate linear regression analysis for Model 1 

Model 1 

Independent variables 

Number of passengers (ln) 

(Model 1-1) 

Average travel distance (ln) 

(Model 1-2) VIF 

β t p β t p 

(Constant) - *** 6.882 0.000 - *** 11.885 0.000 - 

Network 

centrality 

(Model 1) 

𝐷𝑖
𝐶𝐵𝐷  0.131 ** 2.420 0.016 0.526 *** 8.892 0.000 1.274 

𝑁𝑖
𝑙𝑖𝑛𝑒 0.198 *** 4.036 0.000 0.211 *** 3.936 0.000 1.047 

Land-use 

character

istics 

𝐿𝑖
𝑟  -0.108 * -1.764 0.079 -0.135 ** -2.018 0.045 1.633 

𝐿𝑖
𝑐(ln) 0.478 *** 5.605 0.000 0.041  0.444 0.657 3.158 

𝐿𝑖
𝑏(ln) 0.079  0.767 0.444 -0.174  -1.553 0.122 4.576 

𝐿𝑖
𝑝
(ln) 0.090  1.456 0.147 0.054  0.807 0.420 1.658 

𝐿𝑖
𝑜(ln) 0.188 *** 2.954 0.003 0.159 ** 2.293 0.023 1.752 

𝐿𝑖
𝑑𝑒𝑛  

(ln) 
0.054  0.746 0.456 0.073  0.916 0.361 2.293 

𝐿𝑖
𝑑𝑖𝑣 -0.170 * -1.769 0.078 -0.083  -0.789 0.431 3.999 

𝑅2 (Adj. 𝑅2) 0.406 (0.386) *** 0.293 (0.268) *** - 

***p < 0.01, **p < 0.05, *p < 0.1 

In terms of the land-use characteristic variables, in Model 1-1, the commercial facilities’ floor 

space (𝐿𝑖
𝑐) was highly significant (t-value = 5.605); business facilities’ floor space (𝐿𝑖

𝑏) was also 

highly significant. However, residential facilities’ floor space (𝐿𝑖
𝑟) had a negative effect on the 

number of passengers; although the t-value was small (−1.764), it had a positive effect on average 

travel distance. The results of this study show some differences with previous ones. While prior 

work found that density increased the number of station users (Cervero and Kockelman 1997; 

Cervero and Murakami 2009; Lin and Shin 2008), its effect was not significant here. In addition, 

the diversity index had a negative effect on the number of reverse users. This could mean either 

that the density and diversity variables may not be significant for each city to be studied or that it 

is necessary to calculate the topological relationship of urban railway stations more accurately. 

Effects of Land-use Characteristic and Social Network Centrality (Model 2) 

Before performing analysis of Model 2, multicollinearity was verified. When examining 

multicollinearity, we first look at the correlation between independent variables; if the value is 

high, multicollinearity is suspected. At this time, although opinions differ among scholars, it is 

common to doubt about 0.8 or higher (Shin et al., 2008; Midi et al., 2010). 

When the correlation of the independent variables used in this study was calculated, the value 

between reach value and closeness value was calculated to be 0.772, which is relatively high (see 

Table 4). However, a high correlation coefficient does not necessarily mean that multicollinearity 

exists (Park, 2019). Therefore, multicollinearity is finally determined by looking at the VIF value. 
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If the VIF value is greater than 10, multicollinearity should be suspected (Alin, A. (2010); 

Senaviratna, N. A. M. R., & Cooray, T. M. J. A. (2019); Kroll, C. N., & Song, P. (2013)). As a 

result of checking the VIF values of the data used in this study, the VIF values of all variables 

were calculated to be less than 10 (see Table 5). After synthesizing the contents of previous studies 

and the analysis results of this study, we judged that the independent variable of Model 2 did not 

have a major problem with multicollinearity. 

Table 4. Correlation between independent variables 

  

 𝐶𝑖
𝑅 𝐶𝑖

𝐵 𝐶𝑖
𝐶 𝐿𝑖

𝑟  

𝐿𝑖
𝑐 

(ln) 

𝐿𝑖
𝑏 

(ln) 

𝐿𝑖
𝑝
 

(ln) 

𝐿𝑖
𝑜(ln) 

𝐿𝑖
𝑑𝑒𝑛  

(ln) 

𝐿𝑖
𝑑𝑖𝑣 

𝐶𝑖
𝑅 1.000 -0.545 -0.773 0.095 0.161 -0.236 0.078 0.189 0.245 0.066 

𝐶𝑖
𝐵 -0.545 1.000 0.196 -0.173 -0.075 0.041 0.093 0.048 -0.080 -0.154 

𝐶𝑖
𝐶 -0.773 0.196 1.000 0.091 -0.199 0.224 -0.246 -0.373 -0.244 -0.001 

𝐿𝑖
𝑟  0.095 -0.173 0.091 1.000 -0.159 -0.100 -0.124 -0.146 0.048 0.453 

𝐿𝑖
𝑐 

(ln) 
0.161 -0.075 -0.199 -0.159 1.000 -0.384 -0.328 0.002 -0.287 -0.148 

𝐿𝑖
𝑏 

(ln) 
-0.236 0.041 0.224 -0.100 -0.384 1.000 0.239 -0.024 -0.387 -0.532 

𝐿𝑖
𝑝
 

(ln) 
0.078 0.093 -0.246 -0.124 -0.328 0.239 1.000 0.120 -0.350 -0.319 

𝐿𝑖
𝑜 

(ln) 
0.189 0.048 -0.373 -0.146 0.002 -0.024 0.120 1.000 -0.320 -0.325 

𝐿𝑖
𝑑𝑒𝑛  

(ln) 
0.245 -0.080 -0.244 0.048 -0.287 -0.387 -0.350 -0.320 1.000 0.543 

𝐿𝑖
𝑑𝑖𝑣 0.066 -0.154 -0.001 0.453 -0.148 -0.532 -0.319 -0.325 0.543 1.000 

In Model 2, we used SNA measures of centrality and tested their effects on the number of 

passengers and average travel distance (Table 5). Not only were more variables significant but 

also the explanatory power of the regression model increased. All of the network centrality 

variables, including reach (C𝑖
R), betweenness (C𝑖

𝐵), and closeness (C𝑖
𝐶), were significant predictors 

of the number of passengers. Reach and closeness variables were also significant predictors of 

average travel distance. A more detailed interpretation of each analysis result follows. 

The network centrality variables were important in explaining the number of passengers at urban 

rail stations. The most significant variable among them was reach (C𝑖
R ); it had a negative 

standardised coefficient, such that higher reach (C𝑖
R) decreased the number of passengers. When 

there were more alternative stations available around one station, fewer passengers used the 

station. The coefficients of closeness (C𝑖
𝐶 ) and betweenness (C𝑖

𝐵 ) were positive, showing an 
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increase in passengers when closeness (C𝑖
𝐶) and betweenness (C𝑖

𝐵) increased. Based on these 

results, the number of passengers increases when the station is connected to several lines or 

located near the city center. This study went a step further than Gonçalves et al. (2009) by 

empirically analyzing the effects of the network centrality categories.  

The reach variable (C𝑖
R) had a significant negative effect on the average travel distance; its 

coefficient (−0.727) and t-value (−6.885) were the highest among the network centrality variables. 

Betweenness (C𝑖
𝐵) was not significant, meaning that the network centrality of an urban railway is 

not related to a decreased travel distance. The closeness (C𝑖
𝐶) was also significant; its coefficient 

(0.329) and t-value (3.150) indicated a positive effect on average travel distance. 

Higher reach values indicate that there are more stations that can be used as origins and 

destinations. For this reason, as the reach value increases, the average travel distance decreases. 

Stations with a large closeness value are in the center of the city. At stations with large values, 

the average distance of travel is longer. The results of this analysis are deeply related to the urban 

spatial structure of the Seoul metropolitan area. The social, economic, and cultural facilities of 

the Seoul metropolitan areas (Seoul, Gyeonggi, and Incheon) are concentrated in the center of 

Seoul, where the closeness value is high. In addition, residences are concentrated in the suburbs 

of Seoul, Gyeonggi, and Incheon. This urban spatial structure causes long-distance traffic for 

people who make Seoul’s center a destination for their activities.  

These results contradict the results from Model 1, which used the distance from the CBD as an 

independent variable. Unlike Model 1, Model 2 used the SNA reach value as control. In other 

words, the distances to the CBD used in Model 1 constitute a mixture of the reach value and the 

closeness value calculated through SNA. Hence, the model’s explanatory power was diminished. 

In terms of the land-use characteristic variables, business facilities’ floor space ( 𝐿𝑖
𝑏 ) had a 

significant negative effect on average travel distance. Public facilities’ floor space (𝐿𝑖
𝑝

) and 

density of all land-use floor space (𝐿𝑖
𝑑𝑒𝑛) had significant positive effects on number of passengers 

and average travel distance. These results contrast with the results in Table 3 discussed above. As 

with the various previous studies presented above (Cervero and Kockelman, 1997; Cervero and 

Murakami, 2009; Lin and Shin, 2008), the density variable had a positive effect on average 

distance traveled by users of the subway station. Diversity had a negative effect on number of 

users in urban train stations, as in previous studies in Korea (Sung et al, 2014; Yoo, 2013). 

Additionally, the significance of most land-use variables compared to Table 3 indicates that 

application of the SNA methodology used in this study was important. 
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Table 5. Results of multivariate linear regression analysis for Model 2 

Model 2 

Independent variable 

Number of  passengers (ln) 

(Model 2-1) 

Average travel distance (ln) 

(Model 2-2) 
VIF 

β t p β t p 

(Constant) - *** 3.413 0.001 - *** 6.895 0.000 - 

Network 

centrality  

(Model 2) 

𝐶𝑖
𝑅 -0.551 *** -6.382 0.000 -0.727 *** -6.885 0.000 5.877 

𝐶𝑖
𝐵 0.225 *** 4.477 0.000 -0.023  -0.368 0.713 2.001 

𝐶𝑖
𝐶 0.397 *** 4.662 0.000 0.329 *** 3.150 0.002 5.740 

Land-use 

characteristics 

𝐿𝑖
𝑟  -0.154 *** -3.515 0.001 -0.128 ** -2.379 0.018 1.515 

𝐿𝑖
𝑐 (ln) 0.449 *** 6.195 0.000 0.137  1.542 0.124 4.158 

𝐿𝑖
𝑏 (ln) -0.080  -1.030 0.304 -0.381 *** -4.022 0.000 4.737 

𝐿𝑖
𝑝
 (ln) 0.147 *** 2.764 0.006 0.187 ** 2.873 0.004 2.234 

𝐿𝑖
𝑜 (ln) 0.227 *** 4.409 0.000 0.276 *** 4.371 0.000 2.100 

𝐿𝑖
𝑑𝑒𝑛  

(ln) 
0.160 ** 2.468 0.014 0.351 *** 4.425 0.000 3.322 

𝐿𝑖
𝑑𝑖𝑣 -0.173 ** -2.473 0.014 0.014  0.168 0.867 3.849 

𝑅2 (Adj. 𝑅2) 0.671 (0.658) *** 0.507 (0.488) *** - 

***p < 0.01, **p < 0.05, *p < 0.1  

Effects of Improvements 

Finally, we summarize the improvements secured by using SNA to determine network centrality 

(see Table 6). For an explanation of the number of passengers, the adjusted 𝑅2  showed an 

improvement of 0.272 (from 0.386 to 0.658) and the number of significant variables increased 

from six to nine when we applied SNA. For the model of the average travel distance, the adjusted 

𝑅2  showed an improvement of 0.220 (from 0.268 to 0.488) and the number of significant 

variables increased from four to seven when we applied SNA. These improved results indicate 

that models using network centrality variables created through SNA can better explain the number 

of passengers and the average travel distance by as much as 27.2% and 22.0%, respectively. 

Moreover, these results show that social network centrality is better than the usual network 

centrality in determining which variables increase the number of passengers and decrease the 

average travel distance. In addition, increasing the number of significant variables implies that 

we can formulate more methods for increasing the number of passengers or decreasing the 

average travel distance.  
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Table 6. Comparison of improvements between Model 1 and Model 2 

Models Dependent variables 𝑅2 (Adj. 𝑅2) 

No. of 

significant 

variables 

Model 1 

Model 1-1 Number of passengers (ln) 0.406 (0.386) 6 

Model 1-2 Average travel distance (ln) 0.293 (0.268) 4 

Model 2 

Model 2-1 Number of passengers (ln) 0.671 (0.658) 9 

Model 2-2 Average travel distance (ln) 0.507 (0.488) 7 

Improvement  

(Model 2 – Model 1) 

Number of passengers (ln) +0.265 (0.272) +3 

Average travel distance (ln) +0.214 (0.220) +4 

Conclusions 

TOD has become one of the key planning methods to manage urban growth intelligently in the 

twenty-first century. In the academic world, research on constructing a theoretical framework for 

TOD definition, characteristics, and design guidelines, as well as empirical studies for predicting 

the effect of TOD implementation have been conducted. However, analyses of the catchment 

areas have emphasized flaws in how the topology of stations has been measured.  

This study shows the applicability of the SNA technique in urban planning. Although SNA was 

developed for social networks, it has recently also been applied in urban research, e.g., for 

geographical analysis and transportation planning. In the field of urban planning, SNA has been 

implemented using road networks to calculate regional centrality indexes, which is used to 

determine urban spaces or activities. This study extended the coverage of SNA from road 

networks to public transportation networks. The centrality of each station was used for analysis 

of the catchment area. Thus, this research provides an opportunity to apply the same methodology 

not only to the physical network of a city but also to public transport routes or vehicle travel paths. 

Secondly, we proposed an application of this method to the calculation of the topology of stations 

in TOD analysis. Studies of TOD have proposed and implemented many different methodologies 

for quantifying the topology of stations. However, as explained above, these approaches have 

several limitations. We presumed that SNA could be an alternative to overcome these limitations. 

The centrality of a station computed using SNA provides not only a quantitative measurement of 

the number of links passing through a station but also the relationship with nearby stations and, 

by extension, the topology of each station within the entire city. Using this centrality measure in 

the analysis of the catchment area of a station overcomes the limitations of prior TOD studies. 

Thirdly, we analyzed the factors affecting the number of passengers as well as the travel distance. 

It was emphasized that the transportation service quality should be increased for sustainable urban 

development not only in the field of TOD but also in other urban planning areas. Based on this 

paradigm, numerous studies have been conducted to identify factors that affect the number of 

users of public transit. However, it is necessary to increase the number of users and shorten the 

travel distance to utilize the limited public transportation infrastructure efficiently. Reducing the 

distance traveled by urban rail users contributes to lowering the number of passengers on 

carriages. This reduces the congestion of carriages, which increases the quality of service of 
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transportation. This study is meaningful in that it addresses the issue of travel distance, which has 

been neglected in previous studies despite its contribution to improving public transportation 

utility.  

These three contributions make this study academically meaningful and provide significant 

benefits towards determining policies related to public transit. Previous studies had two 

limitations. Firstly, there were limitations regarding how station topology was calculated. Existing 

studies (Lee et al., 2013; Lyu et al., 2016; Nasri and Zhang, 2014; Arrington and Cervero, 2008; 

Sohn and Shim, 2010; Jun et al., 2015) did not reasonably calculate station topology. This study 

is significant in that station topology was rationally derived by applying the SNA methodology. 

Secondly, existing studies (Cervero, 1996; Cervero and Kockelman, 1997; Ewing and Cervero 

2001; Cervero and Murakami 2009; Lin and Shin 2008; Sung et al 2014; Yoo 2013) mainly 

analyzed factors affecting the increase in the number of passengers. As the number of passengers 

increases, the efficiency of public transport increases, but the quality-of-service decreases (MVA 

Consultancy, 2008; Kato, 2014). Therefore, this study is meaningful in that it included the travel 

distance of passengers, which affects the congestion of passenger cars, in the analysis. 

This study confirmed that the supply of new subway lines could change the topology of existing 

subway stations, which could also affect existing passenger traffic patterns. This study provides 

an indicator for measurement of how the traffic patterns of existing urban rail users will change 

with the supply of new routes. This means that this empirical study can greatly contribute to public 

transportation policymaking. In future studies, we will assess how changes in centrality due to the 

expansion of urban railway routes affect the number of passengers and traffic distance. In a 

follow-up study, we will perform the same analysis based on recent data and compare the analysis 

results with 2011 data to verify the difference. 
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