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Background and objective: Rule-based methods are commonly used to estimate the arrangement of my- 

ocardial fibers by solving the Laplace problem with appropriate Dirichlet boundary conditions. Existing 

algorithms are using the Finite Element Method (FEM) to solve the Laplace–Dirichlet problem. However, 

meshless methods are under development for cardiac electrophysiology simulation. The objective of this 

work is to propose a meshless rule based method for the determination of myocardial fiber arrangement 

without requiring a mesh discretization as it is required by FEM. 

Methods: The proposed method employs the Fragile Points Method (FPM) for the solution of the Laplace–

Dirichlet problem. FPM uses simple discontinuous trial functions and single-point exact integration for 

linear trial functions that set it as a promising alternative to the Finite Element Method. We derive the 

FPM formulation of the Laplace–Dirichlet and we estimate ventricular and atrial fiber arrangements ac- 

cording to rules based on histology findings for four different geometries. The obtained fiber arrange- 

ments from FPM are compared with the ones obtained from FEM by calculating the angle between the 

fiber vector fields of the two methods for three different directions (i.e., longitudinal, sheet, transverse). 

Results: The fiber arrangements that were generated with FPM were in close agreement with the gener- 

ated arrangements from FEM for all three directions. The mean angle difference between the FPM and 

FEM vector fields were lower than 0 . 030 ◦ for the ventricular fiber arrangements and lower than 0 . 036 ◦

for the atrial fiber arrangements. 

Discussion: The proposed meshless rule-based method was proven to generate myocardial fiber arrange- 

ments with very close agreement with FEM while alleviates the requirement for a mesh of the latter. 

This is of great value for cardiac electrophysiology solvers that are based on meshless methods since 

they require a well defined myocardial fiber arrangement to simulate accurately the propagation of elec- 

trical signals in the heart. Combining a meshless solution for both the determination of the fibers and 

the electrical signal propagation can allow for solution that do not require the definition of a mesh. To 

our knowledge, this work is the first one to propose a meshless rule-based method for myocardial fiber 

arrangement determination. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Healthy and diseased heart structure and function is to a good 

xtent determined by the arrangement of myocardial fibers. Under 

ertain disease conditions like hypertrophy and myocardial infarc- 
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ion, changes in the arrangement and alignment of cardiac fibers 

an be an adaptive mechanism to partially restore the contractile 

unction. However, this restoration may happen at the expense of 

lectrical stability [1] . In silico models aiming to provide insight 

nto such disease mechanisms require proper definition of myocar- 

ial fiber arrangement [2,3] . 

Nowadays, detailed definition of myocardial fibers can be ob- 

ained using advanced imaging modalities like diffusion tensor 

agnetic resonance imaging (DT-MRI) [4,5] , micro-computed to- 

ography (micro-CT) [6] or shear wave imaging [7] . These imaging 
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echniques have proved to be very useful for ex vivo determina- 

ion of myocardial fibers. However, they require long acquisition 

imes that challenge in vivo application. Recently, promising DTI- 

RI sequences for in vivo definition of myocardial fibers have been 

roposed [8,9] . Nevertheless, these techniques remain limited to 

oarse spatial resolution. Imaging techniques present even more 

mportant limitations when atrial fiber orientation is considered. 

his is mainly due to the imaging difficulties posed by the thin 

trial walls [10] . Only recently, submillimeter DT-MRI techniques 

ade the analysis of ex vivo atrial fibers possible [11,12] . 

An alternative approach for the determination of high- 

esolution fiber orientation is the use of rule-based methods 

RBM). In traditional RBM, minimal distance parametrization has 

een used to define the transmural and apicobasal directions [13] . 

owever, such parametrizations can suffer from singularities, es- 

ecially at the septum and endocardium structures (e.g. papil- 

ary muscles) [14] . To avoid the singularity problem, modern RBM, 

nown as Laplace–Dirichlet RBM (LDRBM), solve the Laplacian 

roblem with properly defined Dirichlet boundary conditions to 

efine a smooth orthonormal coordinate system [15–17] . Rotation 

ules based on anatomical observations are then applied on the co- 

rdinate system to generate realistic fiber orientation. LDRBM have 

een developed mainly for fiber determination in ventricular mod- 

ls with a basal clip [15] . Doste et al. have extended this algorithm

o account for fiber orientation in the outflow tracts considering 

omplete biventricular models [16] . Recently, a new LDRBM dedi- 

ated for atrial fiber orientation has been proposed [17] , where the 

ndividual fiber bundles of the atria and their dimensions are de- 

ermined based on the specified rules. The combination of ventric- 

lar and atrial LDRBM allows the determination of realistic fiber 

rrangement of four-chamber heart models that can be used later 

n for cardiac electrophysiology (EP) simulation. 

Commonly, in silico cardiac EP employs the Finite Element 

ethod (FEM) for the solution of either the bidomain [18] or mon- 

domain model [19] . FEM is widely appreciated for its robust- 

ess and accuracy. However, it requires the construction of a well- 

efined mesh. This is a tedious process, especially for structures 

ith complex geometry like the heart. On the other hand, mesh- 

ess methods alleviate the requirement of a mesh [20,21] . Instead 

f interconnected elements, the numerical approximation is per- 

ormed on a cloud of randomly distributed nodes supporting the 

oint of interest (support domain). Due to this property, differ- 

nt meshless methods have been considered as an alternative to 

EM for cardiac EP. The element-free Galerkin (EFG) method has 

een used to solve the monodomain model for the simulation of 

he electrical activity in the left ventricle [22] . EFG is based on 

he Galerkin formulation similar to FEM satisfying zero Neumann 

oundary conditions naturally. However, a special treatment is re- 

uired for the imposition of Dirichlet boundary conditions due 

o the use of non-interpolating approximation functions. A rem- 

dy to this issue has been proposed with the development of 

he maximum entropy approximation [23,24] , which possesses a 

eak-Kronecker delta property that allows the direct imposition of 

irichlet boundary conditions. Alternatively, the mixed collocation 

ethod (MCM) has been used for the solution of the monodomain 

odel in cardiac EP [25,26] . MCM has the advantage of directly im- 

osing Dirichlet conditions through collocation. However, numeri- 

al instability may be introduced at Neumann boundaries and a 

ne nodal discretization is usually required to avoid this problem 

27] . 

Recently, a new promising meshless method, the Fragile Points 

ethod (FPM), has been introduced [28–32] . FPM is based on the 

alerkin weak form like EFG but without its limitations since it 

ses local, simple, polynomial, discontinuous functions [33] as trial 

nd test functions. Moreover, the integration in the Galerkin weak 

orm is trivial and Dirichlet as well as Neumann boundary con- 
2 
itions can be imposed as in FEM. However, a special treatment is 

equired to treat the inconsistency of the global matrices that arise 

ue to the discontinuity of the trial and test functions. Numeri- 

al flux corrections, which are common in Discontinuous Galerkin 

ethods [34] , are used in FPM to avoid the inconsistency issue, 

eading to sparse and symmetric global matrices. 

In this work, we employ FPM for the solution of the Laplace 

roblem for the definition of myocardial fiber arrangement. Our 

otivation is to provide a robust meshless algorithm to compute 

ber orientation in meshless models where a mesh topology may 

ot be available. We consider the generation of both ventricular 

nd atrial fiber arrangements using FPM and we compare our re- 

ults with those obtained by FEM. 

. Methods 

.1. Laplace–Dirichlet problem for fiber generation 

Fiber orientation generation using LDRBM requires the solution 

f the Laplace equation. Appropriate Dirichlet boundary conditions 

re defined to obtain the transmural and apico-basal directions. 

he general form of the Laplace problem is given by: 
 

 

 

���χ = 0 in �

χ = g D in �D 

∇ 

∇ ∇ χ · n 

n n = g g g · n 

n n = g N in �N 

, (1) 

here χ represents either the transmural ( �) or the apico-basal 

 �) unknown in the myocardial domain � with boundary �D ∪ 

N = ∂�. g D , g N ∈ R define the prescribed values of the unknown 

t the Dirichlet and Neumann boundaries, respectively. For the so- 

ution of the Laplace problem in LDRBM, g N = 0 is used. 

.2. Solution to the Laplace–Dirichlet problem through the fragile 

oints method 

.2.1. Construction of trial and test functions 

In the Fragile Points Method (FPM), we consider randomly scat- 

ered points inside the domain � and its boundary ∂� without re- 

uiring any connectivity knowledge. We partition � into conform- 

ng non-overlapping subdomains with each subdomain containing 

nly one point. We employ the simple Voronoi diagram method 

or the partition of � leading to polygonal/polyhedral subdomains 

n 2D/3D as in Fig. 1 . For each subdomain, a simple local discon- 

inuous polynomial trial function is defined in terms of the values 

f χ and 

∂χ
∂x 

, ∂χ
∂y 

, ∂χ
∂z 

at its internal point. For the subdomain E 0 

ontaining the internal point P 0 of coordinates (x 0 , y 0 , z 0 ) , the trial

unction χh in E 0 is written as: 

h ( x ) = χ0 + 

∂χ

∂x 

∣∣∣
P 0 

(x − x 0 ) + 

∂χ

∂y 

∣∣∣
P 0 

(y − y 0 ) + 

∂χ

∂z 

∣∣∣
P 0 

(z − z 0 ) , 

 = (x, y, z) ∈ E 0 . (2) 

0 is the value of χ at point P 0 and (x 0 , y 0 , z 0 ) denotes the co-

rdinates of P 0 . The derivatives ∂χ
∂x 

, ∂χ
∂y 

, ∂χ
∂z 

at P 0 are unknowns 

hat are computed using the Generalized Finite Difference (GFD) 

ethod [33] . To solve for the unknown derivatives, we first define 

he support domain of P 0 as the nearest points P 1 , P 2 , . . . , P m 

to P 0 ,

ncluded in E i , i = 1 , 2 , . . . , m , respectively, that are attached to E 0 .

ext, we define the weighted discrete L 2 norm J: 

 = 

m ∑ 

i =1 

(
∂χ

∂x 

∣∣∣
P 0 

(x i − x 0 ) + 

∂χ

∂y 

∣∣∣
P 0 

(y i − y 0 ) 

+ 

∂χ

∂z 

∣∣∣
P 0 

(z i − z 0 ) − (χi − χ0 ) 

)2 

w i , (3) 
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Fig. 1. Non-overlapping subdomains enclosing the meshless discretization of a domain � with irregularly distributed points. a) Polygonal subdomains of a 2D domain. b) 

Polyhedral subdomains of a 3D domain. 
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here (x i , y i , z i ) denotes the coordinate vector of the internal point

 i ∈ E i , χi is the value of χh at P i and w i is the value of the weight

unction at P i , i = 1 , 2 , . . . , m . Constant weight functions are consid-

red in this work. From the stationarity of J, the gradient of χ at 

 0 is obtained by Dong et al. [35] : 

χ
∣∣∣

P 0 

= ( A 

T A ) −1 A 

T ( χm 

− χ0 I m 

) , (4) 

here 

A = 

⎡ 

⎢ ⎢ ⎣ 

x 1 − x 0 y 1 − y 0 z 1 − z 0 
x 2 − x 0 y 2 − y 0 z 2 − z 0 

. 

. 

. 

x m 

− x 0 y m 

− y 0 z m 

− z 0 

⎤ 

⎥ ⎥ ⎦ 

χm 

= [ χ1 χ2 . . . χm 

] 
T 

∇ χ = 

[ 
∂χ
∂x 

∂χ
∂y 

∂χ
∂z 

] T 
I m 

= [ 1 1 . . . 1 ] 
T 
1 ×m 

. 

For convenience, Eq. (4) is rewritten in terms of χE as 

 χ = B χE at point P 0 , (5) 

here the matrix B and vector χE are given by: 

 = ( A 

T A ) −1 A 

T 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−1 1 0 . . . 0 

−1 0 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 0 

−1 0 . . . 0 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

m ×(m +1) 

, (6) 

E = [ χ0 χ1 χ2 . . . χm 

] 
T (7) 

From the constitution of ∇ χ
∣∣∣

P 0 

, we can express χh in Eq. (2) in 

erms of χE : 

h ( x ) = N χE , ∀ x ∈ E 0 , (8) 

here N denotes the shape function of χh in E 0 : 

 = [ x − x 0 ] B + 

[
1 0 . . . 0 

]
1 ×(m +1) 

. (9) 

he matrix N denotes the shape function of χh in E 0 in terms of 

 0 , P 1 , P 2 , . . . , P m 

. The same functions are also used as test functions

n the Galerkin weak form. 

.2.2. The Galerkin weak form 

The Galerkin weak form of the Laplace problem is obtained by 

ultiplying a test function v on both sides and integrating by parts 
3 
sing Green’s identity and the assumption that v = 0 on ∂�. Omit- 

ing the boundary conditions, Eq. (1) in its weak form is given by: 

 

∫ 
E i 

∇ χ · ∇ v d� = 0 . (10) 

y substituting the trial and test functions into Eq. (10) , the point 

tiffness matrix of P 0 can be derived as: 

 E 0 = 

∫ 
E 0 

B 

T B d�. (11) 

ince linear interpolation is employed for χh and v , B is a con- 

tant matrix. Thus, the integral can be computed by multiplying 

he value of B 

T B by the area of E 0 : 

 E 0 = B 

T B S E 0 , (12) 

here S E 0 is the area of E 0 . By assembling all the point stiffness

atrices, we can obtain the global stiffness matrix of the domain 

, similarly to FEM but with point stiffness matrices rather than 

lement stiffness matrices. It should be noted here that, due to the 

iscontinuity of the shape functions, the resulting global stiffness 

atrix is inconsistent. To remedy this issue numerical flux correc- 

ions are applied. 

.2.3. Numerical flux corrections for inconsistency 

Here we address the inconsistency issue by introducing the nu- 

erical flux corrections concept [34] . We first rewrite Eq. (1) us- 

ng two variables χ and σ: 
 

 

 

 

 

σ = ∇ χ in �
−∇ · σ = 0 in �
χ = g D in �D 

σσσ · n 

n n = g N in �N 

. (13) 

he first two equations in Eq. (13) are multiplied by the test func- 

ions τ , v and are integrated by parts over E to obtain the weak 

orms: 
 

E 

σh · τd� = −
∫ 

E 

∇ χh · τd� + 

∫ 
∂E 

ˆ χh n · τd� (14) 

 

E 

σh · ∇ v d� = 

∫ 
∂E 

ˆ σh · n v d�, (15) 

here the numerical solutions χh and σh should satisfy the two 

bove equations for every subdomain E and ˆ χh and 

ˆ σh are the 

umerical fluxes that approximate χ and σ , respectively, on the 
h h 
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Table 1 

Model mesh information. 

Model Nodes Elements Dual cells 

M1 84,022 299,966 84,022 

M2 85,890 303,626 85,890 

M3 87,501 307,036 87,501 

M4 83,194 291,468 83,194 

Table 2 

Boundary conditions for generating ventricular fiber ori- 

entation. 

Type χ g Da �Da g Db �Db 

LV � −2 �LVendo 0 �LVepi 

�a 1 0 �MV 1 �LVapex 

�a 2 0 �AV 1 �LVapex 

w 1 �MV ∪ �LVapex 0 �AV 

s 1 �S 0 �LVendo 

RV � 1 �RVendo 0 �RVepi 

�a 1 0 �TV 1 �RVapex 

�a 2 0 �PV 1 �RVapex 

w 1 �TV ∪ �RVapex 0 �PV 

s 1 �S 0 �RVendo 

Da First Dirichlet condition. 
Db Second Dirichlet condition. 
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oundary of E. By summing Eqs. (14) and (15) over all the subdo- 

ains, as in Dong et al. [35] , we obtain: 

 

�
σh · τd� = −

∫ 
�

∇ χh · τd� + 

∫ 
�
� ̂  χh � · { τ} d� + 

∫ 
�h 

{ ̂  χh } � τ� d�

(16) 

 

�
σh · ∇ v d� −

∫ 
�
{ ̂  σh } · � v � d� −

∫ 
�h 

� ̂  σh � { v } d� = 0 , (17)

here � is the set of all boundaries and �h denotes the internal 

oundaries, �h = � − �D − �N . The average operator {} , and the 

ump operator �� are defined, respectively, as: 

 v � = 

{
v 1 n 1 + v 2 n 2 e ∈ �h 

v n e ∈ ∂�
, { v } = 

{
1 
2 ( v 1 + v 2 ) e ∈ �h 

v e ∈ ∂�

(18) 

 τ� = 

{
τ1 · n 1 + τ2 · n 2 e ∈ �h 

τ · n e ∈ ∂�
, { τ} = 

{
1 
2 ( τ1 + τ2 ) e ∈ �h 

τ e ∈ ∂�

(19) 

Where n 1 = −n 2 denote the outward normal vectors of the two 

ubdomains that share e ∈ �h . Finally, the internal penalty numer- 

cal flux is applied on �h with penalty parameter η. Replacing σh 

ith ∇ χh , we obtain the consistent weak form: 

∑ 

E∈ �

∫ 
E 

∇ χh · ∇ v d� −
∑ 

e ∈ �h ∪ �D 

∫ 
e 

({ ∇ χh } � v � + { ∇ v } � χh � ) d�

+ 

∑ 

e ∈ �h ∪ �D 

η

h e 

∫ 
e 

� χh �� v � d�

= 

∑ 

e ∈ �D 

∫ 
e 

( 
η

h e 
v − ∇ v · n ) g D d� + 

∑ 

e ∈ �N 

∫ 
e 

ug N d�, (20) 

here h e denotes a boundary-dependent parameter with the unit 

f length and it is defined as the distance between points i , j when

he segment e ∈ ∂ E i ∩ ∂ E j . The penalty parameter η, η > 0 , is inde-

endent of the boundary size and should be large enough to en- 

ure stability. 

Substituting B for ∇χh and ∇v and N for χh and v into 

q. (20) , we can write the point stiffness matrix K E and the 

oundary stiffness matrices K h and K D as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K E = 

∫ 
E B 

T B d� where E ∈ �
K h = 

−1 
2 

∫ 
e ( B 

T 
1 n 

T 
1 N 1 + N 

T 
1 n 

T 
1 B 1 ) d � + 

η
h e 

∫ 
e N 

T 
1 N 1 d �

+ 

−1 
2 

∫ 
e ( B 

T 
2 n 

T 
2 N 2 + N 

T 
2 n 

T 
2 B 2 ) d � + 

η
h e 

∫ 
e N 

T 
2 N 2 d �

+ 

−1 
2 

∫ 
e ( B 

T 
2 n 

T 
1 N 1 + N 

T 
2 n 

T 
2 B 1 ) d � − η

h e 

∫ 
e N 

T 
1 N 2 d �

+ 

−1 
2 

∫ 
e ( B 

T 
1 n 

T 
2 N 2 + N 

T 
1 n 

T 
1 B 2 ) d � − η

h e 

∫ 
e N 

T 
2 N 1 d � where e = ∂ E 1 ∩ ∂ E 2 ∈ �

K D = 

−1 
2 

∫ 
e ( N 

T n T B + B T n T N ) d � + 

η
h e 

∫ 
e N 

T N d � where e ∈ �D 

(21) 

By assembling all the submatrices, we obtain the global stiff- 

ess matrix K in a similar manner as in FEM: 

 χ = 0 (22) 

he resulting stiffness matrix is symmetric, sparse and positive 

efinitive. 

.3. Ventricular fiber arrangement 

We consider the generation of ventricular fibers for the gen- 

ral case of a biventricular model with outflow tracts (OT) using 

he proposed LDRBM by Doste et al. [16] . The Laplace problem is 

olved by applying Dirichlet boundary conditions at the surfaces 
4 
f the right ventricle (RV) endocardium, left ventricle (LV) endo- 

ardium, biventricular epicardium and cardiac valves (mitral and 

ortic valves in the LV, pulmonary and tricuspid valves in the RV). 

Transmural direction ( ∇ �) is obtained by computing the gradi- 

nt of the solution to the Laplace problem ( Eq. (1) ) with Dirichlet

oundary conditions applied on LV endocardium ( �LVendo ), RV en- 

ocardium ( �RVendo ) and epicardium ( �epi ). By assigning � = −2 at 

LVendo and � = 1 at �RVendo , we obtain � < 0 in LV and � > 0 in

V that allows partitioning the volume of the two ventricles. Fur- 

hermore, these boundary conditions result in the assignment of 

wo-thirds of the septum to the LV as indicated from histological 

tudies [36,37] . 

The apicobasal direction ( ∇ �) is defined individually for each 

entricle as the weighted sum of the two gradients originating 

rom the apex towards the base and the outflow tracts of the ven- 

ricle and is given by: 

 

 

 � = ∇ 

∇ ∇ �a 1 · w + ∇ 

∇ ∇ �a 2 · (1 − w ) = 0 (23) 

here for the case of LV, ∇ �a 1 and ∇ �a 2 define the gradients 

rom LV apex ( �LVapex ) to mitral valve ( �MV ) and from �LVapex apex 

o aortic valve ( �AV ), respectively. Similarly, ∇ �a 1 and ∇ �a 2 cor- 

espond to the gradients from �RVapex to tricuspid valve ( �T V ) and 

rom �RVapex to pulmonary valve ( �PV ) for the case of RV. The func- 

ion w denotes the intraventricular interpolation function that is 

sed to define the weights of ∇ �a 1 and ∇ �a 2 in the computation 

f ∇ � . 

The function w is obtained by solving the Laplace problem with 

ppropriate boundary conditions (see Table 2 ). Also, it enables con- 

rolling the smoothness of fiber changes near the OT by modify- 

ng the boundary data. Finally, fiber continuity in the septum ( s ) is

omputed by solving the Laplace problem with Dirichlet boundary 

onditions s = 1 assigned at the interventricular septal surface ( �S ) 

nd s = 0 at the LV and RV endocardia. The partition of the ventri-

les and the definition of the different directions are depicted in 

ig. 2 . 

The local coordinate system ( ̂ e l , ˆ e n , ˆ e t ) is obtained by the api- 

obasal and transmural gradients ( ∇ 

∇ ∇ � , ∇ 

∇ ∇ �) with the longitudinal 

irection ( ̂ e l ) along the fiber defined as the cross product of trans- 

ural ( ̂ e t ) and normal directions ( ̂ e n ): 

ˆ 
 n = 

∇ �

‖ 

∇ �‖ 

, ˆ e t = 

∇ � − ( ̂ e n · ∇ �) ̂ e n ∥∥∇ � − ( ̂ e n · ∇ �) ̂ e n 
∥∥ , ˆ e l = 

ˆ e n × ˆ e t (24) 
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Fig. 2. a) Partition of the ventricular geometry boundary. b) Transmural distance ( �) and its gradient ( ∇ �). c) Intraventricular function ( w ). d) Apicobasal distance ( �) and 

its gradient ( ∇ �). e) Ventricular fiber arrangement ( ̂ e l ). 
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The final fiber arrangement is determined by applying a coun- 

erclockwise rotation to the vector ˆ e l around the vector ˆ e t by an 

ngle α: 

= αendo (w ) · (1 − ˜ �) + αepi (w ) · ˜ � (25) 

here ˜ � denotes normalized � from 0 to 1. The angle α can be 

djusted to enforce fiber continuity at the septum. The modified 

ngle α′ is given by: 

′ = α · (1 − s ) + αseptal · s. (26) 

Finally, an additional counterclockwise rotation of vector ˆ e e e l 
round 

ˆ e e e n by angle β is applied: 

= βendo (w ) · (1 − ˜ �) + βepi (w ) · ˜ �, (27) 

The values of the angles α and β are chosen to match observa- 

ions from histological studies as in Doste et al. [16] . In particular, 

he rules for the angle α are derived from Sánchez-Quintana et al. 

36] , Greenbaum et al. [38] , Ho and Nihoyannopoulos [39] : 

• left ventricle: αendo (w = 1) = −60 ◦; αepi (w = 1) = 60 ◦
• right ventricle: αendo (w = 1) = 90 ◦; αepi (w = 1) = −25 ◦
• outflow tracts: αepi (w = 0) = 0 ◦; αendo (w = 0) = 90 ◦

nd the rules for the angle β are derived from Greenbaum et al. 

38] , Stephenson et al. [40] , Lunkenheimer et al. [41] : 

• left ventricle: βendo (w = 1) = −20 ◦; βepi (w = 1) = 20 ◦
• right ventricle: βendo (w = 1) = 0 ◦; βepi (w = 1) = 20 ◦
• outflow tracts: βepi (w = 0) = 0 ◦; βendo (w = 0) = 0 ◦

.4. Atrial fiber arrangement 

Atrial fiber arrangement is commonly generated using manual 

r semi-automatic approaches based on rule-based or atlas-based 

ethods [42,43] . Recently, a novel LDRBM was proposed to model 

trial fiber arrangement with the capacity to reproduce realistic 

ber bundles [17] . While the atrial LDRBM is similar to the ventric- 

lar LDRBM, the extension of the latter to the atria is not straight- 

orward due to the presence of bundles running in different di- 

ections. Therefore, a detailed description of the atrial LDRBM as 

escribed in Piersanti et al. [17] is provided here. 

The solution of the Laplace problem for the atrial domain 

ictates the partition of its boundary in several boundaries 

here Dirichlet boundary conditions should be imposed. Endo- 

ardium ( �LAendo , �RAendo ), epicardium ( �epi ), and apex appendage 
5 
 �LAA , �RAA ) boundaries are defined for both the left atrium (LA) 

nd the right atrium (RA). Additional boundaries are defined for 

he mitral valve ( �MV ) and the left, right pulmonary veins ( �LPV , 

RPV ) in LA. Similarly, the boundaries for the inferior and supe- 

ior caval veins ( �ICV , �SCV ), the coronary sinus ( �CS ) and the tri-

uspid valve ( �T V ) are defined in RA. �T V is further subdivided 

n two parts, where �T V septum 

denotes the part facing the sep- 

um and �T V f ree the part facing the free wall, such that �T V = 

T V septum 

∪ �T V f ree . An additional boundary connecting the top up- 

er region of the inferior and superior caval veins ( �T OP ) is de- 

ned, which is further divided in two sections, a part lying on the 

picardium �T OPepi and another one on the endocardium �T OPendo , 

uch that �T OP = �T OPepi ∪ �T OPendo . 

Similarly to the definition of the ventricular fiber arrangement, 

he transmural distance � for the atria is obtained by solving 

he Laplace problem with Dirichlet boundary conditions applied 

n �endo and �epi of both atria. We apply � = −1 to �LAendo and 

= 1 to �RAendo to allow partitioning the two atria. Furthermore, 

everal intra-atrial distances ( �i ), which are used for the bundle 

election later on, are obtained by solving the Laplace problem. In 

articular, �AB is the solution of the Laplace problem with three 

ifferent boundary values prescribed on the right atrial appendage 

 �RAA ), the caval veins ( �SCV , �ICV ) and the tricuspid valve ( �T V )

or the RA. In the LA, the boundary values for �AB are defined 

t the left atrial appendage ( �LAA ), the pulmonary veins ( �LPV , 

RPV ) and the mitral valve ( �MV ). �v is used to represent the dis- 

ance between the caval veins for the RA and the distance be- 

ween the pulmonary veins for LA. �r stands for the distance be- 

ween the tricuspid valve ( �T V ) and the caval veins connecting 

oundary ( �T OP ) for RA, while for LA it denotes the distance be- 

ween the mitral valve ( �MV ) and the union of the pulmonary 

eins ( �LPV ∪ �RPV ). Moreover, �w 

denotes the distance between 

he �T V f ree and �T V septum 

in the RA. We refer to Table 3 for a 

escription of the prescribed boundary data for the solution of 

he corresponding Laplace problem. The partition of the atria and 

he definition of the different intra-atrial distances are depicted in 

ig. 3 . 

The atrial fiber bundles are defined by combining the different 

ntra-atrial directions based on appropriate rules to match histol- 

gy and DTI observations. At each point in the atrial domain, a 

nique intra-atrial distance �i is assigned following the defined 

undle rules in both atria. We refer to the supplemental mate- 

ial for the fiber bundle definition algorithms, which have been de- 

cribed in Piersanti et al. [17] . 
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Fig. 3. a) Partition of the atrial geometry boundary. b) Transmural distance ( �) and its gradient ( ∇ �). c) Distance ( �w ) between �TV f ree and �TV septum and its gradient 

( ∇ �w ). d) Distance between the veins ( �v ) and its gradient ( ∇ �v ). e) Valve to veins distance ( �r ) and its gradient ( ∇ �r ). f) Appendage to veins distance ( �A B ) and its 

gradient ( ∇ �A B ). g) Atrial fiber arrangement ( ̂ e l ). 

Table 3 

Boundary conditions for generating atrial fiber orientation. 

Type χ g Da �Da g Db �Db 

LA � −1 �LAendo 0 �LAepi 

�ab 2 �RPV 1 �MV 

0 �LPV −1 �LAA 

�v 1 �RPV 0 �LPV 

�r 1 �MV 0 �LPV ∪ �RPV ∪ �LAA 

RA � 1 �RAendo 0 �RAepi 

�ab 2 �ICV 1 �TV 

0 �SCV −1 �RAA 

�v 1 �ICV 0 �SCV ∪ �RAA 

�r 1 �TV 0 �top 

�w 1 �TV s −1 �TV f 

Da First Dirichlet condition. 
Db Second Dirichlet condition. 

Table 4 

Bundle parameters τi to determine atrial fiber orientation. 

right τTV τICV τSCV τCT+ τCT− τCT+ τRAS+ τRAW+ 
atrium 0.9 0.85 0.3 −0.55 −0.6 −0.25 −0.1 0.6 

left τMV τLPV τRPV 

atrium 0.85 0.85 0.2 
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During the fiber bundle assignment, the atrial LDRBM defines 

 unique normal direction ∇ � by taking the gradient of a spe- 

ific intra-atrial distance ∇ �i . All the principal anatomical atrial 

egions are taken into account. Namely, for RA, superior (SCV) and 

nferior caval veins (ICV), tricuspid valve (TV), right atrium ap- 

endage (RAA), septum (RAS), inter-caval bundle (IB), crista ter- 

inalis (CT), isthmus (IST) and atrial lateral wall (RAW). For LA, 

eft (LPV) and right (RPV) pulmonary veins, mitral valve (MV), left 

trium appendage (LAA), septum (LAS), septum wall (LSW), atrial 

ateral wall (LAW) and roof (LAR). Moreover, the dimension of the 

undles is specified by defining the parameters τi . Namely, for the 

A we have τT V , τIB , τICV , τSCV , τCT + , τCT − , τRAW 

and τRAS referring 

o TV, IB, ICV, SCV, and upper, lower limit of CT bundles, respec- 

ively; for LA, we have τMV , τLPV and τRPV referring to MV, LPV and 

PV bundles respectively. The bundle parameters τi used for atrial 

ber generation in this work are summarized in Table 4 . 

Finally, the local coordinate system ( ̂ e l , ̂  e n , ̂  e t ) is defined in the 

ame way as for the ventricles. Since transmural variation is not 

rescribed in the fiber bundles, the three unit directions corre- 

pond to the final longitudinal, sheet normal and transverse di- 
6 
ections. The atrial fiber bundle definition rules are based on 

he following histo-anatomical and DT-MRI fiber data observations 

12,44–49] : 

• Circular fiber arrangement is defined in LPV, RPV, SCV, ICV, TV, 

MV, encircling both appendages (RAA and LAA) 
• CT fibers run longitudinally from the base of SCV to ICV 

• RA bundles are almost vertically oriented and RAS bundles are 

parallel to CT 
• IST fibers follow the same direction as the fibers of TV 

• LAS fibers are parallel to the nearby RAS fibers 
• LAR and LAW fibers descend perpendicularly to MV, while LSW 

fibers transition smoothly to LAS and LAA 

. Results 

We generated fiber arrangements for ventricular and atrial 

odels using the FPM implementation of the LDRBM (FPM- 

DRBM) and we validated the obtained results with fiber arrange- 

ents that were computed using FEM. We considered four dif- 

erent models of ventricular and atrial anatomy obtained from a 

ublicly available dataset of four-chamber healthy heart models 

50,51] . In all cases, we used a penalty coefficient η = 1 for the

olution of the Laplace problems in FPM-LDRBM. All simulations 

ere performed on a laptop with Intel® Core TM i9-12900H CPU 

nd 32 GB RAM. 

.1. Model preprocessing 

The four-chamber models considered in this study were made 

vailable as pre-partitioned tetrahedral meshes. The predefined 

artitions included ventricular and atrial myocardium, aorta and 

ulmonary artery walls, vein inlets, etc. For the purpose of this 

tudy the ventricular and atrial sub-meshes were extracted sepa- 

ately. From the extraction process, rough edges at the connecting 

orders occurred. 

To obtain tetrahedral meshes with smooth surfaces, we ex- 

racted the triangular surface meshes of the geometries and pro- 

essed them with MeshLab [52] . We applied the Laplacian smooth- 

ng filter available in MeshLab with mean angle displacement of 

 . 5 ◦ for 20 iterations. The smoothed surfaces were then tetra- 

edralized using the Iso2Mesh toolkit [53] to obtain tetrahedral 

eshes of the ventricles and atria with smooth boundaries. Bound- 

ries for the application of the Dirichlet boundary conditions were 
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Fig. 4. Ventricular fiber arrangement generated by FPM-LDRBM. a) X-component of fiber direction vectors, b) angle between ventricular fiber arrangements generated by 

FPM-LDRBM and FEM-LDRBM. 
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Table 5 

Angle (in degrees) between FPM-LDRBM and FEM- 

LDRBM ventricular fiber direction vectors. 

Angle Model Mean Min Max 

θl M1 0.019175 0 3.124371 

M2 0.021179 0 3.075247 

M3 0.02364 0 1.82537 

M4 0.024088 0 1.982917 

θs M1 0.018926 0 3.125336 

M2 0.025917 0 3.01845 

M3 0.029618 0 1.825447 

M4 0.030146 0 1.982459 

θt M1 0.016384 0 2.843894 

M2 0.011733 0 2.307241 

M3 0.014368 0 0.872051 

M4 0.014345 0 1.103488 

Table 6 

Angle (in degrees) between FPM-LDRBM and FEM- 

LDRBM atrial fiber direction vectors. 

Angle Model Mean Min Max 

θl M1 0.027199 0 3.132266 

M2 0.024881 0 3.102739 

M3 0.032493 0 3.132507 

M4 0.026971 0 3.140188 

θs M1 0.026346 0 3.088409 

M2 0.023373 0 3.123649 

M3 0.023362 0 3.098048 

M4 0.022651 0 3.008890 

θt M1 0.030390 0 3.137769 

M2 0.027577 0 3.090940 

M3 0.035785 0 3.123759 

M4 0.030149 0 3.131334 

a  

θ  

t

o  
anually selected for the newly meshed tetrahedral meshes using 

araview [54] . We refer to Table 1 for tetrahedral mesh-related in- 

ormation. 

Next, a polyhedral partition of the ventricular and atrial geome- 

ries was generated to be used in the FPM-LDRBM. To allow for 

 point-to-point comparison of FPM-LDRBM and FEM-LDRBM, we 

enerated dual polyhedral meshes of the original tetrahedral ones 

sing a dual polyhedral mesh generation algorithm [55,56] . 

.2. Ventricular fiber arrangement validation 

Ventricular fiber arrangement was generated with the FPM- 

DRBM and was compared with the fiber arrangement generated 

y FEM-LDRBM for the four models. The comparison was per- 

ormed by calculating the angle ( θ ) formed between the fiber vec- 

ors corresponding to the two solutions for all three directions 

longitudinal, sheet normal, transverse). A 0 ◦ angle corresponded 

o a perfect match between the two solutions. 

Fiber vectors of the two solutions were found in close agree- 

ent at all directions. The mean angle at longitudinal direction ( θl ) 

as found in the range θl = [0 . 019 ◦, 0 . 024 ◦] . Similarly, the mean

ngles at sheet normal ( θs ) and transverse ( θt ) directions were 

ound in the range θs = [0 . 018 ◦, 0 . 030 ◦] and θt = [0 . 012 ◦, 0 . 016 ◦] ,

espectively. We refer to Table 5 for a detailed report on ventric- 

lar θl , θs , θt for the four models. A color map of the θl , θs , θt , as

ell as the ventricular fiber arrangement at the three directions 

or model M1 is shown in Fig. 4 . A colormap for all the four ven-

ricular models is provided in the Supplementary material. Finally, 

able 7 summarizes the required computational time for the FPM- 

DRBM and FEM-LDRBM solutions for each model. 

.3. Atrial fiber arrangement validation 

Similarly, atrial fiber vectors of the FPM-LDRBM and FEM- 

DRBM solutions were found in close agreement at all directions. 

ean ( θ ) was found in the range θ = [0 . 025 ◦, 0 . 032 ◦] , mean θs 
l l 

7 
nd mean θt were found in the range θs = [0 . 023 ◦, 0 . 026 ◦] and

t = [0 . 028 ◦, 0 . 036 ◦] , respectively. We refer to Table 6 for a de-

ailed report on atrial θl , θs , θt for the four models. The color map 

f the θ , θs , θt and the arrangement of the atrial fibers at the three
l 
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Table 7 

Computational time for FPM-LDRBM and FEM-LDRBM ventricular fiber arrangements. t assembly : assembly of the algebraic sys- 

tem matrix, t ∇�: computation of transmural direction, t s : computation of septum fiber continuity function, t w : computation of 

intraventricular interpolation function, t ∇� : computation of apicobasal direction, t f ibers : computation of fiber arrangement . 

Method Model t assembly (s) t ∇� (s) t s (s) t w (s) t ∇� (s) t f ibers (s) 

FPM M1 1.93 0.93 0.27 4.38 12.32 0.02 

LDRBM M2 1.74 0.93 0.28 3.55 10.60 0.02 

M3 1.60 0.80 0.26 3.23 10.29 0.02 

M4 1.52 0.72 0.19 3.24 9.48 0.01 

FEM M1 1.37 0.82 0.23 3.71 10.90 0.02 

LDRBM M2 1.27 0.78 0.24 2.98 9.22 0.02 

M3 1.15 0.71 0.22 2.86 8.65 0.01 

M4 1.10 0.64 0.17 2.79 8.24 0.01 

Fig. 5. Atrial fiber arrangement generated by FPM-LDRBM. a) X-component of fiber direction vectors, b) angle between atrial fiber arrangements generated by FPM-LDRBM 

and FEM-LDRBM. 

Table 8 

Computational time for FPM-LDRBM and FEM-LDRBM atrial fiber arrangements. t assembly : assembly of the algebraic system ma- 

trix, t ∇�: computation of transmural direction, t ∇�AB 
: computation of appendage to valves direction, t ∇�v : computation of caval 

to pulmonary veins direction, t ∇�r 
: computation of tricuspid valve to caval veins direction, t ∇�w 

: computation of free tricuspid 

valve to septum direction, t f ibers : computation of fiber arrangement . 

Method Model t assembly (s) t ∇� (s) t ∇�AB 
(s) t ∇�v (s) t ∇�r 

(s) t ∇�w 
(s) t f ibers (s) 

FPM M1 0.80 0.37 2.46 2.49 2.46 1.30 0.02 

LDRBM M2 0.88 0.39 2.61 2.74 2.73 1.50 0.03 

M3 0.84 0.44 2.85 3.16 2.67 1.48 0.03 

M4 0.79 0.36 2.61 2.82 2.59 1.31 0.02 

FEM M1 0.56 0.32 2.10 2.20 2.05 1.11 0.02 

LDRBM M2 0.61 0.33 2.23 2.36 2.31 1.28 0.03 

M3 0.61 0.37 2.46 2.72 2.32 1.25 0.03 

M4 0.56 0.31 2.23 2.35 2.27 1.17 0.02 
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irections for model M1 is given in Fig. 5 . A colormap for all the

our atrial models is also provided in the Supplementary material. 

inally, Table 8 summarizes the required computational time for 

he FPM-LDRBM and FEM-LDRBM solutions for each model. 

. Discussion 

Currently existing LDRBM have been implemented using FEM 

o determine myocardial fiber arrangement [16,17] . Therefore, even 
8 
f meshless methods are used for the simulation of cardiac elec- 

rophysiology [27] , the generation of a mesh is inevitable. The 

urpose of this work was to provide a meshless solution to the 

aplace–Dirichlet problem so that fibers can be determined with- 

ut requiring a mesh. According to our knowledge, this is the first 

ime that a meshless method is applied to solve this problem. 

We implemented a solver for the Laplace–Dirichlet problem us- 

ng the FPM method [30] to determine both ventricular and atrial 

ber orientations. We demonstrated the capacity of FPM to solve 
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[

[

[

[

[

[

he Laplace–Dirichlet problem for fiber generation with similar ac- 

uracy to FEM. As shown in Figs. 4 and 5 , the difference between

he fiber arrangement computed by FPM and FEM was negligible. 

he angle between the FPM and FEM fiber vectors was almost 0 ◦

or both ventricular and atrial fiber orientations in all directions 

i.e. longitudinal, transverse and sheet normal). Maximum angle 

ifference was about 3 ◦ and occurred at nodes located at sharp 

eatures where large gradients are expected to appear. However, 

he maximum angle difference was small enough to allow con- 

idering the solution obtained by FPM similar to that by FEM. In 

erms of computational efficiency, FPM was found to be up to 20% 

ess efficient than FEM. This computational overhead was mainly 

ue to the application of the numerical flux continuity during the 

ssembly of the algebraic system matrix. In the solution of the al- 

ebraic system, the computational overhead was minimum since 

he matrix bandwidth in FPM is restricted by using compact sup- 

ort domains, see Table 7 and Table 8 . 

We used the same angle rules for angles α and β for ventric- 

lar fiber generation in all four considered models. Similarly, the 

ame bundle parameters τi were used in all four models for atrial 

ber determination. As our objective was to compare the obtained 

olutions by FPM and FEM, the choice of α, β and τi was not par- 

icularly relevant. Modifying the values of α and β allows adjusting 

entricular fiber orientation and controlling for septum continu- 

ty. Similarly, modification of τi allows controlling the size of the 

trial fiber bundles. By modifying these parameters, the LDRBM- 

etermined fibers can be adjusted to fit patient-specific data. 

The proposed LDRBM method allowed to determine the fiber 

rrangement for complete cardiac models (ventricular and atrial 

ber arrangements) without requiring the construction of a mesh 

s in FEM-based methods. This can be of high interest, as it enables 

o set fully meshless cardiac models for the investigation of cardiac 

lectrophysiology and function. In future work, we plan to investi- 

ate the capacity of LDRBM for determination of patient-specific 

ber orientation using electrical and mechanical data to estimate 

ocal modifications to the angles α, β and τi that could allow per- 

onalizing LDRBM. Such personalized LDRBM would contribute to 

recision medicine in clinical cardiology. 
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