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a b s t r a c t

This paper examines the potential of clean energy stocks and emission permits to reduce downside
risk when combining them in a portfolio with dirty energy assets. We propose a strategy for building
portfolios that are well diversified between equity energy and carbon markets that takes into account
their dynamic price relationship. The asset allocation proposed is framed in a volatility-timing context,
which reacts to changing market conditions, holding different weights at different times. To achieve
this objective, we use multivariate GARCH models, specifically the Asymmetric Dynamic Conditional
Correlations family, which allow us to obtain good estimations of the conditional covariance matrices
of the daily asset returns. To determine the weights of the optimum minimum-risk portfolio, we use a
method based on Engle and Colacito (2006) to compare the portfolio volatilities obtained with different
models. The analysed period runs from January 19, 2010, to April 4, 2022, which, on the one hand,
includes more than twelve years of the EU Emissions Trading System (EU ETS) beyond the Phase I
pilot; and, on the other, considers the latest crisis episodes (Sovereign debt crisis, Brexit COVID-19,
and the recent Russo–Ukrainian war). Our findings show that investing in clean energy companies
is now valuable not only because of its contribution to a sustainable energy transition to renewable
sources, but also due to its attractiveness from a financial point of view. This fact provides a ray of hope
in terms of the climate emergency and avoiding the current geopolitical conflicts principally caused by
certain countries’ energy dependence because their energy mix is still heavily overpowered by fossil
fuels. The results of this research should encourage investors to decarbonise their equity portfolios,
thus promoting the needed alignment of the financial system with the requirements of the energy
transition.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The acceleration of climate change in recent decades, because
f the increase in greenhouse gases (GHG) is a reality that seri-
usly threatens both economies and human health. Temperature
ncreases are accompanied by exceptional weather conditions
uch as floods, storms, droughts, and forest fires that are becom-
ng more intense and frequent. Moreover, every year, 4 million
eople die due to poor air quality, a number that far exceeds
he deaths caused by COVID-19: 5.8 million people from 2020 to
ebruary 2021, according to World Health Organisation (WHO)
ata. There is currently a scientific consensus that the cost of
naction is much greater than taking adequate mitigation and
daptation actions to combat climate change, which constitute
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one of the key challenges of the 21st century according to the
European Environment Agency (EEA, 2007).

Among the European Union policies to combat climate change,
the Emissions Trading Scheme (EU ETS) settled in January 1,
2005, is one of the leading tools for supervising and achieving
the reduction of carbon dioxide, the main greenhouse gas (Bing
et al., 2015). This scheme is organised in four stages: a pilot
period (phase I spanned from 2005 to 2007); a second period
of full operation (phase II comprised from 2008 to 2012); a
third period within the ‘‘Climate Change Package 2020’’ (phase
III encompassed from 2013 to 2020); and a fourth period, which
is currently in force (phase IV spanned from 2021 to 2030). Since
phase I, the bylaw of the emission rights market has experienced
a number of amendments that have attempted to sort out the
existing excess supply due to the dramatic financial crisis of 2008.
The EU ETS establishes a limit on the entire quantity of carbon
emission allowances assigned per year to the entities covered
by the system. Enterprises that do not adjust to their emission
permits, meet serious sanctions. However, a firm can emit less
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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arbon than is permitted, thus provoking an excess. This excess
an be traded with firms, whose emission is greater than the
olerance. For this reason, the EU ETS is established through
cap-and-trade program, making carbon permits a marketable
ommodity, which imitate of the financial assets (Benz and Trück,
006; Uddin and Holtedahl, 2013).
At the spotlight of mitigating climate change is the energy

ector, which is responsible for 80% of greenhouse gas emissions.
nergy is an important engine of economic growth, on which
ost economic activity depends. However, the current energy
odel is based on finite resources, mainly fossil fuels, which
hows its clear economic unsustainability (Qadir et al., 2021).
ith the consciousness that oil and gas are some of the main
otives of pollution and drive to environmental deterioration,
ecarbonising the energy system is another urgent and impor-
ant step to combat climate change that is becoming a pressing
ssue for European policymakers (Malik et al., 2019; Hafner and
aimondi, 2020). However, the growth of energy demand, on the
ne hand, and the constraints of reduced carbon emissions, on the
ther hand, make achievements harder to come by for the global
conomy’s green growth (Wang et al., 2020). For a successful
arbon-neutral economy and to achieve a cleaner future, the In-
ernational Renewable Energy Agency (IRENA, 2018) established
hat the necessary energy transition should be based on clean
lternative energies, which emit only what the planet can absorb
nd mitigate climate change, reducing its associated environmen-
al and health impacts (Imteyaz et al., 2021; Pilz et al., 2018).
adir et al. (2021) and Wang et al. (2022) suggested that EU
ountries should reduce the use of dirty fossil fuels and increase
ertain types of renewable sources in their energy mix to fulfil the
uropean Green Deal and achieve the Sustainable Development
oals related to improving environmental quality. Renewables
ave a multitude of advantages that justify their position as one of
he main elements of change in the energy model (Panwar et al.,
011). They are based on autochthonous resources (wind, sun,
ater, etc.), so, they provide easy access to energy, contributing
o social and economic development. They can also help solve the
ssue of improving the living standards of rural populations (Sen
nd Ganguly, 2017). While some remote areas are hard to reach,
stablishing grid connectivity with neighbouring countries is a
iable option that could also bring regional harmony and create
n atmosphere of friendliness between nations (Xiangchengzhen
nd Yilmaz, 2020). This kind of initiative offers several other ben-
fits, such as reducing the external dependence of an economy
n fossil fuels and, hence, price and quantity risks in the face of
ossible energy shocks. In all recent armed conflicts, geopolitics
as been present to control energy, as a scarce commodity that it
s, cushioning the measures to be adopted by blackmailing the
eed to maintain the supply of oil and gas from countries in
onflict. Following the Russian invasion of Ukraine, the desire for
speedy conversion to renewable energy has never been stronger
nd more evident. According to data from the European Commis-
ion, the EU buys 90% of the gas it consumes and Russia supplies
ore than 40% of the gas consumed in the EU. Additionally, 27%
f oil importations and 46% of coal importations also hail from
ussia.
Therefore, besides to the carbon market, governments are

lso pushing up the clean energy sector to encourage a safer,
ore accessible, and sustainable energy supply, and to moderate

he unpleasant effects induced by GHG emissions (Kazemilari
t al., 2017; Xia et al., 2019; Kuang, 2021) and by the latest
eopolitical conflicts. Thus, the green energy sector has seen a
urge in interest, and has become vertical to the global economy
hile providing the best way to achieve the majority of the
mission reductions needed (Balcılar et al., 2016; Reboredo et al.,

019; Khurshid and Deng, 2021). In this way, the policies of the
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European Union are playing an important role in facilitating this
energy transition. In fact, some research found that EU ETS is
materially improving renewable energy production, just like that
indicating that the growth of clean energies has been successfully
boosted because of it (Yu et al., 2017). However, to achieve an
effective renewable energy transition, an enormous amount of
capital is required (Hall et al., 2017), making the financing of
this transition probably one of the biggest problems of the 21st
century (Qadir et al., 2021).

Although the overall costs associated with renewable produc-
tion have decreased significantly in recent years due to techno-
logical advancements, there has been no corresponding increase
in investment. It appears that investors are less willing to take
investment risk due to changes in policies and the amount of
capital involved; however, some findings such as those of Chang
et al. (2020) should encourage investment change from fossil to
renewable energy. These authors suggest that moving average
trading rules do not help predict the returns of fossil energy com-
panies, whereas they more reliably forecast those of renewable
energy companies.

It is clear that clean energy equities and tradable emission per-
mits should represent new attractive green investment vehicles
for equity market participants. Both markets have experienced
noteworthy growth and are expected to rise in the future and,
therefore requiring more support (Arouri et al., 2015). For all the
above reasons, and because EU CO2 emission allowances (EUA)
and renewables are decisive for cutting carbon emissions on a
worldwide scale, building an energy system compatible with the
Paris Agreement requires an understanding of the dynamics of
investment risk in carbon and renewable sectors. Thus, in recent
years, the risk of the carbon market has been attracting more
and more attention in the field of energy economics and finance.
The carbon market risk stems from various aspects, not only its
own internal volatility (Hintermann, 2010; Lin and Jia, 2019), but
also from the interactions with other energy markets. In this con-
text, exploring the risk spillover effects between the carbon and
energy markets can help us better understand the risk pattern
and volatility mechanism and promote the stable development of
the carbon market (Zhu et al., 2020). Other authors have already
analysed to a greater or lesser extent their relationship with
the fossil fuel and dirty energy markets. Thus, Chevallier (2011),
Hammoudeh et al. (2014, 2015), and Chevallier et al. (2019)
analysed the relationship between the price of EUA and the prices
of the three fossil fuels (Oil, Gas and Coal). Other authors such as
Liu and Chen (2013), Marimoutou and Soury (2015), Zhang and
Sun (2016), and Wang and Guo (2018) showed the dynamism
in the transmission of volatility and correlation between these
markets. Sadorsky (2008, 2012), Kumar et al. (2012), Managi
and Okimoto (2013), Reboredo (2015) and Bondia et al. (2016)
studied the influence of oil price on clean energy companies.
Later, authors such as Ji et al. (2018), Dutta et al. (2018), and
Lin and Chen (2019) included the carbon market together with
clean energy and fossil fuel markets, showing significant dynamic
correlations and volatility transmission among them. A more
recent work (Cao et al., 2020) showed the negative impact of oil
price volatility on investment in renewable energy companies in
China. More recently, Gargallo et al. (2021) made an exhaustive
analysis of how EUA, clean and dirty energy markets interact
regarding correlation and volatility spillovers.

However, while in-depth studies of the understanding of how
those stocks interact; their chance for diversification of con-
ventional asset portfolios has not been completely analysed. In
general, clarification on the correlation and dissemination of the
volatility of these markets can be helpful to appropriately diver-
sify the portfolio to reduce risk. Some authors have showed a

better coverage of clean energy assets by fossil fuels (Sadorsky,
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012; Zhang and Du, 2017; Dutta et al., 2018; Lin and Chen,
019). Superseding fuel oil and natural gas affects carbon al-
owance prices due to the large quantity of carbon emissions of
hese fossil fuels, which gives them huge value for diversification
n portfolios (Luo and Wu, 2016). Carbon assets can reduce the
isk of energy assets in portfolio management (Reboredo, 2015).
eboredo (2013, 2014), Luo and Wu (2016), and Dutta et al.
2018) indicated that carbon assets have probable diversification
rofits due to their absence of relation from financial markets.
n the same way, Kanwal and Khan (2021) revealed the relative
ndependence of the European renewable energy market from
he carbon market providing diversification benefits and added
alue by including carbon assets in a clean energy stock portfolio.
en et al. (2017) supported the results by building portfolios that

ncorporated EUAs. Zhang and Sun (2016), and Wang and Guo
2018) confirmed the usefulness of oil to also cover changes in
he price of carbon and the change to gas hedging in cases of
xtreme volatility. Recently, Jebabli et al. (2021) showed greater
ffectiveness with the change from oil to gas for the coverage
f portfolios of the stock market in general during the COVID-19
risis.
As a branch of those previous studies, this paper researches

he potential of clean energy stocks and emission permits to
educe downward risk by combining them in a portfolio with
irty energy assets. Despite all those studies, what is lacking is
nderstanding how responsible investors in clean energy stocks
nd EUA can cover their investments. On aggregating carbon
ssets to mixed clean and dirty energy stock portfolios, the risk
ould decrease and diversification profits could be obtained. To
hat aim, we want to find a strategy that produces optimum
ell-diversified portfolios, which motivates investors to remove
arbon from their equity portfolios and to swap dirty energy for
lean energy assets, thereby stimulating the energy transition.
Within this context, an effective portfolio optimisation pro-

edure to carry out the diversification process is necessary. Due
o the time changing interdependence among carbon price, re-
ewable and conventional energy assets, the process must be
ynamic and allow a recurrent re-balancing of portfolios to reach
satisfactory risk over time. Saeed et al. (2020) also support this
tatement. From their results on clean asset hedging effective-
ess, they indicate that investors should follow a dynamic hedg-
ng strategy. Their main findings evidence that the hedge ratios
re time varying, which implies that investors have to regularly
onitor and adjust their hedged positions. Usually, financial risks
re not equally dispensed over time, but they can be accentuated
t certain points in time. Moving exposure into relatively quiet
arkets during times of financial commotion could decrease the
verall risk taken. Because investment markets are constantly
hanging, also, optimal portfolio weights should be changed over
ime, for which dynamic risk management is needed. Risk man-
gement in portfolios is very important in extreme moments,
hen the carbon and energy markets can move together (Ji et al.,
018). Therefore, in this research, we propose an asset allocation
n a volatility-timing framework, which reacts to shifting mar-
et environments, keeping different portfolios at distinct points
n time, because of climate policy evolution and the changing
xpectations of investors, which are obviously interrelated (Sen
nd von Schickfus, 2020). Climate policies and policy propos-
ls provide signals that shape how investors perceive the asset
isk. For this reason, rather than using a buy-and-hold strategy,
.e. passively investing, we propose that investors actively decide
hich asset classes to over or underweight are and they are able
o adapt their investment strategies and holdings based on their
arket outlook. Therefore, this study considers dynamic hybrid
ortfolios to analyse in-depth the diversification benefits among

llocations in clean and dirty energy and in emission permits.
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More specifically, our paper is encompassed within a volatility
timing strategy that rebalances the portfolio weights within a
mean–variance optimisation framework based only on expected
volatility changes, while treating expected returns as constants.
Different investors at different times will have different vectors
of expected excess returns. Our portfolio optimisation strategy
is therefore based on the idea of choosing covariance matrices
that achieve the lowest portfolio variance for all relevant ex-
pected returns. Definitively, our portfolios are chosen to minimise
predicted variance subject to a required return but the analysis
involves a full range of hypothetical required returns. In this
way, we have isolated the effect of covariance information from
expected returns, by applying our optimisation procedure for a
number of alternative time-invariant vectors of expected returns
that any investor may want to use in his/her asset allocation deci-
sion. Thus, we are taking into account the uncertainty associated
with the problem of choosing the average return vectors. The
set of supposed constant vectors of expected returns is intended
to capture several scenarios, where profits could be elevated,
and others in which they could be small or even null. This way
of incorporating the uncertainty associated with the problem
of choosing the average return therefore validates and provides
robustness to the analysis carried out.

To achieve this goal, we use multivariate GARCH models, con-
cretely the Asymmetric Dynamic Conditional Correlations (ADCC)
model family, to obtain good estimations of the conditional co-
variance matrices of the daily asset returns. The covariance ma-
trix is used to calculate the standard deviation of a portfolio of
stocks, which, in turn, is used by portfolio managers to quantify
the risk associated with a particular portfolio. Those models are
simple and flexible but they are also able to reflect correla-
tion changes among assets through time. In order to determine
the weights of the optimum minimum-risk portfolio, we use a
methodology based on Engle and Colacito (2006) and Giacomini
and Rossi (2010) to compare the portfolio volatilities obtained
with different models. The analysed period goes from January
2010 to April 2022, which, on the one hand includes more than
twelve years of life of the EU ETS beyond the phase I pilot; and, on
the other hand, it considers the latest crisis episodes (Sovereign
debt crisis, Brexit, COVID-19 and Ukrainian war).

Our findings show that the minimum risk portfolios are based
on the use of DCC models, which captures changing correlations
over time. Most selected dynamic portfolios take long positions
in CLEAN and short position in OIL.GAS and some times in the
free risk asset, with these weights tending to have the larger
absolute values from the Paris Agreement (December 2015). The
role of the EUA is secondary but with stable behaviour in terms
of risk and a positive contribution around 20% of long positions
since 2016. These results motivate investors to remove carbon
from their equity portfolios. We show that investing in clean
energy companies is valuable not only for its contribution to a
sustainable energy transition to renewable sources but also for
the attractiveness from a financial viewpoint.

The main contributions of the paper are fourfold. Firstly, we
provide a procedure based on Engle and Colacito (2006) for
correctly estimating the conditional covariance matrix of asset
returns, which allows us to build the weighting for an optimal
minimum risk portfolio. Secondly, we supply sequential infor-
mation processing that helps investors perform smart portfolio
management, enabling them to learn day-by-day and adapt the
asset weights over time. Thirdly, we isolate the effect of estimated
covariance from expected returns, by applying the optimisation
procedure for a set of several scenarios where profits could be
elevated, and others in which they could be small or even null.
Fourthly, by analysing the evolution of the weights of the optimal

energy portfolio provided in the paper, we highlight the fact
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hat, currently, investment in clean energy is consistent with
hat all investors want, whether they are environmentally or
ocially responsible or only concerned about profit. In addition,
e highlight that although investors often panic during times
f geopolitical noise, such as the current Russo–Ukrainian War
the most severe conflict since World War II), our dynamic op-
imum portfolio continues to support investment in renewables.
n important reason for this could be found in the fact that re-
ewable energies, in addition to protecting the environment, can
revent energy dependence between countries and, therefore,
atastrophic geopolitical conflicts.
The remainder of the study proceeds as follows. In Section 2,

e set-up the problem and we explain the procedures used, on
he one hand, to obtain the weights of a minimum risk portfolio
nd, on the other hand, to compare the risk of the portfolios
rovided by different models. In Section 3, we apply these pro-
edures to the energy equity and carbon markets. The study
oncludes with main remarks, policy consequences, and future
reas of research.

. Setting up the problem and methodology

In Section 2.1 we set-up the problem and explain the proce-
ure used to obtain the weights of the minimum risk portfolio.
n Section 2.2, we describe the risk comparison technique, which
s based in Engle and Colacito (2006) and it is used to estimate
he conditional covariance matrices of the asset returns as well
s the portfolio weights.

.1. Minimum risk portfolio

Let
{
rt =

(
r1,t, . . . , rn,t

)′
; t = 1, . . . , T

}
be the sequence of

day-to-day financial return vectors with ri,t = 100 · log
(

pi,t
pi,t−1

)
nd pi,t is the closing price of the ith asset in period t for i =

,. . . ,n.
Let F t = {r1, . . . , rt} be the data ensemble in period t.
Let Ωt = var (rt|F t−1) be the conditional covariance matrix in

eriod t.
Our aim is to explore portfolio diversification chances among

iverse energy equity and carbon markets. Given that most in-
estors are risk averse, preferring a lower level of risk for the
qual level of expected return (Fleming et al., 2001, 2003), and
iven the impossibility of knowing the true value of the ex-
ected returns, in this paper, we adopt an asset allocation strategy
ithin a volatility-timing framework, determining the minimum
ariance Markowitz portfolios.
Therefore, we solve the following optimisation problem con-

isting of minimising the variance of the portfolio subject to a
iven expected return µ. This issue can be written as:

in
wt

Var
(
w′

trt |F t−1
)

= min
wt

w′

tΩtwt

s.t.w′
tµ = µ0

here µ0 > 0 is the required return, wt =
(
w1,t, . . . ,wn,t

)′ is the
ector of portfolio weights for time t chosen at time t – 1 with wi,t
eing the share on asset i for time t for i = 1, .., n. The solution
o this problem is:

t =
Ω

−1
t µ

µ′Ω
−1
t µ

µ0

Note that
∑n

i=1 wi,t usually will not require being equal to 1.
In fact, 1−

∑n
i=1 wi,t is the portion in the risk-free asset. In what

follows we will take µ = 1.
0
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However, it is not easy to choose the average return vectors
µ (Engle and Colacito, 2006). For this reason, and in order to
take into account the uncertainty associated with this problem,
we implement the optimisation process for a set of supposed
constant vectors of expected returns µ ∈ E. The E set tries to
capture several scenarios, where profits could be elevated, and
others in which they would be able to be small or even null.
Once we have determined E, we calculate the minimum variance
portfolio weights for each µ ∈ E. Finally, our proposed final
ptimal portfolio is built averaging the weights of the selected
ortfolios.

.2. Dynamic estimation of the covariance matrix

Engle and Colacito (2006) proved that if σt is the standard
eviation of the minimum variance portfolio obtained in period
using an estimation Ht of Ωt, then σt ≥σ ∗

t where σ ∗
t is the

standard deviation of the minimum variance portfolio obtained
with Ωt and, hence, 1

T

∑T
t=1

(
σ ∗
t

)2
≤

1
T

∑T
t=1 (σt)

2
∀µ. Hence,

misestimating Ωt entails an increase of the risk of the portfolio or,
equivalently, a decrease of the required return µ0 for a fixed risk
level. Therefore, we must try to estimate Ωt as best as possible.

To that aim we use a set of statistical models M =

{M1, . . . ,MK}, usually conditionally heteroscedastic, which try to
describe in a parsimonious and reliable way, the evolution of
Ωt over time. In order to select the most adequate model, we
apply a procedure proposed by Engle and Colacito (2006) based
on the test of Diebold and Mariano (2002), which carries out
pairwise comparison of the risk of minimum variance portfolios.
The weights of these portfolios are calculated, for each µ ∈ E,
from the covariance matrices

{
Ht,Mi; t = 1, . . . , T

}
estimated by

Mi ∈M. Next, we briefly describe this procedure:
Let E = {mi; i = 1, . . . , R} be the set of plausible return vec-

tors.
Let wj

t,Mi
=

H−1
t,Mi

mj

m′

jH
−1
t,Mi

mj
the corresponding minimum variance

ortfolios weights assuming an expected return µ = mj for j =

,. . . , R.
Let π

(j)
t,Mi

= wj′
t,Mi

(
rt − rT

)
where rT =

1
T

∑T
v=1 rv for i = 1, 2.

Let vit,M1,M2
= ui

t,M1,M2

[
0.5

(
m′

iH
−1
t,M1

mi

)(
m′

iH
−1
t,M2

mi

)]1/2

where

ui
t,M1,M2

=

(
π

(i)
t,M1

)2
−

(
π

(i)
t,M2

)2

We perform the following regression:

Vt,M1,M2 = βM1,M21Rx1 + εv,t,M1,M2 for t = 1, . . ., T (1)

where Vt,M1,M2 =

(
v1t,M1,M2

, . . . , vRt,M1,M2

)′

, and we test the hy-
pothesis H0: βM1,M2 = 0 versus H1: βM1,M2 ̸= 0 using a t-test with
a robust Newey–West estimator of the standard error of β̂M1,M2 .
If we accept H0, we conclude that there are not significant differ-
ences between the risks of the compared portfolios and, hence,
there are not significant differences between the estimations of
Ωt provided by both models (M1 and M2). Otherwise, if we accept
that βM1,M2 > 0 we conclude that

{
Ht,M2; t = 1, . . . , T

}
describes

the evolution of Ωt along time better than
{
Ht,M1; t = 1, . . . , T

}
.

The contrary happens if we accept that βM1,M2 < 0.
If the solution to this model comparison process is unique, we

keep the selected model as the best one. However, if there are
several models that provide adequate estimates of Ωt, we resort
to model selection criteria to determine, within the set of models
that have turned out to be indifferent, the optimal one.

2.3. Weights minimum risk portfolio

Once we have determined the best model, Mopt, the final
optimal portfolio is built averaging the weights of the mini-
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Fig. 1. Evolution of the daily excess returns of GAS, OIL, EUA (first row), and CLEAN and OIL_GAS (second row) in the period from 19 Jan, 2004, to 4 Apr, 2022. All
series are heteroscedastic with volatility clustering. The most volatile series tend to be GAS and EUA, while the least are CLEAN and OIL_GAS.
mum risk optimal portfolios
{
wi

t,Mopt
=

H−1
t,Mopt

mi

m′
iH

−1
t,Mopt

mi
; i = 1, . . . , R

}
n such a way that wt,Mopt =

1
R

∑R
i=1 w

i
t,Mopt

. Notice that wt,Mopt

is an equally weighted portfolio of minimum-variance portfolio,
which considers the uncertainty associated with the value of the
expected returns vector µ, and it provides a smoothing of the
asset weights.

3. Empirical analysis of the european energy market

In this section, we factually analyse the daily evolution of
prices in the European energy and carbon markets and apply the
method from Section 2 to determine the optimum minimum risk
portfolios. Then, we study the composition of the portfolios while
paying special attention to the role of clean energy in them.

3.1. Data

The data used in this work are day-to-day shutdown prices
(in euros) from January 19, 2010 to April 4, 2022 (amounting to
2959 observations) of five assets. The time span starts in 2010,
thus avoiding Phase I of the EU ETS that started in 2005 and
which was a pilot phase. This is a common practice in the energy
economics literature (Chang et al., 2018). However, we selected
2010 within Phase II, which was a period of full operation of
the EU ETS, and not 2008, since 2010 was a year of energy
recovery after the Great Recession. The time span ends on April
4, 2022, since this was the latest data available at the time of
the analysis. The entire period covers the latest crisis episodes
(Sovereign debt crisis, Brexit, COVID-19 and the start of the recent
Russo–Ukrainian war). The two fossil fuel series (designated GAS
and OIL in our paper) recount to oil and gas futures prices in
Europe, which are important generators of ‘‘dirty’’ energy. We
have considered the ‘‘Brent’’ oil futures, recorded in the United
Kingdom, which are the European leading reference for a barrel
price of this fuel. Regarding gas, we have taken the Natural Gas
Futures, the reference in Europe, which are listed on the stock
exchange market of United Kingdom. In addition, we have taken
the S&P Global Clean Energy Index and the EURO STOXX

®
Oil

& Gas Index as the series of securities prices of clean and dirty
energy industries, respectively. The first index (designated CLEAN

in our paper) measures the yield of 31 worldwide enterprises
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in businesses related to clean energy (more information and
details on the weights and the formula for calculating this in-
dex can be found at https://www.spglobal.com/spdji/en/indices/
esg/sp-globalclean-energy-index/#overview, accessed on April 4,
2022). As clean energy companies are younger and their market
is less mature, we preferred to select a world index instead of a
European one, because it already includes consolidated compa-
nies and, therefore, is a better representative of the clean energy
market. Moreover, we considered the S&P Global Clean Energy
Index and not a green bond index because according to the
hedging effectiveness findings of Saeed et al. (2020), clean energy
stocks have a greater ability than green bonds to lessen the risk
of dirty energy investment, and are therefore a more effective
hedge. The ‘‘dirty’’ energy index (nominated OIL_GAS in our pa-
per) provides data on the 12 largest European enterprises in the
mining, drilling, manufacturing, refining, delivery and retail sale
of oil and gas (more information and details on the weights and
the calculation formula can be found at https://www.stoxx.com/
index-details?symbol=SXEE, accessed on April 4, 2022). Finally,
the variable EUA in our database picks the prices of European
Unit Allowances from SENDECO2 (European CO2 Trading Sys-
tem), a firm that trades emission permits independently, and that
provides technical and managerial counselling to manufacturing
installations submitted to the EU ETS system.

3.2. Descriptive analysis

Fig. 1 displays the excess return series matching to the five
assets and Table 1 reveals the results of a descriptive statistical
analysis. The average return of the series is not significantly dif-
ferent from zero and all series are strongly leptokurtic and have
significant but not very strong asymmetries. In addition, they
also show the heteroscedastic character with the characteristic
volatility clustering of financial series. The less volatile series tend
to be CLEAN and OIL_GAS given that they are stock indices. It
can also be observed that the kurtosis of OIL_GAS tend to be
significantly higher than kurtosis of CLEAN due to the greater
trend of OIL_GAS to have a heavier left tail, which reflects a
tendency to take more extreme negative excesses returns. The
most volatile series tend to be GAS and EUA. In the case of GAS,
the higher volatility is mainly due to the last period 2019–2022
(see Fig. 1) and more intensely that corresponding to the Russo–

Ukrainian war; while in the case of EUA, its higher volatility

https://www.spglobal.com/spdji/en/indices/esg/sp-globalclean-energy-index/#overview
https://www.spglobal.com/spdji/en/indices/esg/sp-globalclean-energy-index/#overview
https://www.spglobal.com/spdji/en/indices/esg/sp-globalclean-energy-index/#overview
https://www.stoxx.com/index-details?symbol=SXEE
https://www.stoxx.com/index-details?symbol=SXEE
https://www.stoxx.com/index-details?symbol=SXEE


P. Gargallo, L. Lample, J.A. Miguel et al. Energy Reports 8 (2022) 15654–15668

g

g
t
t
d
s
o
a
t
o
p
s
p
o
m
o
C
p

3

m
c

3

e

n
o

R

a

Q

b

r
e

S
d
r
a
S

f
d
e
o

Table 1
Descriptive study of the day-to-day excess returns of the five assets in the period
from 19 Jan, 2004 to 4 Apr, 2022.

Minimum Maximum Mean Std. Dev. Skewness Kurtosis

GAS −35.467 39.533 0.066 3.709 0.377*** 19.268***
OIL −27.975 19.079 0.001 2.323 −1.031*** 19.182***
EUA −42.256 21.582 0.057 3.222 −0.950*** 14.791***
CLEAN −12.495 11.034 −0.002 1.574 −0.449*** 6.348***
OIL_GAS −17.951 12.388 −0.007 1.510 −1.010*** 16.243***

Note: The rows correspond to the five assets (GAS, OIL, EUA, CLEAN and
OIL_GAS), and the columns correspond to the usual descriptive statistics (min-
imum, maximum, mean, standard deviation, skewness and kurtosis). The three
asterisks indicate that skewness and kurtosis differ significantly from zero at 1%
for the excess returns of the five assets.

reflects the different changes in the CO2 emission allowances
ranting systems.
Fig. 2 represents a two-panel chart, which shows a matrix

raphic in the top panel with the pairwise cross-correlations of
he five daily returns in the outside of diagonal elements, and
he values of their autocorrelations in the diagonal cells. The
iagonal elements show small non-significant autocorrelations,
pecific of financial series. So, we propose a VAR(1) model in
rder to explain that relations among the five series return. In
ddition, in the bottom panel, the autocorrelation function of
he quadratic returns can be seen, which indicate the presence
f values significant positive for all the lags. This reflects the
resence of a lasting volatility clustering in all the assets. Con-
equently, a GARCH model for the volatility of each series is
roposed. Finally, the off-diagonal elements in the upper board
f Fig. 3 include the correlations between returns, which advise a
ultivariate GARCH modelling, enabling correlation between all
f the assets. Concretely, we opted to use Asymmetric Dynamic
onditional Correlation (ADCC) models in order to capture the
ossible asymmetric impact of recent market information.

.3. Estimation and selection of the model

This section first describes the six models used, and deter-
ines the best model to estimate the evolution of the conditional
ovariance matrix of the analysed series.

.3.1. Description of the models
We propose to use a VAR(1)-ADCC(1,1)-GARCH(1,1) family to

stimate Ωt. This family was introduced by Cappiello et al. (2006)
and is one of the key references for both its flexibility and its fea-
sibility of implementation because of the separate specifications
of the conditional volatilities and of the conditional correlations.
Concretely, we assume that

rt |F t−1 = µt + εt

where µt is given by the VAR(1) expression:

µt = Φ1rt−1

and εt = (ε1t , . . . , εnt)
′ is a conditional heteroscedastic error term

with Ht = var (εt|F t−1). The conditional covariance matrix is
broken down as follows:

Ht = DtRtDt

where Dt is a matrix with off-diagonal zeros and the conditional
variances, hii,t = var(εi,t|F t−1) for i = 1,. . . ,n, on diagonal ele-
ments, and Rt is the conditional correlation matrix of rt. We use
independent GARCH(1,1) to model the n conditional variances,
which are written in vector form as:

diag(H ) = Ω + A ε ⊙ ε + B diag(H )
t 1 t−1 t−1 1 t−1
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where Ω = diag (ωi), A1 = diag (αi) and B1 = diag (βi) are n×n
on-negative diagonal matrices, and ⊙ denotes the Hadamard
perator. Regarding the correlation matrix, Rt, we suppose that

t = Q∗−1
t QtQ∗−1

t with Q∗

t = diag (Qt)

nd Qt is given by:

t = Q + a
(
zt−1z′

t−1 − Q
)
+ b

(
Qt−1 − Q

)
+ gz−

t z
−

′

t

with a, b being non-negative unknown constants verifying a +

< 1, which is enforced to assure stationarity and positive
definiteness of Qt. In addition, zt = D−1

t εt are the standardised
esiduals, z−

t = ztI (zt < 0) in order to capture asymmetric
ffects, Q is a definitive positive symmetrical matrix and Q0

is the onset value of Qt, which has to be positive definite to
assurance Ht to be positive definite. The model parameters are
estimated with a procedure of three stages based on Engle and
Sheppard (2001). In the initial stage, a VAR(1) model for rt is
applied and the estimation ε̂t of the residuals εt is obtained. In
the next stage, n univariate GARCH(1,1) models are estimated
separately for each residual univariate time series. In the third
step using the estimated standardised residuals ẑt = D̂−1

t ε̂t,
obtained from the estimated volatilities from the second stage,
we take Q =

1
T

∑T
t=1 ẑtẑ

′
t and we estimate a, b and Q0 using

maximum likelihood. The two last steps are used to estimate
the elements in Ht separately, first the elements that are on the
diagonal are determined and then, from them, the off-diagonal
elements are estimated.

In order to select the most adequate models, we consider
the following three subfamilies of VAR(1)-ADCC(1,1)-GARCH(1,1)
models:

– The VAR(1)-CCC(1,1)-GARCH(1,1) model, which uses the
Constant Conditional Correlation (CCC) model of Bollerslev
(1990), supposing that a constant correlation matrix links
the univariate models for conditional variances GARCH(1,1)
to one another. It assumes that a = b = g = 0 and, hence,
Rt = R ∀t

– The VAR(1)-DCC(1,1)-GARCH(1,1) model, which uses the
Dynamic Conditional Correlation (DCC) model presented by
Engle (2002) and Tse and Tsui (2002), generalising the CCC
model because the assumption of constant conditional cor-
relations may not seem realistic for many practical financial
applications. The DCC allows for dynamic evolution of the
correlations and assumes that the asymmetric effects are not
significant (g = 0).

– The VAR(1)-ADCC(1,1)-GARCH(1,1) model, which uses the
Asymmetric Dynamic Conditional Correlation (ADCC) model,
by allowing to examine the degree in which changes in
asset correlation show evidence of asymmetric responses to
negative returns.

Therefore, we have considered k = 6 possible models resulting
from the combination of the CCC, DCC and ADCC family models
with the multivariate normal distribution (MVN) and multivariate
Student’s t (MVT) for the conditional error distributions εt|F t−1.
o, and in order to abbreviate the notation, these models are
enoted CCC_MVN, DCC_MVN and ADCC_MVN, when the er-
ors are jointly normally distributed and CCC_MVT, DCC_MVT
nd ADCC_MVT, when the used distribution is the multivariate
tudent’s t.
We have considered both error distributions because in many

inancial applications the Gaussian assumption is usually rejected
ue to the existence of conditional leptokurtosis. This fact is
specially interesting for risk analysis where the tail properties
f return distributions are of primary concern.
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Fig. 2. Two-panel chart: The top panel (the first five rows) is a matrix graph showing the pairwise cross-correlations of the daily excess returns of the five assets in
the off-diagonal elements, and their autocorrelations in the diagonal cells. Most of the series are contemporaneously correlated in a positive way. The bottom panel
(last row) contains the autocorrelation function of the quadratic excess returns of the five assets. GARCH time-varying volatility can be appreciated for each series.
3.3.2. Determination of the best model
All the estimation presented below were obtained using the

statistical package rmgarch of R program.
Table 2 shows the results of the estimation of the mean of

the asset returns as well as their joint links by means of the
15660
VAR(1). The short-term progression of the EUA series is inversely
affected by GAS and OIL.GAS. A price rise of GAS and OIL.GAS
envisage a decline in CO2 emissions and, hence, a decrease in
EUA prices. Conversely, the anterior evolution of EUA does not
affect any of the other assets, reflecting that the incentive to
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5

Fig. 3. The figure consists of a two-panel chart with the results of the pairwise comparison between the models. The first panel is a matrix with the results of
the Diebold and Mariano test, as well as the fluctuation tests of Giacomini and Rossi. The crossing of each row and each column contains the result of the risk
comparison of the optimal portfolios built with the models that are indicated in the corresponding places on the diagonal. The lower triangular matrix contains
the values of the t statistic from the Diebold and Mariano tests. Highlighted in red (blue) are the positive (negative) significance results regarding the value of
the parameter βM1,M2 from the regression model (1). For example, 4.8097 is the value of the t statistic from the Diebold and Mariano tests corresponding to the
comparison of the risk of the optimal portfolios built with the M1 = CCC_MVT and M2 = DCC_MVN models. As this value is greater than 1.96, it is concluded at
% of significance that the parameter βM1,M2 > 0, and, therefore, the riskier portfolio is that built with model M1 = CCC_MVT. The upper triangular matrix shows

the graphic evolution of the statistics from the fluctuation test that analyses the existence of time varying differences in portfolio volatilities built with model M2
minus those of model M1 . Therefore, for example, the graph located in the crossing of row 2 and column 4 shows that the differences take many negative values
and exceed the lower end of the confidence band, from 2020 on. Therefore, portfolios built with M2 tend to be less risky than those built with M1 . The second
panel in the table (last row) displays the index number (normalised to 100) of the volatility ratios for each model. In bold is the model with the minimum volatility
ratio. Thus, the value 101.6428 is the ratio between the estimated mean standard deviation of the minimum risk portfolio built with the CCC_MVT model and that
with ADCC_MVN. Therefore, ADCC models tend to select less risky portfolios than CCC_MVT, improving their level of required level return for the same level of risk
by1.64%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
E

c
c
b
c

shifting from unclean to clean energy is not channelled across the
average return of the series. Finally, increments in CLEAN stock
prices are generally related to economic heyday periods and,
therefore, foresee growths in CLEAN and in OIL.GAS stock prices.
This fact indirectly enhancements the advisability in investing
and fostering the activity of clean enterprises not only for the
noticeable environmental motives but also for economic aims.

Table 3 shows the results of the estimation of the conditional
variances of the five assets. Every one of the coefficients are
meaningful, and the volatility persistence is very elevated in all
the assets. The sum of alpha and beta is over 0.99. Table 3
also suggests the heteroscedastic nature of the series and the
presence of medium/long-term effects of sudden shock. Lastly, a
volatility-clustering phenomenon is appreciated in all the assets.

Table 4 shows the results of the estimation of the coefficients
that govern the evolution of the correlation matrix of the five
assets in the case of the dynamic conditional correlation models.
All of the coefficients are significantly different from zero except
for the asymmetric coefficient g in ADCC models. The sum of the
coefficients a and b is very close to one, highlighting the changing
character in time of the correlation between all the assets and
reflecting a high perseverance in their evolution.
 a
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Table 2
Estimations of the VAR(1) model coefficients.
VAR coefficients GAS(−1) OIL(−1) EUA(−1) CLEAN(−1) OIL_GAS(−1)

GAS 0.086*** 0.021 0.002 −0.091 −0.131**
OIL −0.007 0.077*** −0.013 0.023 −0.057
EUA −0.052*** −0.012 −0.004 0.032 −0.112**
CLEAN −0.001 0.008 0.008 0.119*** −0.021
OIL_GAS 0.003 0.011 −0.015* 0.047** 0.030

Note: This table contains the estimated elements of the autoregressive matrix
Φ1 of the VAR(1) model. In bold, the coefficients significantly different from 0
to 10% (*), to 5% (**), and to 1% (***). For example, GAS(-1) denotes the one-
period lagged value of the excess return of GAS, i.e., the estimated expression
for the evolution of the conditional mean of the excess return of GAS is µGAS

t =(
rGASt |F t−1

)
= 0.086rGASt−1 + 0.021rOILt−1 + 0.002rEUAt−1 − 0.091rCLEANt−1 − 0.131rOIL_GASt−1 .

Table 5 shows the value of the AIC, BIC, Shibata and HQ
riteria. It can be seen that the best goodness of fit to data
orresponds to the DCC_MVT model whose parameters a, and
are statistically significant, which provides evidence of time

hanging correlations between the five series.
In order to obtain the best estimate of the conditional covari-

nce matrices, we apply the procedure detailed in Section 2.2
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Table 3
Estimations of the GARCH model coefficients.
GARCH coefficients ωi αi βi

GAS 0.082* 0.117*** 0.882***
OIL 0.043** 0.091*** 0.907***
EUA 0.125* 0.124*** 0.874***
CLEAN 0.026*** 0.098*** 0.894***
OIL_GAS 0.026*** 0.089*** 0.903***

Note: The first column shows the estimated values of ωi (diagonal elements
f matrix Ω), the second column shows the estimated values of αi (diagonal

elements of matrix A1), and the third column shows the estimated values of
βi (diagonal elements of matrix B1). In bold, the coefficients of Ω, A1 and B1
ignificantly different from 0 to 10% (*), to 5% (**), to 1% (***). The diagonal
f matrices Ω, A1 and B1 defines the univariate GARCH(1,1) models for each
f the five assets. For example, in the case of GAS, the resulting equation is
GAS
t = Var

(
rGASt |F t−1

)
= 0.082 + 0.117

(
εGAS
t−1

)2
+ 0.882hGAS

t−1 .

Table 4
Estimated coefficients of the DCC and ADCC models.
DCC coefficients DCC_MVN ADCC_MVN CCC_MVT DCC_MVT ADCC_MVT

a 0.013*** 0.013*** 0.013** 0.013***
b 0.970*** 0.970*** 0.972*** 0.972***
g 0.001 0.001

ν 7.504 7.614 7.628

Note: The three first rows of the table show the estimated values of the
coefficients a, b and g of the evolution of the matrix Qt − Q for the different
ynamic conditional correlation models. In bold, the coefficients significantly
ifferent from 0 to 10% (*), to 5% (**), to 1% (***). Notice that no value of g is
ignificantly different from zero, i.e., the existence of significant asymmetrical
ffects is not appreciated. The last row contains the estimated values of the
egrees of freedom for the multivariate student t conditional error distribution
or models CCC_MVT, DCC_MVT, ADCC_MVT. Thus, for example, in the case of
DCC_MVT model, the resulting equation is Qt − Q = 0.013

(
zt−1z

′

t−1 − Q
)

+

.972
(
Qt−1 − Q

)
+0.001z−

t z
−

′

t with a multivariate student distribution of 7.628
reedom degrees for the error term.

nd its results are displayed in Fig. 3, which contains two panels.
he top panel shows a matrix that encompasses, in the lower
riangular part, the pairwise model comparisons by using the
rocedure proposed by Engle and Colacito (2006) based on the
est of Diebold and Mariano (2002) and, in the upper triangular
art, the statistic evolution of the fluctuation tests of Giacomini
nd Rossi (2010). To apply the test described in Section 2.2,
ollowing Gargallo et al. (2021), we have taken the nonconcurrent
uarterly measurements included in the analysed period, reject-
ng those vectors with negative components, as elements of the
set of possible returns. The number of possible scenarios was
= 43. Thus, the lower triangular matrix shows the t-statistic

alues of the regression model β parameters (1) for each pairwise
omparison of the six models. These t-statistics are the outcome
f collating the case in the column with the one in the row.
negative (positive) value of the t statistic indicates a better

worse) performance of the row, with reference to volatilities.
Fig. 3 indicates that dynamic conditional correlation models

rovide lower risk portfolios than constant conditional correla-
ion models, but that no significant differences are found between
heir symmetrical and asymmetrical versions.

The regression model (1) analyses the global variance perfor-
ance of each of the six compared portfolios but not their local
ariance performance in each period. For these reasons, we have
lso applied the fluctuation test proposed by Giacomini and Rossi
2010) to detect time-variation in the difference of variances of
he compared portfolios and to test the null hypothesis that this
ifference is zero at each period. For this, we have used the
ollowing loss functions for each scenario j = 1, . . . , R:

oss(j) = wj′ (
r − r

) [
0.5

(
m′H−1 m

)(
m′H−1 m

)]1/2
t,Mi t,Mi t T j t,M1 j j t,M2 j
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and, from them, we have calculated the mean for the R scenarios:

losst,Mi =
1
R

R∑
j=1

loss(j)t,Mi
for i = 1, 2 and t = 1, . . . , T

The upper triangular part of the matrix in the top panel
contains the evolution of the fluctuation test statistics along time
with the 95% confidence bands for the fifteen portfolio variance
pairwise comparisons. When the series exceeds the upper (lower)
ends of the confidence band it means that the null hypothesis
of equality is rejected, and we conclude that there are periods
during which the second portfolio (subtrahend) of the difference
has less (higher) variance. We observe that the predominant signs
of the differences analysed with the fluctuation test are in line
with the corresponding t-statistics in the lower triangular matrix
(see Fig. 3). However, these differences only are significantly
different from zero between the DCC models and the CCC mod-
els, as well as, between the ADCC models and the CCC models,
from 2020 on. In this period the EU, before recovering from the
social and economic consequences of the COVID-19, has had to
face the most severe episode since World War II, the current
Russo–Ukrainian War.

Finally, the bottom panel of Fig. 3 (last row) shows, for each
compared model M, the index numbers corresponding to the
average of the estimated standard deviation of the observed one-
step-ahead returns

{
wi′

t,Mrt; t = t0, . . . , T; i = 1, . . . , R
}

of the
selected portfolios for each return mi ∈ E, by taking the minimum
average as reference. These volatility ratios allow evaluating, from
an economic viewpoint, the existing differences in risk among the
minimum variance portfolios selected by each compared model
for each possible return scenario of E. Again, it can be seen
hat DCC and ADCC models tend to select significantly less risky
ortfolios than CCC models by improving 1.16% their level of
equired daily return for the same level of risk. In addition, there
re no significant differences between the level of risk of the DCC
nd ADCC models, and the averages of the standard deviations of
he returns of their minimum variance portfolios are essentially
he same (the largest difference is 0.0003%).

Given that significant differences between DCC and ADCC
odels do not exist with respect to the risk level of their selected
ortfolios, we choose model M = DCC_MVT to obtain all the
esults from here on. Thus, Fig. 4 displays the estimated volatility
f the five daily asset returns in the diagonal elements, and
he correlation between two assets in the off-diagonal elements.
constant correlation corresponding to a CCC_MVT model is
arked with a red horizontal line.
Fig. 4 shows that the CLEAN and OIL.GAS series have the

owest volatilities because they are balanced averages of equity
rices, which flattens their day-to-day evolution. Moreover, they
ossess great positive correlation, although decreasing in the last
eriod, which highlights the presence of risk synergy effects. The
isks of GAS and EUA series measured through their volatilities
re the greatest. Finally, except in the EUA series, an elevated
alue of volatility is distinguished in March 2020, coinciding with
he beginning of the coronavirus pandemic. In the case of GAS, the
olatility is very high also during the year 2022 due to the Russo–
krainian war. The values of EUA volatility reflect the different
hanges that happened in the CO2 emission allowance granting
ystems. Thus, the EUA series exhibits a wide volatility at the
utset of phase III because the manner of obtaining permits was
odified. In addition, this series is also positively related with all

he assets, but with levels of correlation close 0.2.
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Table 5
Selection criteria for the six models.
Criteria CCC_MVN DCC_MVN ADCC_MVN CCC_MVT DCC_MVT ADCC_MVT

Akaike 19.527 19.802 19.802 19.527 19.476 19.477
Bayes 19.630 19.907 19.910 19.630 19.584 19.586
Shibata 19.526 19.801 19.802 19.526 19.476 19.476
Hannan–Quinn 19.564 19.840 19.841 19.564 19.515 19.516

Note: This table shows the goodness of fit values (AIC, BIC, Shibata and HQ) for the six models compared. The optimal model for
each criterion is indicated in bold. It can be seen that DCC_MVT is the model that best fits the data for all the criteria.
Fig. 4. Matrix graph whose elements outside the diagonal show the evolution of the estimated pairwise correlations among the six series in the period from 19 Jan,
2004, to 4 Apr, 2022, while those in the diagonal include the estimated volatility of the day-to-day excess returns. The estimated constant correlation of a CCC_MVT
model is marked in red. The correlations change over time and range between 0.1 and 0.6, oscillating around the red line, the highest being those corresponding to
OIL_GAS with CLEAN and OIL_GAS with OIL. In terms of volatilities, it is estimated that the most volatile asset is GAS, especially in pandemic and war periods. The
rest of the assets show a very specific increase at the start of the pandemic, except for the EUA, which shows a peak in the first quarter of the year 2013 caused
by the beginning of Phase III of the EU ETS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
⏐⏐
3.4. Selected portfolios

Once we have determined the best model, the final optimal
ortfolio is built averaging the weights of the minimum risk
ptimal portfolios obtained for each of the R = 43 scenarios, as in-
icated in Section 2.3. Fig. 5 shows, for model M = DCC_MVT, the

evolution of portfolios weights
{
wt,M; t = t0, . . . , T

}
and Figs. 6

and 7 displays the expected portfolios volatilities σ =
t,M

15663
√
w′

t,MH−1
t,Mwt,M and the observed volatilities σt,M,obs =

w′

t,M

(
rt − rT

)⏐⏐, respectively. The weights and the volatilities of
the rest of models are similar and are left out for brevity reasons.

In general, most of the optimum portfolios take long positions
in GAS, OIL and CLEAN and short positions in OIL.GAS and the
free risk asset. Several sub-periods can be distinguished. In the
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Fig. 5. Daily evolution of the optimal portfolio weights in the period from 19 Jan, 2004, to 4 Apr, 2022. These weights are calculated by the expression
wt,Mopt =

1
R

∑R
i=1 w

i
t,Mopt

where Mopt = DCC_MVT. The weights corresponding to GAS are coloured in orange, those of OIL in red, those of EUA in light green,
hose of CLEAN in dark green, those of OIL_GAS in brown and those of the risk free asset in cyan. Horizontal lines have been incorporated in order to reflect the
omposition of the minimum risk portfolio in the last period (April 4, 2022) in comparison to the rest of the series. Specifically, the weight of GAS is 0.12, of OIL
s 0.06, of EUA is 0.38, of CLEAN is 0.53, of OIL_GAS is 0.32 and of the risk free asset is −0.42. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)
Fig. 6. Daily evolution of the expected portfolio volatility one step ahead σt,M =

√
w′

t,MH−1
t,Mwt,M obtained with the model M = DCC_MVT in the period from 19 Jan,

004 to 4 Apr, 2022. Homogeneous volatility behaviour is observed over time with the only exception being the start of the pandemic period (March 18, 2020) and
he start of the Russo–Ukrainian war (March 10, 2022).
o
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p
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irst period (2010–2011), the EUAs had the highest weights in the
ortfolio, corresponding with phase II of the EU ETS, in which
he objectives to which the member countries had committed
hemselves with the Kyoto Protocol, should be met. It came from
hase I, from 2005 to 2007, in which the bases and objectives for
ffective action in the following three phases were established.
hase I was called the ⟨learning phase⟩ , being minimal measures
ere put into action (Ellerman et al., 2010), but whose main
bjective was to prepare for the strong entry of phase II, reflecting
he preponderance of the EUA in the portfolio. Subsequently, in
he period 2012 to 2014 (Sovereign debt crises) and in 2015 (with
he Brexit announcement), the highest weights correspond to GAS
eflecting its importance in the European energy mix. Bear in
ind that GAS can be considered as a substitute refuge value for
 e
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il because it is an energy source that is less dirty2 and, therefore,
an be a better alternative than oil for the energy transition.
owever, in 2014, when the European Council promoted energy
fficiency policies in the climate and energy framework, and es-
ecially since the Paris Agreement (December 2015), the optimal
ortfolio in each period tends to allocate the highest weight to
LEAN. The Paris Agreement was a milestone in climate change
ction because, for the first time, a mandatory agreement brought
ogether all countries in a common cause to launch determined
fforts to combat climate change and adapt to its consequences.
herefore, the Paris Agreement underpinned the change towards
n economy that will gradually do without oil and gas as support.

2 https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-
nvironment.php.

https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php
https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php
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Fig. 7. Daily evolution of the observed portfolio volatility σt,M,obs =
⏐⏐w′

t,M

(
rt − rT

)⏐⏐ obtained with the model M = DCC_MVT in the period from 19 Jan, 2004 to 4
Apr, 2022. Again, homogeneous volatility behaviour is observed over time, with the most significant increases being at the start of the pandemic period (March 18,
2020) and the start of the Russo–Ukrainian war (March 10, 2022).
t
t
w
a

Since 2016, the preponderance of CLEAN has only been lost at
certain moments in the 2020–2021 period, coinciding with the
most atypical years globally in recent generations due to the
COVID 19 pandemic. However, despite all the difficulties and un-
certainty that 2020 and the first part of 2021 brought, with a high
percentage of the European population vaccinated, renewable
energies have once again positioned themselves strongly with the
greatest weights in the optimal portfolio with minimum risk. The
reason was the search for a better, more equitable, resilient, clean
and fair future.

To sum up, our findings show that since the Paris agree-
ment, portfolios should hold weights between 40 and 60% in
investments indexed (ETF) to the clean energy indicator (CLEAN),
and weights in emission rights (EUA) of around 20 and 30%.
With respect to the dirty energy market, minimum risk portfolios
should diminish the investment weight in GAS and OIL from
levels of 20 and 30% to just over 3 and 6%, respectively. The Dirty
Energy Indicator (OIL_GAS) tends to keep short positions with
weights oscillating between −20% and 0% throughout most of this
period. Only at the end of the analysed period (from March 2022
on) the portfolio recommends weighting 30% of the investments
indexed (ETF) to OIL_GAS. The risk-free asset evolves according
to market uncertainty, tending to take long (short) positions in
crisis (calm) periods. Finally, in the last period (April 4, 2022) the
portfolio advises a leverage of 42% of the total portfolio, losing its
safe-haven character in a context of low interest rate levels and
the Russian–Ukrainian war, and it recommends a long position
both in clean energy (CLEAN, 53%; EUA, 38%) and dirty energy
(OIL_GAS, 32%) (see Fig. 5). We can see that, in general, these
weights reflect the evolution of the political-economic situation
in European countries and the energy policies adopted by their
governments.

Our results are in line with other papers on the efficient man-
agement of energy portfolios. Batten et al. (2016) and Mukanjari
and Sterner (2018) conclude that the announcement of the Paris
Agreement in December 2015 had a positive effect on the valua-
tion of renewable energy companies, but no significant effect on
fossil fuel companies. Chang et al. (2020) encouraged investing in
renewable energies, especially to the risk-averse investor, since
these are more predictable according to MA rules than dirty
energies. Wan et al. (2021) showed a better performance of clean
than dirty energy companies both before and during the COVID-
19 pandemic, due to the implementation of governmental green
15665
recovery plans. Finally, Rokhmawati (2021), analysing Indonesia’s
power industry, established that reducing the fossil fuel por-
tion and increasing the portion of renewable energy produces
portfolios that are more efficient and that minimise risk.

To end the comments on the results obtained with our analy-
sis, we would like to indicate that the evolution of the expected
(Fig. 6) and observed (Fig. 7) volatilities tends to be similar,
confirming the validity of the volatility expectations of the se-
lected model. A greater increase in volatility is only observed in
specific periods that coincide with the start of unexpected events
(Sovereign debt crisis, Brexit, COVID-19 and Russo–Ukrainian
war) that significantly raise risk levels, but which is immedi-
ately corrected by the selected portfolio reducing these increases
quickly, which shows that our procedure performs adequate risk
management. Therefore, in the current context of uncertainty in
which we are immersed, active management of energy markets
through multivariate dynamic models that minimise risk is still
more valuable.

4. Conclusions

In this paper, we have proposed a strategy to build well-
diversified portfolios among both clean and dirty equity energy,
and carbon markets framed in a volatility-timing context, which
reacts to changing market environments, and providing different
portfolios at different points in the time. In order to achieve
this goal, we have used ADCC-GARCH models that permit to
obtain good estimations of the conditional covariance matrices
of the daily asset returns. The weights of the portfolios have
been obtained by means of a methodology based on Engle and
Colacito (2006) that has allowed us to determine the best model
to calculate the weights of the optimum minimum-risk portfolio.
The analysed period has been long enough to capture important
events (Sovereign debt crisis, Brexit, COVID-19 and Ukrainian
war) and observe their impact on the minimum risk portfolios.

Our findings highlight that since 2016 most of the selected
portfolios take long positions in CLEAN (between 40% and 60%)
and short positions in OIL_GAS (between −20% and 0%) and
sometimes in the free risk asset (between −20% and 20%), with
hese weights tending to have the larger absolute values from
he Paris Agreement on. The role of the EUA is secondary but
ith stable behaviour in terms of risk and a positive contribution
round 20% in long positions. The results for the last period
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020–2022 show that, at first, the COVID-19 pandemic and the
onsequent economic crisis had a significant negative impact on
ecarbonisation. However, the greater resilience of renewable
nvestments and, above all, the huge stimulus packages that many
overnments have introduced to relaunch the economy seem to
ave given a new impetus to the decarbonisation process. In the
ast year, 2022, the invasion of Ukraine by Russia has had as a
alicious precedent on the increase of the price of gas, which
as posed a threat to the coverage of energy needs. Our optimal
inimum risk portfolio has also captured this fact by showing a

all in the importance of GAS weights accompanied by an increase
n CLEAN and OIL_GAS weights and a fall in the risk-free asset.

An advantage of our method is that in the face of an unex-
ected event, the selected model immediately reacts and allows
portfolio to be built that keeps its volatility levels under control,
n important aspect for investor decisions. It is, therefore, impor-
ant to actively manage the energy markets because the weights
hange according to the volatility of the portfolio, the evolution
f the market environment, and external events. We recommend
hat portfolio managers adopt our method, i.e., controlling risk us-
ng minimum risk portfolios built from models that best estimate
he joint evolution of the conditional asset volatilities.

Together with the COVID-19 pandemic, the Russo–Ukrainian
ar has highlighted the need for countries to strengthen their
omestic capacity to build clean technologies. The recent geopo-
itical and energy market actuality demands to speed up the
ransition towards renewables and to increase the energy in-
ependence from untrustworthy providers and unstable fossil
uels. In order to reduce external energy dependency and fight
limate change more quickly and more effectively, there is no
ther option than to speed up the implementation of renewable
nergies. For this reason, the financial system should be aligned
ith energy transition requirements. Accordingly, large capital

nvestment must shift from the fossil energy sector to clean
nergy-based enterprises, so, we hope that our paper has been
ble to convince any type of investor, be it an environmental or
ocially responsible investor or an investor who is only concerned
bout profits, to switch to more sustainable energy portfolios.
his kind of investment will not only have a significant decrease
n the portfolios risk; but it will also control climatic emergency
nd prevent geopolitical conflicts.
However, as Sen and von Schickfus (2020) pointed out, in

rder to avoid a disruptive and messy energy transition with
sudden devaluation of energy companies, clear signals must
e sent to financial markets about a credible commitment to
limate policies. Given the size of energy companies and their
nterconnectedness with the rest of the economy, which makes
hem ‘‘too big to fail’’, policymakers should opt for compensation
olicies, which is what investors expect them to do.
The research results leave some avenues open for exploring

uture developments and addressing certain limitations of the
aper. Thus, in this paper we have made daily asset allocations,
owever, we want to broaden the investment horizon taking into
ccount that decision making can be made not only based on
aily returns but also on other horizons such as weeks, months,
uarters or years, depending on whether it is a short, medium
r long term investment. The results of this paper were obtained
ssuming that neither the model nor the values of its parameters
hange through time. In our future work, we want to provide
equential information processing that weakens this hypothesis,
etting us employ simpler and more parsimonious models in
oments of market calm and more complicated models in times
f turbulence or crisis. This would make our method more flexible
nd adaptive.
Likewise, we should extend our method to exploring the de-
ign of market timing strategies along the lines of Chang et al.

15666
(2020), which take into account the transaction costs associated
with position changes in the constructed portfolios.

We want also to address other ways of quantifying and man-
aging market risk, such as CVaR, since this has been one of
the central concerns of finance researchers to have permanent
control of the risk being incurred when making an either short
or long- term investment.

Finally, despite the importance of the investment in renewable
energies in the fight against climate change, some authors, such
as Wang et al. (2020), have shown that not all renewable energies
contribute in the same way to reducing CO2. In future work,
instead of using an index in its aggregated form, it might be inter-
esting to deconstruct it into its component elements, since not all
renewable sources share the same characteristics. Similarly, there
are disparate areas from renewables that should also be invested
in to support sustainable development. For this reason, broaden-
ing the context when building portfolios that incorporate assets
related to other sustainable objectives (environmental, social and
good governance) is part of our future research agenda.
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