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Abstract 
Background: The use of a focused ion beam to decompose a 
precursor gas and produce a metallic deposit is a widespread 
nanolithographic technique named focused ion beam induced 
deposition (FIBID). However, such an approach is unsuitable if the 
sample under study is sensitive to the somewhat aggressive exposure 
to the ion beam, which induces the effects of surface amorphization, 
local milling, and ion implantation, among others. An alternative 
strategy is that of focused electron beam induced deposition (FEBID), 
which makes use of a focused electron beam 
instead, and in general yields deposits with much lower metallic 
content than their FIBID counterparts. 
Methods: In this work, we optimize the deposition of tungsten-carbon 
(W-C) nanowires by FEBID to be used as electrical contacts by 
assessing the impact of the deposition parameters during growth, 
evaluating their chemical composition, and investigating their 
electrical response. 
Results: Under the optimized irradiation conditions, the samples 
exhibit a metallic content high enough for them to be utilized for this 
purpose, showing a room-temperature resistivity of 550 μΩ cm and 
maintaining their conducting properties down to 2 K. The lateral 
resolution of such FEBID W-C metallic nanowires is 45 nm. 
Conclusions: The presented optimized procedure may prove a 
valuable tool for the fabrication of contacts on samples where the 
FIBID approach is not advised
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Plain language summary
We describe a new method to fabricate high-resolution, highly-
conductive electrical contacts at the nanoscale based on a 
direct-write technique called focused electron beam induced  
deposition (FEBID). A W(CO)

6
 precursor and a scanning elec-

tron microscope are used for that aim. By optimizing the growth 
conditions we are able to create contacts with lateral dimen-
sion as small as 45 nm and, as a proof of concept, we grow con-
tacts on a superconducting nanowire and measure its electrical  
properties down to very low temperature, 2 K. This means that 
our strategy works across a broad temperature range, from 
room temperature down to 2 K. Our work demonstrates that  
FEBID is a viable technique to make electrical contacts at the 
nanoscale without the burdens of the use focused ion beams, 
which in general create a lot of damage on the samples of inter-
est. We plan to use FEBID to electrically contact materials of 
interest that are ion-sensitive, such as bidimensional materials,  
high-mobility semiconducting nanowires and oxides.

Introduction
Measuring the electrical response of a sample or a device rep-
resents one of the most utilized and required characterization 
procedures in materials science and condensed matter phys-
ics, with different experiments ranging from conventional  
voltage-current characteristics to magneto-resistance studies1, 
gating experiments2, and many more. No matter how simple or  
complex the electrical configuration might be, having suit-
able contacts to electrically contact the nano- or micro-sized 
object with the macro-world is always a primary requirement for  
electrical properties characterization studies. As such, developing, 
employing, and improving nanopatterning techniques to ade-
quately fabricate these contacts represents a parallel research 
field that is equally important to the investigation of the  
materials themselves3–7.

Examples of nanopatterning techniques that are commonly 
used for this purpose include optical lithography (OL)8, elec-
tron beam lithography (EBL)9, and focused electron/ion beam 
induced deposition (FEBID/FIBID)10,11. Both OL and EBL are  
resist-based lithography techniques – a radiation-sensitive 
spin-coated film (photosensitive and electron-resistive, respec-
tively) is placed on top of the sample under study, and is then 
selectively exposed to the corresponding radiation. In OL, 
the exposure to ultraviolet radiation is performed through a  
mask, which allows for patterning of large areas, while in EBL 
the resist is exposed to electrons by means of a focused elec-
tron beam (FEB) that is scanned over the areas of interest9. The 
resist is later removed in development and selective etching  
steps. On the other hand, in FIBID and FEBID, the deposi-
tion of the contacting material is achieved by injecting a gas-
eous precursor material containing the element of interest 
in close proximity to the sample, and then inducing its local 
decomposition by selectively scanning the corresponding beam  
over it10,11.

Contrary to OL and EBL, both FIBID and FEBID are sin-
gle-step techniques: no resist is used to perform them, and no  

further steps are required after beam exposure10,11. In addition,  
the beam can be freely steered to trace patterns defined by 
the user without adding complexity to the procedure, which 
gives the technique an added value in the form of enhanced  
patterning flexibility. On the other hand, their serial nature 
also limits their applicability to smaller-scale contacting (in 
the order of µm), making them more fitting for research pur-
poses and prototyping than for industrial applications other than  
circuit edit12 and mask repair13. Still, recent developed strate-
gies based on the irradiation at cryogenic temperatures, which 
results in an enhancement of the growth rate by several orders 
of magnitude, point towards potential applicability of FIBID  
in the mm range14.

FIBID is commonly implemented making use of a focused 
ion beam (FIB) of Ga+ ions, owing to the commercial avail-
ability and ease of use of such systems. One very signifi-
cant drawback of Ga+ FIBID is, however, the unavoidable,  
technique-intrinsic substrate modification that takes place dur-
ing irradiation. Due to the relatively large mass of Ga+ ions, 
exposing a sample to a Ga+ FIB results in localized substrate  
amorphization15, milling16, and ion implantation17. Even though 
FIBID is reported to have been used to fabricate electrical  
contacts on robust metals18, it may not be employed for that 
purpose with fragile materials such as graphene19 or oxides20.  
Due to the comparatively lighter mass of electrons, and at the 
cost of a reduced growth rate and (in general) a lower metallic 
content, FEBID is of great interest to fabricate metallic deposits  
without significantly affecting the underlying materials.

Some of the most commonly employed precursor materials for 
the FEBID of metals are trimethyl (methylcyclopentadienyl) 
platinum, (CH)

3
Pt(CpCH

3
); dicobalt octacarbonyl, Co

2
(CO)

8
; 

and iron pentacarbonyl and diiron nonacarbonyl, Fe(CO)
5
  

and Fe
2
(CO)

9
10. Pt-C deposits fabricated by FEBID exhibit room-

temperature resistivity values in the order of 10 000 µΩ cm  
and a metallic content of around 20%, and a relatively high 
growth rate when compared to other precursor materials; 
which makes it suitable for the fabrication of protective lay-
ers during the preparation of samples for transmission electron  
microscopy (TEM) experiments10. The poor room-tempera-
ture conductivity discourages its usage for the deposition of 
electrical contacts, although it can be enhanced by subject-
ing the material to post-treatment methods, such as hydrogen  
exposure21, and FEB-assisted oxygen purification22. On the 
other hand, Co-C and Fe-C deposits exhibit much lower  
room-temperature resistivity (40 µΩ cm and 100 µΩ cm, 
respectively), but their magnetic behavior might provide 
unwanted influence on the electric properties of the sample at 
hand, which also hampers their applicability for their usage  
as electrical contacts23,24.

In addition, one other precursor material, widely used for 
FIBID, is tungsten hexacarbonyl, W(CO)

6
11. Its deposition by 

both Ga+ and He+ FIBID is known to generally yield a material 
that exhibits metallic behavior at room temperature, and type-II  
superconductivity below ~5 K25,26. FEBID of W(CO)

6
 is mostly  
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reported to yield a non-superconducting material with a  
moderately-metallic electrical response, with reported values  
of room-temperature resistivity of 3000 µΩ cm27 and 
2500 µΩ cm28, and around 4000 µΩ cm at 260 K29. Under  
specific growth conditions, mostly related to the usage of  
comparatively high currents, FEBID W-C has also been shown to  
display superconductivity at low temperatures30,31. However,  
using such high FEB currents during irradiation hampers the 
resolution of the process, yielding deposits with lateral sizes 
that are typically in the range of several hundreds of nm. In 
this contribution, we investigate the suitability of the W-C  
material grown by FEBID of the W(CO)

6
 precursor for its usage 

in the fabrication of electrical contacts. By using a moderate  
electron beam current of 1.4 nA and an acceleration voltage  
of 20 kV, a W-C material with a room-temperature resistivity  
in the range of 550 µΩ cm can be grown with a remarkable  
lateral resolution in the order of 45 nm. In the following, the 
growth conditions employed to obtain a sufficiently-metallic 
material (i.e., with a sufficiently high conductivity) are described, 
and the electrical and compositional characterization studies  
of the material are presented. Lastly, the applicability of the 
material is demonstrated in a low-temperature measurement 
of a superconducting W-C nanowire fabricated by Ga+ FIBID, 
showing that the contacts are operative from room temperature  
down to 2 K.

Methods
The nanofabrication of the W-C electrical contacts was car-
ried out in a commercial Thermo Fisher Helios 600 Dual Beam 
FIB/SEM microscope, fitted with a Ga+ FIB column and a field  
emission gun electron column, and a gas injection system (GIS)  
for gaseous precursor delivery. Si/SiO

2
 pieces with titanium  

pads pre-patterned by OL were used as substrates. 

The process chamber of the FIB/SEM microscope had a base 
pressure in the order of 1 × 10−6 mbar, which was raised by 
one order of magnitude during the injection of the precursor 
material. For each deposition type (e.g., FEBID and FIBID), 
the W(CO)

6
 GIS nozzle was positioned 50 µm and 100 µm 

away from the irradiation point in the in-plane and vertical  
directions, respectively.

The following parameters were used during deposition of the 
electrical contacts: electron beam current of 1.4 nA, dwell time 
of 100 µs, pitch of 7 nm (corresponding to an overlap between 
consecutive irradiation spots of 60%), and a nominal volume  
per dose of 8 × 10−6 nm3 nC−1. The influence of the FEB  
acceleration voltage was explored at values of 5 kV, 10 kV, 20 kV,  
and 30 kV. The deposition time of each contact varied 
depending on its size, but for micron-size contacts, typical  
deposition times ranged between 2 min and 4 min, decreasing  
as the acceleration voltage was increased. Under these  
conditions, the nominal spot size of the FEB was of 11.5 nm.

The electrical characterization of the FEBID W-C material itself 
also required the fabrication of electrical contacts, for which  
Pt-C deposited by Ga+ FIBID was chosen as a suitable material.  
For the FIBID fabrication of the superconducting W-C  

nanowire, the following parameters were used: ion beam cur-
rent of 1.5 pA, acceleration voltage of 30 kV, and a nominal  
volume per dose of 8.3 × 10−2 nm3 nC−1.

The composition of the contacts was assessed by means of TEM 
techniques, namely high angle annular dark field (HAADF) 
imaging and energy dispersive X-Ray spectroscopy (EDS).  
Both were carried out in a commercial FEI TITAN Low-Base 
instrument. The cross-sectional transversal cuts of the contacts 
were extracted following conventional lamellae preparation  
in the FIB/SEM instrument.

The electrical characterization of the contacts was performed 
both inside and outside the process chamber of the FIB/SEM  
instrument. The in-situ room-temperature electrical measurements  
were performed using a commercial Kleindiek Nanotechnik  
microprobe station, a Keithley Instruments 6221 DC current 
source, and a Keithley Instruments 2182A nanovoltmeter. The  
low-temperature measurements (down to 2 K) of both the 
FEBID W-C material itself and of the FIBID W-C test nanowire 
were performed in a commercial Quantum Design Physical  
Property Measurement System 9T instrument.

Results
Deposition
The deposition of the W-C nanowires was performed follow-
ing conventional FEBID procedures, i.e., with normal FEB 
incidence and using the set of operating parameters described  
above. Among them, the value of the dwell time was set to a 
relatively high value of 100 µs, as previously reported in two 
of the aforementioned studies28,29, and taking into account 
that higher dwell times are expected to favor a more efficient  
decomposition of the adsorbed W(CO)

6
 molecules, provided 

there is a sufficient amount of them27,31. The positioning of the 
GIS with respect to the irradiation point was found to play a 
very significant role in the quality of the deposits – if the nozzle  
is positioned too far away (as it may well be the case if the 
GIS position is optimized for deposition with the FIB, angled 
with respect to the FEB in the FIB/SEM microscope), the 
deposits exhibit a disjointed and fragmented appearance as a  
consequence of an insufficient amount of precursor being 
delivered near the irradiation point. It is, therefore, crucial to  
reposition the GIS nozzle when the irradiation type is changed.

The influence of the FEB acceleration voltage was investi-
gated by growing several 8 µm-long W-C nanowires with dis-
tinct values of this operating parameter (Figures 1a–d)32. With 
the value of the FEB current fixed at 1.4 nA, increasing the  
acceleration voltage results in a narrowing in the lateral size 
of the nanowire, from a width of around 160 nm at 5 kV, down 
to 45 nm at 20 kV and 30 kV. Lower acceleration voltages 
require greater irradiation times: in the pictured nanowires  
(Figures 1a–d), the deposition times are 5 min 15 s at 5 kV,  
3 min 43 s at 10 kV, 2 min 37 s at 20 kV, and 2 min 8 s  
at 30 kV. However, the volume per dose, defined as the volume 
of material that can be grown per unit charge, decreases with  
increasing FEB acceleration voltage (Figure 1e).
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Electrical characterization
The electrical response of the FEBID W-C contacts was 
assessed at both room temperature, using the microprobe sta-
tion mounted in the FIB/SEM instrument, and as a function of  
temperature down to 2 K.

The room-temperature measurements were taken in differ-
ent sets of nanowires, with each set consisting of three equiva-
lent samples deposited using the same FEB acceleration voltage  
from among the four previously discussed. All nanowires exhibit 
a linear, ohmic I−V characteristic within the explored cur-
rent range of ± 5 µA (Figure 2a). The growth procedure exhib-
ited excellent reproducibility in terms of the obtained electrical 
resistance, with equivalent nanowires grown using the same dep-
osition parameters showing only reasonably small differences  
in the measured values of their electrical resistance.

Assessing the resistivity of the material proved challenging 
due to the discrete nature of the cross-sectioning procedure 
employed to determine the thickness of the deposits. Despite the  
apparent reproducibility of the technique observed in the resist-
ance values, different values of thickness are observed in each 
of the assessed voltages, with values of 70 nm–100 nm for 
the nanowires grown with an acceleration voltage of 5 kV,  
40 nm–60 nm at 10 kV, 30 nm–40 nm at 20 kV, and  
25 nm–30 nm at 30 kV. These relatively small differences yield 
some uncertainty in the calculation of the resistivity. A slight 
increase of the resistivity with the FEB acceleration volt-
age is found in the average values: 420±70 µΩ cm at 5 kV,  
510 ± 80 µΩ cm at 10 kV, 550 ± 80 µΩ cm at 20 kV, and  
700 ± 200 µΩ cm at 30 kV. As anticipated, the FEB accel-
eration voltage of 20 kV was chosen over the others as a good 
compromise between acceptable electrical conductivity and 
good lateral resolution. Thus, the rest of the characterization 

study was performed on contacts grown with that acceleration  
voltage only.

The low-temperature study was carried out in four equivalent 
samples (S1-4), all grown using a FEB acceleration voltage of 
20 kV. Within the explored range, 300 K–2 K, the contacts show 
a negative dependence of the resistance with the temperature  
(Figure 2b), and do not exhibit superconducting behavior. 
The residual resistance ratio, estimated as R

300K
/R

2K
, takes  

values of 0.66, 0.70, 0.72, and 0.72 for the samples S1, S2, S3,  
and S4, respectively.

Compositional characterization
The compositional study was carried out on two equivalent 
FEBID W-C nanowires, hereafter referred to as A and B. As evi-
denced by HAADF imaging, the nanowires exhibit a dome-like  
cross-sectional shape (Figure 3a and 3c). For sample A, the 
thickness is 30 nm and the width at half maximum of 40 nm,  
whereas for sample B, the thickness is 15 nm and the width at 
half maximum remains at 40 nm. Again, we ascribe the thickness 
difference to small beam drift and instability effects, mechani-
cal and/or thermal in origin, that take place during growths  
that take several minutes to complete.

Sample A exhibits a W:C:O ratio of 34:35:31 in terms of atomic 
percentage, while sample B shows a similar distribution of  
32:36:32.

Contact usage at low temperature
The performance of the FEBID W-C nanowires was put to the 
test by using them to electrically contact a 10 µm-long, 50 nm-
wide W-C nanowire fabricated by Ga+ FIBID to pre-patterned  
Ti pads on a Si/SiO

2
 substrate (Figure 4).

Figure 1. (a)–(d) Scanning electron microscope images of W-C nanowires grown with a fixed focused electron beam current of 1.4 nA and 
varying acceleration voltages of 5 kV, 10 kV, 20 kV, and 30 kV. (e) Dependence of the estimated volume per dose with the focused electron 
beam acceleration voltage. The dashed line is a guide for the eye.
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Figure 3. Compositional analysis of two W-C contacts grown by focused electron beam induced deposition. (a) and (c): High angle 
annular dark field images of samples A and B, respectively, (b) and (d): Energy-dispersive X-ray spectroscopy quantification of the indicated 
areas for each of these two contacts.

Figure 2. (a) Room-temperature I − V characteristic of W-C nanowires grown by focused electron beam induced deposition using acceleration 
voltages of 5 kV, 10 kV, 20 kV, and 30 kV. For each acceleration voltage, three nanowires were grown using the same focused electron 
beam parameters. The represented data in each series correspond to the weighted average of the three measurements. (b) Temperature 
dependence of the resistance of four equivalent W-C contacts fabricated by focused electron beam induced deposition with an acceleration 
voltage of 20 kV.
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At room temperature, the voltage measured along the 
nanowire displays a linear dependence with the bias current  
(Figure 5a), as expected for the Ga+ FIBID W-C material. With 
a room-temperature (300 K) resistance of around 10 kΩ, the  
resistivity of the material can be estimated to take a value 
around 200 µΩcm, in good agreement with previous reports 
for this material25. At 2 K, the nanowire is superconducting, and 
is driven to the normal state when the bias current exceeds a  
critical value of 3.4 µA.

The temperature-induced transition to the superconducting  
state is observed at 4.4 K (Figure 5b).

Discussion
The dependence of the volume per dose with the FEB accelera-
tion voltage (Figure 1e) follows a similar trend to that retrieved 
in the study of FEBID Pt-C33, accounted for by a higher  

amount of secondary electrons reaching the substrate sur-
face when low voltages are used. After the electrical charac-
terization, the acceleration voltage of 20 kV was deemed as 
the most appropriate for the purposes of the present study. 
Since the average thickness of the deposits (retrieved by SEM  
inspection of cross-sectional cuts) is found to be of 30 nm, the 
average electron dose required to achieve such a thickness at 
20 kV of FEB acceleration voltage equals 4 × 107 µC cm−2. For 
comparison, Blom et al. report an electron dose of the order of 
108 µCcm−2 – 109 µCcm−2 for FEBID W-C31, while platinum and 
cobalt are reportedly grown via FEBID with electron doses in the  
range of 105 µCcm−2 and 106 µCcm−2, respectively14,32.

The 32%–34% of metallic W present in the samples repre-
sents a similar value detected in other W-C deposits fabri-
cated by both FEBID and FEBID: W-C fabricated by Ga+ 
FIBID is reported to show atomic W contents in the 20%–50%  

Figure 5. Electrical characterization of a superconducting focused ion beam induced deposition W-C nanowire using W-C 
contacts fabricated by focused electron beam induced deposition. (a) Voltage dependence with the bias current, at both 300 K 
and 2 K. The current-induced transition to the normal state can be seen in the latter. (b) Resistance dependence on the temperature, 
measured using three different bias currents. Inset shows a magnified view of the region where the temperature-induced transition to the 
superconducting state occurs.

Figure 4. Scanning electron microscopy image of a superconducting W-C nanowire fabricated by Ga+ focused ion beam induced 
deposition, electrically contacted to Ti pads by W-C contacts grown by focused electron beam induced deposition.
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range25,28,34,35, and Huth et al. report an achieved maximum  
metallic content of 37% for FEBID W-C29.

The suitability of the contacts is confirmed by the success-
ful characterization of the W-C nanowire fabricated by Ga+ 
FIBID, where the detected value of critical temperature (4.4 K) 
is slightly below the commonly reported figure of 4.7 K, but is  
to be expected for a 50 nm-wide nanowire1.

Conclusions
We have shown that it is possible to grow high-resolution  
W-C electrical contacts by FEBID, which represents a relevant 
alternative to the use of FIBID and allows for avoiding its side  
effects. Using a FEB acceleration voltage of 20 kV, a FEB  
current of 1.4 nA, and an electron dose of 0.4 µCµm−2, the 
deposition procedure yields a W-C material that can be  
nanopatterned with resolution down to 45 nm, exhibits an aver-
age thickness of 30 nm and has a W content of around 30%  
in terms of atomic composition. With a room-temperature elec-
trical resistivity of 550 µΩcm, the material maintains good 
conductivity properties down to 2 K, which enables its usage 
for the electrical characterization of materials across a wide  
temperature range.

As a proof of concept, we have used these FEBID W-C con-
tacts for the characterization of the superconducting transi-
tion in a previously-grown nanowire fabricated by FIBID. 
These findings open the route for the direct-write growth of  
high-resolution electrical contacts on ion-sensitive materials  
such as high-mobility semiconductor nanowires, oxides, 2D 
materials, and others. In addition, the performed optimization  
is useful to create direct electrical contacts to nanoSQUIDs,  
as required in scanning SQUIDs based on direct-write  
techniques36. It also paves the way towards the fabrication 
of small-sized Josephson junctions based on superconduct-
ing FIBID W-C electrodes connected through these optimized  
non-superconducting FEBID W-C deposits31.
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The authors investigate the deposition of W-C material with the W(CO)6 precursor by FEBID and its 
usage for electrical contracts. The work is clearly and accurately presented. Sufficient details of 
methods and analysis have been provided to allow replication by others. The conclusions are 
adequately supported by the results. So I think the article can be indexed after minor revision. 
 
I am a little confused about "Lower acceleration voltages require greater irradiation times" in Page 
4. As the author mentioned later, more secondary electrons contribute to the electron-matter 
interaction at lower voltages. So lower voltages should have higher yield and efficiency, i.e. less 
time, right? 
 
Did the authors try to pattern dense lines or study the minimal gap between two electrical pads 
fabricated by their method? This can provide more information for applying their method in the 
semiconductor field. 
 
Is it necessary to further purify or change the composition of the W-C deposits to improve its 
conductivity? Please comment on this.   
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In this work, the authors study the W-C FEBID deposits for fabricating direct maskless electrical 
contacts at the nanoscale. They present the feasibility of depositing the wires such narrow as 45 
nm at 20 kV of beam acceleration voltage, which is the main parameter investigated in this work. 
To get high metallic content, based on the former studies, the authors have selected high beam 
current and high dwell time during the deposition process. The elemental and morphological 
analysis of W-C deposit is shown together with a wide characteristic of its electrical properties. 
 
The article is a coherent whole and contains the necessary information needed to conduct similar 
experiments and the set of appropriate references, related to the previous research on this topic. 
The term resolution usually refers to the ratio of FWHM(deposit)/FWHM(beam). Taking into 
account the estimated nominal size of the beam, this parameter gets close to 4, which is far from 
the value of 1, obtained in general in electron-limited regime. To keep the consistency rather the 
term “ultranarrow” might be more relevant. The technical detail remains what is the definition of 
the nominal beam size (FWHM, 90% of the total electron flux, etc.) and how it was derived. 
 
Although the dose can be a reference point for growing the deposit with a certain thickness (while 
the other parameters are fixed) it cannot be a guideline for volumetric growth. As in FEBIP the 
other parameters (dwell time, refresh time, beam overlapping, pitch point) will also play a 
significant role, for example: by keeping exactly the same dose and using relatively short and long 
times the deposit profile can be very different. At 20 keV can the halo deposit (which is around 2-3 
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um) play any role? Those aspects were not pointed out in the manuscript. 
 
Studying the deposit morphology by TEM, the authors have observed for two equivalent lines can 
have significantly different thicknesses (1:2). This effect was ascribed to the beam instability or 
drift. This is very unusual behavior unless a major process parameter was changed. Otherwise, it 
can happen if the lines were deposited sequentially in close vicinity of each other, in the area of 
depleted precursor. 
 
The last factor worth considering to include in the conclusions is whether the aging process of 
those contacts takes a place (due to the oxidation of W), and what are safe current densities limits 
to work on without observing any W-electromigration or post-annealing by Joule heating.
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