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Modeling Communicable Diseases, Human Mobility, and
Epidemics: A Review
David Soriano-Paños,* Wesley Cota, Silvio C. Ferreira, Gourab Ghoshal, Alex Arenas,*
and Jesús Gómez-Gardeñes*

The spatiotemporal propagation patterns of recent infectious diseases,
originated as localized epidemic outbreaks and eventually becoming global
pandemics, are highly influenced by human mobility. Case exportation from
endemic areas to the rest of the countries has become unavoidable because of
the striking growth of the global mobility network, helping to overcome the
physical distance existing between faraway regions. In this context,
understanding the features driving contagions upon the arrival of an index
case in local environments constitutes an essential task to devise policies
aimed at avoiding the community transmission of these diseases and the
subsequent case exportation to other unaffected areas. In this review, an
overview of the different models addressing this topic is given, focusing on
the movement–interaction–return model and different subsequent
frameworks introduced to explain the complex interplay between the
recurrent movements and contagion dynamics.

1. Introduction

The global spread of communicable diseases can be conceived as
a reaction-diffusion process where the reaction stage corresponds
to the contagions between infectious hosts and susceptible indi-
viduals and the diffusion stage is associated with the movements
of the hosts, fostering the spatial dissemination of pathogens.
A comparison of the evolution of modern epidemics and those
that occurred before the 20th century reveals a very significant
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difference: there has been an inversion of
the time scales associated with the pro-
cesses governing the spread of diseases.
In terms of reaction–diffusion processes,
pandemics occurring before the 20th cen-
tury, like the Black Death,[1] were charac-
terized by diffusion times much slower
than the reaction time scales, which gave
rise to well-defined subsequent epidemic
outbreaks, happening one after another,
being propagated typically to geograph-
ically neighboring areas or as dictated
by the most usual trading routes. In
contrast, recent major epidemics, such
as Influenza A in 2009 or much more
recently the COVID-19 pandemic, have
been characterized by major outbreaks
occurring simultaneously in distant re-
gions as a consequence of the shortening
of the time scale associated with diffusion

processes. In particular, the progressive shortening of the time
scales governing human mobility has made it possible for a per-
son to visit different regions during her infectious period, result-
ing in the aforementioned temporal inversion between the time
scales corresponding to the reaction and diffusion.
One of the major drivers behind the acceleration of the

spatial dissemination of recent epidemic outbreaks is the strik-
ing growth experienced by the airport mobility network.[2] In
this sense, different studies have proven that international
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connections provide key information to predict the global
expansion of epidemic outbreaks initially localized in small
geographical areas. For instance, the airport connectivity has
proved to be a very reliable proxy to estimate the arrival times of
SARS epidemic to different countries in 2003,[3,4] the most likely
infectious routes followed by influenza virus H1N1 in 2009,[5]

or, more recently, the risk of importing COVID-19 cases.[6,7]

Unlike the well-defined role of the airport mobility net-
work for the importation and exportation of cases, solving the
complex relationship existing between the distribution of the
population across a city, their recurrent commuting patterns
and the evolution of local outbreaks remains an open challenge.
In this sense, several examples addressing the impact of daily
recurrent mobility on the spread of contagious diseases can
be found in the literature.[8–13] Despite the theoretical flavor
of most of these works, the recent advances in data gather-
ing techniques[14–16] has enabled to capture realistically the
daily urban rhythms of the population and to evaluate to what
extent they provide useful information to characterize local
outbreaks. Indeed, local mobility patterns have been already
useful for identifying the most exposed areas in some epidemic
scenarios[17] as well as reproducing the infection routes of H1N1
influenza,[5] Malaria,[18] and SARS-CoV-2.[19–22] All these theo-
retical and applied works rely on metapopulation architectures
to simultaneously capture the population movements and those
microscopic processes driving the spread of diseases.
In this review, we provide a broad overview of the different

theoretical models tackling the interplay between recurrent mo-
bility and epidemic spreading on metapopulations. Some ba-
sic notions about metapopulations and how to construct them
synthetically are explained in Section 2, while in Section 3 we
summarize the integration of epidemic spread in metapopula-
tion dynamics relying on heterogeneous mean-field approaches.
In Section 4, we present the theoretical core of this review, the
movement–interaction–return (MIR) model. The application of
theMIRmodel in real metapopulations reveals that the impact of
humanmovements is not universal and leads to the so-called epi-
demic detriment, for which restricting mobility may not be ben-
eficial to contain an ongoing outbreak. Section 5 is fully-devoted
to the characterization and understanding of this phenomenon,
concluding with some examples on simple networked systems.
Finally, in Section 6, we show how the equations of the MIR
model and the theoretical knowledge on the origin of the epi-
demic detriment on synthetic networks have been leveraged to
design surgical interventions reducing cities’ vulnerability to epi-
demic outbreaks.
Finally, along the review we will focus on the paradigmatic

susceptible-infected-susceptible (SIS) and susceptible-infected-
recovered (SIR)models, as they are the simplest frameworks cap-
turing the transition between the disease-free and the epidemic
states. The SIS and SIR models are characterized by just two pa-
rameters, 𝜆 and 𝜇, which accounts for the contagion probability
when a susceptible agent meets an infected one and the recov-
ery probability of infecteds respectively. The difference between
SIS and SIR models resides in the evolution of those infected
agents that recover, becoming again susceptible in the SIS case
while passing to a recovered state that cannot contract/transmit
the disease in the SIR one. The dynamical simplicity of these
frameworks allows us to put the emphasis on the incorporation of

human recurrent mobility patterns into the complete formalism,
although the phenomenology here described can be generally ex-
tended to more refined and realistic epidemic models.

2. Metapopulations

Metapopulations were initially introduced in the field of ecol-
ogy to study the viability of the coexistence of different species
in spatially distributed ecosystems.[23–26] On general grounds, a
metapopulation is defined as a set of spatially separated subpop-
ulations which interact among each other because of the mobil-
ity of their constituents. In the language used in network sci-
ence, the usual representation of a metapopulation is a complex
network where each node, usually referred to as patch, corre-
sponds to the geographical area populated by each subpopula-
tion. In its turn, the links connecting the different subpopula-
tions now encode the mobility patterns of the population rather
than their interaction patterns. Formally, a metapopulation with
NP patches and L links is defined as a tuple  = (V,N, E), be-
ing V = {v1,… , vNP

} the set of patches in the metapopulation,
N = {n1,… , nNP

} the sizes of the different subpopulations and
E = {e1,… , eL} the set of edges governing the movements of the
agents. For the sake of illustration, we represent a toy metapop-
ulation with NP = 5 patches in Figure 1.
Given their nature, metapopulations provide an useful struc-

tural backbone to incorporate reaction–diffusion processes,
where reaction processes constitute the internal dynamics of
each subpopulation and diffusion processes are captured by
the exchange of individuals between subpopulations governed
by their links. In this sense, metapopulations have allowed for
studying very diverse phenomena ranging from the stability of
ecosystems[27] and the dynamics determining the conservation
or extinction of species[28,29] to the diffusion of tumor cells.[30] In
the context of mathematical epidemiology, the use of metapopu-
lations has constituted an important step forward in the process
to turn simple epidemic models into valuable forecasting tools to
anticipate the trajectory of outbreaks and devise interventions to
mitigate them.[31,32] It is worth remarking that metapopulations
offer a versatile framework for epidemic modeling. Depending
on the patch definition, metapopulations have allowed charac-
terizing the spread of infectious diseases across different spatial
scales, ranging from a set of neighborhoods within a city to the
diffusion of cases across different countries worldwide.[33–35]

2.1. Mobility Frameworks

Regardless of its spatial granularity, to run an epidemic model
on top of a metapopulation, one has to choose how the mobility
patterns and the diffusive behavior of the different subpopula-
tions are introduced. In absence of data, one has also to deter-
mine how these links are synthetically constructed given the at-
tributes of the different subpopulations exchanging individuals.
Different alternatives have been proposed in the literature[36] but
the most paradigmatic ones are:

• Gravity model: Inspired by the Newton’s laws for bodymotion,
the gravity model for human mobility was first introduced by
George K. Zipf in 1946.[37] In this model, it is assumed that
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Figure 1. Schematic representation of a metapopulation withNP = 5 nodes (patches) representing different geographical areas and L = 4 links govern-
ing the movements of the population.

the population flow between two locations is directly propor-
tional to the product of their populations and inversely propor-
tional to the distance among them. Mathematically, denoting
the population of a node i by Ni and its distance with another
node j by dij, the weighted link connecting them, Tij, is esti-
mated by

Tij = K
NiNj

d2ij
(1)

• The latter expression can be generalized by assuming an ar-
bitrary dependence on the masses (populations) and general
functions to shape the relevance of geographical distances as
well. Therefore, in general, the weights are computed as

Tij = Kmimjf (dij) (2)

where mi corresponds to the mass associated with node i and
f (dij) is a decreasing function with the distance. The choice
of f (dij) usually ranges from power-law to exponentially de-
caying functions aimed at hindering the movements between
faraway regions. The typical choice for these masses are the
sizes of the different subpopulations of each patch, although
other variables have been also explored such as their GDP per
capita.[38,39]

• Radiation model: The gravity model assumes that the flows
between two locations obey only physical variables but
does not account for other incentives governing people’s
movements.[40] To incorporate the attractiveness of each loca-
tion in terms of, for instance, the number of job opportunities,
the authors in ref. [41] develop the so-called radiation model.
In thismodel, it is assumed that an individual chooses the clos-
est location to its residence which maximizes the number of
available opportunities. Assuming that the number of job po-
sitions is proportional to the population in each area, the ex-
pected value for Tij reads

⟨Tij⟩ = Ti

minj(
mi + sij

)(
mi + nj + sij

) (3)

where Ti is the total number of flows departing location i,
mi, and nj encode the population at the origin and destina-
tion respectively and sij is the total population competing for
resources inside the circle centered in i with radius dij, exclud-
ing the inhabitants of both the origin and destination. This
model, unlike the gravitymodel, introduces a less severe penal-
ization to long-range displacements connecting distant popu-
lation centers.

Although other approaches can be also adopted, see ref. [36]
for a comprehensive review on the subject, radiation and gravity
models are the most used frameworks to capture the essential
features of human mobility in the absence of more specific data.
In any case, once computed the elements of matrix T as provided
by thesemodels, one obtains the complete characterization of the
metapopulation in terms of V , N, and E.
Apart from the choice for the weights of the links in the

metapopulation, another crucial factor is the nature of the mo-
bility scheme considered for modeling the spread of diseases
across metapopulations. For instance, Tang et al. show in ref. [42]
that prioritizing the shortest paths to move across a metapopula-
tion clearly enhances epidemic diffusion. Along this line, Gómez
et al. propose an information theoretic approach[43] to reconstruct
the origin–destination (OD) matrix from a set of flows observed
across different locations in the metapopulation, showing that
epidemic trajectories are crucially altered with respect to those
obtained when including raw mobility data.

3. HMF Approaches to Epidemic Modeling in
Metapopulations

The seminal model introduced in refs. [44, 45] by Colizza et al.
constitutes the first theoretical framework coupling the hetero-
geneous structure of connections of a metapopulation and the
spread of diseases. The authors take advantage of the knowledge
acquired in the study of random walkers dynamics on contact
networks[46] and assume that individuals move randomly across
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Figure 2. Origin and destination of the trips recorded in the surveys made to the population of Medellín in 2017 to characterize their mobility habits.
The color of each area is proportional to the number of individuals entering (destination) or departing (origin) from it. The darker the color, the more
flows are recorded for each area. The title shows the time range during which trips were aggregated. Data obtained from the authors of ref. [54].

the different patches according to the links of the metapopula-
tion. To simplify the analysis, they also make use of a heteroge-
neous mean-field (HMF) approach and consider that all patches
with the same number of connections are statistically equivalent.
The HMF assumption in metapopulations has further implica-
tions than that included originally for contact networks,[47] for it
entails that the attributes of each subpopulation, such as its size,
should be linked to its connectivity in the mobility network.
Under these assumptions, and considering the SIR epidemic

model, the evolution of the infected population inside patches
with degree k, Ik is written as

𝜕tIk = − pkIk +
(
1 − pk

)[
−𝜇Ik + 𝜆

IkSk
Nk

]

+ k
∑
k′
P
(
k′|k)dk′k[−𝜇Ik′ + 𝜆

Ik′Sk′
Nk′

] (4)

In the latter equation, Nk represents the population inside
patches with degree k, pk the mobility rate of patches within de-
gree class k and dk′k corresponds to the diffusion rate between
patches with connectivities k and k′. In addition parameters 𝜆

and 𝜇 account for the contagion and recovery rates for suscepti-
ble and infectious individuals respectively.
The diffusion rate is assumed to follow the gravity model, be-

ing the masses proportional to the connectivity, so that

dk′k ∝ pk′ (kk
′)𝜃 (5)

Note that Equation (4) contains both reaction–diffusion pro-
cesses involved in the interplay between mobility and epidemics.
The evolution of the occupation of each compartment is com-
pleted with the time evolution of the spatial distribution of the
population, which evolves driven by mobility as

𝜕tNk(t) = −pkNk(t) + k
∑
k′

P
(
k′|k)dk′kNk′ (t) (6)

Nonetheless, an usual assumption is to consider the diffusion
time scales much shorter than the duration of the outbreak, so
𝜏diff ≪ 𝜏react. This allows for neglecting the time evolution of the
underlying populations and assume that the number of individ-
uals inside each patch is given by the steady state of the random
walker dynamics.
Apart from proposing a set of deterministic equations to track

the spatio-temporal spread of diseases, the authors in ref. [45] re-
veal the existence of a new phase transition between the existence
of localized outbreaks inside single subpopulations and the ob-
servation of widespread epidemics across the entire metapopula-
tion. This phase transition is characterized by the so-called inva-
sion threshold∗, which is computed from a branching process
characterizing the evolution of the number of invaded subpopu-
lations.
Despite the theoretical relevance or the results described above

and others found in subsequent works,[5,10,31] assuming that the
inhabitants of a given city behave as random walkers exploring
the different neighborhoods without a fixed residence is far from
reflecting the nature of our daily movements. In contrast, there
is growing evidence about the prominent recurrent nature of
human mobility patterns[48–51] in real datasets. As an example,
we represent in Figure 2 the results from surveys carried out in
the city ofMedellín in Colombia to understand the usual mobility
patterns of its residents.[52,53] Specifically, we represent the vol-
ume of people arriving and departing in each specific neighbor-
hood of the city at the beginning, middle and end of the workday.
In addition to the evident distinction between residential areas
and workplaces, the figure clearly suggests that urban mobility
is governed by the regular trips followed by the commuters.
There are different attempts made in the literature including

commuters in epidemic modeling. First works[55,56] on the topic
adapt the previously explained HMF equations to include a
preferential return rate 𝜏 to the associated patch of each agent,
typically identified as the place where his or her residence is
located. In this case, agents are not only characterized by their
current location in the network but also by their associated patch,
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which enlarges the set of equations needed to characterize the
evolution of the population. In particular, Equation (6) turns into

𝜕tNkk(t) = −𝜎kNkk(t) + 𝜏−1k
∑
k′
Nkk′ (t)P

(
k′|k) (7)

𝜕tNkk′ (t) = 𝜎kk′Nkk(t) − 𝜏−1Nkk′ (t) (8)

Plugging these equations into the branching process, the authors
of refs. [55, 56] derive analytically an expression that relates the
invasion threshold ∗ with the mobility rate of the population,
the time scale associated with the movements and the features
of the mobility network. They find that both promoting mobility
and increasing the permanence times at the destinations boost
epidemic spreading, for they increase the mixing between
individuals from different subpopulations.
The validity of the previous findings in real metapopulations

remains uncertain due to the strong theoretical assumptions in-
troduced in the HMF equations. Specifically, there does not ex-
ist solid basis to couple the size of each subpopulation with its
number of connections in the mobility network. For this rea-
son, Belik et al.[9,57] propose an alternative model which aban-
dons the statistical equivalence of all patches within the same
degree class k. In this model, also in the SIR domain, the evo-
lution of the infected and susceptible individuals associated with
each patch k and located at each patch n, Ikn and S

k
n respectively, is

given by

𝜕tI
k
n = 𝜆

Nn
Skn

∑
m

Imn − 𝜇Ikn +
∑
m

(
𝜔k
mnI

k
m − 𝜔k

nmI
k
n

)
(9)

𝜕tS
k
n = − 𝜆

Nn
Skn

∑
m

Imn +
∑
m

(
𝜔k
mnS

k
m − 𝜔k

nmS
k
n

)
(10)

where 𝜔k
nm encodes the diffusion rate from patch n to patch m

for individuals with residence in k. In this general framework,
strictly commuting patterns are therefore included by consider-
ing𝜔k

nm = 𝛿kn𝜔nm, being 𝛿
k
n the Kronecker delta. Armed with these

equations, the authors study the propagation of diseases across
simple synthetic configurations, finding that outbreaks in struc-
tured lattices can be characterized as continuous waves prop-
agating across a media with a well-defined front propagation.
In this model, the authors also observe the acceleration of epi-
demic outbreaks driven by longer typical times associated with
the trips.
The model proposed in refs. [9, 57] constitutes the first step

toward understanding the microscopic processes behind the
complex interplay between recurrent mobility and epidemic
spreading. Nonetheless, it still contains some theoretical limita-
tions. Specifically, the model assumes a constant rate governing
contagion events across the entire metapopulation, which im-
plies that the number of interactions made by one agent is
constant and independent of the place in which the individual
is located. This limits the application of the model to some
scenarios where the attributes of a node or patch determine
its vulnerability for disease spreading; for example, the model
cannot capture the recently reported evidence about the positive
correlation existing between population density and the number
of COVID-19 cases in different countries.[58–60]

4. MIR Model

Following the aforementioned works, the authors in refs. [61,
62] propose the MIR model. Unlike previous formalisms, this
model constitutes a discrete-time approach where each time step
is composed by three stages, which are schematically depicted
in Figure 3:

1. Movement: At the beginning of the day, the population decide
whether or not to move with probability p. This probability
acts as a control parameter which allows activating or deac-
tivating mobility at convenience. If an individual decides to
move, he or she decides the destination according to the OD
matrix R whose elements Rij encode the weights of the links
connecting patches i and j in the metapopulation.

2. Interaction: Once all the movements have been completed,
the reaction phase starts and individuals interact, changing
their epidemiological state accordingly. Note that this phase
aims at capturing the contacts made at the workplace, school,
etc. Formally, the authors introduce a mean-field assump-
tion within each patch, which implies that all the individuals
placed at the same location make the same number of con-
tacts. As stated above, this number of contacts is not constant
across the metapopulation but is usually a function f of the
attributes of the patches.

3. Return: Finally, to reflect the recurrent nature of commuting
mobility, all the individuals return to the associated residential
patches. Note that this model gets rid of the dwelling times,
whose effect will be later analyzed in this review.

The iteration of these three stages simulates the daily dy-
namics of contagious diseases in a given metapopulation. Note
that this framework presents several drawbacks. First, the time-
discrete equations do not account for the continuous nature of
human mobility and neglect the influence of more complex mo-
bility patterns beyond strictly back-and-forth displacements. This
assumption simplifies the equations of the model and is partially
supported by statistics[63] reporting that commuting patterns rep-
resent around 30–50% of the daily movements. Second, the con-
tribution of the interactions made with the household members
after the return stage is neglected. In that respect, Granell et al.
propose in ref. [64] the natural extension of the model to over-
come this limitation by incorporating two interactions stages cor-
responding to both contagions occurring outside and inside the
household. The qualitative findings about the interplay between
mobility and epidemics are consistent for both formalisms so,
for the sake of simplicity, we focus on the MIR model to ex-
plain them.

4.1. Model Equations

As this review gravitates around the MIR model, we now intro-
duce the set of Markovian equations determining the evolution
of epidemics according to this model. From a structural point of
view, the model considers a metapopulation withNP patches and
assume that each patch i is populated by ni residents, whereas
the flows between the different patches are captured in the OD
matrix R. Under these conditions, the course of a SIS disease
is entirely characterized by the time evolution of the fraction of
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Figure 3. Schematic representation of one time step of themovement-interaction-return (MIR)metapopulationmodel. Themetapopulation is composed
of NP = 3 patches. At the movement stage, some of the local agents decide to move to the other patches according to the mobility probability p and
the mobility patterns encoded in matrix R. After moving, the agents interact in a well-mixed way and change their epidemic state (healthy or infected)
according to a SIS model. Finally, they come back to their home patches and a new time step starts. Reproduced with permission.[62] Copyright 2018,
APS.

individuals living in each patch i in the infected state, denoted
in the following by 𝜌i. This time evolution is given by

𝜌i(t + 1) = (1 − 𝜇)𝜌i(t) +
[
1 − 𝜌i(t)

]
Πi(t) (11)

The first term in the r.h.s of Equation (11) contains those in-
fected individuals associated with patch i not recovering at time
t. The second term in the r.h.s of Equation (11) reflects the con-
tagions of the susceptible population.
Note that, although the review focuses on the SIS model, the

MIR model can be extended to account for more complex com-
partmental schemes. For instance, in the case of the SIR model,
the dynamics is completely characterized by the following system
of equations

𝜌i(t + 1) = (1 − 𝜇)𝜌i(t) +
[
1 − 𝜌i(t) − ri(t)

]
Πi(t) (12)

ri(t + 1) = ri(t) + 𝜇𝜌i(t) (13)

where ri(t) denotes the fraction of individuals associated with
patch i in the recovered state at time t.
Regardless of the compartmental scheme, a central object of

the MIR model is Πi(t), which represents the probability that a
susceptible agent living inside i contracts the disease. Taking into
account the microscopic rules of the MIR model, this probability
is given by

Πi(t) = (1 − p)Pi(t) + p
NP∑
j=1

RijPj(t) (14)

where the first term encodes the contagions in the residen-
tial patch and the second one corresponds to the contagions

occurring when one individual from patch i moves across the
metapopulation. Therefore, Pi(t) corresponds to the probability
that a susceptible individual, regardless of his or her residential
patch, contracts the disease inside patch i. Given the well-mixing
hypothesis introduced in the model, this probability is

Pi(t) = 1 −
[
1 − 𝜆

Ĩi(t)
ñi

]fi
(15)

where ñi represents the effective population of patch i, that is,
the number of individuals placed at patch i after the movement
stage and Ĩi(t) is the effective number of infected individuals
inside patch i at time t. Taking into account the demographic
distribution of the population and the mobility patterns, both
quantities are easily computed as

ñi =
NP∑
j=1

nj→i =
NP∑
j=1

nj
[
(1 − p)𝛿ij + pRji

]
(16)

Ĩi(t) =
NP∑
j=1

Ij→i =
NP∑
j=1

nj𝜌j(t)
[
(1 − p)𝛿ij + pRji

]
(17)

where nj→i and Ij→i represent the total number of residents and
the number of infected individuals moving from patch j to patch
i respectively.

4.2. Validation on Synthetic Networks

Equations (11)–(17) form a closed set of equations, whose
iteration allows for characterizing the spatio-temporal spread
of contagious diseases. For the sake of simplicity, the authors

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (6 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 4. Evolution of the epidemic size 𝜌 as a function of the rescaled infectivity �̃� and the mobility p (color code). The rescaled infectivity is obtained
by dividing the actual infectivity 𝜆 by the expected threshold for an isolated metapopulation, that is, �̃� = 𝜆n∕𝜇. a) The metapopulation is an ER network.
b) The curves for a BA network. both withNP = 103 patches, ⟨k⟩ ≈ 4 and random weights assigned to the links. In both panels, the solid lines represent
the numerical results obtained by iterating Equations (11)–(17) whereas points show the average of the epidemic size values obtained from 50 Monte
Carlo simulations. The recovery probability is set to 𝜇 = 0.2. Reproduced with permission.[62] Copyright 2018, APS.

first assume that interaction processes take place all-to-all
within each patch, implying that fi = ñi. In that case, a more
accurate expression for the probability of contracting a disease
inside a patch, Pi, can be proposed by leveraging the statistical
independence of the different patches, implying the existence of
different infection levels across the metapopulation.[61] Namely

Pi(t) = 1 −
NP∏
j=1

(
1 − 𝜆𝜌j

)nj→i (18)

To illustrate the validity the equations, the model is run
in synthetic networks with NP = 103 patches, which are ho-
mogeneously populated by n = 5000, yielding N = 5 × 106

individuals. Moreover, to unravel the role of heterogeneities
in terms of spatial connections, two different undirected and
unweighted mobility networks are generated according to
both the Erdös–Rényi (ER)[65] and the Barabási–Albert (BA)[66]

models. The global extent of the outbreak is quantified by the
epidemic size 𝜌, defined as the total fraction of individuals in the
infectious state when the disease reaches the stationary state. We
start by infecting 1% of the population of each node and let the
system evolves until no variations are observed in the number
of infected individuals. According to the variables of the MIR
model, the epidemic size 𝜌 is computed as

𝜌 =

NP∑
i=1

ni𝜌i(∞)

NP∑
i=1

ni

(19)

In Figure 4 the epidemic size 𝜌 is represented as a function of
the rescaled infectivity �̃� for several mobility scenarios in the ER
(a) and BA (b) metapopulations. The rescaled infectivity is com-
puted by dividing the infectivity 𝜆 by the expected threshold for

a SIS model in a well-mixed population of size n, so �̃� = 𝜆n∕𝜇.
There, it becomes clear that the equations of the MIR model are
able to capture the results from microscopic Monte Carlo sim-
ulations. Regarding the role of human movements, promoting
mobility from the static case (p = 0) to the fully active popula-
tion (p = 1), leads to an increase in the epidemic size, pinpointing
that mobility accelerates epidemic diffusion as suggested in pre-
vious works. This acceleration gains relevance in case of hetero-
geneous mobility networks, for heterogeneity favors the gather-
ing of a higher number of individuals inside the most connected
areas. This result is aligned with previous findings made in the
theoretical frameworks relying on HMF approaches described in
Section 3.[55]

4.3. Epidemic Threshold

The analysis made in synthetic metapopulations for the MIR
model reveals that the impact of mobility is highly influenced
by the structural properties of the underlying metapopulation.
To characterize analytically the interplay between mobility and
epidemics, the authors in ref. [61] linearize the Markovian equa-
tions governing the evolution of the dynamics and find a closed
expression for the epidemic threshold 𝜆c, delimiting the mini-
mum infectivity required to observe an endemic equilibrium. In
particular, they find that

𝜆c =
𝜇

Λmax(M)
(20)

where the elements of the matrixM are given by:

Mij = nj

[
𝛿ij(1 − p)2

fj
ñj

+ p(1 − p)

(
Rijfj
ñj

+
Rjifi
ñi

)
+ p2

NP∑
l=1

RilRjlfl
ñl

]

(21)

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (7 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 5. Epidemic size 𝜌 obtained by the numerical iteration of Equation (11)–(17) (color code) as a function of themobility p and the rescaled infectivity
�̃�. The black solid lines show the analytical estimation for the epidemic threshold computed by Equation (20) for the ER (a) and the BA (metapopulations).
Reproduced with permission.[62] Copyright 2018, APS.

Note that this expression resembles the epidemic threshold de-
rived for SIS dynamics on contact networks[67] but here, rather
than the adjacency matrix A, a more complex matrix M governs
the interactions of the population. Specifically, the elements Mij
correspond to the expected number of interactions made by one
individual from patch i with the population residing in patch j.
In particular, the first term corresponds to those contacts taking
place between individuals from the same patch and not moving.
The second (third) term encodes the contacts made where the
agent from i (j) moves to patch j (i) and interacts with the popula-
tion remaining there. Finally, the fourth term contains all the in-
teractions taking place in a third node different from the patches
associated with the agents in contact.
Figure 5 shows the dependence of the epidemic size on themo-

bility p and the infectivity 𝜆 along with the estimation of the epi-
demic threshold computed by Equation (20). There we observe
that the analytical expression found in ref. [61] for the epidemic
threshold captures the phase transition between the disease-free
state and the emergence of a stable endemic regime in both syn-
thetic metapopulations and the higher vulnerability induced by
heterogeneous mobility networks.

4.4. Real Metapopulations

One of the main advantages of the MIR model with respect to
the aforementioned works relying onHMF approaches is the fact
that no assumptions are made concerning the statistical equiva-
lence of the different patches. Therefore, data about the demo-
graphic distribution and the mobility of the population can be
readily incorporated into the equations of theMIRmodel to study
the relevance of commuting for disease spreading in real cities.
Different alternatives have been proposed in the literature to

capture the mobility patterns of the populations such as census
surveys[68,69] or the location history inferred from call detailed
records,[70,71] the activity on social platforms,[15,72] or mobile-
phone devices.[73,74] Leveraging the information provided by ex-
tensive census surveys carried out to the Colombian population,

the authors in refs. [61, 62] apply the MIR model to characterize
the spread of SIS diseases over the cities of Santiago de Cali and
Medellín. The resulting metapopulations, with NP = 22 patches
and NP = 413 patches in Cali and Medellin respectively, corre-
sponding to different administrative divisions, are schematized
in Figure 6a,b.
Figure 6c,d represent the epidemic size 𝜌 as a function of

the rescaled infectivity �̃� and the degree of mobility p for both
metapopulations, along with the estimation for the epidemic
threshold �̃�c. Remarkably, increasing mobility in real heteroge-
neous metapopulations has a counterintuitive effect on the dy-
namics. Namely, rather than boosting epidemic spreading as
observed in synthetic metapopulations, promoting population
movements might be beneficial to contain an ongoing outbreak.
Namely, in both cases the initial increase of the threshold for
both cities implies that mobility prevents the endemic equilib-
rium from being reached, therefore hindering the spread of dis-
eases.
It is worth noticing that the qualitative dependence of the

threshold on the mobility for both cities is different. While for
the city of Medellín increasing mobility always makes the city
less prone to epidemic outbreaks, in the case of Cali the bene-
ficial effect of such intervention is reversed in the regime of high
mobility, leading to the expected acceleration of the diffusion of
epidemics. Summarizing the results presented thus far, three dif-
ferent types of metapopulations according to the dependence of
the epidemic threshold on the mobility of the population, p, are
observed. In what follows, we denote these categories by Types I,
II, and III respectively.

• Type I: In these metapopulations, increasing mobility always
fosters epidemic spreading, which is reflected in a monotonic
reduction of the epidemic threshold �̃�c when increasing the
mobility p. Synthetic metapopulations whose nodes are uni-
formly populated fall into this category.

• Type II: In this case, the epidemic threshold shows a non-
trivial behavior with the mobility. For small p values, the epi-
demic threshold increases with the mobility, giving rise to

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (8 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 6. Spread of diseases across real metapopulations. a,b) S schematic representation of the metapopulations of the cities of Cali (a) and Medellín
(b) in Colombia. In both panels, the size of each patch is proportional to its population, whereas the flows are extracted from census surveys (see text for
more details). c,d) Epidemic size 𝜌 obtained by the numerical iteration of Equations (11)–(17) (color code) as a function of themobility p and the rescaled
infectivity �̃� for the city of Cali and Medellín respectively. The black solid lines show the analytical estimation for the epidemic threshold computed by
Equation (20) for each case. In all panels, the recovery probability is set to 𝜇 = 0.2. (a) and (c) adapted with permission.[61] Copyright 2018, Springer
and (b) and (d) reproduced with permission.[62] Copyright 2018, APS.

the so-called epidemic detriment. This trend is maintained up
to a given value of the mobility, p∗, for which the epidemic
threshold reaches its peak. Afterward, the impact of mobil-
ity is reversed and promoting movements boosts epidemic
spreading and hence decreases the epidemic threshold. The
city of Cali in Colombia constitutes one example of a Type II
metapopulation.

• Type III: Finally, there are other cases, like the city of Medel-
lín in Colombia, where the epidemic detriment appears con-
sistently from the static case p = 0 to the case in which the
entire population moves according to the mobility network
p = 1.

Figure 7a depicts the dependence of the threshold on the
mobility for the three different types of cities. To get more em-
pirical evidence on the complex interplay between mobility and
epidemics, Hazarie et al.[75] extract the p∗ value for 163 cities dis-
tributed across four countries: United States, Italy, Australia and
South Africa. Unlike the networks above described for Colom-
bian cities, the mobility patterns in this study are extracted from
the Google COVID-19 Aggregated Mobility Research Dataset,
which contains anonymized mobility flows aggregated over
users who have turned on the Location History setting, which

is off by default. Regarding the function governing contacts,
the authors abandon the all-to-all interaction scheme and make
the number of contacts inside a given patch i dependent on its
population density. Mathematically, they assume that fi = ñi∕ai,
being ñi defined by Equation (16) and ai the area of patch i.
Figure 7b contains the histogram of the p∗ values, finding 109
Type II (p∗ < 1) and 54 Type III (p∗ = 1) metapopulations.

5. Origin of the Epidemic Detriment

In what follows, we detail the mathematical and physical argu-
ments proposed to justify the emergence of the epidemic detri-
ment and understand the complex interplay existing between re-
current mobility and epidemics.

5.1. Perturbative Expansion

Mathematically, Gómez–Gardeñes et al.[61] explore the roots be-
hind the epidemic detriment by performing a perturbation anal-
ysis of the matrix M.[76] Focusing on the case fi = ñi, after rear-
ranging the terms in Equation (21), the elementsMij read as

Mij = M0
ij + pM1

ij + p2M2
ij (22)

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (9 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 7. Rescaled epidemic threshold �̃� as a function of the mobility p for the three different qualitative behaviors observed so far. Type I cities show a
continuous reduction of the threshold while increasing p, so mobility boosts epidemic spreading. The epidemic detriment, for which increasing mobility
hinders the spread of diseases, is nonmonotonic for Type II cities, since it appears for small p values and vanishes after the peak located at p = p∗, and
monotonic for Type III cities. b) Histogram of the p∗ values extracted from the dependence of the rescaled epidemic threshold on the mobility �̃�c(p) for
each of the 163 cities analyzed in ref. [75]. Reproduced with permission.[75] Copyright 2021, Springer.

with

M0
ij = nj𝛿ij (23)

M1
ij = nj(Rij + Rji − 2𝛿ij) (24)

M2
ij = nj

[
(R ⋅ RT)ij − Rij − Rji + 𝛿ij

]
(25)

Based on perturbation theory, the leading eigenvalue of matrix
M can be approximated by

Λmax(M) = Λmax(M
0) + pΛ1 + p2Λ2 (26)

with

Λ1 = ⟨v0max|M1|v0max⟩ (27)

Λ2 =
∑
j≠max

⟨v0j |M1|v0max⟩⟨v0max|M1|v0j ⟩
Λmax − Λj

+ ⟨|v0max|M2|v0max⟩ (28)

In both expressions, {v0j } represents the eigenvector basis and,
in particular, v0max represents the eigenvector associated with the
leading eigenvalue of the matrixM0. Taking into account that the
matrix M0 is diagonal, the eigenvalues correspond to the popu-
lation of each patch and the eigenvector basis is the canonical
basis, which simplifies the calculus of the different corrections.
Assuming that the outbreak is localized for p = 0 inside the patch
i, these corrections read as

Λ0 = ni (29)

Λ1 = 2ni(Rii − 1) (30)

Λ2 = ni

{
(1 − Rii)

2 +
∑
j≠i

[
nj(Rij + Rji)

2

ni − nj
+ R2

ij

]}
(31)

Note that the linear correction is always negative, ensuring
that for low enough p values, the leading eigenvalue of the
critical matrix M decreases, which leads to the increase of the
epidemic threshold responsible for the epidemic detriment.
Interestingly, the second-order correction is always positive,
thus explaining the nonmonotonic behavior observed for the
epidemic threshold as the result of the trade-off between these
two opposite contributions. Finally, by decreasing the hetero-
geneity of the population distribution, the second term becomes
dominant, thus shrinking the epidemic detriment regime, which
finally vanishes for homogeneous populations, as observed in
the synthetic metapopulations.

5.2. Star-Like Metapopulation Structure

To explain heuristically the mechanisms responsible for the
emergence of the epidemic detriment, Gómez–Gardeñes et al.[61]

make use of a synthetic metapopulation, the star-like city. Star
networks are simple graphs composed of a central node, usually
referred to as hub, which is linked to a set of peripheral nodes,
the so-called leaves. The main advantage of these simple con-
figurations is the statistical equivalence of all the leaves, which
greatly simplifies the theoretical analysis of different dynamics.
For example, the use of star networks has been crucial to analyti-
cally characterize the nature of different phenomena such as the
onset of SIS diseases,[77,78] the microscopic origin of the explo-
sive synchronization,[79] or the oscillations in chemical reaction-
diffusion processes.[80]

Figure 8a depicts schematically the structure of the star-like
city. Note that the metapopulation is fully characterized by four
parameters:

1. nmax: Number of residents inside the hub so that nh = nmax.
2. 𝜅: Number of leaves surrounding the hub. Note that the flows

from the central node to the periphery are uniformly dis-
tributed so that Rhl = 1∕𝜅.

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (10 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 8. a) Schematic representation of the star-like metapopulation. The relevant parameters are the population of the hub nmax, the population
asymmetry 𝛼, the number of leaves 𝜅 and the flow from leaves to the hub 𝛿 (see text for details). b) p∗ (color code) as a function of (𝛼, 𝛿) for a star-like
metapopulation with 𝜅 = 10 leaves. c–e) Epidemic size 𝜌 (color code) as a function of the rescaled infectivity �̃� and the mobility p. The solid black
line depicts the analytical estimation for the rescaled epidemic threshold provided by Equation (38). Reproduced with permission.[61] Copyright 2018,
Springer.

3. 𝛼: Population asymmetry between the hub and the leaves. In
this sense, each leaf is populated by nl = 𝛼nmax agents with
𝛼 ∈ [0, 1].

4. 𝛿: Fraction of the flows departing from the leaves which end in
the hub, that is, Rlh = 𝛿. The remaining fraction of the mov-
ing population goes to the next leaf in the counterclockwise
direction so that Rl,l+1 = 1 − 𝛿.

Mathematically, the statistical equivalence of the leaves allows
reducing the dimensionality of the system from NP to 2 equa-
tions, governing the evolution of the disease inside the hub and
a generic leaf respectively. Denoting the hub and the leaves by the
subscripts h and l, respectively, and focusing on the all-to-all in-
teraction scheme, the elements of the critical matrixM are given
by

Mhh = nmax

[
(1 − p)2 + p2∕𝜅

]
(32)

Mhl = 𝜅𝛼nmax

[
p(1 − p)(1∕𝜅 + 𝛿) + p2(1 − 𝛿)∕𝜅

]
(33)

Mlh = nmax

[
p(1 − p)(1∕𝜅 + 𝛿) + p2(1 − 𝛿)∕𝜅

]
(34)

Mll = 𝛼nmax

{
(1 − p)2 + 2p(1 − p)(1 − 𝛿) + p2

[
𝜅𝛿2 + (1 − 𝛿)2

]}
.

(35)

As a result of the dimensionality reduction, the matrix M is a
2 × 2 matrix, whose leading eigenvalue can be computed analyti-
cally. This allows obtaining a simple expression for the epidemic
threshold, which now reads as

𝜆c =
𝜇

Λmax(M)
(36)

with

Λmax(M) =
tr(M) +

√
tr(M)2 − 4 detM

2
(37)

The expression for the epidemic threshold depends on five pa-
rameters, the four characterizing the properties of the underlying
metapopulation and the recovery rate 𝜇. To focus on the effect of
the mobility, the authors focus on the rescaled epidemic thresh-
old

�̃�c =
𝜆c

𝜆c(p = 0)
=

nmax

Λmax(M)
(38)

Note that all the elements of the matrixM depend linearly on
the population of the hub nmax, which makes the rescaled epi-
demic threshold independent of this parameter. In plain words,

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (11 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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the qualitative impact of the mobility is not a variable of the over-
all number of agents in themetapopulation but is only influenced
by the population asymmetries governed by 𝛼 and the features of
the mobility network determined by (𝜅, 𝛿).
The star-like configuration retrieves the three different types

of cities described above. Figure 8b represents the value of p∗

as a function of (𝛼, 𝛿) when fixing 𝜅 = 10 leaves. There we ob-
serve how Type I cities (p∗ → 0) are restricted to the areas of the
parameters’ space with 𝛼 ≃ 1 and therefore to metapopulations
with negligible population asymmetries, as suggested by the per-
turbation analysis. The rest of the phase diagram shows a non-
trivial boundary between Type II and Type III cities. In particular,
most of the possible configurations correspond to Type II cities
whereas Type III cities are associatedwith a very specific region of
the parameters’ space. For the sake of completeness, Figure 8c–e
shows the epidemic diagrams for three different combinations of
(𝛼, 𝛿), identifying the three possible types of cities.
To connect the dots between the structural features of the

metapopulation and the observed p∗ value, it is worth recalling
that in the MIR model the number of contacts each individual
makes is an extensive variable which depends on the attributes
of the place where she/he is located. In particular, under the all-
to-all interactions scheme, this number of contacts matches the
effective population of the different patches. Intuitively, one plau-
sible explanation for the epidemic detriment would be thatmobil-
ity tends to homogenize the underlying population distribution,
thus reducing the number of individuals interacting inside the
most vulnerable node and, therefore, requiring a higher infectiv-
ity to observe a macroscopic outbreak. In the star-like metapopu-
lation, the effective populations of both the hub and the generic
leaf read as

ñh = nmax

[
(1 − p) + 𝛼𝜅p𝛿

]
(39)

ñl = nmax

[
𝛼(1 − p𝛿) + p∕𝜅

]
(40)

Equating both equations, we can estimate the value at which the
effective population inside the leaf becomes higher than the one
gathered in the hub, denoted in what follows by p∗heur, yielding

p∗heur =
𝜅(1 − 𝛼)

(𝜅 + 1)(1 − 𝛿𝛼𝜅)
(41)

Figure 9a shows the dependence of the latter indicator as a
function of the population asymmetry 𝛼 and the flows from
leaves to the hub, governed by 𝛿. Interestingly, two clearly dif-
ferentiated regions appear in this figure:

• k𝛿𝛼 ≤ 1: In this region of the parameters’ space,mobility tends
to reduce the population gathered inside the hub and increase
the population in the leaves, as shown in Figure 9b. Remark-
ably, the value predicted relying on the homogenization of the
population is able to capture very accurately the actual value of
p∗ represented in Figure 8b.

• k𝛿𝛼 > 1: In this case, the value derived for p∗heur is always nega-
tive, for the distribution of population is no longer homogeniz-
ing. Instead mobility tends to accumulate individuals inside
the hub at the expense of emptying the leaves, as captured in
Figure 9c. Therefore, the epidemic detriment observed in Fig-

Figure 9. a) Value of the heuristic estimation for the position of the peak of
the epidemic threshold p∗

heur
(color code) as a function of the population

asymmetry 𝛼 and the parameter 𝛿 governing the flow from the leaves to the
hub. The solid red line depicts the function 𝛼 = 1∕(𝜅𝛿), which delimits the
region where macroscopic arguments work to explain the epidemic detri-
ment (see text for details). b–c) Dependence of the effective population in-
teracting inside the hub ñh and the leaves ñl on the mobility p for two star-
like metapopulations with (𝛼, 𝛿) = (0.4, 0.05) (b) and (𝛼, 𝛿) = (0.4, 0.4) (c)
respectively. In all the cases, the number of leaves is 𝜅 = 10.

ure 8 and universally predicted by the perturbation analysis
cannot be justified based on the redistribution of the popula-
tion.

The failure of macroscopic arguments based on the sizes of
the interacting populations suggests that the epidemic detriment,
and more in general the interplay between recurrent mobility
and epidemics, are driven by processes taking place across mi-
croscopic/mesoscopic scales. The crucial role of these processes
in the emergence of the epidemic detriment is supported by two
extensions of the MIR model which overcome some of its theo-
retical limitations.

5.3. MIR Model with Tunable Return Times

First, Soriano-Paños et al.[81] introduce a new time scale in the
model, denoted in what follows by 𝜏, which encodes the num-
ber of epidemic time steps that agents spend outside their res-
idence before returning to them. This time scale retrieves the
dwelling times introduced in the HMF approaches explained in
Section 3[35,55,56,82,83] and leads to important variations of the epi-
demic trajectories.
The asymmetry between the time scales involved in the con-

tagions and the movements provokes that the initial population
of each patch at each time step is not only composed of residents
but also contains visitors not returning to their residential patch.

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (12 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Therefore, the different stages of theMIRmodelmust be adapted
to accommodate the new time scale. In particular:

1. Movement: At the beginning of each time step, the residents
in one patch decide whether to leave it with a probability p or
remain therewith probability 1 − p. To respect the commuting
nature of human movements and the new time scale, visitors
in one patch are not allowed tomove. Mathematically, this can
be represented as a third-order tensor, whose elementsi

jk

denote the probability that a resident inside imoves from j to
k. Note that, in general, the tensor allows for accommodat-
ing a wide variety of mobility schemes ranging from higher-
order paths[84] to random walker dynamics. In our case of in-
terest, the assumptions described above lead to

i
jk = 𝛿ijRjk + (1 − 𝛿ij )𝛿jk (42)

where R is the OD matrix used in the original MIR model.
2. Interaction: This stage remains as in the original MIR model.

In this case, both residents and visitors are indistinguishable
and make the same number of contacts depending on the at-
tributes of the place where they are located after the move-
ment stage. In each contact between susceptible and infected
individuals, the first one contracts the disease with probabil-
ity 𝜆. Likewise, infected individuals can overcome the disease
with a given probability 𝜇.

3. Return: Finally, visitors decide whether returning home with
probability 𝜏−1 or staying at their destination with probability
1 − 𝜏−1.

After deriving the correspondingMarkovian equations, the au-
thors prove that the epidemic threshold in presence of tunable
return times is given by

𝜆c =
1

Λmax(FV−1)
(43)

with

Fil
jm = 𝛿ij

{
nii
[
1 − p′i

][
𝛿il𝛿im

(
1 − p′l

)
+
(
1 − 𝛿il

)[
pRli𝛿

l
m + 𝛿mi

]]
+ 𝜏−1

(
1 − 𝛿im

)
𝛿lm

(
Rim + nim

)(
1 − p(1 − Rlm)

)
+ 𝜏−1𝛿lm

NP∑
o=1

(
1 − 𝛿io

)(
pRion

i
i + nio

)
pRlo

+ 𝜏−1
(
1 − 𝛿im

)(
1 − 𝛿lm

)(
pRimn

i
i + nim

)}

+ (1 − 𝛿ij )(1 − 𝜏−1)(pRijn
i
i + nij)[

𝛿lj𝛿
l
m(1 − p′k) + (1 − 𝛿lm)(pRlj𝛿

l
m + 𝛿mj)

]

(44)

and

Vil
jm = 𝛿ij𝛿

li
[
𝛿im

(
𝜇 + p′i (1 − 𝜇)(1 − 𝜏−1)

)
− (1 − 𝛿im)(1 − 𝜇)𝜏−1

]
+ (1 − 𝛿ij )

[
𝛿il𝛿jm(𝜇 + 𝜏−1(1 − 𝜇) − 𝛿lm(1 − 𝜇)(1 − 𝜏−1)pRlm

](45)

The elements Fil
jm encode the contagion processes from those

individuals associated with the residence i and the destination j
to those living inside the patch l and commuting to m, whereas
the elements Vil

jm constitute the redistribution of the infectious
population across the system. To quantify the relevance of the
new time scale, let us fix 𝛼 = 𝛿 = 0.4 and 𝜅 = 10 leaves. It is worth
recalling thatmacroscopic arguments based on the redistribution
of the population cannot justify the emergence of the detriment
in such configuration, for mobility tends to accumulate agents
inside the hub. Figure 10a contains the epidemic threshold 𝜆c
as a function of the mobility p and the trip duration 𝜏. There a
striking result shows up: the epidemic detriment vanishes when
increasing the permanence times at the destination. Specifically,
increasing 𝜏 (reducing 𝜏−1) always decreases the value of p∗ from
the one observed in the original MIR model to p∗ = 0, at which
the epidemic detriment is no longer observed. Apart from the
anticipation of the peak p∗, the effect of mobility is boosted as
one increases the new time scale introduced, which is reflected
in the higher slope of the threshold for small p values.
Macroscopically, both phenomena suggest that increasing the

permanence times comprises the curves of the original MIR
model and introduces an effective mobility higher than the ac-
tual mobility p. Nonetheless, this argument fails in capturing the
behavior of the system for p = 1. Note that the effective popula-
tion of the hub in this case reads

ñh
|||p=1 = 𝛼𝜅𝛿 (46)

which is independent of the permanence time. However, the epi-
demic threshold is significantly reduced when extending the trip
duration; this is the most clear example showing that the inter-
play between recurrent mobility and epidemics goes beyond the
redistribution of the population.
To shed more light on the role of the architecture of the mo-

bility network, we now explore how the previous results are al-
tered when varying the distribution of flows across the metapop-
ulation. For this purpose, we fix 𝛿 = 1 and represent the same
curves in Figure 10b, noticing that the rescaled epidemic thresh-
old becomes independent of the permanence times. In contrast,
as stated before, this dependence does appear if 𝛿 = 0.4, corre-
sponding to a scenario in which residents in the leaf can either
visit the hub or another leaf.
Note that the variability of the possible destinations visited

by one individual is crucial to understand the impact of mobil-
ity on epidemic spreading. Although the interacting populations
remain constant and independent of the permanence time for
p = 1, the recurrent nature of mobility allows each single indi-
vidual to escape from the hub, where most contagions occur, and
visit a leaf where they rarely get infected. This mechanism is pro-
moted by higher return rates to the residence patch, which ex-
plains the consistent decrease of the epidemic threshold when
increasing the permanence times 𝜏.
Likewise, note that in the original MIR model, the rescaled

epidemic threshold �̃�c does not depend on the recovery time of
the pathogen 𝜇−1, as shown by Equation (38), so the expected
outcome of mobility policies to fight an ongoing outbreak does
not depend on the nature of the disease. Nonetheless, the intro-
duction of the new time scale has proven the relevance of the
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Figure 10. Rescaled epidemic threshold �̃�c as a function of the mobility parameter p and the return probability 𝜏−1 (color code).The recovery rate is
fixed to 𝜇 = 0.2 and the underlying metapopulation is a star like configuration with 𝜅 = 10 leaves and (𝛼, 𝛿) = (0.4, 0.4) (a) and (𝛼, 𝛿) = (0.4, 1) (b).
Reproduced with permission.[81] Copyright 2020, IOP.

Figure 11. a) Rescaled epidemic threshold �̃�c as a function of the mobility parameter p and the recovery rate 𝜇 (color code). The return probability is
fixed to 𝜏−1 = 0.2. b) Rescaled epidemic threshold �̃�c as a function of the return probability 𝜏

−1 and the recovery rate 𝜇 (color code). The mobility rate
is fixed to p = 1. In both panels, the underlying metapopulation is a star like configuration with 𝜅 = 10 leaves and (𝛼, 𝛿) = (0.4, 0.4). Reproduced with
permission.[81] Copyright 2020, IOP.

alteration of the contact structures of the population and, more
specifically, those corresponding to the interactions made by the
infectious individuals.
To illustrate the interplay between the recurrent mobility and

the time scale associated to epidemic processes, it is convenient
to explore the behavior of the curves �̃�c(p) as a function the
length of the infectious window, encoded in the recovery rate 𝜇.
Unlike in the original MIR model, Figure 11 shows that varying
the infectious period alters the impact of mobility on epidemic
spreading. In particular, when 𝜇−1 ≪ 𝜏, the infectious individual
typically stays at one destination during the infectious period,
which hinders the epidemic detriment and potentiate the neg-
ative effect provided by agents’ accumulation inside the hub. In
contrast, long infectious windows allow them to move and visit
less vulnerable areas, which reduces the number of contagions
and give rise to the epidemic detriment. Finally, Figure 11b
represents the evolution of the rescaled epidemic threshold as

a function of the permanence time for different infectious win-
dows by fixing p = 1. The steeper slope of the epidemic threshold
for small infectious periods confirms that, rather than the abso-
lute value of the permanence time 𝜏, its relative value compared
with the typical infectious window is key to understand how the
trip duration penalizes the epidemic detriment.

5.4. MIR Model with Heterogeneous Contact Patterns

The introduction of the permanence times in the MIR model
reveals that the variation of the contact structures of the pop-
ulation plays a crucial role in the emergence of the epidemic
detriment. However, note that, so far the MIR model and its
explored variants assume the number of contacts of each agent
to be an extensive variable depending on the population gathered
in each geographical area. This way, the effect of changing the

Ann. Phys. (Berlin) 2022, 534, 2100482 2100482 (14 of 26) © 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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set of individuals with whom an agent interacts is intermingled
with the variation of the overall number of contacts. In general,
this fact makes it difficult to attribute the main mechanism
responsible for the epidemic detriment.
Furthermore, one of the most important limitations of the

frameworks based onmetapopulations is that they usually follow
mean-field approaches consisting in considering all the individ-
uals of a given subpopulation as statistically equivalent agents. A
few examples can be found in the literature relaxing the latter as-
sumption to accommodate different types of individuals within
the same subpopulation. For instance, Apolloni et al.[85] define
two different types of individuals and study how the coupling be-
tween the hosts’ mobility and the contact matrix governing their
contact shapes epidemic spreading. Bosetti et al.[86] address the
impact of the degree of mixing between the Turkish population
and the Syrian refugees on epidemic spreading. Likewise, mul-
tiple extensions of the MIR model have been proposed to model
the influence of socioeconomic diversity on the spatial unfolding
of outbreaks[62] or study the spread of SARS-CoV-2 across age-
structured populations.[19]

Nonetheless, in all of them, it is assumed that individuals
make the same number of interactions within each group, thus
hindering the crucial role of heterogeneous contact distributions
in epidemic spreading, as found in themodels studied on contact
networks.[8] The first attempt to overcome both limitations was
proposed by Ruan et al. in ref. [87], where the authors study the
diffusion of epidemics in a simple metapopulation composed of
two coupled patches with inner structures. The model assumes
that each patch displays its own contact network involving the
total number of agents in the system. To couple the inner struc-
ture of each patch with human mobility, the model assumes that
each individual has a residential patch and that the links of each
network are activated according to whether each agent decides
to stay in his/her associated patch or instead moves to the other
one. Interestingly, in spite of the modeling differences with re-
spect to the MIR model, the authors found the epidemic detri-
ment in some regions of the parameters’ space, thus highlight-
ing the ubiquity of this counter-intuitive behavior induced by the
existence of recurrent mobility patterns.
To generalize the analysis of the interplay between contact

structures and mobility to more complex metapopulations, Cota
et al.[88] propose a new extension of theMIRmodel in which each
individual carries an attribute, the degree or number of contacts
k, which is inherent to her/him and is not altered when visit-
ing different locations from her/his residential node. Moreover,
the authors abandon the usual mean-field assumption and in-
stead consider a heterogeneous mean field scenario within each
subpopulation so that the individuals from the same residential
patch are divided into different degree classes, whose members
are assumed to be equivalent.
In terms of the different processes of the original MIR model

described in Section 4, the movement and returns stages remain
intact whereas the new dynamical rules introduced in this work
alter the Interaction stage. In particular, after the population is
redistributed across the system as a consequence of their move-
ments, each agent draws k connections which are randomly es-
tablishedwith those agents sharing his/her location. In structural
terms, apart from the number of patches NP, the mobility matrix
R and the sizes of each subpopulation {ni}, themetapopulation is

characterized by the degree distributions associatedwith each dif-
ferent patch {Pi(k)}. In what follows, the term degree refers to the
number of contacts of each individual rather than to the number
of connections of each subpopulation in the mobility network.
Specifically, to further characterize the epidemic detriment,

the authors generalize the star-like metapopulation introduced
in Section 5. Regarding the degree distributions, it is assumed
that all the individuals from the leaves make ⟨k⟩l contacts, so that
their degree distribution is given by

Pl(k) = 𝛿k⟨k⟩l (47)

In its turn, to introduce contact heterogeneities, the degrees of
individuals from the hub follow a bimodal distribution, splitting
the population into agents with a single contact and others with
kmax interactions. In this sense, the share of population belong-
ing to each group is governed by a new parameter denoted by 𝜂.
Therefore

Ph(k) = 𝜂𝛿k1 + (1 − 𝜂)𝛿kkmax
(48)

Note that the nth moment of the hub’s connectivity distribu-
tion is

⟨kn⟩h = ∑
k

knPh(k) = 𝜂 + (1 − 𝜂)knmax (49)

In particular, fixing the average degree as ⟨k⟩h automatically
determines 𝜂, yielding

𝜂 =
kmax − ⟨k⟩h
kmax − 1

(50)

It is worth remarking that the latter configuration introduces
two flavors of contact heterogeneities. First, the bimodal distribu-
tion of the contacts made by hub’ residents induces local contact
heterogeneities there. Likewise, the possible different average de-
gree between individuals from the hub and the leaves represent
some sort of global heterogeneity, quantifying how different in-
dividuals from distinct locations are. To control this global het-
erogeneity, it is useful to define ⟨k⟩l = 𝛽⟨k⟩h with 𝛽 ∈ (0, 1].
In the MIR model with heterogeneous contact patterns, the

epidemic threshold reads as

𝜆c =
𝜇

Λmax(M)
(51)

where the elements of the new critical matrixM are given by

Mij = ⟨k2⟩j
[
(1 − p)2

𝛿ij

Qi
+ p(1 − p)

(
Rji

Qi
+
Rij

Qj

)
+ p2

∑
l

RilRjl

Ql

]
nj

(52)

In the latter expression, ⟨k2⟩j represents the second moment
of the degree distribution of the patch j and Qi the total number
of edges inside patch j after all the movements have taken place.
Accordingly

Qi ≡
∑
k

k
∑
j

[
(1 − p)𝛿ij + pRji

]
njPj(k) (53)
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Figure 12. Dependence of the epidemic threshold on the mobility parameter p. The underlying metapopulation is the star-like configuration with 𝜅 = 10
leaves. All patches are uniformly populated (𝛼 = 1) and the average connectivity of both hub and leaves is fixed to ⟨k⟩h = ⟨k⟩l = 5, so that 𝛽 = 1. a)
Comparison of the theoretical epidemic threshold obtained using Equation (51) (solid line), scaled by its value for p = 0, and the steady values of the
epidemic size 𝜌 (color code) for (kmax, 𝛿) = (50, 0.4). b) Rescaled epidemic threshold �̃�c for different configurations (kmax, 𝛿), shown in the legends, with
solid and dashed lines for kmax = 50 and 100, respectively. Reproduced with permission.[88] Copyright 2021, IOP.

It is also worth remarking that matrix M qualitatively resem-
bles the critical matrix obtained in the MIR model in Equa-
tion (20). Indeed, the four different contributions to the matrix
elements encode the same microscopic processes but are differ-
ently weighed according to the modified interaction rules. This
reveals the generality of the mobility scheme introduced in this
review and how the MIR model model can be easily extended to
cover more complex dynamics.
Figure 12a shows that the estimation for the epidemic thresh-

old accurately captures the transition from the disease-free to the
endemic state. Recall that in this framework, at variance with the
models previously presented, agents preserve their number of in-
teractions regardless of the place to which they move. This way,
mobility does not shape the number of interactions of the popu-
lation and therefore the epidemic detriment observed in the fig-
ure cannot be justified withmacroscopic arguments based on the
redistribution of the population.
From the elements of the critical matrix M, we immediately

realize that, when p = 0, the epidemic threshold matches that
arising from the HMF equations originally proposed for contact
networks. The connection between this model and the HMF ap-
proach on contact networks reveals that the epidemic detriment
could emerge as a result of dismantling the contact structures of
individuals inside the hub, where localized endemic states per-
sists in the static case, because of the recurrent mobility.
Decoupling the volume of interactions of each individual and

its location allows discriminating the role of both contact hetero-
geneities and flows distribution in shaping the epidemic thresh-
old. To do so, it is convenient to rely again on a star-like metapop-
ulation in which global heterogeneities are neglected (𝛽 = 1) and
the population is uniformly distributed, so that 𝛼 = 1. In this
setup, either the local heterogeneities governed by kmax or the ar-
chitecture of the mobility network governed by 𝛿 are varied.
Qualitatively, Figure 12b proves that the position of the peak

p∗ is determined by the mobility flows of the network but is
independent on the local contact heterogeneities. Specifically,
the peak is anticipated as 𝛿 increases, for the scarce overlapping
between the mobility patterns of the individuals from the hub
and the leaves reduces the beneficial effect of their mixing. In
contrast, note that the exact value of the peak of the epidemic
threshold 𝜆(p∗) is the same regardless of the position of the peak.

Instead, it is increased as the parameter kmax increases, that is,
as more vulnerable the hub is.
Finally, the authors illustrate the effect of the population asym-

metry 𝛼 on the peak of the epidemic threshold. Apart from the pa-
rameter 𝛽, it is convenient to define a new parameter 𝛾 to control
global heterogeneities so that ⟨k2⟩l = 𝛾⟨k2⟩h. Note that the spe-
cific degree distributions of both hubs and leaves impose a con-
straint on these values, which must fulfil

𝛾 =
𝛽2⟨k⟩2h⟨k⟩h(kmax + 1

)
− kmax

(54)

Figure 13 represents the value of the rescaled epidemic thresh-
old at the peak as a function of the population asymmetry 𝛼 and
the parameters controlling the heterogeneities, 𝛽 in (a) and 𝛾 in
(b). The first striking result in both panels is that the epidemic
peak is considerably reduced as the population is asymmetrically
distributed, approaching �̃�c(p

∗) = 1 when 𝛼 → 0. This behavior is
observed because, as the leaves’ population becomes negligible
with respect to the hub’s one, the agents from the leaves hardly
alter the degree distribution of the residents in the hub.
Furthermore, note that, for a fixed 𝛽 value, decreasing 𝛾

leads to an increase of the peak, thus highlighting a higher
beneficial effect of the mobility. This effect is rooted in the
fact that both subpopulations become more different among
each other because of the higher kmax value needed to decrease
𝛾 . Likewise, the constraint posed by Equation (54) makes the
epidemic threshold increase with 𝛽 as a result of the higher kmax
value to keep 𝛾 constant.

5.5. Epidemic Detriment as Delocalization Processes on Complex
Networks

We have so far thoroughly described epidemic detriment due
to spatial homogenization of populations caused by recurrent
mobility.[61,88] This mechanism can be suited more generically
as the delocalization process of the epidemic activity,[89] revised
with some examples in this section. Localization phenom-
ena driven by disordered inhomogeneities play a central role
on condensed matter physics and can change drastically the
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Figure 13. Peak of the rescaled epidemic threshold �̃�c(p
∗) as a function of 𝛼, 𝛽, and 𝛾 , with ⟨k⟩h = 5. a) all patches have the same average connectivity,

with 𝛽 = 1 while the local heterogeneity of the hub is modulated by 𝛾 . Dashed lines correspond to the values of 𝛾 for kmax = 100, 50, and 20, from left
to right. b) The plot considers a fixed value of 𝛾 ≈ 0.0617, corresponding to kmax = 100 when 𝛽 = 1, tuning the connectivity of the leaves with 𝛽. The
population asymmetry is modulated by 𝛼 for all cases. Reproduced with permission.[88] Copyright 2021, IOP.

nature of the critical phenomena in both equilibrium[90,91] and
nonequilibrium[91–93] systems. The ubiquitous heterogeneous
structures of networks, where many dynamic processes take
place, are source of many localization phenomena.[94–97] Con-
sider the fundamental SIS epidemic model on unweighed and
undirected networks with adjacency matrix A, in which each
node represents a single individual which can be infected or
susceptible. The continuous time dynamics involves the spon-
taneous healing rate 𝜇 and the infection rate per contact 𝜆. The
quenched mean-field (QMF) theory[98] for the probability 𝜌i that
a node i is infected is given by[99,100]

𝜕t𝜌i = −𝜇𝜌i + 𝜆(1 − 𝜌i)
∑
j

Aij𝜌j (55)

which yields an epidemic threshold 𝜆c = 𝜇∕Λmax(A).
[99,100] The

same dependence with the inverse of the adjacency matrix is
obtained for discrete-time SIS dynamics.[67,101] This result com-
bined with the fact that the largest eigenvalue of A diverges with
the network sizeN for networks with power–law degree distribu-
tions P(k) ≈ k−𝛾 [102] results in the remarkable consequence that
the QMF epidemic threshold goes to zero in the thermodynamic
limit N → ∞ for any value of the degree exponent 𝛾 .[98]

The QMF result, however, has the drawback that 𝜌i is pro-
portional to the leading eigenvector corresponding to the largest
eigenvalue[99,100] ofAwhich, in the case of randomnetworks with
power–law degree distribution, is localized in a finite set of nodes
for 𝛾 > 5∕2[99,103] implying that the QMF epidemic prevalence
could not correspond to the onset of an endemic phase.[104] How-
ever, the existence of an endemic phase for the SIS on random
power-law networks with 𝛾 > 3 for any value of 𝜆 > 0 was rig-
orously proved by Chatterjee and Durret[105] in complement to
the previous consensus with respect to the asymptotically null
epidemic threshold for scale-free networks with 𝛾 < 3[106,107], ir-
respective of correlation patterns.[108,109] Furthermore, Boguña
et al.[110] put the rigorous proof of ref. [105] into sound physical
grounds in terms of a feedback mechanism in which the hubs
and their k neighbors are able to sustain a local epidemic activity
for a lifespan 𝜏 ≈ exp(a𝜆2k∕𝜇2), where a is a(1) constant, which
is much longer than the typical time, increasing algebraically
with k, for a rare fluctuation generated in a locally active hub

to ignite the epidemic in other distant hubs. This mutual long-
range activation of hubs produces an actual endemic phase for
any nonzero infection rate and any finite value of 𝛾 . The ideas of
ref. [110] were generalized into a criterion to determine whether
the activation of an epidemic process is driven by a localized ac-
tivity of hubs or not.[78,111] The criterion is to compare the lifespan
of epidemic activity in star subgraphs centered on the network’s
hubs with the characteristic time for mutual activation of hubs.
If the former exceeds the latter, the endemic phase is driven by
localized activity of hubs. Otherwise, the transition happens col-
lectively involving extensive parts of the networks.
Epidemic detriment can emerge as a delocalization process on

networked structures as some model parameters are tuned, as
does recurrent mobility rate in the MIRmodel. A first example is
the inclusion of waning immunity in the SIS model configuring
a susceptible-infected-recovered-susceptible (SIRS) dynamics,
where an infected individual becomes recovered and immune
to infections with rate 𝜇 but returns to the susceptible compart-
ment after an average immunity time 1∕𝛼.[112] While, on the one
hand, it is intuitively expected that increasing the immunity time
promotes epidemic detriment, on the other hand, the mean-field
theory yields exactly the same threshold of the SIS model 𝜆c =
𝜇∕Λmax(A) for the SIRS dynamics, independently of the waning
immunity rate 𝛼.[78] However, extensive stochastic simulations[78]

corroborate not only the epidemic detriment as immunity time
increases, but a drastic change happens for degree exponents
𝛾 > 3: the SIRS epidemic threshold converges to a nonzero value
in the thermodynamic limit for any finite waning immunity rate
in sharp contrast with SIS. Figure 14a shows the epidemic detri-
ment as a function of the immunity time 1∕𝛼 for SIRS on large
networks with power law-degree distributions with different val-
ues of 𝛾 generated according to the uncorrelated configuration
model.[113] The delocalization is due to the fact that the lifespan
for epidemic activity in an isolated hub of degree k increases alge-
braically as 𝜏 ≈ k𝛼∕𝜇 ,[78] while the time required for mutual infec-
tion of hubs scales as 𝜏 inf ≈ Ny(𝜆) where y → ∞ as 𝜆 → 0. There-
fore, for sufficiently low value of 𝜆, the mutual infection time ex-
ceeds the lifespan of the largest hub and the epidemic processes
cannot be sustained by activity localized in hubs. For scale-free
networks with 𝛾 < 3, hubs are close enough to grant almost direct
mutual reinfection and the threshold remains vanishing as N →
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Figure 14. Epidemic detriment for networks with power-degree distribution due to a) waning immunity in SIRS, b) diffusion, and c) immunization in SIS
models. Random networks withN = 107 nodes used in (a,b) andN = 106 nodes used in (c) were generated according to the uncorrelated configuration
model.[113] The degree exponent is fixed to 𝛾 = 3.5 for (b) diffusive SIS and 𝛾 = 2.3 for (c) immunization strategies; see refs. [78, 114, 115] for details.
The inset in (c) shows the curve for random immunization in a narrower scale.

∞. In summary, temporary immunity weakens the feedback
mechanism of reinfection of hubs by its neighbors, which were
infected by the hub itself and, consequently, epidemic activity lo-
calization is strongly damped implying in epidemic detriment.
A second example of epidemic detriment involves the SIS

model with diffusion on networks, where the state of two nearest
neighbors i and j are exchanged with rateDij. Since random walk
dynamics on networks leads to the accumulation of particles on
hubs,[46] where infected individuals are more contagious, one in-
tuitively expects that diffusion would facilitate epidemic spread-
ing. Silva and Ferreira[114] investigated two rules corresponding
to a diffusion rate per node equal to D in both cases. In the ran-
dom diffusion model, in which a node i is randomly selected
to perform a movement, the destination j is chosen with equal
chance among the nearest neighbors of i, such that the diffu-
sion rate is Dij = DAij∕ki, where ki is the degree of node i. In a
degree-biased diffusion set up,[116–118] the movement departing
from node i is preferentially directed toward high degree nodes
with rate Dij ∝ DAijkj∕ki. The QMF equation for SIS with diffu-
sion is given by[114]

𝜕t𝜌i = −𝜇𝜌i + 𝜆(1 − 𝜌i)
∑
j

Aij𝜌j − 𝜌i

∑
j

Dij(1 − 𝜌j)

+ (1 − 𝜌i)
∑
j

Dji𝜌j (56)

The meaning of each term is straightforward. A linear
stability analysis around 𝜌i = 0 provides the Jacobian matrix
Jij = −(𝜇 + D)𝛿ij + 𝜆Aij + Dji and the threshold determined by
the condition Λmax(J) = 0. Epidemic thresholds of diffusive SIS
model on power–law networks are presented in Figure 14b
for both stochastic simulations and numerical solution of the
QMF theory. Low rates of random diffusion is beneficial for
epidemic spreading, but diffusion becomes detrimental for high
rates. In the case of biased diffusion, mobility always facilitates
epidemic spreading. Some analytical insights are obtained from
a mean-field theory on a leaking star graph defined as follows.
A center (the hub) is connected to K leaves (the neighbors) of
degree ⟨k⟩ (the outer world). The outer ⟨k⟩ − 1 neighbors of the
leaves are assumed to be permanently susceptible implying that

an infected individual can leak outward the star graph but the
converse cannot happen. For the limit case K ≫ ⟨k⟩, that mimics
a hub immersed in a network of average degree ⟨k⟩, the epidemic
thresholds for biased and random diffusion models become

𝜆c ≃ 𝜇
2D + 𝜇

DK
(57)

and

𝜆c ≃
⟨k⟩(𝜇 + D)2 − D2

DK
(58)

respectively. While the biased diffusion model presents a mono-
tonically decreasing epidemic threshold, the random diffusion
model presents epidemic detriment for D∕𝜇 >

√⟨k⟩∕(⟨k⟩ − 1).
The relation between delocalization and epidemic detriment or

enhancement can be settled as follows. In biased diffusion hubs
always attracts infected individuals since even when an infected
individual moves out the hub its tendency is to move back to it
in the next step. While, on the one hand, random diffusion also
favorsmovement toward higher degree nodes, on the other hand,
if D is too high the infected individual leaves a hub very shortly,
reducing its number of contacts and consequently its spreading
capacity. So, the epidemic detriment in diffusive SIS on networks
comes from the competition betweenmigration toward hubs and
the amount of time that infected individuals remains there, both
boosted by the diffusion rate D.
As a last example of epidemic detriment that can also be

associated with delocalization of epidemic activity, we discuss
strategies of immunizing a fraction r of the nodes of the
network.[119–121] An extensive revision of vaccination models
can be found elsewhere.[121] Here, we discuss the breakdown
of epidemic localization due to immunization using a HMF
approximation where the state of nodes depend only on their
degree k.[106] Without immunization the epidemic threshold is
given by 𝜆c = 𝜇⟨k⟩∕⟨k2⟩.[106] The case of random immunization
leads to a correction in the epidemic threshold given by[119]

𝜆c =
𝜇

1 − r
⟨k⟩⟨k2⟩ (59)
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For the case of scale-free networks with 𝛾 < 3, ⟨k2⟩ diverges
in the thermodynamic limit and the epidemic detriment is not
sufficient to restore a nonzero threshold.
A similar analysis can be constructed for the QMF theory for

the non immunized nodes as follows

𝜕t𝜌i = −𝜇𝜌i + 𝜆(1 − 𝜌i)
N∑
j=1

Aij(1 − rj)𝜌j (60)

where rj = 1 if the node j was immunized and rj = 0 otherwise.
The problem is equivalent to a SIS dynamics on a modified
adjacency matrix A∗

ij = Aij(1 − rj) with epidemic threshold 𝜆c =
𝜇∕Λmax(A

∗). Since the immunization is done at random, the aver-
age over an ensemble of immunization realizations leads to the
epidemic threshold

𝜆c =
𝜇

(1 − r)Λmax(A)
(61)

implying that the epidemic detriment is not capable of restoring
a finite epidemic threshold for any value of the degree exponent
𝛾 .
In a targeted immunization the nodes are immunized in de-

creasing degree order, implying that hubs are immunized prefer-
entially. Consequently, all nodes of degree above k∗, given by r =∑∞

k=k∗
P(k), will be immunized. Using P(k) ≃ (𝛾 − 1)k𝛾−1mink

−𝛾 in a
continuous approach to replace the summation by an integral,
we obtain k∗ = kminr

−1∕(𝛾−1), where kmin is the minimum degree
of the network. So, for any value of r > 0 the degree distribution
has a finite upper cutoff in the thermodynamic limit and nonzero
threshold will occur since localization due to self-activation of
hubs is not at work for small 𝜆. A clever strategy is the acquain-
tance immunization[120] where a contact of a randomly selected
node is immunized. Its inspiration is the fact that the degree dis-
tribution of contacts is given by Pnn(k) = kP(k)∕⟨k⟩[122] such that
the hubs can be chased using contact tracing of randomly cho-
sen nodes. Therefore, the probability that a node of degree larger
than k is chosen to be immunized is

Π(k) ≃ ∫
∞

k
Pnn(k)dk =

(
kmin

k

)𝛾−2

(62)

An upper cutoff for the node degree can be estimated when
the expected number of immunized nodes of degree larger than
k∗ is equal to the total number of these nodes

rNΠ(k∗) = N ∫
∞

k∗

P(k)dk = N
(
kmin

k∗

)𝛾−1

(63)

which translate into k∗ = kminr
−1, which is again finite for a

nonzero fraction of immunized nodes implying once again in a
finite threshold. The epidemic detriment is shown in Figure 14c
for the three aforementioned immunization strategies.
The epidemic detriment is present in the whole interval of r,

below the percolation threshold, determining the fraction of re-
moved nodes above which the network is fragmented into small
components,[120,122] meaning that the largest connected compo-
nent has a size of order N. As expected, the targeted immuniza-
tion has the strongest effect, followed by acquaintance and ran-

dom immunization strategies, the last one being almost negli-
gible. It is important to remark that not only the hubs but also
the average distance among nonimmunized nodes are altered
by immunization and both features impact the level of epidemic
detriment.[115]

Even in the case of random immunization, which does not
alter the largest degree, the average distances increases a little
justifying the mild epidemic detriment observed in the inset of
Figure 14c. Costa and Ferreira[115] analyzed epidemic detriment
in a scenario of nonmassive immunization where a fraction of
immunized nodes is far below the percolation threshold. It was
claimed that the interplay between both structural aspects, the
average degree of the most connected hubs and average shortest
distance among them, are fundamental for determining the epi-
demic detriment, which can be very effective even for a nonmas-
sive and weakly supervised immunization by altering the nature
of the epidemic transition from a specific motif (hubs or other
subextensive structures) to a collectively driven activation.

6. Cities’ Vulnerability and Mobility

Finally, we illustrate how all the knowledge acquired when apply-
ing the MIR model to synthetic networks has been leveraged to
characterize how daily human mobility affects cities’ vulnerabil-
ity to epidemic outbreaks. Following the spirit of different works
within the so-called science of cities,[123–126] Hazarie et al.[75] ex-
plore hierarchies and regularities in cities’ structures to explain
those factors shaping their vulnerability to epidemic outbreaks.
For this purpose, they rely on the LouBar method proposed in
ref. [70], which allows a dimensionality reduction of the mobility
networks. This way, the LouBar method enables to encapsulate
superficial cultural, structural or historical differences existing
between different cities and focus on the mesoscopic structures
governing the flows and agents’ distribution across them. In
some sense, this method resembles the renormalization group
widely studied in statistical physics,[127] which is able to classify
dynamics of different nature within the same universality class.

6.1. LouBar Method

The LouBar method establishes a hierarchical structure within
the different geographical areas inside a city as a function of a
given attribute of interest. This attribute may be related to demo-
graphic features such as the population and the population den-
sity or to socioeconomic indicators such as the GDP per capita. In
practical terms, the LouBar method is a non-parametric method
which allows classifying the patches in a metapopulation in dif-
ferent levels according to their contribution to the Lorenz curve
of the attribute of interest.
If the variable of interest x is continuous and governed by a

given probability function f (x) and cumulative distribution F(x),
the Lorenz curve L(F(x)) is defined as

L(F(x)) = 1⟨x⟩
x

∫
xmin

x′f (x′)dx′ (64)

where the factor ⟨x⟩ is included to ensure that L(1) = 1. In eco-
nomic terms, the value L(x) represents the proportion of the total
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wealth of a system shared between those whose income is lower
than x. Given this definition, the Lorenz curve has been used to
quantify economic inequalities via the Gini coefficient. This co-
efficient is defined as the area between the Lorenz curve and the
curve corresponding to an egalitarian economic distribution pro-
vided by L(F(x)) = F(x).
Note that, in a metapopulation, the variables are discrete and

correspond to different attributes of the patches. Assuming that
the values are sorted so that x1 < … < xNP

, the Lorenz curve is
computed as

L
(
F(i)

)
=

i∑
j=1

xj

NP∑
j=1

xj

(65)

with

F(i) = i
NP

(66)

Once the Lorenz curve L(F) is constructed parametrically, the
LouBar method draws the tangent line to the curve at (1,1) and
finds the intersection point of the latter with the x-axis, setting
a threshold denoted by F∗. From Equation (65), the intersection
point is computed as

F∗ = 1 −
⟨x⟩
xn

(67)

The intersection point F∗ allows discriminating those areas
contributing to the inequalities of the distribution. In particu-
lar, for egalitarian distributions, that is, xn = ⟨x⟩, the intersection
point is F∗ = 0 and, consequently, all the patches are equivalent.
As the value xn grows with respect to the average, the intersec-
tion point F∗ adopts intermediate values separating the patches
into two subsets. In this sense, a patch i is identified as a hotspot
when F(i) > F∗.
In a nutshell, the LouBar method allows coarse-graining the

patches in a metapopulation as a function of their similarities ac-
cording to a given property. One application of this method was
proposed by Bassolas et al. in ref. [74] where the attribute of in-
terest is the number of flows departing from each area. Applying
the method iteratively, the authors embed the complex nature of
the mobility network into a hierarchical structure formed by the
different hotspot levels and their aggregated connections. Inter-
estingly, they derive an indicator, the hierarchical flow, quantify-
ing to what extent the flows connect hotspots within the same
level in different cities, and find that there exists a correlation be-
tween the latter indicator and different environmental and social
features such as the level of pollution or the share of public trans-
port.

6.2. MIR Model with Hotspots

Regarding epidemic spreading, the LouBar method can be ap-
plied to shed some light on the interplay between mobility and

the epidemic threshold in real cities. Given its relevance for the
spread of airborne diseases, the authors in ref. [75] assume that
the function f governing the number of contacts inside each
patch is a monotonically increasing function with the population
density. In particular, for the sake of simplicity, they choose f (i) =
ñi∕ai, being ñi the effective population gathered inside patch i and
ai its area. The results described in the previous sections sug-
gest that the detrimental effect of mobility should be hindered
in those cities where the flows are concentrated around the most
densely populated areas. In this scenario, mobility does not allow
the population to escape from the most vulnerable areas, there-
fore reducing the beneficial effect of contacts’ variability. To quan-
tify this concentration, the authors extract the population density
hotspots and define a new indicator 𝜅, whose value for each city
k is given by

𝜅k =

∑
i,j∈Hk

Tk
ij∑

i,j

Tk
ij

(68)

where H(k) encodes the set of hotspots within city k and that Tk
ij

denotes the flows going from patch i to patch j inside city k. Note
that thismetric lies in the range 0 ≤ 𝜅 ≤ 1. An illustrative scheme
of the dimensionality reduction here proposed is represented in
Figure 15a. To have a fair comparison of the effect of the mobility
in two cities with disparate population densities, the authors con-
sider the rescaled epidemic threshold 𝜆c at p = 1, which in this
model is given by:

𝜆c =
𝜆c(p = 1)
𝜆c(p = 0)

=
dmax

Λmax(Mp=1)
(69)

where dmax represent the largest population density observed
within the patches of each city.
Figure 15b represents the rescaled epidemic threshold as a

function of the 𝜅 value of each city in each of the four countries
analyzed in this study. In all the cases, a moderate negative cor-
relation between both variables is found. As a proof of concept,
the authors fit the curve of each country to a power-law decay
�̃�c ≈ A𝜅𝛽 by using least-squares regression, obtaining negative
values in all the cases for the exponent 𝛽. The different values
observed in these exponents may arise as a consequence of the
different spatial resolutions with which the mobility networks in
each country are constructed or obey further structural features
omitted by the LouBar method.

6.3. Interventions on the Mobility Matrix

To confirm the negative effect of the concentration of mobil-
ity flows around hotspots for cities’ vulnerability, the authors
perform an intervention on the mobility network consisting in
removing all the flows connecting different hotspots and dis-
tributing them among the neighboring suburbs, that is, those
areas not labeled as hotspots, preserving the proportions as
dictated by the original matrix R. In the following, this inter-
vention is referred to as reshuffling intervention. The effect of
such intervention is captured in Figure 16a, which presents a
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Figure 15. a) Mobility network of Chicago in the United States and its associated low-dimensional representation. The brown areas correspond to
suburbs whereas the red areas identify the hotspots defined according to the population density. b1–b4) Rescaled epidemic threshold �̃�c as a function
of the hotspot flow concentration 𝜅 for each of the cities analyzed in United States (b1), Italy (b2), Australia (b3), and South Africa (b4). In all these
panels, the metric 𝛽 is the exponent of the power-law function to which data are fitted in each country (see text for details) and rS is the Spearman rank
correlation coefficient relating the rescaled epidemic threshold values to the hotspots flow concentration. The shadowed region shows 95% confidence
interval for the fitted dependencies. Reproduced with permission.[75] Copyright 2021, Springer.

histogram of the values for the ratio between the normalized
threshold after and before the intervention, �̃�MOD

c and �̃�c respec-
tively. Note that most cities fall into the beneficial domain for
which removing the flow between hotspots increases city’ re-
silience. In contrast, there are a few cities, around 9% of the
cities studied, for which the intervention is detrimental and
accelerates epidemic spreading. The latter behavior is rooted
in those details of the underlying density distribution which
are overlooked when coarse-graining the flow between hotspots
in 𝜅. A breakdown of the cities classified according to the ef-

fect of the reshuffling intervention and their country is made
in Figure 16b.
Despite the clear beneficial effect of removing the flows be-

tween hotspots, this intervention is not doable as a short-term
reaction to an ongoing outbreak due to the long times needed
to achieve the desired redistribution of the population across
the neighboring suburbs. Instead, a more realistic intervention
would be that of targeting specific individuals and forcing them
to stay in their associated patches. It is worth stressing that this
intervention does not entail the lockdown of this population at
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Figure 16. a) Histogram for the ratio between the rescaled epidemic threshold after the reshuffling intervention �̃�MOD
c and the original threshold �̃�c,

highlight two different types of cities: those for which this intervention is beneficial and those for which is detrimental. b) Breakdown of the cities
belonging to each country (color code) as a function of the outcome of the reshuffling intervention. c) Distribution of the ratios following different
intervention schemes for the US cities. The black dots represent the average of each distribution. For the sake of clarity, we explicitly indicate the flows
affected in each intervention. For example, S ↛ H removes the flows from suburbs to hotspots and turns them into self-loops. The red dashed line
highlights the case in which the interventions do not have any effect on the threshold. Reproduced with permission.[75] Copyright 2021, Springer.

home but only prevents the circulation of the targeted individu-
als across the metapopulation. The authors explore four different
scenarios in which the flows connecting two categories of patches
are deleted and converted into self-loops. The affected subpopu-
lations are:

• Intervention I: Individuals moving from suburbs to hotspots.
• Intervention II: Individuals moving from hotspots to suburbs.
• Intervention III: Individuals moving from hotspots to
hotspots.

• Intervention IV: Individuals moving from suburbs to suburbs.

Figure 16c summarizes the effects of deploying each of the in-
terventions described in this section for the United States (US)
cities. The first striking result in this figure is the asymmetric
outcome of closing the flows involving individuals that move be-
tween hotspots and suburbs. Specifically, preventing residents in
the suburbs from visiting the hub increases the city’s resilience
whereas removing the routes from hotspots to suburbs makes
the citymore vulnerable. To understand this asymmetry, wemust

recall that hotspots behave as contagion centers; hence, every in-
tervention aimed at reducing the time spent by the population in
these areas will be beneficial to stop the propagation of the dis-
ease. For this reason, intervention I works whereas in interven-
tion II the spatial isolation of the outbreak is made at the expense
of a higher exposure of the residents in the hub to the contagion
sources, making it fail. Finally, acting on the flows connecting
patches from the same category (namely interventions III and
IV) does not alter the threshold on average because of the inter-
nal similarities within each category.

7. Conclusions

The great development of the international mobility network
over the last 50 years has dramatically changed the course of
pandemics. The removal of the physical gaps separating distant
regions driven by this phenomenon has led to an inversion of
the time scales responsible for global diffusion of outbreaks,
making the spatial confinement of localized outbreaks practically
unfeasible. In this scenario, capturing the factors shaping the
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vulnerability of real cities upon the arrival of imported cases
becomes indispensable to improve our preparedness to fu-
ture pandemics.
In this review, we have revisited the different theoretical mod-

els proposed in the literature to explore the interplay between
our daily recurrent movements and the spread of infectious dis-
eases. The analysis of the differentmodels reveals that the impact
of recurrent mobility on epidemic spreading in real cities is not
universal but is strongly influenced by their structural and de-
mographic features and how human flows are distributed across
them. This impact is the result of the trade-off between two an-
tagonistic effects: on the one hand, mobility helps mixing the
different subpopulations inside a city, thus resulting in a higher
exposure of the overall population. On the other hand, mobility
dismantles the contact structures responsible for the emergence
of local outbreaks in the most vulnerable areas by allowing their
population to be away from the focus on contagion.
The outcome of such competition depends on the infectious-

ness of the pathogen. While for highly infectious pathogens, the
first mechanism prevails and mobility tends to accelerate the
spread of diseases, in less dangerous scenarios the beneficial ef-
fect of the mobility becomes more relevant, giving rise to the epi-
demic detriment here analyzed. As a consequence, policies act-
ing on the mobility of the population should be tailored for each
specific disease and epidemic scenario.
The microscopic roots of the epidemic detriment shed light

into its connection with other phenomena found when address-
ing epidemic spreading on contact networks, such as the vul-
nerability of heterogeneous configurations to targeted control
policies or the increase of the epidemic threshold observed in
temporal networks as a result of the time-varying nature of the
interactions.[128] Likewise, the detriment of a process driven by
hosts’ movements is not a phenomenon restricted to the inter-
play between epidemics and mobility. For instance, it has been
also been reported in genetics,[129–131] where the fixation of muta-
tions in the population is hampered when high migration rates
of the population are introduced.
From a practical point of view, characterizing correctly how

the local transmission of a disease is affected by our daily ur-
ban rhythms becomes essential for the design of optimal in-
terventions to increase cities’ resilience to future threatening
epidemic outbreaks. For this purpose, the theories developed
thus far focusing on synthetic simple networks must move to-
ward data-driven approaches incorporating the complex mobil-
ity patterns observed in real systems,[36] the multiscale nature
of human mobility[33] or other socioeconomic layers shaping
the spread of diseases such as the specific age-stratified contact
matrices[132,133] or the existence of diverse social classes within
the same population.[134]
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