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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

The current demand trends have been shifting from mass
production to mass customisation since the end of the 20th Cen-
tury, and even further towards mass personalisation [1]. As a re-
sult, an increasing number of industries are facing an atomised
demand, which could be denoted as ‘high-mix low-volume’ [2]:
a great number of products -and product variants- are in demand
in small quantities each. Moreover, the expected shortening of
production lead times and reduction of inventory levels put ad-
ditional pressure on businesses to streamline their processes to
compete in the global marketplace [3]. In this context, assembly
operations need to be flexible while achieving high productiv-
ity, which confronts the traditional dichotomy between manual
(highly flexible, not quite productive) and automated assembly
(highly productive, not quite flexible).

Since the term Industry 4.0 was introduced by the German
government in 2011 [4], it is used to refer to an array of disrup-
tive digital technologies which are expected to bring forward
the fourth industrial revolution [5]. Some of these Key Enabling
Technologies have been shortlisted to be most impactful on the
performance of assembly operations [6] -namely the Internet of

Things, big data, real-time optimisation, cloud computing, cy-
ber physical systems, machine learning, augmented reality, col-
laborative robots and additive manufacturing - by enabling the
main characteristics of Assembly 4.0 [7]: late customisation,
assembly control systems, aided assembly, intelligent storage
management, self-configured workstation layout and product
and process traceability.

Nonetheless, questions arise following these analysis, such
as the following: Which of the features brought by Industry 4.0
technologies would have the most positive impact on the opera-
tional and business goals of assembly operations? What would
be the best method of implementing these changes to achieve
the maximum return on investment? Previous work [8] estab-
lished that it is clear that Lean Manufacturing has a critical role
to play in this transformation due to the similarities and syner-
gies with Industry 4.0, and that there is a lack of methodologies
for implementing the new digital technologies of Industry 4.0
to address concrete business goals.

The main approaches to evaluate alternative scenarios and
the impact of design variables on the assembly operations Key
Performance Measures (KPIs) include mathematical modelling,
simulation, and other techniques such as Petri nets or artifi-
cial intelligence, among others [9]. Mathematical models that
consider setup times usually do so in a simplified way, as ei-
ther sequence-independent or sequence-dependent times, al-
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though some authors have considered the importance of prod-
uct change dependent inter-task times [10–12]. On the other
hand, Discrete Event Simulation inherently considers the as-
sembly stations waiting and blocking times induced by finite
buffers and cycle time differences between distinct products.
However, simulation models are more complex and require
larger time investments to be built. A simplified mathematical
formulation with a focus on changeover losses would allow a
quick initial assessment of operational KPIs in a high-mix low-
volume demand environment where small batch sizes and fre-
quent changeovers are major drivers of the assembly system’s
performance.

The goal of this article is to introduce two simple yet com-
prehensive models that can be used to evaluate the performance
of high-mix low-volume manual or semi-automatic assembly
lines, allowing to gain a deep understanding of the implications
of different parameters on the line KPIs.

The present article is structured as follows: Section 2 -
Methodology - presents the two models developed and the real
case from an industrial partner used to validate them. Section 3
includes the Results and analysis of the aforementioned valida-
tion cases, and Section 4 present the Discussion and Conclusion
of the article.

2. Methodology

Two assembly line performance evaluation models were de-
veloped, using MATLAB® and FlexSim® respectively. They
consider a series of input parameters that are processed to pro-
duce the line KPIs as output.

This section is comprised of five Subsections. The general
framework employed is presented in Subsection 2.1; Subsection
2.2 introduces a parametric model implemented using MAT-
LAB®; Subsection 2.3 describes a discrete events simulation
model implemented using FlexSim®; Subsection 2.4 compares
the advantages and disadvantages of both models, and Subsec-
tion 2.5 describes the industrial case used to validate both mod-
els against real data from the manufacturing plant of a research
business partner.

2.1. Framework

The models used for evaluating the performance of multi-
product assembly lines consider a single linear series of work-
stations, with one or two quality control (QC) stations inte-
grated with them, as depicted by Fig 1.

Fig. 1: Multi-product assembly line with quality control stations.

The model is defined by a set of input variables -divided into
design, fixed and disturbance parameters- which produce a set
of KPIs as a result, as shown in Table 1.

Table 1: Input variables and KPIs considered in the models.

Type Variable Notation

Design parameters No. workstations Nstations
No. of products Nproducts
Batch size Nbatchsize
Max. WIP between stations WIP

Fixed parameters Cycle time Tcycle
Work Content WC
Line balance Bal
Setup time Tsetup
First Time Yield FTY
Work Content Ratio WCratio

Disturbances Variability of process time Varprocess
Variability of setup time Varsetup

KPIs Output Output
Throughput Throughput
Lead time LeadTime
Labour productivity Prodlabour
Line productivity Prodline

The models consider a manual assembly line capable of pro-
ducing multiple products. After finishing a batch of units of a
certain product, the workstations need to change over to the
next product, by carrying out a setup. The setup time depends
both on the outgoing and the incoming products.

2.2. Parametric Model

Firstly, a parametric model was developed to obtain the de-
sired KPIs. It calculates the productive time from the available
time minus the changeover time. It then works out the actual
productive time of each batch of products by subtracting the
time lost due to line imbalance, minor stops and defects, as il-
lustrated conceptually in Fig. 2.

The software MATLAB® (2019b, The MarhWorks Inc.,
Natick MA, United States) was used to implement the algo-
rithm described below. MATLAB® was chosen because of its
user friendliness since the algorithm presented here does not
require the use of an optimised programming language (e.g.
C/C++) to complete the calculations in a very short time.

In the first place, the cycle time of each batch of products in
the sequence is calculated using Equation 1.

Tcycle =
WC

Nstations · Bal
(1)

For each batch, the time lost on changeover depends on the
previous product (pout) and the product of the current batch
(pin). Equations 2-7 describe its calculation. For each worksta-
tion i, the start and finish times of the previous batch are calcu-
lated using Equations 2-4.

t f inish out,1 = Tcycle(Pout) (2)
2
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Fig. 2: Productivity losses in multi-product assembly lines considered in the
parametric model.

tstart out,i = t f inish out,i−1 (3)

t f inish out,i = tstart out,i + Tcycle(pout) (4)

For each workstation i, the finishing time of the changeover
is given by Equation 5.

t f inish co,i = t f inish out,i + Tsetup(pout, pin) (5)

For each workstation i, the start and finish times of the first
unit of the incoming product are calculated using Equations 6-
7.

tstart in,i = max
{
t f inish co,i ; t f inish in,i−1

}
(6)

t f inish in,i = tstart in,i + Tcycle(pin) (7)

In case Tcycle(out) ≥ Tcycle(in), the time lost on each station i
is given by Equations 8-9.

i ∈ {1,Nstations − 1} : Tlost,i =

max
{
0 ; t f inish co,i+1 − t f inish in,i −WIP · Tcycle(in)

} (8)

i = Nstations : Tlost,i = Tsetup(pout, pin) (9)

In case Tcycle(out) < Tcycle(in), the time lost on each station i
is given by Equations 10-11.

i = 1: Tlost,i = Tsetup(pout, pin) (10)

i ∈ {2,Nstations} : Tlost,i = t f inish in,i−1 − t f inish out,i (11)

Having calculated the time lost due to the changeover for
each station, the total time lost is obtained with Equation 12.

Tlost co = max
{
Tlost,i

} · Nstations (12)

For each batch of products, a number of units have defects,
depending on the product First Time Yield -see Equation 13-14.

Nde f ects = ⌈Nbatchsize · FTY⌉ (13)

Ncon f orming = Nbatchsize − Nde f ects (14)

Equations 15-16 calculate the time employed to assemble
defective and conforming units.

Tde f ects = Nde f ects · Nstations · Tcycle (15)

Tcon f orming = Ncon f orming · Nstations · Tcycle (16)

Therefore, the time needed to complete each batch of prod-
ucts is given by Equation 17.

Tcomplete batch = Tcon f orming + Tde f ects + Tlost co (17)

Finally, for each batch, the recovered -productive- time is
calculated using Equation 18.

Trecovered = WC · Ncon f orming (18)

The KPIs shown in Table 1 can be now calculated consider-
ing the full sequence of NB batches using Equations 19-23.

Output =
NB∑
j=1

Ncon f orming, j (19)

Throughput =

∑NB
j=1 Ncon f orming, j∑NB

j=1 Tcomplete batch, j
(20)

LeadTimebatch = max
{
Tcomplete batch

}
NB (21)

Throughput =

∑NB
j=1 Trecovered, j∑NB

j=1 Tcomplete batch, j
(22)

Prodline =

∑NB
j=1 Ncon f orming, j

Nstations ·
∑NB

j=1 Tcomplete batch, j
(23)

2.3. Discrete Events Simulation Model

The second model employed to assess the performance of
manual multi-product assembly lines uses Discrete Events Sim-
ulation (DES) implemented on the software FlexSim® (2021.0,
FlexSim Software Products, Inc.). FlexSim® was chosen be-
cause it allows to recreate the changeover logic matching the
mathematical model within the additional complexity of a DES
model, as well as defining the KPIs to match the mathematical
formulation ones.

The model developed, illustrated in Fig. 3, consists of 3 or 4
workstations with one operator each, organized in a sequential

3
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multi product assembly line. Each operator, using a worksta-
tion (coloured orange in Figure 3), processes the corresponding
unit for a random period of time which follows a lognormal
distribution governed by the mean -cycle time- and the stan-
dard deviation -expressed by the process variability parameter
as a percentage of the mean: e.g. a process variability parameter
value of 0.20 equals to the standard deviation being 20% of the
cycle time. Once the unit has been processed, it can be placed
in the WIP buffers between stations (coloured dark grey in Fig.
3) before being processed on the next station. The two quality
control stations (coloured blue in Fig. 3) either reject or accept
passing units. The probabilities of each result are governed by
the First Time Yield (FTY) parameter. The changeover logic
works so that once an operator has finished processing the last
unit of a batch, it must set up its workstation for a duration
given by a lognormal distribution of mean equal to the setup
time parameter (which depends on the outgoing and incoming
products) and standard deviation given by the setup variability
parameter, similarly to the process variability. The numeric val-
ues of both parameters were estimated from real data gathered
by the industrial partner, using the maximum likelihood estima-
tors [13].

Fig. 3: Discrete Events Simulation model of Line 1.

2.4. Models features comparison

The two models described in Subsections 2.2 –parametric–
and 2.3 –discrete events simulation– aim to calculate the same
KPIs using the same input parameters. However, despite shar-
ing some features, they differ in several aspects that make them
behave differently under certain circumstances.

The first and most notable difference is that the parametric
model does not consider the variability of process and setup
times, while the DES model employs lognormal distributions
for these times, governed by two variability parameters which
express the ratio between the Standard Deviation and the Mean
of the lognormal distribution.

The second difference is related to Quality: the parametric
model considers an end-of-line quality control, while the DES
model features two in-line quality control stations (one located
in the middle and the other one located at the end of the assem-
bly line).

The third difference is that the parametric model assumes
the assembly stations are synchronous: they start and finish pro-
cessing products in sync, which might not be the case in indus-

trial environments. The DES model, on the other hand, does not
force assembly stations synchronisation, and therefore reflects
waiting or blocked times due to the effect of line imbalance,
defects and variability.

The last point is changeovers. Both models take into account
the workstations blocked and waiting times originated during a
product changeover by the cycle time difference between out-
going and incoming products. However, the DES model also
accounts for the combined effects of variability, quality issues
and out-of-sync, which deteriorate productivity even more than
these factors separately.

Having established the key differences, the next Subsection
describes the cases used for verifying and validating both mod-
els.

2.5. Verification and Validation – an industrial real case

To validate the models described previously, they were em-
ployed on two scenarios from a global white goods manufac-
turer site located in the North of Spain, which will be named
here as ‘Company B’. The scenarios consist of two different
manual assembly lines (‘Line 1’ and ‘Line 2’) that have not
been automated yet due to the substantial number of product
variants they produce: around 50 references grouped into 6-8
families on each line. Each family of references has been con-
sidered as a single product because the Work Content and as-
sembly sequence of the references within a product family are
identical. The low order quantities of each reference and rela-
tively high setup times relative to cycle times, make this case an
example of high-mix low-volume demand.

The input data used for both scenarios are summarised in
Table 2.

Table 2: Input data from an industrial real case for validating the models.

Variable Units Line 1 Line 2

No. workstations 4 3
No. product families 6 8
Batch size (avg.) units 66 64
No. of batches 27 33
Total units ordered units 1680 2116
Max. WIP between stations units 1 1

Cycle time (avg.) min 5.42 4.65
Work Content (avg.) min 21.68 13.95
Line balance (avg.) % 99.2 98.7
Setup time (avg.) min 6.85 8.35
First Time Yield % 99.2 99.8
Work Content ratio 1.33 1.41

Variability of process time % 20 20
Variability of setup time % 20 20

Both scenarios were calculated using the parametric and the
DES models, and the results were compared against the actual
KPIs obtained from the data gathered by the industrial partner.

To verify the models against each other (considering that the
parametric model does not include variability of process and

4
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3) before being processed on the next station. The two quality
control stations (coloured blue in Fig. 3) either reject or accept
passing units. The probabilities of each result are governed by
the First Time Yield (FTY) parameter. The changeover logic
works so that once an operator has finished processing the last
unit of a batch, it must set up its workstation for a duration
given by a lognormal distribution of mean equal to the setup
time parameter (which depends on the outgoing and incoming
products) and standard deviation given by the setup variability
parameter, similarly to the process variability. The numeric val-
ues of both parameters were estimated from real data gathered
by the industrial partner, using the maximum likelihood estima-
tors [13].

Fig. 3: Discrete Events Simulation model of Line 1.

2.4. Models features comparison

The two models described in Subsections 2.2 –parametric–
and 2.3 –discrete events simulation– aim to calculate the same
KPIs using the same input parameters. However, despite shar-
ing some features, they differ in several aspects that make them
behave differently under certain circumstances.

The first and most notable difference is that the parametric
model does not consider the variability of process and setup
times, while the DES model employs lognormal distributions
for these times, governed by two variability parameters which
express the ratio between the Standard Deviation and the Mean
of the lognormal distribution.

The second difference is related to Quality: the parametric
model considers an end-of-line quality control, while the DES
model features two in-line quality control stations (one located
in the middle and the other one located at the end of the assem-
bly line).

The third difference is that the parametric model assumes
the assembly stations are synchronous: they start and finish pro-
cessing products in sync, which might not be the case in indus-

trial environments. The DES model, on the other hand, does not
force assembly stations synchronisation, and therefore reflects
waiting or blocked times due to the effect of line imbalance,
defects and variability.

The last point is changeovers. Both models take into account
the workstations blocked and waiting times originated during a
product changeover by the cycle time difference between out-
going and incoming products. However, the DES model also
accounts for the combined effects of variability, quality issues
and out-of-sync, which deteriorate productivity even more than
these factors separately.

Having established the key differences, the next Subsection
describes the cases used for verifying and validating both mod-
els.

2.5. Verification and Validation – an industrial real case

To validate the models described previously, they were em-
ployed on two scenarios from a global white goods manufac-
turer site located in the North of Spain, which will be named
here as ‘Company B’. The scenarios consist of two different
manual assembly lines (‘Line 1’ and ‘Line 2’) that have not
been automated yet due to the substantial number of product
variants they produce: around 50 references grouped into 6-8
families on each line. Each family of references has been con-
sidered as a single product because the Work Content and as-
sembly sequence of the references within a product family are
identical. The low order quantities of each reference and rela-
tively high setup times relative to cycle times, make this case an
example of high-mix low-volume demand.

The input data used for both scenarios are summarised in
Table 2.

Table 2: Input data from an industrial real case for validating the models.

Variable Units Line 1 Line 2

No. workstations 4 3
No. product families 6 8
Batch size (avg.) units 66 64
No. of batches 27 33
Total units ordered units 1680 2116
Max. WIP between stations units 1 1

Cycle time (avg.) min 5.42 4.65
Work Content (avg.) min 21.68 13.95
Line balance (avg.) % 99.2 98.7
Setup time (avg.) min 6.85 8.35
First Time Yield % 99.2 99.8
Work Content ratio 1.33 1.41

Variability of process time % 20 20
Variability of setup time % 20 20

Both scenarios were calculated using the parametric and the
DES models, and the results were compared against the actual
KPIs obtained from the data gathered by the industrial partner.

To verify the models against each other (considering that the
parametric model does not include variability of process and
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setup time), the DES model was used for each scenario with
the Variability parameters set to zero.

The following Section 3 shows the results of the validation
and verification against the industrial case described above.

3. Results

This section includes the KPIs resulting from simulating the
two scenarios described in Subsection 2.5, named ‘Line A’ and
‘Line B’. Figure 4 shows the resulting KPIs: Output, Through-
put, Labour Productivity and Line Productivity.

Fig. 4: Results of simulation using a parametric and Discrete events simula-
tion model: (a) Output, (b) Throughput, (c) Labour productivity and (d) Line
productivity.

Figure 5 below shows the relative error of each of the models
when compared with the real industry data (column Company
B) for each of the results from Figure 4.

Fig. 5: Relative error of KPI results using a parametric and Discrete events
simulation model: (a) Output, (b) Throughput, (c) Labour productivity and (d)
Line productivity.

The relative errors between real industry data and the KPIs
obtained using the models presented in this article are in all
cases below 1% for Output, 5% for Throughput and Line Pro-
ductivity, and 3% for Labour Productivity, which allows consid-
ering both models validated. In summary, the average relative
error is 1.63% and the maximum relative error is 4.9%.

Moreover, the differences between the results of the para-
metric model and the DES model with no variability are con-
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sistent, not differing more than 3.5% in any KPI. This allows
considering that the models are also verified.

It should be noted that both models overestimate Through-
put and Productivity since they do not consider any constraints
outside of the assembly line such as machine breakdowns, com-
ponents quality or supply problems.

4. Discussion and Conclusion

The results shown in Section 3 allowed validating both mod-
els presented in Section 2 by comparison against real industry
data which considers two scenarios. The results also allowed to
verify the parametric model against the Discrete Events Sim-
ulation model with no variability, since their results differ less
than 3.5% for any KPI.

The results show that both models underestimate Output and
overestimate Throughput, Labour Productivity and Line Pro-
ductivity. The mean relative error is 1.63% and the max rela-
tive error is 4.9%, which means that both models are reliable
for high-mix low-volume demand scenarios similar to the ones
considered here.

The sources of the errors could be (1) the simplifications that
the models entail, such as the lack of process variability in the
parametric model or the consideration of non-conforming units
as scrap; (2) that constraints external to the assembly line take
place: defective components, internal logistics service prob-
lems, or quality control equipment breakdown, among others.

Regarding the models limitations, the parametric model
presents great ease of use and speed of calculations, so that
it can be used as a preliminary ‘enhanced calculator’. Never-
theless, it lacks the complexity to take into account the com-
bined effects of quality issues, variability, changeovers and mi-
nor stoppages. In consequence, it can be a useful, yet optimistic
tool. The DES model, on the other hand, is already a power-
ful tool for examining theoretical situations, evaluating assem-
bly line design alternatives, and answering specific questions
within a given scenario. Moreover, the DES model can be eas-
ily expanded to include automated stations –e.g. collaborative
robots [14]– or to take into account the effect of operator cog-
nitive support technologies such as Augmented Reality [15].

Future lines of work would employ the parametric model
presented here as a preliminary analysis tool, followed by a
DES model expanded from the one described here, but adjusted
to evaluate the impact of different digital technologies which
would affect certain variables: for example, while employing
collaborative robots would increase the line productivity, aug-
mented reality for operator support would reduce the process
time variability. Such a model would allow understanding how
to maximise the effect of investments to achieve the desired op-
erational or business goals. Finally, it remains an open topic
comparing the estimated improvements to be obtained imple-
menting Industry 4.0 digital technologies with the actual results
in an industrial environment.
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