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Abstract: We present the formulation of a paraxial ray transfer or ABCD matrix for onion-type
GRIN lenses. In GRIN lenses, each iso-indicial surface (IIS) can be considered a refracting
optical surface. If each IIS is a shell or layer, the ABCD matrix of a GRIN lens is computed by
multiplying a typically high number of translation and refraction matrices corresponding to the
K layers inside the lens. Using a differential approximation for the layer thickness, this matrix
product becomes a sum. The elements A, B, C, and D of the approximated GRIN ray transfer
matrix can be calculated by integrating the elements of a single-layer matrix. This ABCD matrix
differs from a homogeneous lens matrix in only one integration term in element C, corresponding
to the GRIN contribution to the lens power. Thus the total GRIN lens power is the sum of
the homogeneous lens power and the GRIN contribution, which offers a compact and simple
expression for the ABDC matrix. We then apply this formulation to the crystalline lens and
implement both numerical and analytical integration procedures to obtain the GRIN lens power.
The analytical approximation provides an accurate solution in terms of Gaussian hypergeometric
functions. Last, we compare our numerical and analytical procedures with published ABCD
matrix methods in the literature, and analyze the effect of the iso-indicial surface’s conic constant
(Q) and inner curvature gradient (G) on the lens power for different lens models.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Gradient index (GRIN) appears in a wide variety of natural, such as eye optics in most mammals,
and artificial optical systems. A paradigmatic example of GRIN optics is the crystalline lens
in the human eye. Its inner shell structure, formed by successive layers of tissue, resembles
an onion. Each layer can be realized as a thin meniscus lens with a refractive power given by
the product of its surface curvature and the refractive index increment relative to the previous
layer. In this context, two main types of layers have been proposed in the literature, continuous
(differential) [1] and discrete (shell)—although most models consider a continuous distribution
refractive index [2–9].

Ray tracing computation in continuous GRIN lens models is typically approached by solving
the Euler–Lagrange equation for the ray trajectories [10]. Paraxial ray tracing in particular is
essential to determine the first-order properties of an optical system. The cardinal elements
(i.e., focii, principal planes, nodal points) and the lens power of a system are the most important
parameters. Thus, paraxial ray tracing is the first and most crucial stage in analyzing an optical
system, and it has applications in different disciplines ranging from optical design or engineering
to clinical practice. Most diagnostic procedures, such as lens prescription, rely on paraxial optics
almost exclusively. The ray transfer matrix formalism has the advantage over other methods, such
as finite ray-tracing in the paraxial region, to offer an analytical approximation that lowers the
computational demand.
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Among the different approaches in the literature, Smith and Atchison [11] used a parabolic
approximation for the ray trajectory inside the GRIN lens to obtain the equivalent lens power,
and Pérez et al. [12] computed a gradient parameter to trace axial and field rays through the
lens. More recently, Díaz [13] proposed the powerful and elegant ray transfer (or ABCD) matrix
formalism for paraxial ray tracing through different models of the GRIN lens. The two main
approaches consider the crystalline lens either a continuous slab [14] or formed by a finite number
of shells [15]. Shell-type lenses can be pictured as a usually high number of cemented meniscus
lenses, and ray tracing is done via the onion-type layered structure of the lens, not relying on
other assumptions such as the parabolic approximation, which is fundamental for the continuous
slab method [11,13]. The main drawback of this method is that the computed ABCD matrix is
the product of typically hundreds of 2 by 2 matrices.

Our goal is to unify the shell and slab approaches to formulate the ray transfer matrix of
onion-type GRIN lenses in the continuous limit– when the layer thickness tends to zero, ∆z → 0,
and becomes a differential magnitude, dz. In these onion-type lenses, either with finite shells or
continuous (differential) structure, we can consider each iso-indicial surface in the refractive index
distribution as a single refracting optical surface with a known curvature radius and refractive
index value. This enables a simple, compact, robust, and general formulation applicable to
various GRIN lenses.

The GRIN nature of the crystalline lens has long been known, and even Gullstrand [16]
proposed a GRIN lens model a century ago. Experimental studies suggest that the lens cortex
is strongly inhomogeneous, with a significant positive gradient towards the center, whereas the
nucleus is much more homogeneous [17–20]. Most advanced eye lens models attempt to capture
this refractive index distribution. Here we classify models into two groups, slab-type, [2,21] and
onion-type [3–9]. The main difference between them is that the onion-type structure is explicit:
the analytical expression of the whole family of iso-indicial surfaces, including their curvature
radii, is provided. Our method is exceptionally well suited for those types of models, which
indeed are among the most recent and advanced. We show below that it is possible to derive
an analytical ray transfer (ABCD) matrix for these models, enabling us to perform analytical
paraxial ray tracing.

2. Theory

Figure 1 represents a section of the iso-indicial surface distribution of a crystalline lens model
[9] as an example of an onion-type biconvex lens. This structure suggests a cemented multiplet
formed by a high number of meniscus lenses.

2.1. Ray transfer matrix for onion-type GRIN lenses

Let us formulate the paraxial ray tracing through a GRIN lens structure with a refractive index
n(ω, θ, z) in cylindrical coordinates. We also apply the standard convention that the light
propagates from left to right, that is, towards increasing z. We assume that the refractive index
depends only on z in the paraxial region, n ≃ n(z). For a layer k we have a iso-indicial surface
crossing the axis at a location zk from the anterior surface. Here the main assumption is that the
ray propagation within this layer is described by the corresponding ray transfer matrix that is the
product of a translation and a refraction matrix. The translation is equal to the thickness of the
layer ∆z, and the refraction occurs at the iso-inidicial surface. Matrices are multiplied in reverse
order of the ray path, so as we progress along z, each new matrix is added to the left [22]. Thus,
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Fig. 1. A vertical slice of the iso-indicial surfaces of a 30-year-old GRIN crystalline lens
model. The colors indicate refractive index values, G is the curvature gradient parameter,
and z0 is the iso-indicial parameter defining each surface.

for this layer k, we have:

Lk(zk) =

⎡⎢⎢⎢⎢⎣
1 −∆z

0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0
∆n

(n + ∆n/2)Rk

n
n + ∆n/2

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 −
n∆z

n + ∆n/2
∆n

(n + ∆n/2)Rk

n
n + ∆n/2

⎤⎥⎥⎥⎥⎥⎦ + O(∆z)2,

(1)
where ∆z is the shell thickness. In what follows we consider that ∆z is constant; such constancy
rigorously holds in the continuous differential limit, when ∆z → 0. The expression n + ∆n/2 is
the value of the refractive index to the right side of the refracting surface. Conversely, n − ∆n/2
would be the refractive index to the left side. Therefore, the difference between right and left
sides is ∆n = n′∆z , with n′ = dn/dz. Rk = R(zk) is the apical (axial) curvature radius of the
iso-indicial (refracting) surface.

We assume that n′ is also a function of z in the paraxial region n′ = n′(z). The residue
O(∆z)2 contains terms of ∆z to the second power or higher. When the displacement tends to
zero, ∆z → 0, so does the residue, O(∆z)2 → 0, so this term can be neglected in a first-order
approximation. We can further simplify by rewriting ∆n = n′∆z and approximating the fractions
inside the matrix, neglecting again any terms of the order O(∆z)2 that are incorporated in the
residue. The resulting matrix is the sum of the identity matrix I, a new matrix A that multiplies
∆z, and the residue:

Lk(zk) =

⎡⎢⎢⎢⎢⎢⎣
1 −∆z

n′

nRk
∆z 1 −

n′

2n
∆z

⎤⎥⎥⎥⎥⎥⎦ + O(∆z)2 = I + A∆z + O(∆z)2 (2)

This new matrix A is independent of ∆z. For any z:

A(z) :=

⎡⎢⎢⎢⎢⎢⎣
0 −1

n′(z)
n(z)R(z)

−
n′(z)
2n(z)

⎤⎥⎥⎥⎥⎥⎦ , (3)
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where we included the dependence on z explicitly. Next, we compute the whole lens ray transfer
matrix M as the product of the matrices of all K layers:

M =
K∏︂

k=1
L(zk) =

K∏︂
k=1

(︂
I + A(zk)∆z + O(∆z)2

)︂
≃ I +

K∑︂
k=1

A(zk)∆z + O(∆z)2 (4)

We approximated this product to a sum by neglecting higher-order powers of ∆z in all cross
terms A(zi)A(zj)(∆z)2, and substituting IA(zk)∆z with A(zk)∆z.

2.1.1. Continuous case

To formulate GRIN lenses in the continuous limit, we replace ∆z with dz and the sum in Eq. (4)
with an integral:

M ≃ I +
∫ t

0
A(z)dz =

⎡⎢⎢⎢⎢⎢⎣
1 −

∫ t
0 dz∫ t

0
n′(z)

n(z)R(z)
dz 1 −

1
2
∫ t
0

n′(z)
n(z)

dz

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
1 −t∫ t

0
n′(z)

n(z)R(z)
dz 1 +

1
2

log
(︃
n(0)
n(t)

)︃⎤⎥⎥⎥⎥⎥⎦
(5)

Here, the anterior lens vertex is at z = 0 and t is the lens thickness. This result is elegant and
exciting: the ray transfer matrix M of the whole GRIN distribution can be found by integrating
the elements in the differential matrix L(zk), Eq. (1).

Let us consider the case of a meniscus lens. When the curvature radius is constant, R(z) = R,
the iso-indicial surfaces are parallel. In this case, the defined integral in element M2,1 has a direct
solution: ∫ t

0

n′(z)
n(z)R

dz =
1
R

∫ t

0

n′(z)
n(z)

dz =
1
R

log (n(z))
|︁|︁|︁t
0
=

1
R
[log (n(t)) − log (n(0))] (6)

If the refractive index at both surfaces is equal, n(t) = n(0), then M2,1 = 0 and M2,2 = 1.
In these conditions, M represents a pure translation, and the GRIN inner structure does not
contribute to the lens power.

In the case of a homogeneous biconvex lens, we can picture it as a sort of cemented doublet,
having a positive radius Ra for the anterior side of the lens and a negative radius Rp for the
posterior. Let us call the thicknesses of the anterior and posterior regions ta and tp (with
t = ta + tp). Now we can write the integral in element M21 as the sum of the two sections,
which results in M21 = log(n(ta)/n(0))/Ra + log(n(t)/n(ta))/Rp. With n(0) = n(t) = ns at the
surface, and a refractive index nc = n(ta) at the center of the lens, it is straightforward that
M21 =

(︁
1/Ra − 1/Rp

)︁
(log(nc) − log(ns)). This expression is equivalent to the power of a thin

lens in air where the refractive indices have been replaced with their logarithms. Note that in this
case, when the refractive index is the same at the anterior and posterior surface n(0) = n(t), and
M22 = 1.

2.1.2. Surface contribution

Matrix M corresponds to the ray propagation inside the lens where the refractive index n(z)
is continuous and has a derivative n′(z). Because of the abrupt change in refractive index, we
formulate the refraction at the anterior and posterior surfaces separately. Now the lens matrix
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can be expressed as the product of three matrices:

L = SpMSa, with Sa =

⎡⎢⎢⎢⎢⎣
1 0

na − n0a

naRa

n0a

na

⎤⎥⎥⎥⎥⎦ and Sp =

⎡⎢⎢⎢⎢⎢⎣
1 0

n0p − np

n0pRp

np

n0p

⎤⎥⎥⎥⎥⎥⎦ (7)

Matrices Sa and Sp correspond to pure refraction at the anterior and posterior surfaces (there
is no displacement between the surface and the inner structure). Subscripts a and p refer to
the radius and refractive index values at the anterior and posterior surfaces (z = 0 and z = t,
respectively). The surrounding external media (anterior and posterior sides) have refractive
indices n0a and n0p.

For simplicity, we assume that the anterior and posterior surrounding media have equal
refractive indices, n0a = n0p = n0, and so do the anterior and posterior lens surfaces, na = np = ns.
The matrix product yields:

L =

⎡⎢⎢⎢⎢⎢⎣
1 − t

ns − n0
nsRa

−t
n0
ns[︃

ns − n0
n0

(︃
1
Ra

−
1
Rp

)︃]︃
+

[︃
(n0 − ns)

2

n0nsRaRp
t
]︃
+

ns

n0

∫ t
0

n′(z)
n(z)R(z)

dz 1 − t
n0 − ns

nsRp

⎤⎥⎥⎥⎥⎥⎦ (8)

The main theoretical result of this work is the ray transfer matrix of a biconvex GRIN lens
comprised of infinitesimal shells or layers –each characterized by its refractive index and curvature
radius–. The most relevant element in this matrix is the focal length’s inverse, L21 = 1/f ′, which
determines the lens power. The first term of L21 mirrors the power of a standard thin lens with a
refractive index equal to the surface index value ns. The second term is associated with the power
of a thick lens. And the third term containing the integral is the contribution of the GRIN inner
structure to the lens power. It is a simple additive law. The remaining elements of L parallel those
of a homogeneous lens, H = SpTSa, where the GRIN contribution is replaced with a translation
matrix T. To convert the ray transfer matrix of a homogeneous lens H into a GRIN lens matrix L,
we only need to add the contribution of the GRIN structure (integral term) to H21.

L21 = H21 +
ns

n0

∫ t

0

n′(z)
n(z)R(z)

dz = H2,1 +
ϕG

n0
, (9)

where ϕG is the GRIN contribution to the lens power. Or in matrix form:

L =

⎡⎢⎢⎢⎢⎢⎣
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0
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⎤⎥⎥⎥⎥⎥⎦ = H +
⎡⎢⎢⎢⎢⎣

0 0
ϕG

n0
0

⎤⎥⎥⎥⎥⎦
(10)

This theoretical result is significant as it provides a straightforward and intuitive formulation.
When n(z) is continuous and differentiable and n′(z) exists in the interval, the integral can be
solved numerically, for instance, by applying the trapezoidal rule. In some cases (see below), it
can be solved either analytically or with a close analytical approximation.

Once we have the characteristic ABCD matrix, we can compute physical magnitudes such as
the power, ϕL, the distance from the anterior lens vertex to the principal object plane, dH , and the
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distance from the posterior vertex to the principal image plane, d′
H [22].

ϕL =
n0
f ′
= n0L21 (11a)

dH =
L22 − 1

L21
= f ′t

ns − n0
nsRp

(11b)

d′
H =

1 − L11
L21

= f ′t
ns − n0
nsRa

(11c)

3. Application to the crystalline lens

The human lens is a paradigmatic example of this onion-type GRIN distribution. Most
experimental measurements [17–20] and models [4–6,8,21] suggest that the axial distribution
of the anterior and posterior regions follows a power law. One of the most recent models is the
GRINCU lens [9]. In this model, the anterior and posterior refractive index distributions are
given by Eq. (13) in [9], expressed in terms of the parameter z0 = z0(ω, θ, z) that describes the
iso-indicial surfaces for different values of n. In the paraxial region, we can assume that the index
distribution depends only on z, so z0 = z0(0, 0, z):⎧⎪⎪⎨⎪⎪⎩

na(0, 0, z) = nc + δn
(︂
1 −

z0
ta

)︂p
for 0 ≤ z0 ≤ ta

np(0, 0, z) = nc + δn
(︂

z0−ta
tp

)︂p
for ta<z0 ≤ t

, (12)

where nc is the central maximum refractive index (at the interface) and δn = ns − nc is the index
difference between the surface and the interface. The exponent p is age-dependent. In the present
version, we updated ns and nc to current values in the literature [15,19].

The GRINCU lens is characterized by having a curvature radius gradient parameter G in
addition to the refractive index gradients. This model assumes the simplest mathematical
formulation, which is to use a constant G value. The apical curvature radii of the iso-indicial
surfaces become: {︄

Ra(z) = Ra − G(Qa + 1)z for 0 ≤ z ≤ ta
Rp(z) = Rp + G(Qp + 1)(t − z) for ta<z ≤ t

, (13)

for the anterior and posterior parts of the lens, respectively. Qa and Qp are the conic constants
of the external surfaces, which remain constant throughout all iso-indicial surfaces. Therefore
the curvature radius gradients, −G(Qa + 1) and −G(Qp + 1), are constant inside the anterior and
posterior parts of the lens. For spheres (Q = 0), the gradient is −G.

3.1. Numerical Implementation

Equations (13) and (12) are explicit expressions of R(z) and n(z) in terms of z, and we can easily
compute n′(z) = dn/dz from Eq. (12). These three functions make up the integral in Eqs. (9)
and (10), which express the GRIN contribution to the lens power as an explicit function of z. To
compute the integral, we split it into the anterior and posterior contributions and multiply by the
refractive index of the surrounding medium n0.

ϕG = −
nspδn

ta

∫ ta

0

(1 − z/ta)p−1 dz
[nc + δn (1 − z/ta)p] (Ra − G(Qa + 1)z)

+
nspδn

tp

∫ t

ta

(︁
(z − ta)/tp

)︁p−1 dz[︁
nc + δn

(︁
(z − ta)/tp

)︁p]︁
(Rp + G(Qp + 1)(t − z))

(14)
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Table 1. Fixed variable values used for the integration in Fig. (2)

nc ns Age (yr) p Qa Qp Ra (mm) Rp (mm) ta (mm) tp (mm)

1.435 1.357 30 2.94 −4.0 −3.0 10.96 −5.51 2.19 1.46

Figure 2 shows the refractive index axial distribution n(z) and the contribution of each layer to
the total lens power, as an approximate differential dP(z)/dz, for different values of the gradient
parameter G. In this example (a 30 years old GRINCU lens model), we used a finite value
of dz = 36µm. The integration of dP(z) has no analytical solution in general, so a numerical
integration was implemented based on the trapezoidal rule. The resulting total lens powers P for
this example are included in the legend. The convergence obtained with the trapezoidal rule is
shown in Fig. 3 and discussed below.

Fig. 2. The convex-up solid line shows the variation of n along z in the paraxial region. The
concave-up lines represent dP(z) for different G values. See Table (1)

3.2. Exact integration

A particular case of interest is that of G = 0, a homogeneous biconvex lens. In the absence of a
curvature gradient, the iso-indicial surfaces are parallel in the anterior and posterior regions and
Eq. (14) has an exact analytical solution: Ra and Rp can be factored out of the integrals, which
are resolved into logarithms:

ϕG = ns
(︁
1/Ra − 1/Rp

)︁
log(nc/ns). (15)

This expression resembles that of a thin biconvex lens in which the difference of refractive
indexes is replaced by the difference of their respective logarithms (multiplied by the surface
index).

3.3. Analytical ray transfer matrix

The integrals in Eq. (14) cannot be solved analytically; however, we worked out a highly accurate
second-order approximation in terms of hypergeometric functions. We discuss the validity and
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Fig. 3. Power of the lens model against the number of steps for two methods: matrix product
and numerical integration. Percent difference with the last point (N = 33, 000) is shown for
three values of N.

accuracy of this approximation below, and the step-by-step mathematical derivation is provided
in the Supplemental Material. The approximated expressions obtained for the integrals are:

ϕGa ≃ −
nsδn/nc

Ra − G(Qa + 1)ta2 F1
⎛⎜⎝

1, p

p + 1

|︁|︁|︁|︁|︁|︁− G(Qa + 1)ta
Ra − G(Qa + 1)ta

⎞⎟⎠
+

ns(−δn/nc)
2

2(Ra − G(Qa + 1)ta)2
F1

⎛⎜⎝
1, 2p

2p + 1

|︁|︁|︁|︁|︁|︁− G(Qa + 1)ta
Ra − G(Qa + 1)ta

⎞⎟⎠
(16)

ϕGp ≃
nsδn/nc

Rp + G(Qp + 1)tp2 F1
⎛⎜⎝

1, p

p + 1

|︁|︁|︁|︁|︁|︁ G(Qp + 1)tp
Rp + G(Qp + 1)tp

⎞⎟⎠
−

ns(−δn/nc)
2

2(Rp + G(Qp + 1)tp)2
F1

⎛⎜⎝
1, 2p

2p + 1

|︁|︁|︁|︁|︁|︁ G(Qp + 1)tp
Rp + G(Qp + 1)tp

⎞⎟⎠
(17)

Where 2F1 is the Gaussian hypergeometric function [23]—built-in in both commercial and
non-commercial computing environments (MATLAB and Python)—. As discussed below, these
expressions were tested against the numerical results obtaining a close agreement.

4. Results and discussion

The mathematical ray transfer matrix formulation derived here is applied to analyze the effect
of the curvature radius gradient parameters G and Q on the lens refractive power. The results
are plotted in Figs. 4 and 5, respectively. We observe similar non-linear dependencies of the
power on both parameters but with opposite trends: Increasing G decreases power, whereas
increasing Q increases power, which means that ellipsoid surfaces (Q>0) deliver more power
than hyperbolic surfaces (Q<0). The reduction of GRIN lens power with increasingly negative
Q values has been previously reported in the literature [5], but because the paraxial power is
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unaffected by conic constants in homogeneous lenses, the authors found the result non-intuitive.
This new formulation provides a relatively simple and direct explanation to this effect, as the
curvature radius gradient is proportional to Q + 1, as described in Eq. (13). We believe further
study is needed to fully understand the relationship between the conic constant and the paraxial
lens power.

Fig. 4. The lines represent P(G) calculated with different methods, the anterior and posterior
conic constants are Qa = −4, Qp = −3.

4.1. Methods assessment

We have compared the numerical implementation of the present method with the original direct
matrix product in terms of convergence. In our implementation we used the matrices Lk(zk) of
Eq. (2) for our matrix product, with k = 1, 2, . . .N (unlike Giovanzana et al., [15] who used a
normalized version of these matrices). The results of both methods are compared in Fig.3. The
horizontal axis represents N, the number of integration steps or matrices (shells) used to compute
power. The vertical axis is the total lens power versus the number of steps used. The dashed blue
line represents the numerical integration method, and the continuous red line corresponds to the
matrix product. The two methods provide practically the same result, with a difference of 0.06 D
(0.2 %).

However, convergence is considerably faster with the integration method, which is strongly
enhanced by the trapezoidal rule [24]. With only ten steps, the error relative to the convergence
value is around +0.5D. In contrast, the matrix product provides a much higher error, nearly −8D
(consistent with the trend reported in Fig. 1 in Ref. [15]). With the numerical integration method,
we reach a reasonable convergence with less than 50 steps; with 100, the error is negligible, and
the result is stable. Conversely, the matrix product requires a much higher number of steps to
converge and is only stable after around 10,000 steps. One possible explanation is that there is no
equivalent to the trapezoidal rule for matrix multiplication.

Figures 4 and 5 summarize the results of different refractive power matrix computation methods
compared with the thin lens approximation (dotted red line) used by several authors before
[8,9,25]. The thin lens approximation involves a more straightforward formulation and does
not require matrix formalism. The methods proposed in this work are labeled as analytical
(continuous black lines), numerical (dashed green lines), and exact (red asterisk) for G = 0.
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The agreement between them is almost perfect. The matrix product (dashed blue line) shows a
nearly constant very small underestimation of 0.06 D relative to the numerical integration. Our
analytical and numerical methods give powers of about 0.6 D less than a thin lens.

Fig. 5. The lines represent P(Qa) calculated with different methods. The posterior conic
constant is Qp = Qa + 1

For comparison purposes, we also implemented the ABCD matrix slab method (point dashed
purple lines) based on the parabolic approximation [13]. This method slightly underestimates
power compared with the matrix product and the differential shell method proposed here. In
contrast with the other methods, the line is not generally parallel (see Figs. 4 and 5). There
is a closer match for more negative Q values (minimum 0.67% difference) and higher G
values (minimum 0.40% difference). On the contrary, the more significant difference of 1.4%
corresponds to non-negative Q values (see Fig. 5). Nevertheless, the differences are consistently
below 0.4D. The agreement between these two methods is reasonable, especially for the typical
negative conic constant values used in lens models.

The GRIN matrices that we obtained for the matrix product Mp, our numerical integration Mn,
and the slab Ms methods are:

Mp =

⎡⎢⎢⎢⎢⎣
0.9809 −3.5438

0.0152 0.9646

⎤⎥⎥⎥⎥⎦ ; Mn =

⎡⎢⎢⎢⎢⎣
1.0 −3.638

0.0151 1.0

⎤⎥⎥⎥⎥⎦ ; Ms =

⎡⎢⎢⎢⎢⎣
0.9726 −3.5882

0.0151 0.9726

⎤⎥⎥⎥⎥⎦ (18)

We see a close agreement in element M21, which is proportional to the lens power, but slight
differences in the other three elements. In our approximation, the diagonal elements are precisely
1, and the element M12 = −t equals the lens thickness. In the other two matrices, these elements
differ from ours. The most significant deviation seems to correspond to the "equivalent" thickness,
element M12, which is nearly 2.6% thinner in the matrix product. We conclude that, excluding
the thin lens approximation (dotted red lines in Figs. 4 and 5), all the ray transfer matrices
compared here provide a reasonable agreement. The ABCD matrices are nominally unitary and
thus their determinants should be equal to one. This is true for Mp and Ms, but due to the GRIN
contribution to the homogeneous lens described by the result in Eq. (10), the determinant of Mn
is slightly greater than one.
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4.2. Application to other GRIN models

As mentioned above, the theory and numerical implementation of this matrix formulation can be
general not only for the human lens but for other GRIN lenses, provided that:

(1) the corresponding iso-indicial surfaces have a reasonable (shell-type) distribution, or in
other words, that the contours resemble a shell structure around the axis,

(2) we know the refractive index distribution along the optical axis, and

(3) we can compute the apical curvature radius of the iso-indicial surfaces using standard
differential geometry.

To demonstrate the generality of our method, we apply it to the AVOCADO crystalline lens
model [8], one of the most advanced in the literature. Another important reason we chose the
AVOCADO model is that the authors provide explicit results of lens power computation and
compare the ray tracing with the thin lens formula in Fig. 3 of Ref. [8]. We have reproduced their
results employing our method, as shown in Fig. 6. Comparing our plots and values with theirs,
we see that they are almost identical; our model replicated both the thin lens and ray tracing lens
powers with high accuracy.

Fig. 6. Lens power vs. m for different values of p. The solid lines are calculated with the
thin lens approximation of the integral, and the dotted lines correspond to the numerical
calculation.

5. Summary and conclusions

The main result of this work is theoretical: the ray transfer matrix of the GRIN media is similar to
that of a single layer, where matrix elements A, B, C, and D are replaced with their corresponding
integrals. This substantial simplification enables an affordable and straightforward computation
of power and other first-order properties of the optical system.

Furthermore, the result of Eq. (10) involves an even more crucial simplification. We can
rewrite the ray transfer matrix of a GRIN lens as

L = H + G (19)

Equation (19) shows that the lens transfer matrix is the sum of the ray transfer matrix of a
standard homogeneous lens and a single-element matrix G containing the contribution of the
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GRIN inner structure. All elements of G are equal to zero except G21. This single-element matrix
is even simpler than a pure refraction matrix. Therefore the initially complex product of a high
number of matrices becomes a much simpler computation with straightforward additive rules
and integrals, and the triple matrix product in Eq. (7) becomes the sum of matrices in Eq. (18).
The apparent complexity of the GRIN paraxial ray tracing has motivated many authors to use
the idea of an equivalent refractive index [26–28], a theoretical equivalent refractive index ne so
that the corresponding homogeneous lens matrix is equal to that of the lens: L = H′. But after
Eq. (18), it is obvious that H′ = H + G. This simple additive rule for the GRIN contribution
renders the use of an equivalent refractive index unnecessary.

Another exciting and general result is that when the curvature radius R is constant, the GRIN
does not contribute to the refractive power of the lens. This only happens in meniscus lenses
with equal curvature radii. In biconvex lenses, however, the radii of the anterior and posterior
parts have opposite signs, so there is a GRIN contribution to the refractive power—that of
a conventional thin lens with equivalent refractive power but replacing the refractive index
difference with the difference of their logarithms (see Eq. (15)).

We found that the curvature radius gradient, G, and the conic constant, Q, strongly impact the
lens power in crystalline lens models. Negative values of Q (hyperbolas) give less power, and as
Q becomes more positive, power increases. We have the opposite effect regarding the gradient
parameter G (Fig. 4): as G increases, the lens power decreases.

Finally, we believe that the theory and methods developed here provide a powerful, entirely
general, and practical (robust and easy to use) tool for paraxial ray tracing, applicable to both GRIN
lens models and the analysis of experimental data. In particular, the analytical approximation is
especially well suited to assess and model age-related or accommodative changes in the crystalline
lens, which will be the subject of future work.
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