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In this paper we approach the phenomenon of criminal activity from an infectious perspective by using tailored com-
partmental agent-based models that include the social flavor of the mechanisms governing the evolution of crime in
society. Specifically, we focus on addressing how the existence of competing gangs shapes the penetration of crime.
The mean-field analysis of the model proves that the introduction of dynamical rules favoring the simultaneous survival
of both gangs reduces the overall number of criminals across the population, as a result of the competition between
them. The implementation of the model in networked populations with homogeneous contact patterns reveals that the
evolution of crime substantially differs from that predicted by the mean-field equations. We prove that the system
evolves towards a segregated configuration where, depending on the features of the underlying network, both gangs can
form spatially separated clusters. In this scenario, we show that the beneficial effect of the coexistence of two gangs is
hindered, resulting in a higher penetration of crime in the population.

Building on a recently introduced kinetic model1,2 on the
dynamics of norm violating (corrupt) behavior, we here
analyze the effects of the competition between two crimi-
nal gangs in the spreading of asocial behaviors on a pop-
ulation. While the mean-field analysis reveals the benefits
of adopting a selective punishment strategy, in which the
majority gang is more harassed, in networked populations
the gang competition leads to segregated configurations,
rendering inefficient the strategy of selective punishment
as both gangs do not compete locally.

The analysis of human behavior and its evolution in dif-
ferent periods and contexts has been one of the most relevant
problems for different branches of science3–5. Sociology, eco-
nomics, urban planning, and epidemiology are, among others,
disciplines in which the understanding of human behavior and
decision making play an essential role. For complex systems
science, this problem has been tackled through the mathemat-
ical modeling of systems composed of a multitude of inter-
acting elements in which the microscopic rules of interaction
or imitation and the network of contacts between individuals
capture, in a stylized way, different phenomena relevant to
human dynamics6. Example of these approaches are models
based on evolutionary game theory7–9, models for the diffu-
sion of cultural traits10,11 and complex contagion models de-
signed for the propagation of opinions12–14 and the creation
of polarized states15. In spite of the capacity of these models
to explain qualitatively different aspects of human behavior,
their practical interest has been, until recently, strongly lim-
ited by the lack of data that would make possible their ex-
perimental validation or allow their calibration to estimate the
value of the parameters used in their formulation.
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b)Electronic mail: mario.floria@gmail.com

The advent of the Internet era, the increase in computing ca-
pacity and, more importantly, the possibility of obtaining in-
dividualized data of human activity with high spatio-temporal
resolution through, for example, cell phone or wearable de-
vices, have led to the development of a new approach to the
study of human behavior usually termed as computational so-
cial science16–19. In this regard, computational social sci-
ence has enabled to obtain an accurate cartography of hu-
man interactions20–23, mobility patterns24–26, socioeconomi-
cal inequalities27,28 and to design large-scale experiments in
which the imitation rules under different controlled conditions
are tested29–33.

The large amount of data capturing different aspects of hu-
man behavior and the possibility of their large-scale analysis
have not detracted from the importance of studying models of
human behavior34,35. On the contrary, in addition to making
possible the validation of the hypotheses and the fine and pre-
cise calibration of current models, the advent of the big data
era has been very beneficial for the theoretical side, pushing
the frontiers of modelling towards new challenges where em-
pirical evidence of the underlying microscopic mechanisms
behind macroscopic phenomena is not yet available. It is in
this area that modelling generates new knowledge beyond its
direct application to concrete problems and systems.

Following this more theoretical facet of complex systems
modelling, in this article we propose a compartmental frame-
work, similar to those used in the study of epidemic models,
which allows us to capture a series of essential ingredients
in the propagation of crime. Such infectious-like perspective
has been previously applied to the study of the spread of gun-
shot violence36 and economic corruption37–39. Unlike other
approaches based on evolutionary game theory 40–43, asocial
behavior is not (explicitly) seen as a mechanism or strategy
of profit for the corrupt agent, and its diffusion is not gov-
erned by the calculation of expected benefits. Inspired by pre-
vious works1,2, here we conceptualize the criminal behavior
as an infectious state associated with those agents violating
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a social norm or convention. In these references, a compart-
mental model is developed consisting of three states: Hon-
esty (H), gathering the adopters of the social norm, Corrup-
tion (C), comprising those violating the norm, and Ostracism
(O) , representing the punishment (the hallmark of norm vio-
lation44,45) to corrupt individuals, thus receiving the name of
HCO model. The agents of the system are distributed among
the compartments, and can transit from one to another by in-
teracting with other agents following some imposed rules. In
its simplest formulation, this gives rise to the following flows
among compartments:

• Corruption flow: Agents H can be corrupted by inter-
acting with their neighbors C, with a rate fα dependent
on a probability α:

H
fα (C)−−−→C . (1)

• Delation flow: Agents C can be delated by interacting
with their neighbors H, passing to ostracism at a rate fβ

given by some probability β . It is this mechanism that
differs from traditional approaches in the SIRS model
by requiring the mediation of honest (healthy) individ-
uals for the recovery of corrupt (infected) ones.

C
fβ (H)
−−−→ O . (2)

• Reinsertion flow: O agents reintegrate into the honest
population at a certain rate r, without requiring interac-
tion with their neighbors.

O r−→ H . (3)

The reinsertion rate is constant and independent of the envi-
ronment, while the corruption fα and delation fβ rates de-
pend on microscopic processes in the agent’s neighborhood,
and thus are functions of the state of neighboring agents. It
follows that the rate fα (resp. fβ ) must be null in the ab-
sence of agents C (resp. H) in the neighborhood. The original
publication1 further considers an additional flow (“warning to
wrongdoers” effect) that allows corrupt agents to return to the
H state without going through O, so including the possibility
for a C agent to change his behavior for fear of being pun-
ished.

The HCO model allows us to preserve the social flavor
of the mechanisms governing the evolution of crime while
overcoming some of the limitations posed by traditional ap-
proaches relying on evolutionary game theory, such as the
choice for the rules to update population’s strategies46. Like-
wise, although later we restrict our analysis to the impact of
pairwise interactions, the general formulation of both the cor-
ruption and delation rates as arbitrary functions, fα and fβ

respectively, allows for accommodating more complex conta-
gion processes, such as those requiring higher-order interac-
tions6,12,47.

In reference1 the authors analyzed in full detail the mean-
field approximation to the dynamics of the HCO model, and

its comparison with the numerical results of Monte Carlo
(MC) simulations on random and non-random regular net-
works, for a type of simple one-variable contact interaction
functions fα and fβ . The three-dimensional phase diagram
of the model shows the existence of three generic absorbing
states, namely (i) full honesty, (ii) full corruption and (iii)
a mixed state with non-zero flow through all the flow chan-
nels. The model shows no multistability, and two continuous
transitions “full honesty - mixed state" (corruption transition)
and “full corruption - mixed state" (honesty transition), as the
model parameters are tuned. However, the introduction2 of
the effects of social intimidation in the delation of corrupt peo-
ple changes the nature of the smooth honesty transition into a
discontinuous one, and the phase diagram shows regions in
parameter space where both a fully honest population and a
fully corrupt one can coexist as stable asymptotic solutions
(bistability).

Building on this HCO model, we propose a framework to
explore what happens when two different, conflicting, and ex-
cluding gangs are present in the same population. Gang com-
petition is widespread and usually results in violence, either
intended to increase social prestige48 or to obtain economic
resources49. Space plays a crucial role in the occurence and
spread of gang violence50–53, which we intend to characterize
by applying our model to networks with different structural
features.

We denote by Cin and Cst the two criminals’ species, or
gangs, and consider that their competition materializes by de-
lating each other, i.e. a Cst agent can be delated by a Cin neigh-
bor:

Cst
fβ (H,Cin)−−−−−→ O ; (4)

in a similar way, a Cin agent can be delated by a Cst neighbor

Cin
fβ (H,Cst )
−−−−−→ O . (5)

Note that, when an interaction between a Cin and a Cst
agents takes place, both can be delated by their counterpart
at the same time becoming O. These cross-delation events
do not necessarily involve snitching, but could also represent
inter-gang violence which could remove the victim from the
network or lead to the arrest of an agent involved in the in-
teraction. For simplicity, we consider all these possible out-
comes inside the ostracism compartment, in analogy with the
removed compartment in the traditional SIRS model.

Both species follow the same rules concerning their interac-
tion (the aforementioned corruption and delation flows) with
the honest species. Moreover, the agents in the ostracism fol-
low the same rules as in the HCO model, and reinsert into the
honest population at the same rate r, irrespective of the species
they belonged to before their delation and the species that de-
lated them. These rules define a new compartmental scheme,
hereinafter denoted by HCCO model, whose flow diagram is
shown in Figure 1. For simplicity, we do not include here nei-
ther the “warning to wrongdoers” nor the social intimidation
effects.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
84

97
2



3

FIG. 1: Compartmental scheme and flows of the HCCO
model.

The paper is organized as follows. Section I introduces the
microscopic processes governing the stochastic evolution of
the HCCO model and its conceptualization in form of a sys-
tem of coupled Markov equations. Section II is devoted to the
analysis of the results obtained from Monte Carlo (MC) sim-
ulations of the model and the numerical iteration of Markov
equations. There, we show that the choice for the delation
mechanism from the honest population to their criminal coun-
terparts has a great impact on the equilibrium of the dynamics,
ranging from a dominance regime where one gang prevales
over the other one, which eventually disappears, to a configu-
ration in which both gangs coexist. In the latter scenario, the
discrepancies found between both results and the mean-field
predictions reveal the crucial role played by the underlying
network structure in shaping the competition between gangs.
Specifically, we show that these discrepancies are explained
by the segregation of the two gangs induced by the interplay
between the dynamics and the structure of the connections,
which becomes more relevant in presence of spatially corre-
lated populations.

I. GANG COMPETITION: HCCO MODEL

The system is composed of N agents with pairwise interac-
tions formally represented by an unweighted and undirected
network defined by its adjacency matrix A. At time step t the
state of the agent i (1 ≤ i ≤ N), denoted by σi(t), takes on
values on the set {H,Cin,Cst ,O} of mutually exclusive states.
From the assumptions that define the model in the introduc-
tory section, the stochastic (MC) simulations of the dynamics
are implemented in the following way:

At each time step (t) for each agent i, whose state is σi(t):

(i) If σi(t) = O, then σi(t + 1) = H with probability r, re-
maining O (out of society) with probability 1− r.

(ii) If σi(t) = Cin, then σi(t + 1) = O with transition prob-
ability f in

β
(i,{σ j}), a (yet unspecified) function of the

local configuration around i. Thus, agent i keeps be-
longing to her gang at t +1 with probability (1− f in

β
).

(iii) If σi(t) = Cst , then σi(t + 1) = O with transition prob-
ability f st

β
(i,{σ j}), a (yet unspecified also) function of

the local network configuration around i. The agent re-
mains in her gang with probability (1− f st

β
).

(iv) If σi(t) = H, then the agent can become corrupt with
probability fα(i,{σ j}) (to be specified later), remaining
honest with probability (1− fα). Given that both gangs
are mutually exclusive, we must introduce a function
g(x,y) denoting the probability of enrolling the gang x
in presence of the gang y. Then, if Ncin(i) and Ncst (i)
denote the number of Cin and Cst neighbors of i, we
have:

(a) σi(t + 1) = Cin with probability fα(i,{σ j}) ×
g(Ncin(i),Ncst (i));

(b) σi(t + 1) = Cst with probability fα(i,{σ j}) ×
g(Ncst (i),Ncin(i)) .

In what follows, we assume a proportionality rule so
that g(x,y) = x

x+y and g(x,y)+g(y,x) = 1.

Our choice for the transition probabilities mimics the famil-
iar implementation of infectious processes in MC simulations
of epidemiologic models with pairwise interactions. There-
fore, as in the corruption flow in the original HCO model,
we account for a probability α , with α ∈ [0,1], that a hon-
est agent becomes criminal for each contact with any criminal
counterpart. Then after interaction of the H agent with all its
neighbors, the transition probability to crime is

fα(i,{σ j}) = 1−
N

∏
j=1

(1−αAi j(δσ j ,Cin +δσ j ,Cst )) , (6)

and the agent is enrolled in a gang proportionally to the frac-
tion of the gangsters in its neighborhood (as indicated by the
function g above).

A criminal Cin (respectively Cst ) can be delated by a Cst
(resp. Cin) neighbor with probability β , with β ∈ [0,1]. Be-
sides, it can be delated by a H neighbor with a probability
β in (resp. β st ). To avoid the inconvenience of a model with
too many parameters, the simplest choice is to assume that
β in = β st = β , i.e. honest agents do not discriminate be-
tween gangs, and they delate both kind of gangsters with equal
probability (and equal to the inter-gang delation probability).
In the Appendix, where the mean-field approximation to the
dynamics is analyzed in some detail, we prove that for this
choice (non-selective delation) the two gangs cannot coexist
asymptotically. The minority gang in the initial conditions be-
comes asymptotically extinct, and the behavior of the model
is that of the HCO model. This is due to the hampered corrup-
tion power and the higher exposure to delation events of the
minority gang, which becomes even less populated as time
goes by, until extinction. This mean-field result also holds
in MC simulations of the model. Therefore, it seems conve-
nient to consider a situation in which the honest agents delate
preferentially the majority gang. To implement this “selective
delation”, while keeping the number of parameters at its mini-
mum, we introduce a function of the fractions 〈Cin〉 and 〈Cst〉,
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say B(〈Cin〉,〈Cst〉), defined as

B(x,y) =

{
1 if x≥ y ,

exp
[
− 1

T
(y−x)
(x+y)

]
if x < y ,

(7)

and assume β in = B(〈Cin〉,〈Cst〉) × β , and β st =
B(〈Cst〉,〈Cin〉)×β . Note that the parameter T , non negative,
in the function B controls the (exponential in gang size dif-
ference) decay of the delation of the minority gang by honest
agents. We recover the non-selective delation case by simply
taking B(x,y) = 1.

After interaction with all its neighbors, we write the proba-
bility that a Cin agent becomes an O agent as

f in
β
(i,{σ j})= 1−

N

∏
j=1

[
1−βAi j

(
δσ j ,Cst +B(〈Cin〉,〈Cst〉)δσ j ,H

)]
.

(8)
In an analogous way, the probability that a Cst agent is de-

lated reads

f st
β
(i,{σ j})= 1−

N

∏
j=1

[
1−βAi j

(
δσ j ,Cin +B(〈Cst〉,〈Cin〉)δσ j ,H

)]
.

(9)
One can associate to this MC dynamics a non-linear

Markov process, following references54, by assigning to each
agent i, at each time t, a real vector ~ρ(i; t) of components:

~ρ(i; t) = (ρh(i; t),ρcin(i; t),ρcst (i; t),ρo(i; t)) (10)

where ρx(i; t) represents the probability of belonging to the
compartment x. The time evolution of the probabilities of
agent i is determined by the interactions with its neighbors,
and is easily described by a matrix Q such that ~ρ(i, t + 1) =
Q~ρ(i, t), where

Q =


1− fα 0 0 r

fα g(ρT
cin
(i),ρT

cst (i)) 1− f in
β

0 0

fα g(ρT
cst (i),ρ

T
cin
(i)) 0 1− f st

β
0

0 f in
β

f st
β

1− r

 ,

(11)
where ρT

cx(i) = k−1
∑

N
j=1 Ai jρcx( j) is the total fraction of the

species Cx in the neighborhood of agent i, and g(x,y) = x
x+y ,

as above. The corruption rate fα is now

fα(i,{~ρ( j)}) = 1−
N

∏
j=1

[
1−αAi j

(
ρcin( j)+ρcst ( j)

)]
. (12)

The delation rates are now given by

f in
β
(i,{~ρ( j)}) = 1−

N

∏
j=1

[
1−βAi j

(
ρcst ( j)+B(ρT

cin
,ρT

cst )ρh( j)
)]

,

f st
β
(i,{~ρ( j)}) = 1−

N

∏
j=1

[
1−βAi j

(
ρcin( j)+B(ρT

cst ,ρ
T
cin
)ρh( j)

)]
,

(13)

where ρT
cx = N−1

∑
N
i=1 ρcx(i) (x = in, st) represents the total

fraction of the species Cx in the system.
In the Appendix we prove, in the case of selective dela-

tion, that the mean-field approximation predicts that the coex-
istence of both gangs is generic. Moreover, it turns out that
in the state of coexistence of competing gangs, the fraction of
honest agents is significantly higher than in the single-gang
state. This is easily realized from the consideration that the
mutual delation of competing gangs decreases the total frac-
tion of criminals. In a scenario of strongly competing gangs,
one might say that, perhaps counterintuive as it may seem at
first sight, a clever strategy for the decrease of corruption is to
tolerate the minority gang to allow its agents to do the “dirty
work" of contributing to the delation of the stronger gang. The
mean-field analysis in the Appendix provides a supportive ar-
gument of this somewhat machiavellian, unscrupulous, point
of view.

To check the predictions of the mean-field approximation,
we will compare them with the results of the Markov dynam-
ics and MC simulations on random and non-random networks.
We restrict our attention to networks with a fixed degree k,
which are expected to be closer to the mean-field assumptions
than those with degree heterogeneities. The first choice is a
random regular network (RRN) where pairs of nodes are ran-
domly linked, while strictly keeping the same degree k for all
the nodes, so the system has no spatial structure. We use RRN
networks of degree k = 4 with N = 104 nodes. We also use
a square planar lattice of the same size N = 104 and periodic
boundary conditions. Due to its spatial structure, one should
expect the results on the lattice to be more different from the
mean-field predictions than those on a RRN.

II. RESULTS

Unless otherwise stated, all results on networks have been
obtained as an average of 100 system realizations for each
value of the model parameters, starting with a population
nearly equally divided between the honest state and both
gangs, (ρh,ρcin ,ρcst )t=0 = (0.4,0.3,0.3). In the case of
Markov simulations, initial probabilities for each agent are
randomly assigned (i.e. non-homogeneous initial conditions),
with the constraint that the sum of probabilities for all agents
match this condition. In Figures 2a-b we show some examples
of the honest population fractions obtained for the Markov dy-
namics and MC simulations on RRN. One can note the good
fit between the mean-field predictions and the results obtained
with the Markov dynamics, although some appreciable devi-
ations occur for certain ranges of the parameters α and β . In
particular, when the honest population fractions are relatively
small, the Markov dynamics departs from mean-field behav-
ior, being closer to the behavior exhibited by the system un-
der Monte Carlo simulations. This effect becomes more pro-
nounced the smaller the total honest fraction. A deviation of
this kind in the Markov dynamics is an indication that the net-
work structure on which we implement the model has a clear
and non-negligible influence on the dynamics of the system,
which the mean-field is unable to capture. The fact that these
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FIG. 2: Fraction of honest population in equilibrium in the case of
gang coexistence, for r = 0.5, k = 4. Results are shown for RRN as
a function of α (a) and β (b), and for the lattice as a function of α

(c) and β (d). All the networks used have 104 nodes. We compare
the mean-field, Markov and Monte Carlo (agent based) simulations.

The results are averaged over 100 different realizations for every
value of α and β , with initial conditions

(ρh,ρcin ,ρcst ) = (0.4,0.3,0.3). For Markov simulations, initial
fractions of the species on each node are random, although giving

rise to the same global fraction of species.

deviations coincide almost perfectly with the behavior of the
Monte Carlo simulations in some areas indicates that the un-
derlying mechanism giving rise to the deviations is common
to both. We also note that no differences are observed be-
tween mean-field and Markov dynamics for the single-gang
HCO model, so that the deviations observed here have its ori-
gin in the gangs’ competition.

In Figures 2c-d we show the corresponding results on the
square planar lattice. We see that the almost coincidence of
Markov dynamics and MC results for low values of the hon-
est fraction extends now for a larger interval of those. Also,
for both, low and high values of the honest fraction, the differ-
ences between MC results and mean-field are further strength-
ened. Then, as expected, the spatial structure reinforces the
deviations from mean-field already present in the RRN.

To gain insight into the mechanisms of interplay between
the model dynamics and the network characteristics we must
quantify the heterogeneity in the state composition of local
neighborhoods, as explained in the following.

Measuring neighborhoods’ heterogeneity. Segregation

To quantify the deviations from the mean-field predictions
we define in the equilibrium the quantities σx,y ( where x,y ∈

 0
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(b) Markov, α=0.5
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(d)

β
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k=8
k=6
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k=3

FIG. 3: Measures of segregation between gangs. Results are shown
as a function of β for α = 0.5. Top panels: Measures of the

intra-gang (dark blue) and inter-gang (dark red) segregation, for
Monte Carlo (a) and Markov (b) simulations, and for RRN (solid

lines) and lattice (dashed lines). Bottom panels: Intra-gang
segregation for Monte Carlo (c) and Markov (d) simulations, on

RRN and for different values of nodes degree k.

{H,Cin,Cst ,O}) that measure how much, on average, the frac-
tion of agents y in the neighborhoods of agents x deviates from
that of a homogeneously distributed population. To be spe-
cific, for the system configurations of MC simulations in a
homogeneous network of degree k, this measure is defined as
the ratio of the number of interactions lxy between species x
and y to the number of interactions that should exist in a well-
mixed population, Nx× k×ρT

y , where ρT
y is the total fraction

of y agents in the population, and Nx is the total number of x
agents:

σ
MC
xy =

lxy

NxkρT
y
=

N
k

lxy

NxNy
= σ

MC
yx , (14)

where we have used that ρT
y = Ny/N. If the value of σx,y is

less than 1, this means that species x has, on average, a smaller
number of neighbors of species y than it should, and we will
say that both species are segregated. Conversely, if it is greater
than 1, the neighborhoods of x agents will be composed of
more y agents than would correspond on average, and we say
that both species are aggregated. Note that we can measure
the degree of segregation between agents of the same species
by setting x = y.

For the case of Markov configurations, where each agent
i has probability ρx(i) of belonging to species x, we define
the number of interactions between x and y as the weighted
sum of all existing interactions lMK

xy ≡ ∑
N
i, j=1 Ai jρx(i)ρy( j),

and divide it by the total weighted number of interactions
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FIG. 4: Lattice configurations corresponding to single snapshots of Monte Carlo simulations of the HCCO model in
equilibrium. Each square corresponds to a single agent, and its color determine the species she belongs to: honest (blue), Cin
gang (green), Cst gang (orange) and ostracism (grey). Configurations correspond to values of β above, below and equal to βc,
namely α = 0.5 and β = 0.2 < βc (a), β = βc = 0.26 (b) and β = 0.5 > βc (c). βc indicates the value in which penetration of

honest agents inside corrupt aggregates takes place.

that there should be in a well-mixed population, ∑
N
i=1 ρ i

xkρT
y =

ρT
x ×ρT

y × k×N. Thus, the definition of σMK
x,y is

σ
MK
xy =

1
NkρT

x ρT
y

N

∑
i, j=1

Ai jρx(i)ρy( j) = σ
MK
yx . (15)

We focus on the measures of segregation between gangs,
σcin,cin and σcin,cst , to reveal the effects of including two com-
peting species in the model. The results of the Markov and
Monte Carlo dynamics, both in RRN and lattice, are shown
in Figure 3. First, the results of MC simulations show a very
sharp segregation between gangs, such that agents in one gang
tend to be largely surrounded by agents of the same gang
(σcin,cin > 1), and are far removed from those of the opposite
gang (σcin,cst < 1). Moreover, this segregation is much more
pronounced in lattices than in RRNs, highlighting the impor-
tance of spatial structure. This implies that the system dy-
namics on networked populations are such that corrupt gangs
are segregated, giving rise to local environments quite differ-
ent from the overall network composition. This fact provides
the basis for a rationalization of the differences in the results
observed and the mean-field predictions.

We have seen above that the Markov dynamics shows clear
differences between the region of the parameter space (high
honesty values), where the results coincide with mean-field
predictions, and the region where they are closer to MC be-
havior (low honesty values). Initially, in homogeneous net-
works, one would expect the Markov dynamics to be such
that the probabilities at each node in equilibrium are equal to
those at the other nodes, and equal to the fractions in equi-
librium predicted by mean-field, and therefore, σxy must be
equal to 1. Indeed, this is what is observed in our model when
using homogeneous initial conditions, and also in the high
honesty region starting with non-homogeneous initial condi-
tions. In contrast, when the behavior resembles that obtained

by MC simulations, the descriptors clearly indicate the pres-
ence of inter-gang segregation. These results are much more
pronounced in the case of lattice networks than in RRN, as
was also the case for the MC simulations.

It is well known that, in general, the higher the degree of
the networks, the more similar the behavior of dynamics on
networks is to the mean-field behavior, because in a more
interconnected network, the environments of the agents are
more similar to each other. We have studied how segregation
behaves by varying the degree. The results are also shown
in Figure 3, where we can clearly observe that as degree in-
creases, segregation decreases, even disappearing completely
for high values of k.

Segregation on lattices

To help the arguments leading to a satisfactory explanation
of our results on networks on the basis of the segregation of
gangs, we visualize in Figure 4 three MC lattice configura-
tions at equilibrium, for different values of α and β , which
correspond to situations of coexistence between gangs. Fig-
ure 4c corresponds to a higher β value, and thus has a higher
total fraction of honest agents. At a glance, the segregation
phenomenon we have described can be seen by the presence
of two large groups or aggregates distributed in different re-
gions of the space corresponding to both gangs, and a border
in between rich in honest agents and ostracism. In the case
of β = 0.2 (Figure 4a), all the honest and agents in ostracism
are located at or near the border, while in the case of β = 0.5
(Figure 4c), they are more or less homogeneously distributed
throughout the network. This implies that there is a certain
critical value βc above which the honest agents are able to pen-
etrate the gangs aggregates, and survive by themselves inside.
This critical value corresponds to the peak of the susceptibil-
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FIG. 5: Lattice configurations corresponding tosingle snapshots of Markov simulations of HCCO model in equilibrium. Each square
corresponds to a single agent, and the color strength indicates the probabilities of each node belonging to each species: Cin (green) (a,d), Cst
(orange) (b,e) and H (blue) (c,f). Configurations correspond to β = 0.2 < βc (a-c) and β = 0.5 > βc (d-f). Note that the lighter colors of the

lower panels indicate lower penetration of corruption for higher β .

ity function estimated from several realizations of the HCO
model on lattices, yielding βc = 0.26. The associated HCCO
configuration at this critical value is represented in Figure 4b.

A similar phenomenon occurs in the Markov case. We can
see in Figure 5 that, for a choice of parameters where segrega-
tion occurs, two distinct criminal groups appear separated by
a honest-rich frontier. Moreover, there is no coexistence be-
tween gangs within these aggregates, i.e., nodes within the ag-
gregates contain only probabilities of belonging to one gang,
and the few agents with non-zero probabilites of both gangs
are confined to the honest-rich frontier. For decreasing val-
ues of β , the probabilities of being honest for agents inside
the aggregates decrease until a certain threshold value βc at
which they disappear completely. It is also worth noting that
the overall probability of finding a criminal inside each aggre-
gate decreases as β increases because of this phenomenon of
penetration of honest agents into the aggregates, and is not due
to the appearance of the competitor gang, which never invades
the rival aggregate.

The segregation of competing gangs into spatially separated
aggregates makes mutual delation between gangs negligeable,
so that the feature that differentiates HCCO and HCO dynam-
ics seems to disappear. On the other hand, selective delation
by honest agents provides a stabilizing mechanism for the per-
sistence of both gangs: The size of the minority gang aggre-
gate will increase respect to the size of the majority gang ag-

gregate, so that the survival of equal size aggregates is guaran-
teed. In this situation, both gangs are delated by honest agents
with equal probability, and then one is led to the idea that the
dynamics in the interior of the aggregates is that of the HCO
model.

A further support of this suggestion is provided by the fact
that the value of the parameter β above which honest agents
penetrate into the aggregates almost exactly coincides with
the value βc for the honesty transition of the HCO model, as
shown in Figure 6a. The small excess (in both Markov and
MC results) of honest agents for β < βc ≈ 0.26 is just due to
the effect of the frontier between aggregates, where delation
processes can (and they do) occur.

For β > βc, as the penetration of honest agents into the ag-
gregates increases, the Markov results for the HCCO model
becomes progressively closer to the HCO results. To show
this, we compute the probability distribution of being honest
for certain values of α and β by building histograms showing
honesty probabilities ρh of all agents of a given configuration.
These histograms, shown in Figures 7b-c, are highly peaked
at the HCO value both below and above βc. The tails of the
histograms reflect the existence of the frontier separating the
gangs aggregates, whose effects become negligeable at higher
values of β due to the abundance of honest agents inside the
aggregates. We can conclude that the segregation of rival
gangs leads the system to the behavior of the HCO model,
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FIG. 6: Lattice. (a) Fraction of honest population as a function of β for α = 0.5. mean-field results (blue line), Markov simulations (green
triangles) and Monte Carlo simulations (orange circles) for HCCO model are shown, together with their counterparts in HCO model (green
line for Markov and red line for Monte Carlo). The black vertical lines indicates the stability transition in HCO model for lattices βc = 0.26,
while blue rectangles indicate two different choices of β values, above and below βc, where the Markov distributions of probabilities in the

network are studied (panels b and c). In particular, the distribution of probabilities of each agent belonging to the H compartment is obtained
for the configurations shown in the respective insets: (b) histogram for α = 0.5 and β = 0.2, (c) histogram for α = 0.5 and β = 0.5. Vertical

dark blue lines indicate the value of ρh obtained with mean-field in the HCO model (ρHCO,MF
h ) and in the HCCO model (ρHCCO,MF

h ).

with small corrections due to boundary (between gangs) ef-
fects.

Regarding the MC dynamics, we see that, well after the
penetration of honest agents into the gangs aggregates, the
fraction of honest agents is significantly lower than in the
HCO model. Though the rival gangs sizes are kept equal by
the selective delation by honest agents, the MC stochastic fluc-
tuations around the equal size situation effectively decrease
the number of delations respect to the HCO model, and the
fraction of honest agents becomes lower. In this case, segre-
gation turns the (mean-field) advantage of honesty introduced
by the selective delation strategy into a disadvantage. In lat-
tices, non-selective delation can do better for β > βc.

Segregation on Random Regular Networks

We have seen how the phenomenon of gangs segregation ef-
fectively transforms the HCCO model on lattices into an HCO
with small corrections, providing an accurate explanation for
the observed deviations (for both, Markov and MC dynam-
ics) from mean-field predictions. As segregation occurs also
in RRN networks, one should ask whether the observed devi-
ations in these networks can also be explained along the same
lines, i.e. as the effects of the emergence of subnetworks of
HCO behavior.

In Figure 7a we show, for both Markov and MC dynamics
on RRN, the fraction of honest agents ρh(β ) for fixed value of
α = 0.5. First of all, we see that there is no noticeable change
of behavior near β = βc, which casts serious doubts on the
relationship between this behavior and the HCO model. Re-

garding the Markov behavior, we observe in the histograms of
Figure 7b that the agents honesty probabilities clearly deviate
from the HCO values. In Figure 7c, where β = 0.5, there is
no segregation at all (see Figure 3), and all the nodes have the
same population fractions predicted by mean-field. These re-
sults could have been expected from Figure 3, where one sees
that, in RRN, both gangs are much more exposed to mutual
delation than in lattices. We conclude that, in RRN, there are
no subnetworks where the dynamics is HCO. Even when seg-
regation into rival gangs aggregates occurs in RRN, its effects
are quite different from those in lattices.

What explains the striking differences between lattices and
RRN regarding the effects of segregation is the size of the
frontiers that separate aggregates, and, in particular, the dis-
tance between any agent and those frontiers, as we now ar-
gue after the inspection of Figure 8. In this Figure we show,
for RRN and lattices, the mean shortest distance dxy between
corrupt agents of species x and y (x,y ∈ {Cin,Cst}), defined
as the average length of the shortest path from every agent
x to the nearest agent y. Note that dx,y ≥ 1 always and, in
general, dcin,cst 6= dcst ,cin , and dcin,cin 6= dcst ,cst , but they are ap-
proximately equal given the simmetry of the system, so we
only show the distances dcin,cst and dcin,cin for clarity. When
x 6= y, we effectively measure the distance to the nearest fron-
tier (and thus, the size of the aggregate). We see that there are
clear differences between the distances measured in RRN, that
hardly reach values larger than 2, and those measured in lat-
tices. Small distances means that every criminal has members
of the opposing gang in its vicinity, and therefore, the mecha-
nism of inter-gang delation comes often into play, preventing
the emergence of the HCO behavior. This is what happens in
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FIG. 7: Random regular network (RRN). (a) Fraction of honest population as a function of β for α = 0.5. mean-field results (blue line),
Markov simulations (green triangles) and Monte Carlo simulations (orange circles) for HCCO model are shown, together with their

counterparts in HCO model (green line for Markov and red line for Monte Carlo). The black vertical lines indicates the stability transition in
HCO model for RRN βc = 0.24, while blue rectangles indicate two different choices of β values, above and below βc, where the Markov

distributions of probabilities in the network are studied (panels b and c). In particular, the distribution of probabilities of each agent belonging
to the H compartment is obtained for two equilibrium configurations: (b) histogram for α = 0.5 and β = 0.2, (c) histogram for α = 0.5 and
β = 0.5. Vertical dark blue lines indicates the value of ρh obtained with mean-field in the HCO model (ρHCO,MF

h ) and in the HCCO model
(ρHCCO,MF

h ). In panel (c) we observe the situation where all nodes have the same honest probability, which corresponds to the mean-field
behavior for HCCO model.
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FIG. 8: Mean shortest distances between agents of opposing gangs
(orange) and agents of the same gang (blue), for lattices (continous
lines) and RRN (dashed lines). (a) Results for β = 0.5. (b) Results

for α = 0.5.

RRN, as we have seen before.
On the other hand, when distances increase, the inter-gang

delation becomes rare and the prevailing mechanisms of the
systems are the same as in the HCO model. Essentially,
greater distances mean greater regions in the network where
only one gang is present, and thus, HCO behavior is devel-
oped (see Figures 4 and 5, where gangs aggregates are clearly
visible). This is what happens in lattices, as can be seen in
Figure 8, where inter-gang mean distances reach values up to
7, while intra-gang distances remain close to 1.

Differences in behavior between networks come from their
structural features: spatial correlations inherent to lattices re-

sult in much longer average shortest path lengths and diame-
ters than in RRN, where the small world property brings all
agents together. Therefore, networks with longer average dis-
tances allow for the partitioning of the network between both
gangs, which rarely interact, while networks with small-world
property promote inter-gang interactions, effectively dragging
all agents to the frontiers. Although segregation is also present
and plays an important role in the asymptotic composition of
the system, it is not sufficient to break the HCCO model into
two HCO models.

III. CONCLUDING REMARKS

In this work we have proposed a generalization of the HCO
model formulated in reference1 to explore the prevalence of
crime in a given society under the coexistence and competition
impact of two different opposing gangs.

The mean-field analysis of the model reveals the existence
of different equilibria as a function of the delation mechanism
of the honest population. While non-selective delation always
leads to the extinction of the minority gang, the introduction
of a selective delation, reducing the probability that honest
agents delate the minority gang, leads to a coexistence regime.
As a result of the inter-gang delation events, the latter choice
turns into a convenient strategy, leading to a lower penetration
of crime than in the former scenario.

To characterize the evolution of crime in networked popula-
tions, we have proposed a set of Markov equations which are
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validated through extensive agent-based Monte Carlo simula-
tions. Regarding the impact of the coexistence of two gangs,
we have found a pretty different qualitative picture from that
predicted by the mean-field theory, leading to a higher pene-
tration of crime in some regions of the parameter space. Quan-
titatively, these differences strongly depend on the structural
features of the underlying network, becoming more relevant
for spatially structured configurations.

The fact that the Markov dynamics results, starting with
heterogeneous initial conditions, differ from the mean-field
theory and approach to the Monte Carlo simulations is rarely
observed in regular networks for these kind of models. The
presence of both competing gangs seems to preserve and even
amplify the initial heterogeneities of the fraction of species in
the system.

To unveil the underlying phenomena that produce this dis-
agreement we proposed a new segregation measure and stud-
ied the distances separating the different gangs. Regardless of
the underlying network, we found that agents’ surroundings
substantially differ from the well-mixed scenario, resulting in
segregation between both gangs. Moreover, in networks with
spatial structure, this segregation plays a major role, leading
to the emergence of two disjoint macroscopic clusters of crim-
inals, each one associated with a gang. The size of these clus-
ters, quantified with the inter-gang distances, is large enough
to impair the cross delation events, thus explaining the impor-
tant differences found with respect to the mean-field predic-
tions.

In general terms, our analysis reveals that the interplay
of the network structure, the competition between spreading
units (criminal gangs) and the strategy chosen to control their
diffusion (delation mechanism) crucially shapes the outcome
of the dynamics. Along this line, we have proposed simple
microscopic rules which amplify small local perturbations to
give rise to macroscopic collective behaviors. This work, al-
beit limited in scope, lays the foundation for the ellaboration
of a more complete formalism that overcomes some of its in-
trinsic limitations. Namely, it does not contemplate the exis-
tence of pure, incorruptible agents, other realistic features in-
herent to corruption such as the lack of reinsertion of certain
individuals55 and social stigma56–58, or the fact that gang re-
cruitment can be often subordinated to the sharing of cultural
or racial traits that may prevent an agent from being corrupted
into a certain gang48. Moreover, repressive action is not ex-
plicitly taken into account, as corrupt agents cannot sponta-
neously reach Ostracism. Similar mechanisms, like warning
to wrongdoers or social intimidation effects have been previ-
ously included1,2 but not explicitly incorporated here in order
to clearly analyze the effect of gang competition. Nonethe-
less, we hope that this work will inspire future research on
competing dynamics as well, such as the spread of opposite
ideas in social networks59,60.
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Appendix A: Mean-field analysis of the HCCO model

We will analyze here the asymptotic behavior for the mean-
field approximation of the HCCO model, For the choice of
non-selective delation rates, where honest agents delate both
gangs with an equal probability, we arrive to the result that
both gangs cannot coexist. However, for the case of selec-
tive delation a state of coexistence of the gangs is stable with
a large basin of attraction. Moreover, the fraction of honest
agents in the population for this state of gangs’ coexistence is
significantly higher than that of the HCO (single-gang) model
for the same values of the model parameters (i.e., α,β ,r).
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The mean-field approximation is based on the assumption
of homogeneity of both, field (agent state; H, Cin, Cst or O),
and structure of contacts (adjacency matrix A). Under these
circumstances, it seems plausible considering average behav-
ior as a good (least biased) estimation of agent’s behavior, i.e.:
~ρ(i) = 〈~ρ〉 (for all i) for the associated Markov process, and
the neighborhood of size k can be selected at random among
the population at each time step. Therefore, by using the nor-
malization condition, the mean-field discrete time dynamics
becomes a non linear three-dimensional map of the simplex
(tetrahedron, shown in Figure 9) S3 (i.e.: 0≤ ρh,ρcin ,ρcst ≤ 1,
ρh+ρcin +ρcst ≤ 1) onto itself, if one chooses ρh, ρcin and ρcst
as independent variables.

One associates to this map a three-dimensional flow (con-
tinuous time dynamics) defined by the velocity (3d vector)
field ~F(~ρ), on the simplex

~F(~ρ) = ~̇ρ ≡ (ρ̇h, ρ̇cin , ρ̇cst )

whose components are:

Fh(~ρ) =− fα ρh + rρo =−[ fα + r]ρh + r [1− (ρcin +ρcst )] ,

Fcin(~ρ) = fα t(ρcin ,ρcst )ρh− f in
β

ρcin ,

Fcst (~ρ) = fα t(ρcst ,ρcin)ρh− f st
β

ρcst , (A1)

where, in this mean-field approximation, the corruption rate is
given by

fα = 1− [1−α(ρcin +ρcst )]
k , (A2)

and the delation rates are

f in
β
= 1− [1−β (ρhB(ρcin ,ρcst )+ρcst )]

k ,

f st
β
= 1− [1−β (ρhB(ρcst ,ρcin)+ρcin)]

k . (A3)

where B(x,y) = 1 for the non-selective delation scenario,
while it is given by (7) for the selective delation one.

For both cases, one easily sees that the velocity field ~F(~ρ)
satisfies the symmetry

Fcin(ρh,ρcin ,ρcst ) = Fcst (ρh,ρcst ,ρcin) , (A4)

and thus the phase portrait posseses mirror symmetry respect
to the two-dimensional surface ρcin = ρcst (bisector plane). As
a consequence, the bisector plane is an invariant set. It is easy
to check that there are two additional invariant 2d surfaces,
namely the single-gang faces, ρcin = 0 and ρcst = 0.

The dynamics on the single-gang face ρcy = 0 (y = in,st) is
that of the HCO model1, whose asymptotic behavior we sum-
marize as follows: For fixed values of the parameters α,β ,
and r there is a unique attractor of the face trajectories (no
multi-stability).

• If α < αc =
1−(1−β )k

k then the full honesty state, i.e. the
vertex ρh = 1, is the attractor.

• If β < βc =
1−(1−α)k

k then the full corruption state, i.e.
the vertex ρcx = 1, is the attractor.

 0
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FIG. 10: Fraction of honest (blue), total penetration of crime (red)
and ostracism (grey) population in equilibrium, for r = 0.5, k = 4.
(a) mean-field results for β = 0.5, as function of α . (b) mean-field
results for α = 0.5, as function of β . Solid lines correspond to the

state of coexistence of competing gangs and dashed lines to the state
of a single gang survival.

• If α > αc =
1−(1−β )k

k and β > βc =
1−(1−α)k

k , there is
an interior attractor (ρ̄h, ρ̄cx ) which is the solution of the
non-linear equations

Fh(~ρ) =−[ fα + r] ρ̄h + r [1− ρ̄cx ] = 0 ,

Fcx(~ρ) = fα ρ̄h− f x
β

ρ̄cx = 0 , (A5)

where fα is given by (A2), and f x
β

by (A3), evaluated at
(ρ̄h, ρ̄cx).

The dynamics on the bisector plane ρcin = ρcst = ρc shows
some differences. The full corruption state in the single-gang
HCO (that is now 2ρc = 1) is no longer a fixed point, due to the
mutual delation of the gangs. We have now only two scenarios
for the restriction of the phase portrait to this invariant set:

• If α < αc =
1−(1−β )k

k then the full honesty state, i.e. the
vertex ρh = 1, is the attractor.

• If α > αc =
1−(1−β )k

k then there is an interior attractor
(ρ∗h ,ρ

∗
c ) of the face trajectories, which is the solution of

the non-linear equations

Fh(~ρ) =−[ fα + r]ρ∗h + r [1−2ρ
∗
c ] = 0 ,

Fcx(~ρ) = fα ρ
∗
h − f x

β
ρ
∗
c = 0 (A6)

where the rates fα and f x
β

are evaluated at (ρ∗h ,ρ
∗
c ).

Now, it must be realized that being attractor (stable fixed
point) of the trajectories inside a 2d invariant set does not
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guarantee its attractor character on the 3d phase space, be-
cause perturbations out of the invariant set could destabilize
the fixed point under consideration. It turns out that, in this
respect, the selective (or not) character of the delation by
honest agents makes an important difference. The popula-
tion fractions in the equilibrium both in the coexistence case
(ρ̄h, ρ̄cin , ρ̄cst ) (bisector plane) and the single-gang HCO case
(ρ∗h ,ρ

∗
c ) (face plane) are shown in Figure 10. Note that the

total honest population is always greater in the case of coexis-
tence, due to the cross-delation processes between gangs.

Non-selective delation

For the non-selective delation scenario, and α > αc, when
a small perturbation δ~ρ = (δρh = 0,δρcx =−ε,δρcy = ε) is
applied to the single-gang face fixed point (ρ̄h, ρ̄cx ), the lin-
earized equation of motion for the minority gang fraction is
obtained, after some simple algebra, as

ρ̇cy = ε

[
(1−β (ρ̄h + ρ̄cx))

k− (1−β (ρ̄h))
k
]
< 0 , (A7)

and thus the velocity field points toward the single-gang face,
that attracts nearby trajectories. On the contrary, when the
same perturbation is applied to the fixed point on the bisector
plane (ρ∗h ,ρ

∗
c ), making Cx minority, the linearized equations

become

ρ̇cy =−ρ̇cx = kβερ
∗
c (1−β (ρ∗h +ρ

∗
c ))

k−1 > 0 , (A8)

and the perturbation is amplified away from the fixed point.
Trajectories nearby the bisector plane flow away from it to-
ward the single-gang face.

In summary, when honest agents delate both gangs with
equal probability, the generic phase space trajectories evolve
either toward the full honesty state, if α < αc, or (otherwise)
toward the attractor on one of the single-gang faces, that are
“full Cin" and “full Cst" if β < βc, or otherwise (ρ̄h, ρ̄cin ,0) and
(ρ̄h,0, ρ̄cst ). For α > αc, the bisector plane is the basin bound-
ary, i.e. the surface that divides the phase space in two basins
of attraction.

Selective delation by honest agents

To simplify the linear stability analysis of both, single-gang
and gang-coexistence fixed points, we will take the limit T →
0 of the function B(x,y) defined by equation (7):

lim
T→0

B(x,y) = θ(x,y) =

{
1 if x≥ y ,
0 if x < y .

(A9)

This change does not modify the results of the analysis, while
it considerably simplifies the mathematical arguments. Also,
to alleviate the notation, we define a one-variable function
fβ (x) = 1− (1−βx)k, so that, if Cin is the majority gang, the
equations A3 are reduced to

f in
β
= fβ (ρh +ρcst ) ,

f st
β
= fβ (ρcin) . (A10)

By applying a small perturbation δ~ρ = (δρh = 0,δρcin =
ε,δρcst =−ε) to the fixed point (ρ∗h , ρ∗cin

= ρ∗c , ρ∗cst = ρ∗c ) on
the bisector plane, the system is placed at (ρ∗h ,ρ

∗
c +ε,ρ∗c −ε),

where Cin is the majority gang, and we can use (A10). The
linearized equations of motion for the gangs are:

ρ̇cin = fβ (ρ
∗
h +ρ

∗
c )(ρ

∗
c + ε)− fβ (ρ

∗
h +ρ

∗
c − ε)(ρ∗c + ε)> 0 ,

(A11)

ρ̇cst = fβ (ρ
∗
h +ρ

∗
c )(ρ

∗
c − ε)− fβ (ρ

∗
c + ε)(ρ∗c − ε)> 0 .

(A12)

Although ρcin increases, the velocity field points toward the bi-
sector plane, because the increasing character of the function
fβ and the condition ε� 1, ensures that ρ̇cst > ρ̇cin . Therefore,
the flow will tend to restore the equilibrium situation, and the
fixed point on the bisector becomes stable for any choice of
α and β , provided α > αc (the condition for the existence of
this fixed point). We see how the selective delation by hon-
est agents, delating the minority gang with a lower (null, in
the previous analysis, where B is a step function) probability
reverses the stability of the state of gangs coexistence.

In this state of coexistence of competing gangs, the frac-
tion of honest agents is significantly higher that in the single-
gang state. The reason is that the mutual delation of opposing
gangs, which is absent on the single-gang faces, decreases the
total penetration of crime. In this scenario of strongly compet-
ing gangs, the selective delation by honest agents that leads to
the survival of both gangs allows an additional source of de-
lation, and thus it turns out to be a sort of efficient strategy
against corruption.

Let us now consider the stability of the fixed point
(ρ̄h, ρ̄cin ,0), interior to the ρcst = 0 single-gang face, by adding
a small perturbation δ~ρ = (δρh = 0,δρcin = −ε,δρcst = ε),
so that we can use (A10) at the pertubed state. After some sim-
ple algebra, the linearized equations of motion for the gangs
are:

ρ̇cin =
[

fβ (ρ̄h)− fβ (ρ̄h + ε)
]
(ρ̄c− ε) , (A13)

ρ̇cst =
[

fβ (ρ̄h)− fβ (ρ̄c− ε)
]

ε . (A14)

The increasing character of the function fβ and the condi-
tion ε � 1, ensures that ρ̇cin < 0. The direction of the ve-
locity field at the perturbed state points toward the single-
gang face if ρ̇cst < 0, and we see that, at lowest order in
ε , sign ρ̇cst = sign(ρ̄h − ρ̄cin). From the symmetry of the
(single-gang) HCO model (in the absence of the warning to
wrongdoers effect) analyzed in1, we know that sign(ρ̄h −
ρ̄cin) = sign(β −α), and then if α < β the single-gang face
fixed point is unstable, but becomes an attractor of nearby tra-
jectories if α > β . A more detailed analysis shows that this bi-
furcation is produced by the collision with a stable fixed point
outside the phase space (for α < β ), that interchanges stabil-
ity with the single-gang fixed point, then becoming unstable at
its entrance into the phase space, when the single-gang fixed
point becomes stable.

Summarizing the linear stability analysis for the selective
delation case,

• If α < αc the unique asymptotic state is the full honesty
state.
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• If αc < α < β , the unique asymptotic state is the gangs
coexistence state (ρ∗h , ρ∗cin

= ρ∗c , ρ∗cst = ρ∗c ).

• If β < α there are three attractors for the dynamics,
namely the state of equally populated gangs in the bi-
sector plane, and the two single-gang states in the in-
variant faces on the boundary. The size of the basins of
attraction for the latter increases as α increases. More-
over, for values of the parameter β < 1/k, there is a
value of the parameter α = α∗, defined by the condi-
tion βc(α

∗) = β , such that if α∗ < α , the single-gang
states are the full C states.
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