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 Recent advances in fractional order calculus led to the improvement of 

control theory and resulted in the potential use of a fractional adaptive 

proportional integral derivative (FAPID) controller in advanced academic 

and industrial applications as compared to the conventional adaptive PID 

(APID) controller. Basically, a fractional order adaptive PID controller is an 

improved version of a classical integer order adaptive PID controller that 

outperformed its classical counterpart. In the case of a closed loop system, a 

minor change would result in overall system instability. An efficient PID 

controller can be used to control the response of such a system. Among 

various parameters of an instable system, the speed of the system is an 

important parameter to be controlled efficiently. The current research work 

presents the speed control mechanism for an uncertain, instable system by 

using a fractional-order adaptive PID controller. To validate the arguments, 

the effectiveness and robustness of the proposed fractional order adaptive 

PID controller have been studied in comparison to the classical adaptive PID 

controller using the criterion of quadratic error. Simulation findings and 

comparisons demonstrated that the proposed controller has superior control 

performance and outstanding robustness in terms of percentage overshoot, 

settling time, rising time, and disturbance rejection. 
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1. INTRODUCTION 

 From the beginning of 19th century, the notion of using fractional order operator has been introduced 

in control theory [1].  Literature suggests that Liouville, Riemann, and Holmgren have presented the pioneer 

study in this context [1, 2]. The applications of fractional order differentiation have attracted the attention of 

researchers from a variety of science disciplines, especially in the fields of applied sciences [3, 4]. Numerous 

studies regarding feasible applications of fractional order differentiation in the field of engineering and 

technology have also been reported earlier [4,5]. 

The effect of instable systems can be controlled by adopting various practical methods such as an 

adaptive fractional-order switching-type control method, an adaptive fuzzy sliding-mode control method 

synchronization control method [6]. Among all these methods, the fractional order control system is the most 

reliable system being studied since last two decades [7,8].  

In [9,10], Oustaloup and his co-workers proposed the robust feedback control by using phase 

constant property of Bode’s transfer function against the variations in gain of the controller. The robustness is 

one of the main factors being studied extensively in the last decade because of the fact that robustness plays 
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an important role in defining the practical viability of fractional order controllers against different noises and 

perturbations. The role of robust feedback control has very much importance in non-volatile fractional order 

systems [11-13]. A fractional-order controller for stabilizing an unstable open loop is proposed in [14-16]. In 

[17], adaptive fractional PID controller based on neural network is proposed. In [5,11,17,18], an adaptive 

fractional PID controller was investigated. 

This work's primary contribution is using of novel fractional adaptive PID controller (FAPID) 

approach in order to reduce noise effect by introducing a fractional order integrator in the the conventional 

adaptive PID controller.The present work emphasizes on the improvement of classical feedback adaptive PID 

controller (APID) by implementing a fractional approach specifically, the introduction of fractional order 

integrator to control the noise effects. The manuscript is organized as; first we have discussed the 

fundamentals of a fractional order system followed by the study of algorithms for a fractional adaptive PID 

controller. Afterwards, the results obtained from simulation data are presented and lastly, the conclusions 

along with future perspectives of the study are given.  

 

2. FRACTIONAL ORDER SYSTEMS 

2.1.   Fractional calculus  

It is well-known that calculus is used to generalize the derivation or integration of various functions. 

However, a subfield of calculus is called fractional calculus, which normally uses non-integer order for the 

generalization of derivatives or integrals of a function.  For instance, fractional calculus would help to 

evaluate n-fold integrals like (𝑑𝑞𝑦 𝑑𝑡𝑞⁄ ), where n represents the fractional, irrational or complex part. For 

purely fractional-order systems, n would be considered as fraction. It is worth mentioning that the real-world 

applications of fractional calculus grow rapidly owing to the fact that these mathematical aspects would help 

to express a system more precisely when compared with conventional classical methods.  Factually, the real 

objects are found generally fractional, although fractionally is observed to be very low for most of them. The 

lack of solutions for fractional differential equations is one of the main reasons to study integer-order models. 

To date, many studies are available regarding the use of fractional calculus in many practical applications e.g. 

in controllers, capacitors, control theory and circuit analysis [19-21].  

For differentiation and integration, a generalized fundamental operator being used is given as; 

 aDt
α = {

dα

dtα
               , R(α) > 0

1                  , R(α) = 0

∫ (dτ)-α     , R(α) < 0  
t

a

                                                                                                        (1) 

Where, ‘𝑎’ represents the lower limit of integration, ‘𝑇’ represents the upper limit of integration, ‘𝛼′ 
represents the order of fractional operator (𝛼 ∈ 𝑅) and ‘𝑅(𝛼)’represents the real part of 𝛼. 

Since 19th century, the focus has been shifted towards development of fractional-order theory for 

derivatives. Amongst various definitions of fractional order derivative, the Grünwald-Letnikov definition is 

widely accepted one because of its suitability for control algorithms [22-24]. The Riemann-Liouville 

definition is the second most important definition of fractional order derivative being used.The Grünwald-

Letnikov definition can be expressed mathematically as; 

 𝐷𝛼𝑓(𝑡) = lim
ℎ→0

ℎ−𝛼 ∑ (−1)𝑗𝑘
𝑗=0 (

𝛼
𝑗 ) 𝑓(𝑘ℎ − 𝑗ℎ)                                                                       (2) 

Here, ‘h’ is the step time and the coefficients given in above relation can be evaluated from the 

expression given below; 

               𝜔𝑗
(𝛼)

= (
𝛼
𝑗 ) =

Ӷ(𝛼+1)

Ӷ(𝑗+1)Ӷ(𝛼−𝑗+1)
 

The Riemann-Liouville definition can be expressed mathematically as: 

0 1

( )
( )

( )

n
t

n n

d f
f t d

dt t 




 − +
= 

−
                                                                                                             (3) 

It is worth mentioning that as far as the problems of real-world applications are concerned, 

specifically applications from the field of physical and engineering sciences, the Riemann-Liouville and 

Grünwald-Letnikov definitions are taken as equivalent [6,25-28].  

 

2.2. Approximation methods FOTF: 

Literature suggested that there are several approximations are available for fractional order transfer 

functions (FOTF). All the available approximations demonstrate some advantages over the others in the 

context of a few characteristics. It is a bit difficult to say which approximation would deliver the best results.  

There are several characteristics that would decide the relative merits of any approximation, such as 
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differentiation order, frequency behavior, time responses… etc. Several approximations are discussed here 

with respect to their comparative analysis with others. The available approximations belong to two different 

domains i.e. frequency and time domains which are specified as s-domain and z-domain, respectively. The 

approximations in frequency and time domains are also termed as continuous and discrete approximations.  

 

2.2.1. Oustaloup approximation method 

The Oustaloup pmethod is based on the function approximation from as; 

 Gf(s) = 𝑆𝛼             , 𝛼 ∈ 𝑅+                                                                                                                 (4) 

By taking into account the rational function [29,30]; 

 Gf(s) = K ∏
s+wk

′

s+wk

N
k=1                                                                                                                           (5) 

However, gain , zeros, and poles can be evaluated as: 

K = wh
γ
   ,  wk = wb. wu

(2k−1+γ)/N
 ,    wk

' = wb. wu
(2k-1-γ)/N

       

Where 𝑤𝑢represents the unity gain in frequency and the central frequency in a geometrically 

distributed frequency band.  Let,𝑤𝑢 = √𝑤ℎ𝑤𝑏 , where 𝑤ℎ and 𝑤𝑏represent the upper and lower frequencies, 

respectively. 𝛾 and 𝑁 are the orders of derivative and filter, respectively. 

 

2.2.2. Charef 's transfer approximation method: SingularityFunction 
The Charef 's transfer method is based on approximation of the function [11] : 

 Gf(s) = 𝑆𝛼             , 𝛼 ∈ 𝑅+ 

These processes in the frequency domain can be described by an approximation in the Laplace 

domain such as : 

 Gf(s) = 𝑠𝛼  ≈ (1 +
𝑠

𝑃𝑇
) ≈

∏ (1+
𝑠

𝑃𝑖
)𝑁

𝑖=0

∏ (1+
𝑠

𝑍𝑖
)𝑁−1

𝑖=0

                                                                                                (6) 

Where    𝑃𝑖 = (𝑎𝑏)𝑖 . 𝑃0      , 𝑖 = 1,2,3, … , 𝑁 

𝑍𝑖 = (𝑎𝑏)𝑖 . 𝑎. 𝑃0      , 𝑖 = 2,3, … , 𝑁 − 1 and  𝑃0 = 𝑃𝑇 . 10
𝑒𝑃

20𝛽, 𝛼 = 10
𝑒𝑃

10(1−𝛽)  , 𝑏 = 10
𝑒𝑃

10𝛽 , 𝛽 =
log (𝑎)

log (𝑎.𝑏)
 

2.3. The Fractionalized Integrator 

 The analysis of fractionalized integrator in the frequency domain is discussed below, keeping in 

view the applications of a fractional integrator regarding transfer functions of a feedback control system as 

specified in equation (1). Figure 1 shows the Laplace transform of a fractionalized integrator in order to 

depict the effectiveness of this method. 

The integral operator 1/𝑠 is fractionalized in this case.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed fractionalized integrator 

 

The Fractionalized integrator is given by the folowing equation: 
1

s
=

1

sα

1

s(1−α)                                                                                                                                         (7) 

here, ‘𝛼’ is a real number i.e.,0 < 𝛼 < 1. 
The Oustaloup and Charef approximation methods were used comparatively in the frequency 

domain between 
1

𝑆
   and the product of  

1

𝑆𝛼  and   
1

𝑆1−𝛼   as shown in Figure 2.  

Bode's diagram of the original integrator depicts that the Charef approximation approach is better 

when compared with the Oustaloup approximation. For a particular interval of frequency, the product of 

filters resulted in a satisfactory approximation of the integral operator. As 𝛼 is a real number abd if we take a 

fractional value of 𝛼 =  0.4 for example, we can get an approximated values between 𝜔𝑏 =  0.1𝑟𝑎𝑑/𝑠𝑒𝑐, 

𝜔ℎ =  1000𝑟𝑎𝑑/𝑠𝑒𝑐, 𝛿 =  1.5𝑑𝛽 by using the singularity approximation method.  

1

𝑠
 

1

𝑠1−𝛼
 

1

𝑠𝛼
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Figure 2. Frequency domain comparison of the Oustaloup and Charef approximations methods 

 

3. CONTROL STRATEGY DESIGN  
3.1   Integer adaptive PID Controller 

The integer adaptive feedback control law is given by the equation 5, [30]: 

 𝑢(𝑡) = −𝑘𝑐[𝑘1(𝑡)𝑒(𝑡) + 𝐼{𝑘2(𝑡)𝑒(𝑡)} + 𝐷(𝑘3(𝑡)𝑒(𝑡))]                                                           (8)             
Where:  

𝑘1(𝑡) = 𝑘𝑝(𝑡) + 𝛼1𝑘𝑖(𝑡) + 𝛼3𝑘𝑑(𝑡) 

𝑘2(𝑡) = 𝛼2𝑘𝑖(𝑡) 

𝑘3(𝑡) = 𝛼4𝑘𝑖(𝑡) 

𝑘𝑝(𝑡) = 𝑒²(𝑡) 

𝑘𝑖(𝑡) = 𝐼{𝑒²(𝑡)} 

𝑘𝑑(𝑡) = 𝐷{𝑒²(𝑡)} 

𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) 

Where  𝑘𝑐, 𝛼1 and 𝛼2 are positive constants. 

A simple control system is shown in Figure 3. It is expected that the integral term in the controller 

(Equation 8) will help to eliminate the effects of constant disturbance in a closed-loop system without 

destroying its stability [25]. 

                          

Figure 3. Classical Adaptive PID Control System 

 

3.2   Fractional adaptive PIλDμ  Controller 

The control law of Fractional adaptive feedback is given as; 

 𝑢(𝑡) = −𝑘𝑐  [𝑘1(𝑡) 𝑒(𝑡) + 𝐼𝜆{𝑘2(𝑡)𝑒(𝑡)} + 𝐷𝜇(𝑘3(𝑡)𝑒(𝑡))]                                                            (9) 

Where: 𝑘1(𝑡) = 𝑘𝑝(𝑡) + 𝛼1𝑘𝑖(𝑡) + 𝛼3𝑘𝑑(𝑡) 
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𝑘2(𝑡) = 𝛼2𝑘𝑖(𝑡) 

𝑘3(𝑡) = 𝛼4𝑘𝑖(𝑡) 

𝑘𝑝(𝑡) = 𝑒²(𝑡) 

𝑘𝑖(𝑡) = 𝐼𝜆{𝑒²(𝑡)} 
𝑘𝑑(𝑡) = 𝐷𝜇{𝑒²(𝑡)} 
𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) 

                     
Figure 4. Fractional Adaptive PID Control System 

 

4. RESULTS AND DISCUSSION 

Remark 1: By applying the proposed adaptive controller with 𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡) instead of 𝑦(𝑡) can resolve 

the step reference tracking problem. The closed-loop system now becomes stable and satisfies the following 

limit; 

lim
𝑡→∞

𝑦(𝑡) = 𝑟 , where r is a constant. 

Remark 2: The tuning parameters 𝛼1, 𝛼2, 𝛼3, 𝛼4 and 𝑘𝑐 will have an impact on the system's transient -term 

performance but not on the cost of stability of the system.  

To accelerate the response, a large value of 𝑘𝑐 can be taken although it requires bit higher input 

values. The 𝛼1 and 𝛼3 in the proportional process, 𝛼4 in derivation and 𝛼2  in integration process would 

definitely improve the rise time and offset removing without any requirement of higher initial input values.  

However, the tuning of the system is application-dependent and needs more investigation regarding its 

practical viability. 

An example from the literature is taken to validate the proposed robustness of proposed fractional 

adaptive controller [30]:  

{
𝑥(𝑡)̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑑

𝑦(𝑡) = 𝐶 𝑥(𝑡)
                                                                                                 (10) 

Where d is a constant perturbation vector and: 

               𝐴 = [
−3 0 0
1 2 −1.414
0 1.414 0

], 𝑏 = [
1
0
0

],   𝑐 = [1 5 0],     𝑑 = [0.5 0.5 0.8]𝑇  

By using the initial parameters as, 𝑘𝑐 = 5, α1 = 3000, 𝛼2 = 5000 , μ=0.5 and λ = 0.3 , the 

simulation response is depicted in Figure 5.  

 

 
                               (a) (b) 

Figure 5. Comparison of the output for APID and FAPID  with random output noise of :          

(a) 5%  of the reference signal amplitude and (b) 15 % of the reference signal amplitude 
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Figure 6 and 7 show the control signal and the error signal for a conventional and fractional order 

adaptive PID controller. 

     
                                     (a) (b) 

Figure 6. The Control signal for APID and FAPID  with random output noise of :          

(a) 5%  of the reference signal amplitude and (b) 15 % of the reference signal amplitude 

 

 
                               (a) (b) 

Figure 7. The Error signal for of APID and FAPID  with random output noise of :          

(a) 5%  of the reference signal amplitude and (b) 15 % of the reference signal amplitude 

 

Figure 8 shows the evolutions of the 𝑘1, 𝑘2 and 𝑘3 parameters with random output noise of 5%  of 

the reference signal amplitude: (a) APID and  (b)  FAPID. 

 
                               (a) (b) 

Figure 8.  Evolutions of 𝑘1, 𝑘2, 𝑘3  parameters with random output noise of :          

5%  of the reference signal amplitude using:  (a) APID and  (b)  FAPID 

 

Figure 9 shows the evolutions of the  𝑘1, 𝑘2 and 𝑘3 parameters with random output noise of  15%  

of the reference signal amplitude: (a) APID and  (b)  FAPID. 
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(a)                                                             (b) 

Figure 9.  Evolutions of k1, k2, k3 parameters with random output noise of :          

15%  of the reference signal amplitude using:  (a) APID and  (b)  FAPID 

 

We remark that the fractional order adaptive PID controller has superior control performance and 

outstanding robustness in terms of percentage overshoot, settling time, rising time, and disturbance rejection 

compared with the integer order adaptive PID controller. 

 

5. ROBUSTNESS ANALYSIS 

A quadratic error criterion J was defined to evaluate the performance of proposed control system as; 

𝐽∞ = ∫ (𝑈𝑅(𝑡) − 𝑌(𝑡))2𝑑𝑡
𝑡𝑓

𝑡1
                                                                                                             (11) 

 The noise reduction (𝑁𝑟) percentage is given by: 

𝑁𝑟[%] =
𝑚𝑖𝑛(𝐽𝐹𝐴𝑃𝐼𝐷)

𝐽𝐴𝑃𝐼𝐷
𝑋100                                                                                                               (12) 

The criterion for quadratic error with random output noise of 5% with 𝜇 = 0.5 and 𝜇 = 0.7  are 

given in Table 1 and 2, respectively. 

 

Table 1. The Criterion of quadratic error using random output noise of  5% with 𝜇 = 0.5 

 FPID ( 𝜇 = 0.5) APID ( 𝜇 = 1) 

λ           0.1           0.2          0.3          0.4         0.5         0.6            0.7         0.8          0.9      1 

𝐽 2.3 2.5 2.3 2.8 2.6 2.4 2.7 2.3 2.3 6.2 

 

Table 2. The Criterion of quadratic error using random output noise of 5% with 𝜇 = 0.7. 
 FPID ( 𝜇 = 0.7) APID ( 𝜇 = 1) 

λ           0.1           0.2          0.3          0.4         0.5         0.6            0.7         0.8          0.9      1 

𝐽 3.5 3.4 3.7 3.6 3.2 3.4 3.7 3.2 3.3 6.2 

 
The criterion for quadratic error with random output noise of 15% with 𝜇 = 0.5 and 𝜇 = 0.7 are 

given in Table 3 and 4, respectively. 

 

Table 3. The Criterion of quadratic error for random output noise of  15 % with μ=0.5 

 FPID ( 𝜇 = 0.5) APID ( 𝜇 = 1) 

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝐽 4.6 4.5 4.3 4.9 4.7 5.1 4.7 4.3 4.5 9.8 

 

Table 4. The Criterion of quadratic error for random output noise of 15% with 𝜇 = 0.7 

 FPID ( 𝜇 = 0.7) APID ( 𝜇 = 1) 

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝐽 5.4 5.3 5.7 5.3 5.3 5.8 5.5 5.3 5.4 9.8 

 

From Table 1−4, the nosie reductions (using Eq.12) are: 37.09%, 51.61%, 43.87%, and 54.08 

respectively. It is observed that a fractional-order adaptive PID controller is able to reduce the noise effects 

between (37%  to 54%) as compared to an integer-order adaptive PID controller. 
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6. CONCLUSION 

In summary, a new comparison approach using Oustaloup and Charef approximations with a 

fractionalized integrator has been proposed to enhance the control of a closed-loop system. Furthermore, both 

fractional and integer PID controllers have been studied comparatively on the basis of reduction in noise and 

robustness of the control system. Simulation results show that the fractional-order adaptive PID controller is 

able to reduce the noise effects by up to 54% as compared to the integer-order adaptive PID controller. It is 

suggested that the proposed robustness of the system should be generalized in the future for other adaptive 

and non-adaptive control systems. 
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