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Abstract
We consider the highly oscillatory integral 𝐹(𝑤) ∶=
∫ ∞

−∞
𝑒𝑖𝑤(𝑡

𝐾+2+𝑒𝑖𝜃𝑡𝑝)𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤,
−𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤
𝐾, and 𝑔(𝑡) an entire function. The standard saddle
point method is complicated and we use here a simpli-
fied version of this method introduced by López et al.
We derive an asymptotic approximation of this integral
when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms
of elementary functions, and determine the Stokes lines.
For 𝑝 ≠ 1, the asymptotic behavior of this integral may
be classified in four different regions according to the
even/odd character of the couple of parameters 𝐾 and
𝑝; the special case 𝑝 = 1 requires a separate analysis.
As an important application, we consider the family
of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) for
large values of one of its variables, say 𝑥𝑝, and bounded
values of the remaining ones. This family of integrals
may be written in the form 𝐹(𝑤) for appropriate val-
ues of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then,
we derive an asymptotic approximation of the family
of canonical catastrophe integrals for large |𝑥𝑝|. The
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2 FERREIRA et al.

approximations are accompanied by several numerical
experiments. The asymptotic formulas presented here
fill up a gap in the NIST Handbook of Mathematical
Functions by Olver et al.

KEYWORDS
asymptotic expansions, catastrophe integrals, highly oscillatory
integrals, modified saddle point method

1 INTRODUCTION

Many short wavelength phenomena, including wave propagation and optical diffraction, may be
modeled by means of mathematical theories that contain highly oscillatory integrals with sev-
eral stationary phase or saddle points that are close and eventually coalesce. Uniform asymptotic
approximations of those kind of integrals are often written in terms of certain canonical integrals
Ψ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) denominated canonical catastrophe integrals.2, 11 The importance of these inte-
grals in practical applications is stressed in Ref. 10 in the following sentence: The role played by
these canonical diffraction integrals in the analysis of caustic wave fields is analogous to that played
by complex exponentials in plane wave theory.
The canonical catastrophe integrals are defined in the form Ref. 1 (Chapter 36)

Ψ𝐾(𝑥1,⋯, 𝑥𝐾) ∶= ∫
∞

−∞

eiΦ𝐾(𝑥1,⋯,𝑥𝐾;𝑢)d𝑢, (1)

whereΦ𝐾(𝑥1, … , 𝑥𝐾; 𝑢) is a polynomial in the variable𝑢 of degree𝐾 + 2, denominated the cuspoid
catastrophe with codimension 𝐾

Φ𝐾(𝑥1, … , 𝑥𝐾; 𝑢) ∶= 𝑢𝐾+2 +

𝐾∑
𝑚=1

𝑥𝑚𝑢
𝑚, (2)

and 𝑥1,. . . , 𝑥𝐾 are complex parameters. Integral (1) exists for either, real 𝑥1, … , 𝑥𝐾 ; or ℑ(𝑥𝑝) > 0

and real 𝑥𝑚 for𝑚 = 𝑝 + 1, 𝑝 + 2, 𝐾 with 𝑝 even.
Apart from their applications in the uniformasymptotic approximation of oscillatory integrals,9

these integrals have many physical applications in the description of several physical phenomena
like surface gravity waves (see Refs. 8 and 12), bifurcation sets, optics, quantum mechanics, and
acoustics (see Ref. 1(Section 36.14) and references therein).
A large amount of mathematical information about these integrals may be found in the refer-

ence book of special functions.[1, (Chap. 36)] Among other things, there is a classification of the
integrals according to the number 𝐾 of free independent parameters, the parameters that are
related to the type of singularities that arise in catastrophe theory. The first three catastrophe inte-
grals have a proper name: the simplest integral that contains only one free parameter, and that
is related to the fold catastrophe, has two coalescing stationary points: it is the well-known Airy
function Ψ1(𝑥). The second integral Ψ2(𝑥, 𝑦) is known as the Pearcey integral, contains two free
parameters, is related to the cusp catastrophe, and involves three coalescing stationary points. The
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FERREIRA et al. 3

third integral Ψ3(𝑥, 𝑦, 𝑧) is known as the swallowtail integral, depends on three free parameters,
corresponds to the swallowtail catastrophe, and involves four coalescing stationary points.
In Ref. 1 (Chapter 36), we can also find some symmetry properties, zeros, illustrative pictures,

bifurcation sets, scaling relations, and differential equations. With respect to approximations, in
Ref.1 (eq. 36.8.1), we can find the convergent expansion

Ψ𝐾(𝑥1, 𝑥2,⋯, 𝑥𝐾) =
2

𝐾 + 2

∞∑
𝑛=0

exp

(
𝑖
𝜋(2𝑛 + 1)

2(𝐾 + 2)

)
Γ

(
2𝑛 + 1

𝐾 + 2

)
𝑎2𝑛(𝑥, 𝑦, 𝑧), 𝐾 even, (3)

Ψ𝐾(𝑥1, 𝑥2,⋯, 𝑥𝐾) =
2

𝐾 + 2

∞∑
𝑛=0

𝑖𝑛 cos

(
𝜋(𝑛(𝐾 + 1) − 1)

2(𝐾 + 2)

)
Γ

(
𝑛 + 1

𝐾 + 2

)
𝑎𝑛(𝑥, 𝑦, 𝑧), 𝐾 odd, (4)

where 𝑎0(𝑥, 𝑦, 𝑧) = 1 and, for 𝑛 = 0, 1, 2, …,

𝑎𝑛+1(𝑥, 𝑦, 𝑧) =
𝑖

𝑛 + 1

min(𝑛,𝐾−1)∑
𝑝=0

(𝑝 + 1)𝑥𝑝+1𝑎𝑛−𝑝(𝑥, 𝑦, 𝑧). (5)

The convergence speed of this expansion is rather slow for moderate or large values of the vari-
ables. On the other hand, there is not much known about asymptotic approximations of these
integrals for general values of 𝐾 and 𝑝. In Ref. 1 (eq. 36.11.2), we can find a formal expression for
the leading order approximation of Ψ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) when the variables are large, but it is valid
only when the stationary points of the phase function are real and distinct, it is not an explicit
analytic expression and cannot be used for numerical computations.
In Refs. 3, 4, 5, and 6, we derived complete asymptotic expansions of the second and third

canonical catastrophe integrals Ψ2(𝑥, 𝑦) and Ψ3(𝑥, 𝑦, 𝑧) when one of their variables is large and
the remaining ones are fixed. In this work, we derive an asymptotic approximation of the general
canonical catastrophe integralΨ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) for any𝐾 ∈ ℕ and complex 𝑥1,. . . , 𝑥𝐾 , when one
of its variables, say 𝑥𝑝, is large and the remaining ones are fixed. The analysis here is more com-
plicated that the one of the previously mentioned references. It requires a detailed study of the
steepest descent paths and saddle points of the phase function, and the admissible deformations
of the integration contour. The location of these paths and saddle points and the deformation of
the integration contour strongly depend on the form of the phase function. These essential ingre-
dients of the analysis cannot be inferred from the particular cases 𝐾 = 2 or 𝐾 = 3 analyzed so
far. There, the study was more or less straightforward as the phase function is a specific function.
Now the analysis is much more involved as we must find steepest descent paths, saddle points,
and admissible deformations for the whole family of phase functions at once. These elements
strongly depend on 𝐾, 𝑝, and the phase of 𝑥𝑝. As a consequence, the complex 𝑥𝑝-plane is divided
in different asymptotic regions separated by Stokes lines. Because of the complexity of the analy-
sis, we derive only the dominant term of the asymptotic expansion ofΨ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) in inverse
powers of 𝑥𝑝. To accomplish this task, we consider the more general highly oscillatory integral

𝐹(𝑤) ∶= ∫
∞

−∞

e𝑖𝑤(𝑢
𝐾+2+𝑒𝑖𝜃𝑢𝑝)𝑔(𝑢)d𝑢 (6)

for large positive values of 𝑤, with −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers satisfying 1 ≤ 𝑝 ≤ 𝐾,
and 𝑔(𝑢) an entire function. The canonical catastrophe integrals (1) are a particular case of this
integral for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). The key point in our
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4 FERREIRA et al.

analysis is the derivation of the asymptotic behavior of the integral (6). Then, as an application,
we derive the asymptotic behavior of the family of canonical catastrophe integrals (1).
The asymptotic analysis of 𝐹(𝑤) is carried out in Sections 2–5. In Section 2, we rotate the inte-

gration interval (−∞,∞) to avoid the strong oscillations of the integrand. In Section 3, we find
the saddle points of the integral 𝐹(𝑤) and determine the simplified steepest descent paths of the
simplified saddle point method introduced in Ref. 7. In Section 4, we compute the asymptotic
approximation of the integrals over the simplified steepest descent paths. In Section 5, we analyze
the relevant saddle points and the deformation of the integration path to the relevant simplified
steepest descent paths. This analysis strongly depends on the even/odd character of 𝐾 and 𝑝;
therefore, we analyze every case separately in different subsections. In Section 6, we apply the
results of the previous sections to derive an asymptotic approximation of the family of the catas-
trophe integrals Ψ𝐾(𝑥1, 𝑥2, … , 𝑥𝐾) for one large parameter 𝑥𝑝 in terms of elementary functions.
This approximation is given in formulas (36)–(37), complemented with some details about the
Stokes lines in Table 1, and illustrated in Figures 23–26. The asymptotic approximation (36)–(37)
is illustrated in Section 7 by means of some numerical experiments. Throughout all the paper, we
use the principal argument arg 𝑧 ∈ (−𝜋, 𝜋] for any complex number 𝑧 and the notation 𝑧∗ for the
complex conjugate of 𝑧.

2 PRELIMINARIES

The integral (6) is not appropriate for an asymptotic analysis because of the highly oscillatory
character of the integrand. Then, we deform the integration contour (−∞,∞) to another contour
where the integrand decays exponentially. The deformation is different for even and odd 𝐾. For
even 𝐾, we rotate the path (−∞,∞) an angle 𝛼 ∶=

𝜋

2(𝐾+2)
. Then, integral (6) may be written in

the form

𝐹(𝑤) = ∫
𝐶𝑒

eiw(𝑡
𝐾+2+𝑒𝑖𝜃𝑡𝑝)𝑔(𝑡)d𝑡, (7)

with 𝐶𝑒 ∶= (−𝑒𝑖𝛼∞, 𝑒𝑖𝛼∞).
For odd 𝐾, we split the integration interval (−∞,∞) at 𝑢 = 0 and rotate the path (−∞, 0) an

angle 𝜋 − 𝛼, and the path (0,∞) an angle 𝛼. Then, integral (6) may be written in the form

𝐹(𝑤) = ∫
𝐶𝑜

eiw(𝑡
𝐾+2+𝑒𝑖𝜃𝑡𝑝)𝑔(𝑡)d𝑡, (8)

with 𝐶𝑜 ∶= (𝑒𝑖(𝜋−𝛼)∞, 0] ∪ [0, 𝑒𝑖𝛼∞). The paths 𝐶𝑒 and 𝐶𝑜 are depicted in Figure 1. Integrals
(7) and (8) are absolutely convergent for entire functions 𝑔(𝑡) that do not grow faster than
𝑡−1−𝜖e𝑤|𝑡|𝐾+2 , 𝜖 > 0, when |𝑡|→∞.

3 SADDLE POINTS AND SIMPLIFIED STEEPEST DESCENT PATHS

Consider the change of integration variable 𝑢 → 𝑡 in (1) defined in the form 𝑢 = |𝑥𝑝|𝜎𝑡, with
𝜎 ∶=

1

𝐾 + 2 − 𝑝
. (9)
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6 FERREIRA et al.

F IGURE 1 Integration path 𝐶𝑒 in (7) (left picture) and integration path 𝐶𝑜 in (8) (right picture)

With this change of variable, we find that, apart from a factor |𝑥𝑝|𝜎, the catastrophe integrals (1)
may be written in the form (7) (for even𝐾) or (8) (for odd𝐾) with𝑤 = |𝑥𝑝|(𝐾+2)𝜎, 𝜃 = arg 𝑥𝑝, and

𝑔(𝑡) = exp{𝑖
𝐾∑

𝑚=1

𝑚≠𝑝
𝑥𝑚(|𝑥𝑝|𝜎𝑡)𝑚}. (10)

Although it is possible to do an asymptotic analysis for integrals (7) and (8) for general entire
functions 𝑔(𝑡), for the sake of simplicity, we specialize here on this particular family of functions
𝑔(𝑡).
Either from the simplified version of the saddle point method,7 or from the standard steepest

descent method,[13, (Chap. 2)] it is clear that the phase function in either (7) or (8) is the function

𝑓(𝑡) ∶= 𝑡𝐾+2 + 𝑒𝑖𝜃𝑡𝑝. (11)

From Ref. 7, we know that the presence of the large parameter |𝑥𝑝|, not only in front of the phase
function 𝑓(𝑡) (the parameter 𝑤 = |𝑥𝑝|(𝐾+2)𝜎 in (7) or (8)), but also in the function 𝑔(𝑡) does not
spoil the asymptotic analysis. Essentially, this is so because the power of |𝑥𝑝| in front of the phase
function 𝑓(𝑡) is larger than the powers of |𝑥𝑝| in the different summands of the exponent of 𝑔(𝑡)
in (10) (see Ref. 7 for further details).
For any value of 𝑝, the 𝐾 − 𝑝 + 2 points

𝑡𝑛 ∶=
( 𝑝

𝐾 + 2

)𝜎
𝑒𝑖𝜎[𝜃+(2𝑛+1)𝜋], 𝑛 = 0, 1,⋯,𝐾 − 𝑝 + 1, (12)

are saddle points of the phase function 𝑓(𝑡) of multiplicity one. They are located on a circle of
center the origin and radius ( 𝑝

𝐾+2
)𝜎, and are angularly equally spaced. But, moreover, for 𝑝 > 1,

the origin 𝑡𝐾−𝑝+2 ∶= 0 is also a saddle point of multiplicity 𝑝 − 1.
Either from the simplified version of the saddle point method,7 or from the standard steepest

descentmethod,[13, (Chap. 2)] we know that the asymptotically relevant saddle points are those ones
for which the integration path 𝐶𝑒 in (7) or 𝐶𝑜 in (8) can be deformed into a simplified steepest
descent path (or union of simplified steepest descent paths) that contains the dominant saddle
points. We have carried out this analysis in our previous papers,[3–6] for 𝐾 = 4 and 𝐾 = 5 and
specific values of 𝑝. Now, for general values of 𝑝 and 𝐾, the analysis requires a more detailed
study and strongly depends on the odd/even character of 𝐾 and 𝑝.
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FERREIRA et al. 7

The analytic expression of the steepest descent paths of 𝑓(𝑡) at the saddle points is not straight-
forward. But we know from Ref. 7 that the asymptotic analysis of the integrals (7) of (8) does not
require the computation of the steepest descent paths of 𝑓(𝑡) at the relevant saddle points 𝑡𝑛, but
just its simplified steepest descent paths, which are nothing but the standard steepest descent
paths of the “main part” of the phase function 𝑓(𝑡) at the relevant saddle points 𝑡𝑛. These sim-
plified steepest descent paths may always be computed in a straightforward manner, as they are
nothing but straight lines.7 Their particular form depends on the multiplicity 𝑚 of the saddle
point:𝑚 = 1 for 𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1 and𝑚 = 𝑝 − 1 for 𝑛 = 𝐾 − 𝑝 + 2.
Following the notation of Ref. 7, at every saddle point 𝑡𝑛, we denote by𝜙𝑛 the phase of𝑓(𝑚+1)(𝑡𝑛)

and by 𝑓𝑚+1(𝑡) the Taylor polynomial of degree 𝑚 + 1 of 𝑓(𝑡) at the saddle point: 𝑓𝑚+1(𝑡) ∶=
𝑓(𝑡𝑛) + 𝑓(𝑚+1)(𝑡𝑛)(𝑡 − 𝑡𝑛)

𝑚+1∕(𝑚 + 1)! At every steepest descent straight line, the “main part” of
𝑓(𝑡) is just 𝑓𝑚+1(𝑡) and, at each saddle point 𝑡𝑛, 𝑛 = 0, 1, 2, … , 𝐾 − 𝑝 + 2, we have that the simpli-
fied steepest descent paths of 𝑓𝑚+1(𝑡) are the following straight lines emanating from the saddle
points:7

Γ𝑛,𝑠 =

{
𝑡𝑛 + 𝑟𝑒𝑖𝜃𝑛,𝑠 ; 𝜃𝑛,𝑠 =

(2𝑠 + 1)𝜋 − 𝜙𝑛
𝑚 + 1

; 0 < 𝑟 < ∞

}
, 𝑠 = 0, 1, 2,⋯,𝑚. (13)

Then, the first point of the asymptotic analysis of (7) and (8) is the computation of the simpli-
fied steepest descent paths of 𝑓𝑚+1(𝑡). For our phase function 𝑓(𝑡) ∶= 𝑡𝐾+2 + 𝑒𝑖𝜃𝑡𝑝, we have that
𝑓′′(𝑡) = (𝐾 + 2)(𝐾 + 1)𝑡𝐾 + 𝑝(𝑝 − 1)𝑒𝑖𝜃𝑡𝑝−2. Then, at the saddle points 𝑡𝑛, 𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1,
the first nonvanishing derivative is the second one, which means𝑚 = 1 and, for 𝑛 = 0, 1, … , 𝐾 −

𝑝 + 1,

𝑓(𝑡𝑛) =
𝑝 − 𝐾 − 2

𝐾 + 2

( 𝑝

𝐾 + 2

)𝜎𝑝
𝑒𝑖𝜎(𝐾+2)[𝜃+(2𝑛+1)𝜋], (14)

𝑓′′(𝑡𝑛) = 𝑝(𝐾 + 2 − 𝑝)
( 𝑝

𝐾 + 2

)𝜎(𝑝−2)
𝑒𝑖𝜎𝐾[𝜃+(2𝑛+1)𝜋]. (15)

On the other hand, at the saddle point 𝑡𝐾−𝑝+2 = 0, the first nonvanishing derivative is the 𝑝-th
derivative, with 𝑝 ≥ 2, which means𝑚 = 𝑝 − 1 and 𝑓(0) = 0, 𝑓(𝑝)(0) = 𝑝!𝑒𝑖𝜃.
Now we can write the precise form of the simplified steepest descent paths Γ𝑛,𝑠 at every saddle

point 𝑡𝑛 of 𝑓𝑚+1(𝑡) derived from formula (13). At 𝑡 = 𝑡𝑛, 𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1, we have that there
are two steepest descent paths Γ𝑛,𝑠, 𝑠 = 0, 1, that are given by formula (13) with

𝜙𝑛 = 𝐾𝜎[𝜃 + (2𝑛 + 1)𝜋] +
𝜋

2
⇒ 𝜃𝑛,𝑠 = 𝑠𝜋 −

𝐾[𝜃 + (2𝑛 + 1)𝜋]

2(𝐾 − 𝑝 + 2)
+
𝜋

4
, 𝑠 = 0, 1. (16)

On the other hand, at 𝑡 = 0, we have that there are 𝑝 steepest descent paths Γ𝐾+2−𝑝,𝑠, 𝑠 =
0, 1, … , 𝑝 − 1, which are given by formula (13) with

𝜙𝐾+2−𝑝 = 𝜃 +
𝜋

2
⇒ 𝜃𝐾−𝑝+2,𝑠 =

(2𝑠 + 1∕2)𝜋 − 𝜃

𝑝
, 𝑠 = 0, 1,⋯, 𝑝 − 1. (17)

The relevant saddle points that determine the deformation of the integration path to the cor-
responding union of simplified steepest descent paths Γ𝑛,𝑠 and then the asymptotic behavior are
analyzed in Section 5. To finish this section, we determine the dominant saddle points, that is,
those ones for which ℜ(𝑓(𝑡𝑛)) is maximum, which is necessary for the analysis of Section 5.
This, of course, depends on 𝐾, 𝑝 and the argument 𝜃 of the asymptotic variable 𝑥𝑝. We have
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8 FERREIRA et al.

that 𝑓(0) = 0 and ℜ(𝑓(𝑡𝑛)) = cos[𝜎(𝐾 + 2)[𝜃 + (2𝑛 + 1)𝜋] + 𝜋] for 0, 1, 2, … , 𝐾 + 1 − 𝑝. There-
fore, the dominant saddle point is the point 𝑡𝑛∗ , where 𝑛∗ is the value of 𝑛 at which the following
maximum is attained:

max
𝑛∈{0,1,…,𝐾+2−𝑝}

⎧⎪⎨⎪⎩
0, if 𝑛 = 𝐾 + 2 − 𝑝,

cos

[
(𝐾 + 2)[𝜃 + (2𝑛 + 1)𝜋]

𝐾 + 2 − 𝑝
+
3𝜋

2

]
, if 𝑛 = 0, 1, 2, … , 𝐾 + 1 − 𝑝.

(18)

4 INTEGRALS OVER THE SIMPLIFIED STEEPEST DESCENT
PATHS

In this section, we compute the asymptotic approximation of the integrals (7) and (8) over any of
the steepest descent paths Γ𝑛,𝑠 defined in (13), with 𝜃𝑛,𝑠 given in (16) and (17).
The multiplicity of the saddle points 𝑡𝐾+2−𝑝 = 0 is 𝑝, and then the simplified steepest descent

path through this point is the union of two paths Γ𝐾+2−𝑝,𝑠 for a certain couple of values of the
parameter 𝑠 = 0,… , 𝑝 − 1, that we do not know at this moment; therefore, we compute below, in
Section 4.1, the integral over all the paths Γ𝐾+2−𝑝,𝑠 and later, in the next section, we will deter-
mine the precise couple of values of 𝑠 to be used in the asymptotic approximation. On the other
hand, the multiplicity of the saddle points 𝑡𝑛, 𝑛 = 0,… , 𝐾 + 1 − 𝑝, is two, and then the simplified
steepest descent path through these points is always Γ𝑛,0 ∪ Γ𝑛,1; therefore, we compute below, in
Section 4.2, the integral over the union Γ𝑛,0 ∪ Γ𝑛,1.

4.1 Integrals over the steepest descent paths at the origin

The integrals over the simplified steepest descent paths Γ𝐾+2−𝑝,𝑠, 𝑠 = 0, 1, 2, … , 𝑝 − 1, at 𝑡 =
𝑡𝐾−𝑝+2 = 0 are

𝐹𝑠
0
(𝑥1,⋯, 𝑥𝐾) ∶= |𝑥𝑝|𝜎 ∫

Γ𝐾+2−𝑝,𝑠

ei|𝑥𝑝|(𝐾+2)𝜎𝑒𝑖𝜃𝑡𝑝𝑔0(𝑥1,⋯, 𝑥𝐾; 𝑡)dt, 𝑠 = 0, 1, 2,⋯, 𝑝 − 1, (19)

with

𝑔0(𝑥1, … , 𝑥𝐾; 𝑡) ∶= exp

[
i|𝑥𝑝|(𝐾+2)𝜎𝑒𝑖𝜃𝑡𝐾+2 + i

𝐾∑
𝑚=1,𝑚≠𝑝

𝑥𝑚(|𝑥𝑝|𝜎𝑡)𝑚], (20)

𝑡 = 𝑒i[(2𝑠+1∕2)𝜋−𝜃]∕𝑝𝑢, 0 ≤ 𝑢 < ∞. (21)

Following Ref. 7, the asymptotic approximation of 𝐹𝑠
0
(𝑥1, … , 𝑥𝐾) for large |𝑥𝑝| is obtained after

the change of variable 𝑡 → 𝑡|𝑥𝑝|−(𝐾+2)𝜎∕𝑝, and replacing 𝑔0(𝑥1, … , 𝑥𝐾; 𝑡) by 𝑔0(𝑥1, … , 𝑥𝐾; 0) = 1.
Then,

𝐹𝑠
0
(𝑥1, … , 𝑥𝐾) =

Γ
(
1 +

1

𝑝

)
𝑥
1∕𝑝
𝑝

𝑒𝑖𝜋∕(2𝑝)𝑒𝑖𝜋𝑠
⎡⎢⎢⎣1 + 

⎛⎜⎜⎝
1

𝑥
1∕𝑝
𝑝

⎞⎟⎟⎠
⎤⎥⎥⎦. (22)

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12539 by U
niversidad D

e Z
aragoza, W

iley O
nline L

ibrary on [04/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FERREIRA et al. 9

4.2 Steepest descent paths at 𝒕𝒏, 𝒏 = 𝟎, 𝟏, … ,𝑲 − 𝒑 + 𝟏

The integral over the couple of steepest descent pathsΓ𝑛,0 ∪ Γ𝑛,1 at every 𝑡𝑛,𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1,
is

𝐹𝑛(𝑥1,⋯, 𝑥𝐾) ∶= ei|𝑥𝑝|(𝐾+2)𝜎𝑓(𝑡𝑛)|𝑥𝑝|𝜎 ∫
Γ𝑛,0∪Γ𝑛,1

e
i

2
𝑓′′(𝑡𝑛)|𝑥𝑝|(𝐾+2)𝜎(𝑡−𝑡𝑛)2𝑔𝑛(𝑥1,⋯, 𝑥𝐾; 𝑡)dt, (23)

with

𝑔𝑛(𝑥1, … , 𝑥𝐾; 𝑡) ∶= exp

[
i|𝑥𝑝|(𝐾+2)𝜎[𝑓(𝑡) − 𝑓𝑛

2
(𝑡)] + i

𝐾∑
𝑚=1,𝑚≠𝑝

𝑥𝑚(|𝑥𝑝|𝜎𝑡)𝑚], (24)

𝑡 = 𝑡𝑛 + 𝑒i𝜃𝑛,0𝑢, −∞ ≤ 𝑢 < ∞, (25)

𝑓𝑛
2
(𝑡) ∶= 𝑓(𝑡𝑛) +

𝑓′′(𝑡𝑛)

2
(𝑡 − 𝑡𝑛)

2
, 𝜃𝑛,0 =

𝜋

4
−
𝐾[𝜃 + (2𝑛 + 1)𝜋]

2(𝐾 − 𝑝 + 2)
. (26)

Following Ref. 7, the asymptotic approximation of 𝐹𝑛(𝑥1, … , 𝑥𝐾) for large |𝑥𝑝| is obtained after
the change of variable 𝑡 → 𝑡|𝑥𝑝|−(𝐾+2)𝜎∕2, and replacing 𝑔𝑛(𝑥1, … , 𝑥𝐾; 𝑡) by

𝑔𝑛(𝑥1, … , 𝑥𝐾; 𝑡𝑛) = 𝑒
i
∑𝐾
𝑚=1,𝑚≠𝑝 𝑥𝑚(|𝑥𝑝|𝜎𝑡𝑛)𝑚 . (27)

Then,

𝐹𝑛(𝑥1,⋯, 𝑥𝐾) =

√√√√√ 2𝜋𝑖𝜎

𝑝(𝑒𝑖(2𝑛+1)𝜋𝑥𝑝)
𝜎𝐾

(
𝐾 + 2

𝑝

)(𝑝−2)𝜎
exp

{
𝑖

𝐾∑
𝑚=1,𝑚≠𝑝

𝑥𝑚

(
𝑝𝑒𝑖(2𝑛+1)𝜋𝑥𝑝

𝐾 + 2

)𝑚𝜎

−
𝑖

(𝐾 + 2)𝜎

( 𝑝

𝐾 + 2

)𝜎𝑝
(𝑒𝑖(2𝑛+1)𝜋𝑥𝑝)

(𝐾+2)𝜎

}[
1 + 

(
1

𝑥𝐾𝜎𝑝

)]
. (28)

5 DEFORMATION OF THE PATH 𝑪𝑬 OR 𝑪𝑶 TO THE RELEVANT
SADDLE POINTS AND STEEPEST DESCENT PATHS

In this section, we face the last step of the analysis: decide which ones are the relevant saddle
points and the deformation of the original path 𝐶𝑜 or 𝐶𝑒 to the corresponding simplified steepest
descent paths. We must deform the original integration path 𝐶𝑜 or 𝐶𝑒 → Γ, where Γ is the union
of several pieces of Γ𝐾+2−𝑝,𝑠 for certain values of 𝑠 and/or a piece of Γ𝑛,0 ∪ Γ𝑛,1 for certain values
𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1, always containing the relevant saddle points.
When one of the relevant saddle points is a point 𝑡𝑛, 𝑛 = 0, 1, … , 𝐾 − 𝑝 + 1, there is only one

possible election of the union of simplified steepest descent paths through 𝑡𝑛: Γ𝑛,0 ∪ Γ𝑛,1. On the
other hand, when 𝑡 = 𝑡𝐾−𝑝+2 = 0 is also a relevant saddle point, we have to decide what couple
of paths Γ𝐾+2−𝑝,𝑠 (what couple of values of 𝑠) we must take to go across the saddle point 𝑡 =
0. In order to decide this, it is convenient to have some information about the location of the
exact steepest descent paths of the phase function 𝑓(𝑡) at 𝑡 = 0. Write 𝑡 = 𝑟𝑒𝑖𝜑, 𝑟 > 0,−𝜋 < 𝜑 ≤ 𝜋.
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10 FERREIRA et al.

F IGURE 2 Left picture: 𝐾 = 𝑝 = 5 and 𝜃 = 0. Right picture: 𝐾 = 6, 𝑝 = 5 and 𝜃 = 0. Green sectors are the
allowed sectors in the complex 𝑡 plane defined by formula (29). Black straight lines are the original integration
path 𝐶𝑜 (left picture) or 𝐶𝑒 (right picture). Red/blue straight lines are the simplified steepest descent/ascent paths
at 𝑡 = 0; the two thickest red ones are the relevant steepest descent straight lines, corresponding to 𝑘 = 0 and
𝑘 = 𝑞 in formula (31). The red/blue curves are the standard steepest descent/ascent paths at 𝑡 = 0 of the standard
saddle point method. All the curves are tangent, at the origin, to the simplified steepest descent/ascent straight
lines; and at the infinity, to the borders of the green sectors given by formula (30).

The exact steepest ascent and descent paths 𝑟(𝜑) at 𝑡 = 0 satisfy ℑ[𝑖𝑓(𝑡)] = 𝑟𝐾+2 cos[(𝐾 + 2)𝜑] +

𝑟𝑝 cos[𝑝𝜑 + 𝜃] = ℑ[𝑖𝑓(0)] = 0, and therefore,

𝑟𝐾+2−𝑝 = −
cos[𝑝𝜑 + 𝜃]

cos[(𝐾 + 2)𝜑]
, (29)

whenever the right-hand side is positive. This fact defines a set of allowed sectors in the complex
𝑡-plane where we can find the exact or standard steepest ascent and descent paths of the saddle
point 𝑡 = 0 and a complementary set of forbidden sectors. Figure 2 shows the allowed sectors
for two particular examples of parameters (𝐾, 𝑝). The asymptotes of these paths are some of the
following angles:

�̄�𝑘 ∶=
2𝑘 + 1

𝐾 + 2

𝜋

2
, 𝑘 = 0, 1, 2,⋯, 2𝐾 + 3. (30)

On the other hand, the exact steepest ascent and descent paths are tangent, at the origin, to the
respective simplified steepest ascent and descent paths considered in our analysis. This means
that, at 𝑟 = 0, the exact steepest descent paths are tangent to the lines defined by the angles

𝜑𝑘 ∶=
2𝑘 + 1

𝑝

𝜋

2
−
𝜃

𝑝
= 𝜃𝐾+2−𝑝,𝑘∕2, 𝑘 = 0, 2, 4,⋯, 2𝑝 − 2, (31)

with 𝜃𝐾+2−𝑝,𝑘∕2 given in (17). Also, at 𝑟 = 0, the exact steepest ascent paths are tangent to the lines
defined by the angles

𝜑𝑘 ∶=
2𝑘 + 1

𝑝

𝜋

2
−
𝜃

𝑝
, 𝑘 = 1, 3, 5,⋯, 2𝑝 − 1. (32)
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FERREIRA et al. 11

The original integration path is itself an asymptote, on the right-half 𝑡-plane, to the steepest
descent path corresponding to 𝑘 = 0, with angle �̄�0. And also, the original integration path is itself
an asymptote, on the left-half 𝑡-plane, to the steepest descent path corresponding to 𝑘 = 𝐾 + 2,
with angle �̄�𝐾+2, if 𝐾 is even, or to the steepest descent path corresponding to 𝑘 = 𝐾 + 1, with
angle �̄�𝐾+1, if 𝐾 is odd.
Therefore, the relevant steepest descent paths at 𝑡 = 0 are Γ0,0 and Γ0,𝑞, 𝑞 even, where the angle

𝜑𝑞 is the closest one to �̄�𝐾+2 if𝐾 is even or �̄�𝐾+1 if𝐾 is odd. This means that 𝑞 is the even number
2𝑛 that minimizes ||||| (2𝑛 + 1∕2)𝜋 − 𝜃

𝑝
−
(2𝐾 + 4 + (−1)𝐾)𝜋

2(𝐾 + 2)

|||||, (33)

that is,

𝑞 ∶=

⌊(
1 +

(−1)𝐾

2𝐾 + 4

)
𝑝 +

𝜃

𝜋
−
1

2

⌋
. (34)

Therefore, we may conclude that, when |𝑥𝑝|→∞, and for a certain 𝑛 ∈ {0, 1, … , 𝐾 + 1 − 𝑝},

Ψ𝐾 ∼

⎧⎪⎨⎪⎩
𝐹𝑛 if only 𝑡𝑛 is relevant,
𝐹0
0
− 𝐹

𝑞
0

if only 𝑡 = 0 is relevant,
𝐹𝑛 + 𝐹0

0
− 𝐹

𝑞
0

if both, 𝑡𝑛 and 𝑡 = 0, are relevant,
(35)

where the asymptotic approximation of 𝐹𝑠
0
and 𝐹𝑛 is given in (22) and (28), respectively.

It only remains to determinewhich saddle points are relevant and then the corresponding defor-
mation of the integration path 𝐶𝑜 or 𝐶𝑒 → Γ, in order to decide which one of the three cases
in (35) to take and the precise value of 𝑛. This becomes straightforward from formula (18), the
above analysis in this section and Cauchy’s residue theorem: when the saddle point 𝑡𝐾+2−𝑝 = 0

is dominant according to (18), then the path Γmust contain the simplified steepest descent paths
Γ𝐾+2−𝑝,0 ∪ Γ𝐾+2−𝑝,𝑞∕2 defined by (13) and (17). When the saddle point 𝑡𝑛, 𝑛 = 0, 1, … , 𝐾 + 1 − 𝑝

is dominant according to (18), then the path Γmust contain the simplified steepest descent paths
Γ𝑛,0 ∪ Γ𝑛,1 defined by (13) and (16).
It is clear from formula (18) that the particular value of 𝑛 and then the deformation of the

integration path depends on 𝜃, but it turns out that it also depends on the even/odd character of
𝐾 and 𝑝; moreover, the case 𝑝 = 1 requires a separate analysis. Then, it is necessary to consider
six possible cases separately:𝐾 even and 𝑝 = 1,𝐾 odd and 𝑝 = 1,𝐾 and 𝑝 even,𝐾 even and 𝑝 > 1

odd, 𝐾 odd and 𝑝 even (distinguishing the cases 2𝑝 < 𝐾 + 2 and 2𝑝 > 𝐾 + 2), and 𝐾 and 𝑝 > 1

odd. In the following subsections, we summarize the main details for each of the six cases: the
relevant saddle points according to (18), and hence, the deformation of the original integration
path 𝐶𝑜 or 𝐶𝑒 → Γ. In every subsection, we illustrate the idea by means of two pictures: (i) the
form of ℜ(𝑓(𝑡𝑛)) with 𝑛 given in formula (18) for general values of 𝐾 and 𝑝 and (ii) the form of
the integration path Γ for certain examples of 𝐾 and 𝑝, including the original integration path,
and all the simplified steepest descent paths at every saddle point. Figures 3, 6, 9, 11, 14, 17, and 20
also indicate the dominant saddle point 𝑡𝑛 in every asymptotic sector.
The asymptotic approximation ofΨ𝐾(𝑥1, … , 𝑥𝐾) for large |𝑥𝑝| given below in formulas (36)–(37)

follows from formulas (22) and/or (28), according to the presence of Γ𝐾+2−𝑝,0 ∪ Γ𝐾+2−𝑝,𝑞∕2 and/or
Γ𝑛,0 ∪ Γ𝑛,1 in the deformed path Γ detailed in the following subsections and formula (35).
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12 FERREIRA et al.

F IGURE 3 𝐾 even and 𝑝 = 1

F IGURE 4 𝜃 = 7𝜋∕8 (left) and 𝜃 = −3𝜋∕4 (right)

F IGURE 5 𝜃 = −𝜋∕8 (left) and 𝜃 = 𝜋∕2 (right)

5.1 𝑲 even and 𝒑 = 𝟏

Figure 3 illustratesℜ(𝑓(𝑡𝑛)) with 𝑛 given by formula (18) for 𝐾 even and 𝑝 = 1.
The dominant saddle points are:

∙ 𝑡0 =
𝑒𝑖𝜎(𝜃+𝜋)

(𝐾+2)𝜎
for −𝜋 < 𝜃 ≤ −

𝜋

2(𝐾+2)
.

∙ 𝑡𝐾∕2 =
𝑒𝑖𝜎[𝜃+(𝐾+1)𝜋]

(𝐾+2)𝜎
for − 𝜋

2(𝐾+2)
< 𝜃 ≤ (2𝐾+3)𝜋

2(𝐾+2)
.

∙ 𝑡𝐾 =
𝑒𝑖𝜎[𝜃+(2𝐾+1)𝜋]

(𝐾+2)𝜎
for (2𝐾+3)𝜋

2(𝐾+2)
< 𝜃 ≤ 𝜋.

Figures 4 and 5 illustrate typical steepest descent paths for 𝐾 = 4 and different values of 𝜃.
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FERREIRA et al. 13

F IGURE 6 𝐾 odd and 𝑝 = 1

F IGURE 7 𝜃 = 0 (left) and 𝜃 = 3𝜋∕4 (right)

F IGURE 8 𝜃 = −3𝜋∕4

5.2 𝑲 odd and 𝒑 = 𝟏

Figure 6 illustrates ℜ(𝑓(𝑡𝑛)) with 𝑛 given by formula (18) for 𝐾 odd and 𝑝 = 1. The dominant
saddle points are

∙ 𝑡0 for −𝜋 < 𝜃 ≤ 0.
∙ 𝑡(𝐾−1)∕2 for 0 < 𝜃 ≤ 𝜋.

Figures 7 and 8 illustrate typical steepest descent paths for 𝐾 = 5 and different values of 𝜃.

5.3 𝑲 even and 𝒑 even

Figure 9 illustratesℜ(𝑓(𝑡𝑛))with 𝑛 given by formula (18) for 𝐾 and 𝑝 even. The dominant saddle
points are
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14 FERREIRA et al.

F IGURE 9 𝐾 even and 𝑝 even

F IGURE 10 𝜃 = 3𝜋∕4 (left) and 𝜃 = −𝜋∕2 (right)

F IGURE 11 𝐾 even and 𝑝 odd

∙ 𝑡0 and 𝑡(𝐾+2−𝑝)∕2 for −𝜋 < 𝜃 ≤ −
𝑝𝜋

𝐾+2
.

∙ 0 for − 𝑝𝜋

𝐾+2
< 𝜃 ≤ 𝜋.

Figure 10 illustrates typical steepest descent paths for 𝐾 = 4, 𝑝 = 2 and different values of 𝜃.

5.4 𝑲 even and 𝒑 odd

Figure 11 illustrates ℜ(𝑓(𝑡𝑛)) with 𝑛 given by formula (18) for 𝐾 even and 𝑝 odd. The dominant
saddle points are

∙ 𝑡0 for −𝜋 < 𝜃 ≤ −
𝑝𝜋

𝐾+2
.

∙ 0 for − 𝑝𝜋

𝐾+2
< 𝜃 ≤ 0.

∙ 𝑡(𝐾+1−𝑝)∕2 for 0 ≤ 𝜃 ≤ (𝐾+2−𝑝)𝜋

𝐾+2
.
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FERREIRA et al. 15

F IGURE 1 2 𝜃 = 3𝜋∕4 (left) and 𝜃 = 3𝜋∕8 (right)

F IGURE 13 𝜃 = −7𝜋∕8 (left) and 𝜃 = −𝜋∕4 (right)

F IGURE 14 𝐾 odd and 𝑝 even

∙ 0 for (𝐾+2−𝑝)𝜋

𝐾+2
< 𝜃 ≤ 𝜋.

Figures 12 and 13 illustrate typical steepest descent paths for 𝐾 = 4, 𝑝 = 3 and different values
of 𝜃.

5.5 𝑲 odd and 𝒑 even with 𝟐𝒑 < 𝑲 + 𝟐

Figure 14 illustratesℜ(𝑓(𝑡𝑛))with 𝑛 given by formula (18) for 𝐾 odd and 𝑝 even with 2𝑝 < 𝐾 + 2.
The dominant saddle points are

∙ 𝑡0 for −𝜋 < 𝜃 ≤ (𝑝−𝐾−2)𝜋

𝐾+2
.

∙ 𝑡0 and 𝑡(𝐾+1−𝑝)∕2 for
(𝑝−𝐾−2)𝜋

𝐾+2
≤ 𝜃 ≤ −

𝑝𝜋

𝐾+2
.

∙ 𝑡(𝐾+1−𝑝)∕2 for −
𝑝𝜋

𝐾+2
< 𝜃 ≤ 0.

∙ 0 for 0 ≤ 𝜃 ≤ 𝜋.
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16 FERREIRA et al.

F IGURE 15 𝜃 = 6𝜋∕7 (left) and 𝜃 = −5𝜋∕7 (right)

F IGURE 16 𝜃 = −𝜋∕7

F IGURE 17 𝐾 odd and 𝑝 even

Figures 15 and 16 illustrate typical steepest descent paths for 𝐾 = 5, 𝑝 = 2 and different values
of 𝜃.

5.6 𝑲 odd and 𝒑 even with 𝟐𝒑 > 𝑲 + 𝟐

Figure 17 illustratesℜ(𝑓(𝑡𝑛))with 𝑛 given by formula (18) for 𝐾 odd and 𝑝 even with 2𝑝 > 𝐾 + 2.
The dominant saddle points are

∙ 𝑡0 for −𝜋 < 𝜃 ≤ −
𝑝𝜋

𝐾+2
.

∙ 0 for − 𝑝𝜋

𝐾+2
≤ 𝜃 ≤ (𝑝−𝐾−2)𝜋

𝐾+2
.

∙ 𝑡(𝐾+1−𝑝)∕2 for
(𝑝−𝐾−2)𝜋

𝐾+2
≤ 𝜃 ≤ 0.

∙ 0 for 0 ≤ 𝜃 ≤ 𝜋.
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FERREIRA et al. 17

F IGURE 18 𝜃 = −5𝜋∕7 (left) and 𝜃 = −𝜋∕2 (right)

F IGURE 19 𝜃 = −2𝜋∕7 (left) and 𝜃 = 𝜋∕2 (right)

F IGURE 20 𝐾 and 𝑝 odd

Figures 18 and 19 illustrate typical steepest descent paths for 𝐾 = 5, 𝑝 = 4 and different values
of 𝜃.

5.7 𝑲 and 𝒑 odd

Figure 20 illustratesℜ(𝑓(𝑡𝑛))with 𝑛 given by formula (18) for 𝐾 and 𝑝 odd. The dominant saddle
points are

∙ 𝑡0 for −𝜋 < 𝜃 ≤ −
𝑝𝜋

𝐾+2
.

∙ 0 for − 𝑝𝜋

𝐾+2
≤ 𝜃 ≤ 𝑝𝜋

𝐾+2
.

∙ 𝑡(𝐾−𝑝)∕2 for
𝑝𝜋

𝐾+2
≤ 𝜃 ≤ 𝜋.
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18 FERREIRA et al.

F IGURE 2 1 𝜃 = 0 (left) and 𝜃 = 4𝜋∕5 (right)

F IGURE 22 𝜃 = −4𝜋∕5

Figures 21 and 22 illustrate typical steepest descent paths for 𝐾 = 5, 𝑝 = 3 and different values
of 𝜃.

6 ASYMPTOTIC APPROXIMATION OF𝚿𝑲(𝒙𝟏, … , 𝒙𝑲)

In this section, we summarize the results of the above sections. Recall that only one variable, say
𝑥𝑝, is large and thatwe havewritten 𝑥𝑝 = |𝑥𝑝|𝑒𝑖𝜃, with 𝜃 ∶= arg 𝑥𝑝. An asymptotic approximation
of the family of the canonical catastrophe integrals Ψ𝐾(𝑥1, … , 𝑥𝐾) for large |𝑥𝑝| is given in the
following formula:

Ψ𝐾(𝑥1,⋯, 𝑥𝐾) = Ψ𝐾(𝑥1,⋯, 𝑥𝐾)

[
1 + 

(
1

𝑥
𝛾
𝑝

)]
, |𝑥𝑝|→∞, (36)
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FERREIRA et al. 19

F IGURE 2 3 Left picture: 𝐾 even and 𝑝 = 1. Right picture: 𝐾 odd and 𝑝 = 1

where the elementary function Ψ̄𝐾(𝑥1, … , 𝑥𝐾) that encodes the asymptotic behavior of
Ψ𝐾(𝑥1, … , 𝑥𝐾) is

Ψ̄𝐾(𝑥1, … , 𝑥𝐾) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√√√√ 2𝜋𝑖𝜎

𝑝(𝑒𝑖𝜋𝛽𝑥𝑝)𝜎𝐾

(
𝐾 + 2

𝑝

)(𝑝−2)𝜎
exp

⎧⎪⎨⎪⎩𝑖
𝐾∑

𝑚=1,𝑚≠𝑝
𝑥𝑚

(
𝑒𝑖𝜋𝛽𝑥𝑝

𝐾 + 2

)𝑚𝜎

−
𝑖

(𝐾 + 2)𝜎

( 𝑝

𝐾 + 2

)𝜎𝑝
(𝑒𝑖𝜋𝛽𝑥𝑝)

(𝐾+2)𝜎

}
, 𝜃 ∈ 𝑅𝑒,

Γ
(
1 +

1

𝑝

)
𝑥
1∕𝑝
𝑝

𝑒𝑖𝜋∕(2𝑝)
(
1 − 𝑒𝑖𝜋𝑞∕𝑝

)
, 𝜃 ∈ 𝑅𝑝.

(37)

The parameters involved in the above formulas are:

𝜎 ∶=
1

𝐾 + 2 − 𝑝
, (38)

𝛾 ∶=

⎧⎪⎪⎨⎪⎪⎩
𝐾

𝐾 + 2 − 𝑝
for 𝜃 ∈ 𝑅𝑒,

1

𝑝
for 𝜃 ∈ 𝑅𝑝,

(39)

𝑞 ∶=

⌊(
1 +

(−1)𝐾

2𝐾 + 4

)
𝑝 +

𝜃

𝜋
−
1

2

⌋
, (40)

where the symbol ⌊𝑥⌋ stands for the even number closest to 𝑥. The values of the parameter 𝛽
and the sectors 𝑅𝑒, 𝑅𝑝 in formula (37), together the corresponding Stokes lines of the asymp-
totic approximation (36)–(37), are given in Table 1. The catastrophe integral Ψ𝐾(𝑥1, … , 𝑥𝐾) has
a power behavior in the regions 𝑅𝑝 (green) and an exponential behavior in the regions 𝑅𝑒 (yellow
for negative exponential behavior and blue or red for positive exponential behavior).
The different asymptotic regions 𝑅𝑒 and 𝑅𝑝 and the corresponding Stokes lines encoded in

formulas (36)–(37) and Table 1 are summarized in Figures 23–26.
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20 FERREIRA et al.

F IGURE 24 Left picture: 𝐾 even and 𝑝 even. Right picture: 𝐾 even and 𝑝 ≠ 1 odd

F IGURE 2 5 𝐾 odd and 𝑝 even. Left picture: 2𝑝 < 𝐾 + 2. Right picture: 2𝑝 > 𝐾 + 2

F IGURE 26 𝐾 odd and 𝑝 ≠ 1 odd

7 NUMERICAL EXPERIMENTS

In Tables 2–8, we give some numerical experiments (relative error) that illustrate the approxima-
tion given by formulas (36)–(37) and Table 1, for every one of the seven different (𝐾, 𝑝) regions
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FERREIRA et al. 21

TABLE 2 𝐾 even and 𝑝 = 1

𝑲 = 𝟔

𝑲 = 𝟐

𝐱 = (𝒙𝟏, 𝟎.𝟏)

𝑲 = 𝟒

𝐱 = (𝒙𝟏, 𝟎.𝟏,

𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 , −𝟎.𝟏)

𝐱 = (𝒙𝟏, 𝟎.𝟏,

𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 , −𝟎.𝟏,

𝟎.𝟎𝟐, 𝟎.𝟏)

|𝑥1|⟍arg 𝑥1 −
𝜋

2

𝜋

3

7.5𝜋

8
|𝑥1|⟍arg 𝑥1 −

𝜋

4
0 11.5𝜋

12
|𝑥1|⟍arg 𝑥1 −

𝜋

4
0 15.5𝜋

16

10 0.02 0.012 0.02 10 0.04 0.03 0.07 30 0.02 0.01 0.01
30 0.0070.0070.002 50 0.0060.002 0.004100 0.016 0.0010.008

TABLE 3 𝐾 odd and 𝑝 = 1

𝑲 = 𝟓 𝑲 = 𝟕

𝑲 = 𝟑

𝐱 = (𝒙𝟏, 𝟎.𝟓𝐞
𝒊
𝝅

𝟔 ,

𝟎.𝟐𝒊)

𝐱 =

(𝒙𝟏, 𝟎.𝟏, 𝟎.𝟎𝟓,

−𝟎.𝟏, 𝟎.𝟎𝟐)

𝐱 =

(𝒙𝟏, 𝟎.𝟏, −𝟎.𝟐, 𝒊,

𝟎.𝟑, 𝟎, 𝟎.𝟎𝟓)

|𝑥1|⟍arg 𝑥1 −
4𝜋

5

3𝜋

4
|𝑥1|⟍arg 𝑥1 −

𝜋

2

𝜋

2
|𝑥1|⟍arg 𝑥1 −

𝜋

4

𝜋

4

10 0.1 0.02 10 0.045 0.05 0.5 0.3 0.3
100 0.05 0.009 100 0.002 0.01 10 0.1 0.2

TABLE 4 𝐾 even and 𝑝 even

𝑲 = 𝟒,𝒑 = 𝟐 𝑲 = 𝟒,𝒑 = 𝟒 𝑲 = 𝟔,𝒑 = 𝟐

𝐱 = (𝟎.𝟏,

𝒙𝟐, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 ,

−𝟎.𝟎𝟏)

𝐱 = (𝟎.𝟏, 𝟎.𝟎𝟐,

𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 , 𝒙𝟒)

𝐱 =

(𝟎.𝟏, 𝒙𝟐, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 ,

−𝟎.𝟏, 𝟎.𝟎𝟐, 𝟎.𝟏)

|𝑥2|⟍arg 𝑥2 −
𝜋

2
0 |𝑥4|⟍arg 𝑥4 −

5𝜋

4
0 |𝑥4|⟍arg 𝑥4 −

3𝜋

5
0

5 0.6 0.02 10 0.005 0.009 5 0.6 0.03
30 0.5 1.e-4 100 0.001 8.e-4 20 0.5 1.e-4

TABLE 5 𝐾 even and 𝑝 ≠ 1 odd

𝑲 = 𝟒,𝒑 = 𝟑 𝑲 = 𝟔,𝒑 = 𝟓

𝐱 = (𝟎.𝟏, 𝟎.𝟎𝟐,

𝒙𝟑, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 )

𝐱 =

(𝟎.𝟏, −𝟎.𝟎𝟐, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 ,

−𝟎.𝟏, 𝒙𝟓, 𝟎.𝟏)

|𝑥3|⟍arg 𝑥3 −
4𝜋

5

3𝜋

4
−

𝜋

2

𝜋

2
|𝑥5|⟍arg 𝑥5 −

7𝜋

8
−

𝜋

2

𝜋

8

7𝜋

8

10 0.02 0.02 0.02 0.03 0.5 0.3 0.2 0.1 0.14
100 0.017 0.01 0.016 0.01 10 0.07 0.01 0.06 0.024

TABLE 6 𝐾 odd and 𝑝 even with 2𝑝 < 𝐾 + 2

𝑲 = 𝟑,𝒑 = 𝟐 𝑲 = 𝟓,𝒑 = 𝟐

𝐱 = (𝟎.𝟏, 𝒙𝟐, 𝟎.𝟐) 𝐱 = (𝟎.𝟏, 𝒙𝟐, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 , −𝟎.𝟎𝟏, 𝟎.)

|𝑥2|⟍arg 𝑥2 −
4𝜋

5
−

𝜋

2
−

𝜋

5

𝜋

3
|𝑥2|⟍arg 𝑥2 −

6𝜋

7
−

4𝜋

7
−

𝜋

2

𝜋

4

10 0.04 0.6 0.04 6.e-4 10 0.04 0.05 0.03 2.e-4
30 0.03 0.5 0.03 1.e-4 30 0.008 0.008 0.007 8.e-5
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TABLE 7 𝐾 odd and 𝑝 even with 2𝑝 > 𝐾 + 2

𝑲 = 𝟓,𝒑 = 𝟒

𝐱 = (𝟎.𝟓, 𝟎.𝟎𝟏, −𝟎.𝟑, 𝒙𝟒, 𝟎)

|𝑥4|⟍arg 𝑥4 −
6𝜋

7
−1

𝜋

4

8 0.005 0.005 0.01
15 0.004 0.004 0.009

TABLE 8 𝐾 odd and 𝑝 ≠ 1 odd

𝑲 = 𝟑,𝒑 = 𝟑 𝑲 = 𝟓,𝒑 = 𝟑

𝐱 = (𝟎.𝟏, 𝟎.𝟐, 𝒙𝟑) 𝐱 = (𝟎.𝟏, −𝟎.𝟎𝟐, 𝒙𝟑, 𝟎.𝟏, 𝟎.𝟎𝟓𝐞
𝒊
𝝅

𝟔 )

|𝑥3|⟍arg 𝑥34 −
𝜋

2
0 4𝜋

5
|𝑥3|⟍arg 𝑥3 −

𝜋

2
0 𝜋

2

5 0.03 0.03 0.03 10 0.02 0.02 0.06
10 0.02 0.02 0.005 30 0.016 0.016 0.03

detailed in Table 1 and several values of the asymptotic parameter 𝑥𝑝 and the other parameters
𝑥𝑘, 𝑘 ≠ 𝑝.
Observe that when |𝑥1| increases from 10 to 100 in the leftmost table in Table 3, the relative

error only decreases around 50%. Numerical experiments are more or less satisfactory depending
on different factors. From formula (15), we deduce that there is a constant𝑀 > 0 (which depends
on arg 𝑥1 and the other parameters 𝑥𝑘) such that |relative error| ≤ 𝑀|𝑥−𝛾𝑝 | for large enough |𝑥𝑝|.
Therefore, the larger |𝑥𝑝| is, the lower the relative error bound𝑀|𝑥−𝛾𝑝 | is. Wemay expect a similar
behavior of the actual relative error, but it strongly depends on the (unknown) constant𝑀.
Taking a closer look to Table 3, for 𝐾 = 3, we have that 𝛾 = 3∕4with 𝑅𝑒 = (−𝜋, 𝜋] and 𝑅𝑝 = 𝜙.

Then, the relative error is bounded by𝑀 × 0.1778 for |𝑥1| = 10 and by𝑀 × 0.0316 for |𝑥1| = 100.
The larger |𝑥𝑝| is, the lower the relative error bound is. But, although we may expect a reduction
of the relative error in a similar proportion, we cannot assure that precise reduction for the relative
error, but only an estimation. Then, it is possible that the relative error decreases only around 50%,
whereas |𝑥1| increases 10 times.
On the other hand, observe that for other arguments of the large variable 𝑥1, farther away from

the Stokes lines (the arguments in the leftmost table in Table 3 are not very far), the relative error
is smaller and decreases faster when |𝑥1| increases. In other words, it is reasonable to expect that
the unknown constant𝑀 strongly depends on arg 𝑥1.
More satisfactory numerical results would be obtained by computing more terms of the

asymptotic expansions. This is subject of further investigation.
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