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Percolation theory has been widely used to study phase transi-
tions in network systems. It has also successfully explained various
macroscopic spreading phenomena across different fields. Yet, the
theoretical frameworks have been focusing on direct interactions
among nodes, while recent empirical observations have shown
that indirect interactions are common in many network systems
like social and ecological networks, among others. By investigat-
ing the detailed mechanism of both direct and indirect influence
on scientific collaboration networks, here we show that indirect
influence can play the dominant role in behavioral influence. To
address the lack of theoretical understanding of such indirect
influence on the macroscopic behavior of the system, we propose
a percolation mechanism of indirect interactions called induced
percolation. Surprisingly, our model exhibits a unique anisotropy
property. Specifically, directed networks show first-order abrupt
transitions as opposed to the second-order continuous transition
in the same network structure but with undirected links. A mix
of directed and undirected links leads to rich hybrid phase transi-
tions. Furthermore, a unique feature of the nonmonotonic pattern
is observed in network connectivities near the critical point. We
also present an analytical framework to characterize the proposed
induced percolation, paving the way to further understanding
network dynamics with indirect interactions.

percolation | indirect interactions | social network | phase transition |
behavioral contagion

Percolation theory (1) is one of the most prominent frame-
works within statistical physics. Initially developed (2, 3)

to explain the chemical formation of large macromolecules, it
has been recently used to study various dynamical processes
in complex networks (4–9). Examples include the use of bond
percolation (9, 10) to study the wide spread of rumors over online
social media and outbreaks of infectious diseases on structured
populations. Site percolation (4, 5, 11) has been employed to
study the cascading failures of infrastructure networks (6, 12–16)
and the resilience of protein–protein interaction networks (17).
Likewise, bootstrap percolation (18), k-core (19–21), and linear
threshold percolation (7, 22–24) have enabled the study of the
spreading of behaviors over social networks. Finally, the so-called
explosive percolation (25) has allowed a better characterization
of systems’ structural transitions when they are growing or can
adapt, whereas core percolation (26, 27) has contributed signif-
icantly to insights into nondeterministic polynomial problems.
Common to all these percolation models is that they have suc-
cessfully described various important dynamical phenomena by
considering different direct interactions (8, 9, 28) among network
nodes; in particular, they have captured the behavior of network
systems as given by phase transitions (4, 8, 9, 28, 29).

Our study is motivated by recent evidence that there are many
systems in which indirect interactions play a major role in their
spreading dynamics (30–35). Such underlying indirect interac-
tions have important implications not only on the dynamics of the
system but also on the evolution and the emergence of network
structures. For example, Christakis and Fowler (30, 31) found
that for the spreading of many social behaviors, such as drug
(36) and alcohol addictions (37) and obesity (30), an individual
can span their influence to their friends around three degrees of
separation (friend of a friend’s friend). This phenomenon is also
widely known as “three degrees of influence” in social science.
In ecological networks, Guimarães et al. (32, 33) discovered in
2017 that indirect effects contribute strongly to the trait coevo-
lution among reciprocal species, which can alter environmental
selection and promote the evolution of species.

Despite the ubiquity of indirect influence in various real-world
systems, few studies have examined the exact mechanisms by
which the indirect influences occur, or the relative strengths
between direct and indirect influences. Here, based on empirical
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Table 1. Description of bibliographic datasets used in the empirical studies

Established field Emerging field No. of. No. of Constructing Field Observation
(PACS) (PACS) authors edges network period emerging period period

Chaos Complex networks 1, 833 3, 128 1999–2003 2001–2003 2004–2006
(05.45) (89.75)

Phase transitions Complex networks 1, 265 2, 864
(64.60) (89.75)

EPLDS (73.20) OPLDS (78.67) 2, 069 5, 900
Carbon nanotubes (39). Graphene (39). 20, 011 110, 041 2009–2013 2011–2013 2014–2016

The first and second columns are names and Physics and Astronomy Classification Scheme (PACS) numbers (except carbon nanotubes and graphene) for
the four pairs of research fields. The third to fifth columns are the number of authors and edges and the period used to construct collaboration networks,
respectively. The sixth column is the period during which a new field emerges and “focused” scientists are specified. The seventh column is the period to
observe scientists’ behavioral change and to calculate the indicator Qi .

analyses of scientific collaboration networks, we reveal that in-
direct influence occurs through next-nearest neighbors and can
be the dominant mechanism through which research interests
change; on the contrary, evidence of direct (nearest) influence
is relatively weak.

However, on the theoretical front, up to now there has been no
percolation-based theoretical model to describe the underlying
mechanism of indirect influence or its distinctions with existing
percolation models in terms of the macroscopic behaviors. For
either regular networks or complex networks, various percolation
models like bond, site, bootstrap, k-core, linear threshold and
core, etc., are always based on direct interactions (8, 9, 28) among
nodes. In essence, all of these models only take into account the
existence and the strength of directly connected nodes, regardless
of any indirect influences of other nodes. Hence, they are not
suitable for describing the indirect mechanism. Here, we propose
a percolation framework called induced percolation to theoreti-
cally study the impact of such an indirect mechanism on the whole
system.

Our results show that indirect interactions lead to a unique
macroscopic behavior characterized by anisotropy and phase
transitions and different spreading outcomes compared to the
direct influence mechanisms. Specifically, we study the most
general scenario in which links can have directions and report
that varying the links’ directionality could change the order of the
phase transition. This is in sharp contrast to previous percolation
models, for which the nature of the phase transitions is not
affected by the directionality of links. Such rich phase transition
behavior is further illustrated in our simulations on empirical
networks. To the best of our knowledge, the phenomenon of
directionality-related order of the phase transitions only exists in
some special cases of core percolation (27), whereas it is shown
to be a generic feature in our indirect interaction model.

Results
Empirical Indirect Influence Mechanisms. To investigate the exact
mechanism of neighboring influence and its direct/indirect na-
ture in empirical networks, we study collaboration networks of
scientists. Here the “behavior” is meant as the research field(s)
of a scientist, and the “spreading of behavior” is defined as the
propensity of the scientist to stay in his/her established field or
shift to an emerging field. We then study how scientists’ research
fields are influenced by their direct (nearest) neighbors and
indirect (next-nearest) neighbors. We choose four pairs of fields
in physics that have large numbers of scientists involved: chaos
vs. complex networks, phase transitions vs. complex networks,
electrical properties of low-dimensional structures vs. optical
properties of low-dimensional structures (hereinafter referred to
as EPLDS vs. OPLDS), and carbon nanotubes vs. graphene. For
each pair of fields, the latter field is the emerging field (new field)
that attracts scientists from the former (old, already established)
field.

Specifically, we analyze the datasets of articles published
by the American Physical Society (APS) (38) and Web of
Science (39), considered as representative data sources for
the studied fields (we share all the data of this study at
https://github.com/Jia-Rong-Xie). Based on articles in each
pair of fields, covering in total 5 y around the emergence of a
new field (see Table 1 and SI Appendix, Fig. S1), we construct
a collaboration network. The nodes are the scientists, and a
link is established between any pair of scientists who have
at least one joint publication. Scientists who have published
multiple articles (at least two in APS and five in Web of Science
dataset; refer to extended discussion for parameter robustness in
SI Appendix, Figs. S7–S13) in the old field yet have not published
any articles in the new field are defined as focused scientists
in the old field. They are assumed to be the influencers in the
networks and labeled as state 1. For any other nodes (influenced)
in the networks, we calculate the number of direct and indirect
“influencers” for each node. The number of direct influencers of
node i is simply the number of its nearest neighbors with state
1, and we denote it as k̃i . For the number of indirect influencers
of node i, we first identify its state 1 neighbors. For each of the
direct influencers (direct state 1 neighbors), we then count the
number of their own state 1 neighbors, and the maximum count
is defined as the number of indirect influencers mi (also called
induced index). On each of the direct influencers of node i, we
further count its degree and define the maximum degree of them
as degree index di . A visual illustration of the definitions is shown
in Fig. 1A.

Within the next 3 y (see Table 1 and SI Appendix, Fig. S1), we
count each influenced i’s publications and calculate the propor-
tion Qi of articles in the old field by the following expression:

Qi =
Pold

i

Pi
, [1]

where Pold
i and Pi represent the number of papers in the old

field and the total number of papers published by scientist i
during the observation period, respectively. A higher Qi value
of the influenced i then indicates that it receives more influence
by the “influencers” with state 1, either directly or indirectly.
Our results in Fig. 1 B, C, and E (and SI Appendix, Figs. S4–S6)
clearly show that Qi increases with the indirect influence index
mi , yet not so much with direct influence index k̃i (also called
k-core index; see Fig. 1 C and D) or the degree index di (see
Fig. 1 E and F) and the second-nearest degree index κi (see
SI Appendix, Fig. S6). This indicates that rather than direct in-
fluence, indirect influence plays a dominant role in the choice
of research focus among scientists. Indeed, we find that nodes
i and h, via node j (see Fig. 1A), are more likely to coauthor
publications in the old field, which means that the quantitative
correlation between Qi and mi does mediate the collaboration
relationship (see SI Appendix, Fig. S14).
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Fig. 1. Indirect influence mechanism in empirical collaboration networks. (A) Schematic representation for the induced index mi , the k-core index k̃i , and
the degree index di . In this example, “focused” scientists in the established field are denoted as state 1. Node i has an induced index mi = 3 because among
all direct neighbors in state 1, node j has the maximum neighbors in state 1 (i.e., three excluding node i). The degree index of node i is di = 6, which is
the degree of node j. The k-core index of node i is k̃i = 2, which is the number of direct neighbors in state 1 (nodes l and j). (B) Empirical evidence of
indirect influence. It shows a clear indirect influence mechanism in four pairs of established and emerging fields in physics that have large numbers of
scientists involved. The proportion Qi of publications in the established fields significantly increases with the scientists’ induced index mi in all the datasets.
To compare with direct influence, the orange lines in C show that the value of Qi is hardly affected by the direct influence measured through the k-core
index, while the scientists with higher indirect influence index (top 50% of mi values) clearly have a higher Qi value than that of the lower indirect influence
(bottom 50% of mi values), indicating a strong indirect influence. D highlights four sample scientists (nodes) labeled as h,i,j,l. Each orange node is a node of
interest, its connected green nodes are the neighbors of state 1, pink nodes are green nodes’ state-1 neighbors used to calculated induced index mi . Higher
induced index nodes h and j (mh = mj = 10) publish a proportion Qh = 0.71 and Qj = 0.78 of old field articles, much higher than that of node i with a lower
induced index (mi = 4), although i’s k-core index is higher (k̃i = 10) than h and the same as j. Comparing node l and i, j again indicates that the influence is
stronger through induced index m than that of k̃. A similar comparison in E and F shows that the proportion Qi is hardly affected by the degree index but
clearly affected by the induced index. C–F show results performed on the collaboration network of carbon nanotubes vs. graphene. Note that in F we also
show the state 0 nodes labeled in blue, since the calculation of degree index considers them.
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Fig. 2. Induced percolation on directed networks. A illustrates the proposed mechanism of induced percolation for the case m = 2. In order for a node i to
remain in state 1, at least one node (j) at the other end of an incoming link should be in state 1. In its turn, j should also have at least m (= 2 in the example)
incoming links from neighbors that are in state 1. B shows a directed graph of eight nodes all in state 1. C shows the GOUT at equilibrium state when the
graph on panel B is pruned according to the induced percolation rules. D and E illustrate the variables x and y defined in the main text by Eqs. 3 and 4. F and
G show the relationship between the order parameters GSCC, GIN, and GOUT for induced percolation and typical bond percolation processes, respectively.
H schematically represents the multilayer representation employed to derive the order parameter P∞ when there are directed and undirected links in the
substrate network.

The observed indirect influence mechanism in empirical col-
laboration networks is possibly due to the following two factors.
First, the fact that a scientist has a high value of induced index
means he/she collaborates with a highly active scientist (a state 1
neighbor on its own connecting to a large amount of state 1 neigh-
bors). This active scientist could strongly influence collaborators.
Second, researchers who collaborate with highly active scientists
have better chances to find new potential collaborators through
their connections with respect to researchers who have no highly
active neighbors. In other words, scientists with high induced
index can interact with researchers of the same field indirectly,
through their highly active neighbors.

Induced Percolation Model. We now define a percolation model
based only on this indirect influence mechanism characterized by
the indirect index mi . As empirically shown before, the indirect
influence increases with mi . Here we present the most simplified
version of this influence mechanism that assumes a deterministic
influence outcome, i.e., a node i is influenced to state 1 with prob-
ability h(mi) = 1 if its indirect induced index mi is not smaller
than a threshold m (see SI Appendix, Fig. S20 for a slightly more
complicated case):

h(mi) =

{
0, mi <m,

1, mi ≥m.
[2]

More formally, induced percolation can be defined on directed
networks as follows. Let us assume that the state of the nodes
is characterized by an integer value, 0 or 1. Initially, we set the
state of all nodes in the network to 1. A node i remains in
state 1 if at least one of its incoming links comes from a node,

say j, with state 1, and in turn the node j has at least m other
incoming links from nodes that are in state 1; see Fig. 2A for
an illustration of the case m = 2. Otherwise, node i changes to
state 0 at the next time step. The influence of the m nodes on the
node i defines the indirect interactions among them. Under this
mechanism, certain nodes will change their states from 1 to 0 at
each time step until no more changes are possible; see Fig. 2 B
and C for an example. Compared with bond, bootstrap, or k-core
percolation, the fundamental difference of induced percolation is
that the current state of a node is affected not only by its nearest
neighbors but also by a number of its next-nearest neighbors. The
mechanism for induced percolation through a network captures
the observation that there are behaviors whose influence reaches
nodes beyond the first shell.

In network percolation theory, the giant strongly connected
component (GSCC), giant in-component (GIN), and giant out-
component (GOUT) are three main order parameters. In partic-
ular, GSCC refers to the largest strongly connected component
whose size is comparable to the entire network. GIN is the
group of nodes from which any node in GSCC can be reached,
while GOUT is the group of nodes that can be reached from
any node in GSCC. For various types of propagation dynamics
on networks, the GOUT corresponds to the largest spreading
coverage, and it serves as an indicator of network connectivity
under a given propagation mechanism. The size of the GOUT
in the empirical studies corresponds to the number of scientists
who stay in the old field. Therefore, in induced percolation, the
main quantity of interest is GOUT (8, 28, 29) and the size of
GOUT is the order parameter, i.e., the macroscopic quantity that
characterizes phase transitions. In addition, we also examine the
size distribution of small outgoing components.

4 of 10 PNAS
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In undirected networks, each link can be viewed as two di-
rected links with opposite directions. Therefore, induced perco-
lation can be studied on fully directed networks, and then the
methodology can be extended to either undirected (i.e., fully
bidirectional) networks or to networks in which there are both
bidirectional and unidirectional links. Note that the GOUT of
undirected networks is the same as the GIN and the GSCC.
We schematically illustrate the proposed induced percolation
mechanism on directed networks in Fig. 2, where we also show
the order parameter as compared with the one typically used
in bond percolation. Similar diagrams for undirected and mixed
networks can be found in SI Appendix, Figs. S15 and S16.

The phase transition that characterizes the induced percola-
tion process can be analytically studied on random networks. The
class of random directed networks is constructed by indepen-
dently connecting two arbitrary nodes with a directed link with
a fixed probability. The network can be described by the joint
degree distribution P (kin, kout), which is the probability that a
randomly selected node has in-degree kin and out-degree kout. For
random directed networks, the size of GOUT is derived through
the following recursive equations. We first define two recursive
variables x and y (see Fig. 2 D and E): x represents the probability
that when selecting at random a directed link, the node at the
origin of the link is active (in state 1), whereas y represents the
probability that a random link enables its end node to be in an
active state. According to the definitions of x and y, we have

x =

+∞∑
kin,kout

koutP (kin, kout)

〈k〉
[
1− (1− y)kin

]
, [3]

where (1− y)kin is the probability that none of the incoming
kin links can keep node j in state 1 (see Fig. 2 A and D),
while 1− (1− y)kin represents the probability that at least one

of the incoming kin links can keep node j in state 1. The term
koutP(kin,kout)

〈k〉 is the excess incoming degree distribution (28, 29)
for the node at the origin of an arbitrary directed link. This is
because the likelihood of a node’s being the origin of a randomly
chosen directed link is proportional to the node’s out-degree.

Calculating the probability y is a little more involved. The
definition of the induced percolation process implies that even
if the starting node of a directed link is active (which happens
with probability x), it is not guaranteed that the end node of this
directed link remains active (which happens with probability y).
However, if the starting node of this directed link is itself active,
and at the same time at least m neighbors pointing to the starting
node are active, then this directed link can keep its end node
active. Conversely, if a directed link can keep the node it points to
active (corresponding to y), then the starting node of this directed
link must be active (corresponding to x). Therefore, it must hold
x > y when m > 1 (x = y when m = 1 which corresponds to
bond percolation). The above analysis yields the expression of
y as

y =

+∞∑
kin,kout

koutP (kin, kout)

〈k〉
kin∑

s=m

(
kin

s

)
x s(1− x )kin−s

[
1−

(
1− y

x

)s]
, [4]

where
(
kin
s

)
x s(1− x )kin−s gives the probability that for a node

of incoming degree kin, s out of kin neighbors are active. y/x
represents the conditional probability that a directed link keeps
its end node active, given the starting node is active. Therefore,
1− (1− y/x )s is the probability that at least 1 out of the s active
incoming neighbors keeps this node active.
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Fig. 3. Order parameter GOUT for induced percolation on directed and undirected random networks. The symbols represent simulation results and the
curves are corresponding theoretical results. A and B show GOUT for induced percolation (m = 2, . . . , 6) on directed scale-free (SF) and Erdős–Rényi (ER)
networks as a function of the average degree 〈k〉. Results are compared with the behavior of the same order parameter for bond percolation (equivalent
to setting m = 1). C shows the graphical solution of Eq. 4 for induced percolation (m = 2) on directed ER graphs, where kc is the critical average degree at
which a first-order phase transition takes place. D and E show results for undirected networks, whereas the graphical solution shown in F is derived from Eq.
13 (see Methods) for induced percolation (m = 2) on undirected ER graphs. Directed SF networks are generated by the static model (41, 42) with exponents
γin = 2.5 and γout = 3.0 for the incoming and outgoing degree distributions, respectively. Undirected SF networks are generated with the exponent γ = 2.5.
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Fig. 4. Order parameter GOUT for induced percolation on empirical networks based on datasets in Table 1. A–D show GOUT as a function of the proportion
λ of remaining links. Each point of GOUT is computed as the steady state of induced percolation (m = 3) on real-world networks after randomly removing
a fraction of 1 − λ links. The collaboration network is constructed based on published articles within the first 5 y in the four pairs of fields described in
Table 1. The directed part of a citation network is obtained by removing all the bidirectional links from the citation network (see SI Appendix, section 1E).
For the studied four pairs of fields, GOUT in general well agrees with main findings: a continuous, discontinuous, and hybrid phase transition for undirected
collaboration networks (blue diamonds), directed part of citation networks (purple squares), and mixed citation networks (orange circles).

Finally, the order parameter P∞ for the size of GOUT can be
calculated based on Eqs. 3 and 4 as follows:

P∞ =

+∞∑
kin,kout

P (kin, kout) [1− (1− y)kin ]. [5]

Here P∞ is equivalent to the probability that a randomly chosen
node has at least one incoming node to keep it active. One
interesting finding worth highlighting is that the GSCC coincides
with the GIN for the induced percolation process on directed
networks, which is not the case for classical percolation models
(see Fig. 2 F and G). The theoretical analysis of the order
parameter P∞ on undirected networks is illustrated in Methods.
We also note that the analysis of P∞ on mixed networks can
be done by mapping the structure to a multilayer network; see
Fig. 2H and more details in SI Appendix, section 2.

Phase Transitions of Induced Percolation. Theoretical analyses al-
low us to show that the type or order of the phase transition
depends on the directionality of the links for the same network
connectivity pattern, i.e., the phase transition is anisotropic in
nature. On directed networks, when m > 1 (m = 1 is the case
of typical bond percolation), induced percolation shows discon-
tinuous (first-order) phase transitions (see Figs. 3 A–C and 4
A–D for real-world networks). Yet, on undirected networks, the
same percolation process always leads to continuous (second-
order) phase transitions (see Figs. 3 D–F and 4 A–D for real-
world networks). These results are in sharp contrast with previous
percolation models on networks (see Table 2), for which it has
never been found that the directionality of network links fun-
damentally alters the type of phase transitions. This means that
previously studied types of percolation models might have signifi-
cantly underestimated the effects of asymmetry in link directions

on the system’s macroscopic behavior. An important implication
of this observation is that abrupt transitions in complex systems
like ecological and social networks might be way more likely to
occur than previously anticipated by existing percolation models.

The anisotropy induced by the directionality of the links leads
to a rich and complex behavior when the network is composed of
a mixture of directed and undirected links. Specifically, a hybrid
phase transition emerges with the presence of a certain amount of
directed links. Fig. 5 A and B show that by increasing the fraction
p of directed links in the network, the order parameter GOUT
evolves, as the average degree 〈k〉 increases, from a continuous
transition to a hybrid phase transition where both continuous and
discontinuous transition exist, to a first-order transition for larger
values of 〈k〉. In addition, in the region where the hybrid phase
transition is observed, several quantities follow a set of scaling
relations with critical exponents that are in line with Landau’s
mean-field theory.

We label the critical hybrid point where the hybrid transition
first appears as point C (k∗, p∗) in Fig. 5A. We find a set of
scaling relations connecting GOUT to other quantities near C
that are predicted by Landau’s mean-field theory: Within the
hybrid transition, the jump height of GOUT, ΔP∞(p∗ +Δp) :=
lim〈k〉→k+

c
P∞(〈k〉 , p∗ +Δp)− lim〈k〉→k−

c
P∞(〈k〉 , p∗ +Δp),

where kc is the critical point at which the first-order transition
occurs, follows a scaling function of Δp with the critical exponent
η = 1/2 (Fig. 5E):

ΔP∞(p∗ +Δp)∼ (Δp)
1
2 . [6]

The same critical exponent holds for the jump height as a scal-
ing function of 〈k〉 − k∗ as shown in the SI Appendix, section 5.
When fixing p at p∗ and varying 〈k〉 in the vicinity of k∗, the
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Table 2. Comparison of percolation models

Type of phase transition Clusters distribution Hybrid phase transition

Percolation model Undirected Directed near critical point β at critical point

Induced percolation Second First Nonmonotonic 1 (second) 1/2 (first)
θ = 1/3
η = 1/2

Bond percolation (5, 8, 9, 28) Second Second Monotonic 1 —
Site percolation (5, 8, 9, 17, 28) Second Second Monotonic 1 —

Bootstrap percolation (18) Second/first — Monotonic
1 (second)
1/2 (first)

θ = 1/3
η = 1/2

k-core percolation (19) Second/first Second/first —
1 (second)
1/2 (first)

—

Core percolation (26, 27) Second Second/first
—

1 (second)
1/2 (first)

—

Explosive percolation (40, 43, 44) Second — — 0.0555 —

Articulation percolation (45) Second/first — —
1 (second)
1/2 (first)

—

Dashes indicate that no related research has been found.

size deviation of GOUT is quantified by the following scaling
function of 〈k〉 − k∗ with critical exponent θ = 1/3 (Fig. 5F),
reached from both below and above:

|P∞(〈k〉 , p∗)− P∗
∞(k∗, p∗)| ∼ |〈k〉 − k∗|

1
3 . [7]

We note that Baxter et al. also find these two critical exponents
in k-core percolation (20).

Another unexpected feature that distinguishes the percolation
process formulated here from other percolation is the cluster size
distribution near criticality. Typically, for the second-order phase
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Fig. 5. Phase transitions and critical behaviors of induced percolation on mixed networks. In A, we show theoretical and numerical results for GOUT as a
function of the average degree 〈k〉 when the fraction of directed links is varied. The point C denotes the point at which coexistence of second- and first-order
phase transitions occurs for the first time. The curved dotted line represents the value of GOUT before and after the first-order phase transition. The symbols
represent simulation results and the curves are corresponding theoretical results. B shows the values of the critical points in the parameter space made up
by the average degree and the percentage of directed links; the dotted line describes the critical value at which a second-order phase transition occurs,
while the solid line corresponds to the first-order phase transition. Dots correspond to critical points, C. C represents the types of phase transitions that
can be observed in the m − p plane. Blue, purple, and green colors bound the area in which second-order, hybrid, and first-order phase transitions exist,
respectively. The red boundary lines between the blue and the purple areas correspond to the critical points C. When the parameters are such that they lay
on the red line, the behavior of GOUT corresponds to the green line marked with point C in A. D shows the types of phase transitions shown in C but in the
m − 〈k〉 plane. E presents results of the jump size, ΔP∞, as a function of Δp = p − p∗ when the critical point C is approached either from below or from
above. F depicts the change of P∞ near the critical point k∗ as a function of 〈k〉 − k∗, when fixing p = p∗. The mixed network is generated by assigning a
percentage p of directed links to an undirected ER network with an average degree 〈k〉 and consists of 106 nodes.
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Fig. 6. Size distribution, P(s), of small clusters at the critical point of induced percolation (m = 4) on undirected networks. In A we show the size
distribution, P(s), which exhibits a fluctuating behavior especially for small sizes. B plots the same distribution P(s) but as a function of the average degree 〈k〉,
showing an unambiguous nonmonotonic decrease of the size distribution. C and D depict the monotonous power-law decay of the cluster size distribution
in the limit of classical bond percolation. Finally, E displays the cluster size distribution at the critical point kc≈1.65, also showing the structure of each
cluster. Results are averaged over 103 independent realizations of undirected Erdős–Rényi networks (of size 106 nodes). As it can be clearly seen, the critical
behavior of induced percolation is different from that of classical one.

transitions, in the vicinity of the phase transition point, the size
distribution of small connected clusters is in general governed
by the monotonous function of P(s)∼ s−τe−s/s∗ , where s∗

provides a characteristic size of the finite components (4, 10).
The closer to the critical point, the larger s∗ will be. At the exact
phase transition point, s∗ approaches infinity and P(s) exhibits
a monotonic power-law distribution of P(s)∼ s−τ , signifying
a loss of characteristic scale in the distribution. However, for
induced percolation on undirected networks, we find that near
the critical point P(s) exhibits a novel oscillatory-like behavior,
i.e., it is no longer monotonically decreasing with s (see Fig. 6 A
and B).

As it can be seen in the Fig. 6 A, B, and E, the observed
oscillatory-like behavior of P(s) is more pronounced for small
values of s and does not change the asymptotic power law distri-
bution for large s nor the critical exponent of the phase transition,
which is the same as in bond percolation, β = 1, τ = 5/2 (40).
This behavior of P(s) is, however, clearly distinct from the
classical monotonic distribution (see Fig. 6 C and D). We note
that we do not have a clear notion of what the exact impact of
this pattern on the macroscopic behavior of the system is, which
is a question to be further examined in future work.

Conclusion and Discussion
Let us first mention that in addition to our empirical results on
collaboration networks we believe that the induced percolation
mechanism could play a relevant role in other examples of behav-
ioral influence or contagion, such as in the behavioral spreading
of drug abuse, alcoholism, obesity, divorce, happiness, and loneli-
ness, among others. These examples are usually listed to show the
“three degrees of influence” mechanism. That is, one individual’s
influence can significantly spread out to their friends’ friends’

friends. However, the specific spreading mechanisms behind this
phenomenon remain unknown and with no theoretical, first-
principled grounds. Although our empirical work reveals only
one mechanism of influence within two degrees, we believe that
it can be regarded as the first step to provide a specific spread-
ing mechanism for the “three degrees of influence” and poten-
tially opens new paths in the field of percolation on networked
systems.

Based on our empirical discovery that indirect influence can
dominate over direct influence we have proposed an induced
percolation model to characterize the dynamics and outcomes
of this indirect spreading mechanism. We found that such indi-
rect interactions lead to a plethora of percolation transitions in
complex networks that are rooted in the degree of anisotropy
of the connectivity pattern. Specifically, we have shown that the
amount of directed links in a network determines the order
of the phase transition, which spans from a second order in
networks without directed links to a first order when all links are
directed. In between, a rich behavior associated with hybrid phase
transitions emerges with the coexistence of second- and first-
order phase transitions. In addition, the indirect effect makes the
size distribution of small clusters near the phase transition point
exhibit a nonmonotonic pattern, which has not been previously
seen in other percolation models.

Our theoretical framework provides the tools to investigate the
implications of having different indirect influence mechanisms
in a spreading phenomenon and understand their associated
dynamical process and macroscopic spreading outcomes. For
instance, we have found that indirect influence can dominate
over direct influence in social systems like what we found in
scientific collaboration networks—if similar mechanisms in other
social behaviors like drug abuse, alcoholism, etc. also hold, this
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implies very different mitigation policies from that based on
direct influence mechanisms.

Methods
Induced Percolation on Undirected Networks. We elaborate on the defini-
tion and the theoretical derivation of induced percolation on undirected
networks. All nodes in an undirected network are initially set to state 1.
A node l remains in state 1 if at least one of its undirected links has a
node j in state 1, and this node j has at least m neighbors (excluding the
node l) with state 1 (as illustrated in SI Appendix, Fig. S16A for the case
of m = 2); otherwise, node l changes to state 0 at the next time step. To
theoretically analyze the percolating probability that any node belongs to
a GCC (giant connected component, equivalent to GOUT), P∞, we start
by defining six conditional probabilities as intermediate variables, whose
notations are shown collectively in SI Appendix, Fig. S17. Without loss of
generality, we denote a randomly chosen undirected link as {j, l} and
deduce the probability that node l belongs to a GCC.

According to the definition of induced percolation for undirected net-
works, the condition for node l to remain active is that there is at least
one active neighbor j, and the number ũ of active neighbors (except node
l) of node j satisfies ũ ≥ m. We refer to a node in state 1 as an active
node and in state 0 as an inactive node. Unlike active neighbors in directed
networks, the number ũ of active neighbors in undirected networks is closely
related to the degree k of node j. Specifically, if k > m and node j is active,
then node j can keep all its neighbors active. Conversely, if k ≤ m, then
node j cannot keep any of its neighbors active. Hereafter, we employ the
degree k instead of the number of active neighbors ũ to derive percolation
probability.

The conditional probability ṽ is the probability that node j can keep node
l active, given node l can keep j active. As per the definition of induced
percolation, the event of j keeping l active implies that the degree of node
j satisfies k > m. Node j simultaneously keeps all of its neighbors active. The
above analysis yields the following recursive equation:

ṽ =

∞∑
k=m+1

kP(k)

〈k〉
, [8]

where kP(k)
〈k〉 represents the excess degree distribution of the end node of a

randomly chosen link.
On the other hand, the conditional probability ṽ∞ is defined as the

probability that node j can keep node l active, and node l is connected
to the GCC via node j, given that node l can keep j active. Again, as
per the definition of induced percolation, the degree of node j satisfies
k > m. Analogously, node j can keep all its neighbors active. In addition,
the event that node l connects to GCC through node j is equivalent to
the event that node j connects to GCC through at least one of the k − 1
neighbors other than l. The corresponding probability is 1 − (1 − t̃∞ −
ṽ∞)k−1 (as shown in SI Appendix, Fig. S17C), where the probability 1 −
t̃∞ − ṽ∞ accounts for the likelihood that one of the k − 1 neighbors does
not belong to the GCC given that node j can keep it active. Therefore,
the self-consistent equation for the conditional probability ṽ∞ can be
written as

ṽ∞ =

∞∑
k=m+1

kP(k)

〈k〉

[
1 − (1 − t̃∞ − ṽ∞)

k−1
]

. [9]

In the previous definition, we made use of the conditional probability
t̃∞, which is the probability that node j cannot keep node l active while
node l connects to GCC through node j, under the condition that node l
maintains node j in state 1. Thus, it follows that the degree of node j satisfies
k ≤ m and that node j cannot keep any of its neighbors active. Moreover,
the event in which node l connects to the GCC through node j is equivalent
to the event in which node j reaches the GCC through one of the k − 1
neighbors other than l. The corresponding probability reads 1 − (1 − ã∞ −
ỹ∞)k−1 (as shown in SI Appendix, Fig. S17D), where the probabilities ã∞,
ỹ∞ stand for cases in which node j cannot keep any neighbors in state 1
(see below). Therefore, the conditional probability t̃∞ can be calculated
using

t̃∞ =
m∑

k=1

kP(k)

〈k〉

[
1 − (1 − ã∞ − ỹ∞)

k−1
]

. [10]

Once the above probabilities have been defined, we can proceed with
the derivation of the remaining three conditional probabilities, namely, ỹ,
ã∞, and ỹ∞, which are analogous to v, ṽ∞, and t̃∞, but under the condition
that node l cannot keep node j active. The derivation of the probability ỹ is
similar to ṽ, except that node j relies on at least one of the k − 1 neighbors
(except l) to remain active. This probability can be expressed as

ỹ =
∞∑

k=m+1

kP(k)

〈k〉

[
1 − (1 − ṽ)k−1

]
. [11]

The derivation of the conditional probability ã∞ is similar to that of t̃∞,
except that one additional condition is required: of the k − 1 neighbors
different from l, at least one can keep j active and connected to the GCC.
Assuming that there are exactly s (1 ≤ s ≤ k − 1) neighbors that can keep
node j active, the probability is

(k−1
s

)
ỹs(1 − ỹ)k−1−s. The probability that

node j is connected to the GCC through one of the s neighbors is ỹ∞
ỹ .

For the remaining k − 1 − s neighbors that cannot keep node j active, the
probability of j connecting to the GCC through one of them is ã∞

1−ỹ . There-
fore, the probability that node j is not connected to the GCC through any
neighbor is (1 − ỹ∞

ỹ )s(1 − ã∞
1−ỹ )

k−1−s, as shown in SI Appendix, Fig. S17F.
Therefore, the self-consistent equation to derive the conditional probability
ã∞ is

ã∞ =

m∑
k=1

kP(k)

〈k〉

k−1∑
s=1

(k − 1

s

)
ỹs
(1 − ỹ)k−1−s

×
[
1 − (1 −

ỹ∞
ỹ

)
s
(1 −

ã∞

1 − ỹ
)

k−1−s
]

=
m∑

k=1

kP(k)

〈k〉

[
1 − (1 − ỹ)k−1 − (1 − ỹ∞ − ã∞)

k−1

+(1 − ỹ − ã∞)
k−1

]
. [12]

Finally, the conditional probability ỹ∞ can be obtained similarly to ṽ∞,
with the additional consideration that for k − 1 neighbors except l at least
one can keep j active and that node j connects to the GCC via at least one
of the k − 1 neighbors. Thus, the degree of node j satisfies k > m, which
also implies that j keeps all its neighbors active. Therefore, the conditional
probabilities ỹ, ỹ∞, and ã∞ in Eq. 12 are replaced by probabilities ṽ, ṽ∞, and
t̃∞. This leads to the following expression for the conditional probability
ỹ∞:

ỹ∞ =
∞∑

k=m+1

kP(k)

〈k〉

k−1∑
s=1

(k − 1

s

)
ṽs
(1 − ṽ)k−1−s

[
1 − (1 −

ṽ∞
ṽ

)
s
(1 −

t̃∞
1 − ṽ

)
k−1−s

]

=
∞∑

k=m+1

kP(k)

〈k〉

[
1 − (1 − ṽ)k−1 − (1 − t̃∞ − ṽ∞)

k−1

+(1 − ṽ − t̃∞)
k−1

]
, [13]

where s represents the number of neighbors that can keep j active. The
graphical solution of the self-consistent equation ỹ∞ is shown in the main
text, where f(ỹ∞) = F(ỹ∞) − ỹ∞ and F(ỹ∞) represents the expression on
the right-hand side of Eq. 13. The value of F(ỹ∞) is obtained by solving the
self-consistent Eqs. 8–12.

The previously defined conditional probabilities allow us to derive the
order parameter, P∞, for induced percolation on undirected networks. For
an arbitrarily chosen node l to belong to the GCC, we have that 1) at least
one of its neighbors should keep it active and 2) node l is attached to the
GCC through at least one of its neighbors. If the degree of node l satisfies
k ≤ m, then the probability that node l belongs to the GCC is 1 − (1 − ỹ)k −
(1 − ỹ∞ − ã∞)k + (1 − ỹ − ã∞)k, whose derivation is similar to Eq. 12 in
ã∞. If the degree of node l satisfies k > m, then the probability that node l
belongs to the GCC is 1 − (1 − ṽ)k − (1 − t̃∞ − ṽ∞)k + (1 − ṽ − t̃∞)k and
the derivation is similar to ỹ∞ in Eq. 13. Therefore, the order parameter P∞
can be computed, for undirected networks, as

P∞ =

m∑
k=0

P(k)
[
1 − (1 − ỹ)k − (1 − ỹ∞ − ã∞)

k
+ (1 − ỹ − ã∞)

k
]

+
∞∑

k=m+1

P(k)
[
1 − (1 − ṽ)k − (1 − t̃∞ − ṽ∞)

k
+ (1 − ṽ − t̃∞)

k
]

.

[14]
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