

Trabajo Fin de Grado

Caracterización reométrica de polvos de uso industrial y

de la respuesta de un reómetro de diseño propio

Rheometric characterization of powders for industrial use and calibration of the response of a self-designed rheometer

Autor

Bianca Elena Calin Popa

Director

Khashayar Saleh (Dto. Ingeniería de Procesos Industriales- UTC)

Ponente

Esteban Calvo Bernad (Área de Mecánica de Fluidos- Eina)

Grado en Ingeniería Química Escuela de Ingeniería y Arquitectura

Curso 2021/2022

<mark>Escuela de</mark> Ingeniería y Arquitectura Universidad Zaragoza

Dedicatoria y agradecimientos

Primeramente, me gustaría dedicar este trabajo a mis padres, que son los que me han apoyado toda mi vida y aún más en mi trayectoria universitaria y en las miles de decisiones tomadas.

Doy gracias a Khashayar Saleh por ofrecerme este tema de TFG y por darme a conocer el gran y verdadero trabajo que hay en un laboratorio y el campo de la reología de polvos. A Mikel Leturia y Elias Daouk por orientarme y organizar mis ideas, por dedicar su tiempo libre a escucharme y ayudarme en todo lo posible y sobre todo a Lina Cayla (alumna de doctorado en la UTC). Sin ella este trabajo no habría podido llevarse a cabo. Ha sido mi fuente de motivación diaria, mi supervisora, mi compañera de laboratorio y la persona que más tiempo ha invertido en enseñarme el funcionamiento de todos los instrumentos y en resolverme todas las dudas, le estaré eternamente agradecida. Finalmente, quiero agradecerle a mi novio Neil, mi mayor motivación de este año, la persona que ha aguantado mis llantos, mi desesperación, mi incertidumbre y mi estrés, gracias por saber levantarme cuando a mi ya no me quedaban fuerzas.

Resumen

Los polvos son materiales con un comportamiento mecánico complejo. Muchas veces son vistos como un conjunto de partículas, pero en realidad son una mezcla de sólidos en forma de partículas, líquidos (agua) en su estructura o en la superficie de partículas, y gases (aire entre partículas). Con ello su comportamiento y sus características son difíciles de prever y de analizar. Pero es importante de entender y ser capaces de medir todas las propiedades que caracterizan el comportamiento de un polvo (compresibilidad, fluidez, hidrofobicidad, permeabilidad, cargas electrostáticas...). Por lo tanto, los polvos pueden comportarse como una entidad sólida, deformándose de manera plástica, por ejemplo, fluir como un líquido al ser aireado o ser comprimido como un gas.

En este proyecto se ha utilizado el nuevo instrumento GranuDrum y el clásico reómetro FT4 para medir distintos parámetros de diversos materiales (índice de cohesión, ángulo de reposo, BFE, SI, FRI...) con el objetivo de estudiar la fluidez (*flowability*) de estos materiales, además de analizar las diferentes informaciones proporcionadas por los parámetros medidos y encontrar las similitudes entre ambos resultados obtenidos con ambos instrumentos.

Finalmente, se ha realizado una pequeña parte de simulación para conocer el funcionamiento del Software LIGGGHTS basado en el método DEM y los usos que se le puede dar en el campo de los polvos.

INDICE GENERAL

INDICI	E DE FIGURAS	7
INDICI	E DE TABLAS	10
PAR	TE I: Experimentación y análisis	14
1. Int	roducción	14
1.1.	Motivación del trabajo	14
1.2.	Objetivos	15
2. Fu	ndamento teórico: Propiedades reológicas de los fluidos	17
2.1.	Introducción	17
2.2.	Viscosidad	17
2.3.	Fluidos newtonianos y no newtoniano	19
2.4.	Tensión superficial	20
2.5.	Números adimensionales	22
3. Fu	ndamento teórico: Propiedades de polvos, medición y problemáticas	
3.1.	Tamaño de partícula	
3.2.	Densidad aparente	
3.3.	Fluidez	25
3.4.	Higroscopicidad	25
3.5.	Solubilidad	
3.6.	Humectabilidad	
3.7.	Dispersabilidad	
4. Pro	oceso GranuDrum	

4.1.	Introducción	27
4.2.	Parámetros y funcionamiento	27
4.3.	Configuración e interpretación de datos	31
4.4.	Materiales y procedimiento seguido	35
4.5.	Resultados: ÍNDICE DE COHESIÓN	37
4.6.	Resultados: Ángulo de Reposo	45
4.7.	Conclusiones GranuDrum	50
5. Pro	ceso FT4	52
5.1.	Introducción	52
5.2.	Breve explicación del funcionamiento: test BFE y	52
5.3.	Tipos de test	54
5.4.	Resultados y discusión	57
5.5.	Conclusiones FT4	59
6. Cor	nclusiones GranuDrum y FT4	61
PAR	ГЕ II: Simulación DEM	63
1. Intr	oducción	63
2. LIC	GGGHTS,PARAVIEW, ONESHAPE	64
2.1.	LIGGGHTS	64
2.2.	PARAVIEW	64
2.3.	ONSHAPE	65
		65
3. Pro	grama usado: script	66
		66
4. Cor	nclusión	68
BIBL	IOGRAFIA	72

TABLAS	77
PLANIFICACION TEMPORAL	85

INDICE DE FIGURAS

Figura 2.1 Representación del concepto de viscosidad 17
Figura 2.3. Relación entre el esfuerzo cortante y la velocidad de deformación en diferentes materiales ⁵
Figura 2.4 (a) Sección de una gota esférica y representación de las fuerzas de tensión superficial (b) Interfase con radios de curvatura R1 y R2 en las direcciones ortogonales. ⁶
Figura 3.1 Gráfico de los procedimientos más empleados para la determinación del tamaño de partícula
Figura 4.2.1. Caja GranuDrum vista exterior
Figura 4.2.2. Caja GranuDrum vista interior
Figura 4.2.3. Tambor GranuDrum
Figura 4.2.4 Interfase calculada por GranuDrum
Figura 4.2.5 Ilustración simple del cálculo del índice de cohesión y el ángulo de reposo medio
Figura 4.3.1 Ajustes del software en la parte experimental ¹¹
Figura 4.3.2 Parámetros Threshold y Crop
Figura 4.3.3 Apartado de Images
Figura 4.3.4 En rojo, la posición media de la interfase y en verde las fluctuaciones de la interfase ¹¹
Figura 4.3.5 Apartado de Graphs

Figura 4.5.2 Gráfico del índice de cohesión (Cohesive Index) frente a la velocidad de
rotación de los distintos tamaños de partículas de las Microesferas de vidrio
Figura 4.5.3 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los
distintos tamaños de partículas de las Microesferas de vidrio 39
Figura 4.5.4. Imagen tomada del grupo de partículas de tamaño de 0-20 µm 39
Figura 4.5.4 Gráfico del índice de cohesión (Cohesive Index) frente a la velocidad de
rotación de los distintos tamaños de partículas de Zirconio 40
Figura 4.5.5 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los
distintos tamaños de partículas de Zirconio 40
Figura 4.5.6 Imagen de la interfase de un tamaño de partícula de 1,2-1,4 mm (derecha) y
0,1-0,2 mm (izquierda) tomada con GranuDrum 41
Figura 4.5.7 Gráfico del índice de cohesión (Cohesive Index) frente a los distintos
tamaños de partículas de los Metales G 42
Figura 4.5.8 Gráfico del índice de cohesión (Cohesive Index) frente a los distintos
tamaños de partículas de los Metales S 43
Figura 4.5.9 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los
distintos tamaños de partículas de AMBOS Metales 43
Figura 4.5.10 foto de las partículas del polvo de metal G (1,7 mm) (derecha) y la interfase
calculada por GranuDrum (izquierda) 44
Figura 4.5.11 foto de las partículas del polvo de metal S (derecha) y la interfase calculada
por GranuDrum(izquierda)
Figura 4.6.2 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de
rotación de los distintos tamaños de partículas de las Microesferas de vidrio 45
Figura 4.6.3 Gráfico resumen del ángulo de reposo (Angle of repose) frente a los distintos
tamaños de partículas de las Microesferas de vidrio 46
Figura 4.6.4 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de
rotación de los distintos tamaños de partículas de Zirconio- CON MALA MEDIDA 46

Figura 4.6.5 Foto tomada del grupo de partículas de 1-1,2 mm donde se aprecia la falsa avalancha
Figura 4.6.6 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de Zirconio- CON BUENA MEDIDA 47
Figura 4.6.7 Gráfico resumen del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de Zirconio
Figura 4.6.8 Gráfico del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de los Metales G
Figura 4.6.9 Gráfico del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de los Metales S
Figura 4.6.10 Gráfico resumen del ángulo de reposo ((Angle of repose) frente a los distintos tamaños de partículas de AMBOS Metales
Figura 4.6.11 Gráfico resumen propio de las conclusiones obtenidas
Figura 5.1.1 Reómetro FT4 ²⁰
Figura 5.2.1 Medidas de torque y fuerza- FT4 ²⁰ 53
Figura 5.2.3. Representación del BFE (derecha) y del SE (izquierda) ²⁰ 53
Figura 5.3.1 Ilustración del análisis breve del FRI ²⁵
Figura 5.3.2 Ilustración del cilindro de vidrio FT4 y los elementos para calcular el CBD
Figura 5.4.1 Gráfico del test de BFE para las Microesferas de vidrio 57
Figura 5.4.2 Gráfico del resto de test comentados en el apartado 5.3 para las Microesferas de vidrio
Figura 5.4.3 Gráfico del test de BFE para el Zirconio 58
Figura 5.4.4 Gráfico del resto de test comentados en el apartado 5.3 para e Zirconio 59
Figura 5.5.1 Ilustración del "corte" y del movimiento en vacío que realiza el aspa cuando el polvo es muy fino

Figura 5.5.2 Ilustración de los espacios entre partículas para un polvo cohesivo y no
cohesivo ²⁷
Figura 5.5.3 Gráfico resumen propio de las conclusiones obtenidas 61
Figura 2.1 Geometría creada con ONSHAPE con las dimensiones de GranuDrum 65
Figura 4.1 Simulación DEM de un tambor rotativo con las mismas características que
GranuDrum estático ^{33 34}
Figura 4.2 Simulación DEM de un tambor rotativo con las mismas características que
GranuDrum en movimiento- velocidad de 12 rpm ³⁴
Figura 4.3 Simulación DEM de un tambor rotativo con las mismas características que
GranuDrum comparación de forma ³⁸
Figura 4.4 Simulación DEM de un tambor rotativo- análisis de temperatura ³⁹
Figura 4.5 Simulación DEM de un tambor rotativo con partículas de distintos tamaños y
formas ^{40,41}

INDICE DE TABLAS

TABLA 4.4.1	36
Tamaños de partícula de las Microsferas de vidrio utilizados	36
TABLA 4.4.2	36
Tamaños de partícula de Zirconio utilizados	36
TABLA 4.4.3	36
Tamaños de partícula de los Mteales G utilizados	36
TABLA 4.4.4	36
Tamaños de partícula de las Esferas de vidrio utilizados	36

TABLA 4.5.1 38
El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos
tamaños de partículas de las Microesferas de vidrio
TABLA 4.5.3
El índice de cohesión (Cohesive Index) frente a la velocidad de rotación para los
diferentes tamaños de partículas de Zirconio 40
TABLA 4.5.4
El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos
tamaños de partículas de los Metales G 42
TABLA 4.5.5
El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos
tamaños de partículas de los Metales S 42
TABLA 5.3.1
Interpretación del test de estabilidad ²⁰
TABLA 5.3.2
Interpretación del test de FRI ²⁰²²
TABLA 5.3.1
Interpretación del test de Energía específica ²⁴ 56
TABLA 4.6.1
El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos
tamaños de partículas de las Microesferas de vidrio:
TABLA 4.6.2 68
El ángulo de reposo (Angle of repose) frente a la velocidad de rotación para los diferentes
tamaños de partículas de Zirconio
TABLA 4.6.3

El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos
tamaños de partículas de los Metales G 69
TABLA 4.6.4
El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos
tamaños de partículas de los Metales S
TABLA 1 ANEXO
Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada
valor de velocidad y de cada tamaño de polvo de las microesferas de vidrio (extraídos de
los datos de GranuDrum)
TABLA 2 ANEXO 80
Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada
valor de velocidad y de cada tamaño de polvo de zirconio (extraídos de los datos de
GranuDrum)
TABLA 3 ANEXO 81
Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada
valor de velocidad y de cada tamaño de polvo de Metal G (extraídos de los datos de
GranuDrum)
TABLA 4 ANEXO 82
Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada
valor de velocidad y de cada tamaño de polvo de metal S (extraídos de los datos de
GranuDrum)
TABLA 5 ANEXO 83
Valores extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD, energía
y masa) para el polvo de Zirconio
TABLA 6 ANEXO 83
Valores medios extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD,
energía y masa) para el polvo de Zirconio

TABLA 7 ANEXO	83
Valores extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD,	energía
y masa) para el polvo de Microesferas de vidrio	83
TABLA 8 ANEXO	84
Valores medios extraídos de la experimentación con el reómetro FT4 (BFE,SI,FR	I, CBD,
energía y masa) para el polvo de Microesferas de vidrio	84

PARTE I: Experimentación y análisis

1. Introducción

1.1. Motivación del trabajo

La reología de polvos tiene una gran importancia en una amplia gama de industrias para apoyar el desarrollo y la fabricación de nuevos productos. Los polvos contribuyen al 80% de todos los productos manufacturados. La reología de los materiales en polvo consiste en el estudio del comportamiento de los polvos vistos como conjuntos, formados por sólidos, líquidos y gases. Este estudio permite a los usuarios medir la fluidez, las propiedades de corte y las propiedades características de cada material como la densidad, entre otras.¹

No obstante, los polvos, a pesar de su gran presencia en la industria, presentan grandes desafíos; su producción, su uso para el desarrollo de un producto final y su análisis y control de calidad se dificultan debido a la complejidad de su comportamiento. La comprensión de la reología de los polvos es esencial en la optimización de los procesos de producción y el desarrollo de un producto de calidad.¹

La caracterización reológica de los materiales, por medio de ensayos reológicos, proporciona una visión global del comportamiento del material. Además, las respuestas reológicas están relacionadas con la estructura final de un compuesto, por lo que dichos ensayos juegan un rol clave en la creación de nuevos compuestos y materiales.²

Debido a la gran importancia de la reología de polvos cada vez se requieren más procesos y sistemas capaces de realizar la caracterización de polvos y capaces de prever el comportamiento de estos.

En el Centro de Investigación de la Universidad Tecnológica de Compiègne (UTC) se llevan a cabo numerosas investigaciones para automatizar dichos procesos de caracterización. En trabajos anteriores se realizaron estudios sobre un analizador universal de flujo de polvo, el FT4 Powder Rheometer, con el objetivo de producir un reómetro de menor tamaño de diseño propio.

El presente trabajo surge en colaboración con GranuTools, una empresa que trabaja con centros investigación internacionales buscando la mejora de los métodos de caracterización de los materiales pulverulentos.

Actualmente ofrecen una nueva propuesta: el GranuDrum. Es un dispositivo capaz de imitar las condiciones de un proceso como el mezclador giratorio en un proceso farmacéutico.³

Siguiendo esta línea de investigación, este trabajo realizará la comparación y calibración de este nuevo método de medición con el bien establecido Freeman FT4 y contribuirá como estudio preliminar para la futura creación de un reómetro de diseño propio en las instalaciones de la UTC.

1.2. Objetivos

Como objetivo principal de este trabajo se encuentra la caracterización de polvos de carácter industrial mediante 2 métodos experimentales.

Pero estos son los objetivos generales del trabajo:

- Conocer los parámetros influyentes en el comportamiento de los polvos
- Conocer el funcionamiento de las máquinas Freeman FT4 y GranuDrum
- Toma y comparación de medidas con las dos máquinas.
- Aprender a calibrar una máquina (GranuDrum) y a definir los intervalos de medida con los que trabaja y que uso se lo puede dar y en qué casos se puede usar.
- Aprender a utilizar el Software para la simulación DEM y LIGGGHTS

• Parametrizar la simulación DEM para diferentes polvos para la posterior simulación de su comportamiento.

Fundamento teórico: Propiedades reológicas de los fluidos

2.1. Introducción

Los fluidos son sustancias capaces de "fluir" adaptando su forma a los recipientes en los que están contenidos. Expresado de forma más académica, un fluido en equilibrio puede no soportar fuerzas tangenciales o cortantes.

Los fluidos pueden clasificarse como fluidos líquidos o gaseosos. Los líquidos son prácticamente incompresibles, ocupan un volumen definido y presentan superficies libres. Por lo contrario, los gases son muy compresibles y se van a expandir hasta ocupar todas las partes del recipiente que lo contenga, sin presentar una superficie libre que los limite.⁴

Figura 2.1 Representación del concepto de viscosidad

2.2. Viscosidad

La *figura 2.1* muestra el experimento con el que Newton derivó el concepto de viscosidad. Consta de una lámina líquida de espesor y colocada entre dos placas planas paralelas. La placa inferior está inmóvil mientras que la superior se desplaza a velocidad U. Para que este movimiento se produzca, debe ejercerse una fuerza F sobre la placa de

arriba. Por estas condiciones de contorno, el campo de velocidades en el fluido es lineal en la dirección Y con un gradiente de velocidad constante:

$$\frac{U}{y} = \frac{dV}{dy} \tag{1}$$

Newton confirmó experimentalmente que la fuerza necesaria para desplazar la placa superior era proporcional a la superficie de la misma y al gradiente espacial de velocidad, por lo que:

$$F \propto \frac{AU}{y} = A \frac{dV}{dy}$$
 o $\frac{F}{A} = \tau \propto \frac{dV}{dy}$ (2)

Si llamamos a τ tensión o esfuerzo cortante, la viscosidad absoluta o dinámica μ es la constante de proporcionalidad entre el esfuerzo constante y el gradiente de velocidad:

$$\tau = \mu \frac{dV}{dy} \quad o \quad \mu = \frac{\tau}{dV/dy}$$
⁽³⁾

Los fluidos que siguen esta relación se les llama *fluidos newtonianos*. De acuerdo con la *ec. (3)* las unidades de μ son $\frac{kg s}{m^2}$.

También se puede definir el coeficiente de viscosidad cinemática:

$$\nu = \frac{\mu}{\rho} \tag{4}$$

Donde ρ es la densidad.

Según la *ec.* (4) sus unidades son $\frac{m^2}{s}$ ya que $\frac{(kg\frac{s}{m^2})(\frac{m}{s^2})}{kg/m^3} = \frac{m^2}{s}$.

En los líquidos la viscosidad disminuye con el aumento de la temperatura, pero apenas se ve afectada por las variaciones de presión.

La viscosidad absoluta de los gases aumenta al aumentar la temperatura, pero casi no varía con la presión. En cambio, el peso específico de los gases varía con la presión cuando la temperatura es constante, haciéndose la viscosidad cinemática es inversamente proporcional a la presión en base a la ecuación de estado de los gases perfectos.⁴

2.3. Fluidos newtonianos y no newtoniano.

2.3.1. Fluidos newtonianos

Para estos fluidos, la viscosidad es independiente de gradiente de la velocidad y solo depende del estado termodinámico del fluido (especialmente de la temperatura). Los fluidos newtonianos siguen la ecuación (3) donde la viscosidad es una constante. ⁵

Entre los fluidos newtonianos se encuentran el agua, el aire y gases comunes, la gasolina...

2.3.2. Fluidos no newtonianos

Por el contrario, en los fluidos no newtonianos la viscosidad varía con el gradiente de velocidad. En el caso de estoy fluidos se habla de viscosidad aparente perdiendo y no siguen la ecuación (3) su sentido de ser, ya que la viscosidad deja de ser una propiedad termodinámica del fluido.

En la figura 2.3 se puede ver la diferencia de comportamiento de cuatro materiales:

*Figura 2.3. Relación entre el esfuerzo cortante y la velocidad de deformación en diferentes materiales*⁵

2.4. Tensión superficial

Las moléculas inmersas en una masa líquida están sometidas a la acción de fuerzas atractivas en todas las direcciones proporcionando una resultante nula. Pero las moléculas que se encuentran en la superficie están sometidas a fuerzas de cohesión generando una resultante perpendicular a la superficie. ⁴Para vencer estas fuerzas y mover las moléculas, es decir aumentar el área de superficie libre de fluido, es necesaria cierta energía. Dicha energía recibe el nombre de **tensión superficial** σ y tiene como unidades N/m.

Hay que tener en cuenta que la tensión superficial depende de los dos fluidos que se encuentran en contacto y de la temperatura. Sin embargo, un aspecto importante es que se produce una diferencia de presión cuando la superficie es curva. Considerando una interfase esférica con un radio de curvatura R y presiones *pi* en el interior y *po* en el exterior, (Figura 2.3.1) con el equilibrio de fuerzas se obtiene: ⁶

$$\sigma (2\pi R) = (pi - po)\pi R^2$$
(5)

Podemos despejar la diferencia de presiones de la siguiente manera:

$$pi - po = \frac{2\sigma}{R} \tag{6}$$

Con ello se puede interpretar que el valor de presión más alto se obtiene en el lado cóncavo, y este valor será alto si R es pequeño.

Figura 2.4 (a) Sección de una gota esférica y representación de las fuerzas de tensión superficial (b) Interfase con radios de curvatura R1 y R2 en las direcciones ortogonales.⁶

Para las superficies no esféricas representadas con dos radios de curvatura R1 y R2 (Figura 2.3.1 b) se puede expresar la diferencia de presiones como:

$$pi - po = \sigma \left(\frac{1}{R1} + \frac{1}{R2}\right) \tag{7}$$

Si R1 = R2 se obtendrá la ecuación (5).⁶

2.5. Números adimensionales

2.5.1. Número de Reynolds

Este número adimensional se relaciona con la densidad, viscosidad, velocidad y dimensión típica de un flujo. Es utilizado para estudiar el comportamiento viscoso de los fluidos. Si el número de Reynolds es pequeño, indica un movimiento lento y viscoso, por lo tanto, el flujo puede considerarse laminar y si es grande se caracteriza por poseer fuertes fluctuaciones. En este último caso, el flujo puede considerarse turbulento.⁷

Para un fluido que circula por el interior de una tubería recta y circular (de diámetro D), el número de Reynolds viene expresado como:⁷

$$Re = \frac{\rho \nu D}{\mu} \tag{8}$$

2.5.2. Número de Weber

Este número adimensional es muy útil cuando existe una superficie entre dos fluidos diferentes. El número de Weber se define como el coeficiente entre las fuerzas inerciales y la tensión superficial de un fluido:

$$We = \frac{\rho v^2 l}{\sigma} \tag{9}$$

Donde v y l son respectivamente, a velocidad del fluido y una longitud característica, (normalmente, el diámetro de una gota).⁷

2.5.3. Número de Bond

Este número adimensional caracteriza la relación de las fuerzas gravitacionales con las fuerzas de tensión superficial:

$$Bo = \frac{\Delta \rho g b^2}{\sigma} \tag{10}$$

Donde b es una escala de longitud característica de la geometría de flujo.

Cuando el número de Bond tiene un valor elevado, el efecto producido por la tensión superficial comparado con la gravedad son despreciables, inversamente cuando Bo tiene un valor pequeño.⁸

3. Fundamento teórico: Propiedades de polvos, medición y problemáticas

Cada polvo tiene sus propias características y en muchas ocasiones van a condicionar su calidad final. Poseen propiedades intrínsecas como la composición, granulometría, morfología, densidad... Pero su comportamiento no solo viene definido por sus características, sino que también por las interacciones que tendrá con el medioambiente, sobre todo con el aire: humedad, temperatura, carga electrostática, coeficiente de aireación... El conjunto de todas estas propiedades e interacciones tienen un impacto en el comportamiento del material.

A continuación, se detallan 7 propiedades relevantes de los polvos y las problemáticas que pueden causar.

3.1. Tamaño de partícula

El tamaño de partícula engloba a la forma además de su distribución granulométrica. Para realizar la medida del tamaño de partícula se realiza una **granulometría**. Esta medida es importante ya que influirá en otras propiedades. Los polvos se clasifican de la siguiente manera, según la **USP**:

- Muy grueso: partículas de tamaño >1000µm
- Grueso: 355-1000 μm
- Moderadamente fino: 180-355 µm
- Fino: 125-180 μm
- Muy fino: 90-125 μm⁹

Para determinar el tamaño de partícula se usan principalmente los siguientes procedimientos:

Figura 3.1 Gráfico de los procedimientos más empleados para la determinación del tamaño de partícula

Para medir el tamaño de partícula en este proyecto se ha usado el Análisis Granulométrico, en el Apartado "Anexo" se mostrarán los resultados. Conocer el tamaño de partícula es importante a la hora de realizar un experimento y saber que equipos se pueden usar para un tamaño y cual no.

3.2. Densidad aparente

Se define como la masa del material por unidad de volumen ocupado por este en un recipiente, comprendiendo los espacios entre sólidos (lecho de partículas). Esta propiedad se mide en kg m³.

Esta propiedad es esencial en la determinación de recipientes de almacenamiento o máquinas necesarias. Si su valor es grande, el coste de transporte calculado en función del volumen será menor. La masa volumétrica también influye en la hidratación del material.¹⁰

3.3. Fluidez

Es la capacidad de un polvo a fluir, esta propiedad es muy importante en operaciones como: envasado, dosificación, mezcla... Causando daños en los equipos en unas ocasiones y favoreciendo los procesos de fabricación en otras. Por ello es muy importante cualquier parámetro que nos de información sobre el tipo de flujo.

Para evaluar la fluidez de un polvo se pueden usar varios métodos como: medida del ángulo de reposo y ensayos de asentamiento (índice de Hauser), por ejemplo¹⁰. **Para este proyecto se realizarán medidas para determinar el ángulo de reposo.**

Para analizar la fluidez se usarán el instrumento GranuDrum y el reómetro Freeman FT4.

3.4. Higroscopicidad

Se define polvo higroscópico a aquel que tiende a retener humedad del aire, siendo por el proceso de absorción o adsorción. Convencionalmente, un polvo se considera higroscópico cuando el porcentaje de agua que puede retener es superior a 10%. Un polvo saturado de agua puede dificultar su fluidez al formar **aglomerados** y causar un bloqueo en un equipo de transferencia. Para evitarlo, se precisa de un proceso previo de deshumidificación.¹⁰

Ejemplos de polvos higroscópicos son: la lactosa, soda, óxido de magnesio...

3.5. Solubilidad

Este parámetro se define como la velocidad y nivel en los que los componentes de las partículas de polvo se disuelven en otra sustancia para formar una mezcla homogénea. Esta propiedad influirá en la facilidad y rapidez de disolver un polvo en una fase acuosa en un proceso industrial, por ejemplo.

3.6. Humectabilidad

Esta propiedad describe la afinidad que tiene la superficie de las partículas con el agua. Así, partículas poco humectables no pueden ser mojadas. Este parámetro. Este parámetro se caracteriza, por ejemplo, con la medida del ángulo de contacto entre el agua y la partícula, el cual dependerá de la presión, la temperatura y la humedad para una combinación especifica de líquido-sólido.

Es una propiedad importante cuando el polvo debe ser disuelto (v.g. cuando es usado como ingrediente de una bebida).¹⁰ Si el polvo es poco humectable, quedará suspendido en la superficie libre por la tensión superficial, impidiendo su rápida disolución en el líquido.

3.7. Dispersabilidad

Es la facilidad con la que los polvos se distribuyen como partículas individuales en la fase líquida (normalmente con agitación). Por ejemplo, en el campo de la nutrición infantil se utilizan polvos de alta dispersabilidad.

También hay parámetros a considerar como la superficie de las paredes (ya que hay una interacción entre la partícula y la pared), la humedad del ambiente, la tasa de aireación y la temperatura.

4. Proceso GranuDrum

4.1. Introducción

Los materiales granulares y polvos finos son muy utilizados en la industria, contribuyendo al 80% de todos los productos manufacturados. Su caracterización permitirá la comprensión de los procesos y su optimización y el desarrollo de nuevas materias, entre otras. Dichos métodos de caracterización están relacionados con sus propiedades y el comportamiento. Sin embargo, el comportamiento físico durante décadas se ha basado en viejas técnicas de medición.

Hoy en día se dispone de técnicas de medición y métodos que han sido automatizadas y que proporcionan resultados reproducibles del comportamiento de los polvos. Una de ellas corresponde al dispositivo, conocido como GranuDrum.

Este instrumento caracteriza la fluidez de un polvo observando su comportamiento dentro de un tambor giratorio.³

4.2. Parámetros y funcionamiento

Este instrumento se basa en la capacidad de imitar las condiciones de un proceso. GranuDrum es capaz de medir las propiedades de un flujo como: el ángulo de flujo dinámico, el índice cohesivo, el primer ángulo de avalancha y la aireación de un polvo.¹¹

El instrumento se compone, grosso modo, de 2 piezas: la "caja" y el cilindro horizontal con paredes laterales transparentes llamado tambor. Las *figuras* 4.2.1 - 4.2.3 muestran los principales componentes del aparato.

Figura 4.2.1. Caja GranuDrum vista exterior

Figura 4.2.2. Caja GranuDrum vista interior

Figura 4.2.3. Tambor GranuDrum

El procedimiento por seguir es el siguiente:

El cilindro es rellenado hasta la mitad de su capacidad con la muestra de polvo a analizar. El tambor girará a una velocidad entre 2 y 60 rpm. Mientras éste gira, una cámara CCD toma entre 30 y 100 imágenes a una tasa de 1 imagen/segundo. En cada instantánea, GranuDrum detecta la interfase polvo-aire y calculará la posición media de dicha interfase y las fluctuaciones producidas alrededor de la superficie promedio. La interfase finalmente se representará de la siguiente manera:¹¹

Figura 4.2.4 Interfase calculada por GranuDrum

GranuDrum también calculará el ángulo de reposo (o el ángulo de flujo) dinámico α_f a partir de la posición media de la interfase. Por otro lado, calculará el índice cohesivo dinámico σ_f con las fluctuaciones producidas en esa interfase. Siendo:

- Ángulo de reposo: es el mayor ángulo de inclinación que un material de la pendiente permanecerá estático sin deslizarse pendiente abajo.
 Un valor bajo de este indicará una buena fluidez del polvo, en nuestro caso. El ángulo de reposo depende de múltiples parámetros como: la fricción y la forma de las partículas y las fuerzas cohesivas (Van Der Waals, fuerzas electrostáticas...)¹²
- **Índice de cohesión:** Es un índice que indica cuánto de cohesivo es un material, y por lo tanto la fluidez del material, es decir, la capacidad que tiene de generar aglomerados.
- A diferencia del ángulo de reposo, este índice solo depende de las fuerzas cohesivas entre partículas. Al aumentar las fuerzas de cohesión también lo hará el índice de cohesión.

Además de medir los parámetros anteriores, GranuDrum es capaz de medir el primer ángulo de avalancha (°) y la aireación del polvo durante su movimiento (%)¹¹

Figura 4.2.5 Ilustración simple del cálculo del índice de cohesión y el ángulo de reposo medio

En la imagen anterior, se puede ver la representación simplificada del proceso que GranuDrum realiza para calcular la interfase media (rojo), el ángulo de reposo dinámico (medido por una tangente ubicada en el centro de la curva roja) y el índice cohesivo (relacionado con las curvas verdes que representan las interfases de las fluctuaciones respecto a la posición media de la interfase).¹¹

4.3. Configuración e interpretación de datos

El Software de GranuDrum que permite el control del aparato, el tratamiento de imágenes y la medida final y dispone de diferentes parámetros a ajustar. Pueden clasificarse en tres grupos: experimentales, de video e imagen y parámetros de análisis.

4.3.1. Parámetros experimentales

A continuación, se explicarán los diferentes parámetros que se deben ajustar antes de empezar una medida:

- a) *Sequence liste*: es la lista de velocidades en rpm que se quieren usar para realizar la medida.
- b) *Round/min:* Se utiliza en el caso de que se quiera añadir o quitar una velocidad.
- *Options:* En esta sección se seleccionan el número de imágenes a tomar, así como su tasa de adquisición.

Y también, se puede definir cada cuanto tiempo se va a tomar una imagen, en este caso 1000ms, es decir cada segundo se tomará una imagen.

- d) En esta área se pueden seleccionar varias opciones:
- *Aeration:* se usa en el caso de que se quiera calcular el volumen ocupado por la muestra.
- Hysteresis: es la opción que he seleccionado para este proyecto. Esta opción permite a GranuDrum estudiar las velocidades en el orden dado (en este caso: 2,4,6,8,10) y a continuación en el orden inverso (en este caso: 10,8,6,4,2) para después poder analizar si hay alguna influencia en el orden o cambio de velocidades.
- *First avalanche:* GranuDrum en este caso calculará el primer ángulo de avalancha, el tambor girará a 1 rpm y estudiará el colapso del polvo. Esta opción es útil si el interés es analizar la fluidez del polvo en un proceso cuasiestático, cercano al equilibrio.

Figura 4.3.1 Ajustes del software en la parte experimental¹¹

4.3.2. Parámetros-Video y de imagen

En esta parte podemos realizar ajustes como:

- a) Gain and exposure: permite el control del brillo y el contraste de las imágenes). Fotografías con poco contraste entorpecen la detección de la interfase.
- b) **Image corrections**: se seleccionan ajustes internos de algoritmos de corrección.
- c) Estas opciones son muy importantes:
- **Threshold:** selecciona el límite de intensidad luminosa que separa la zona de la imagen ocupada por el polvo de la zona aire.
- Crop % of frame: aquí se selecciona el área de estudio, bien todo el tambor o bien un tanto por ciento de la zona circular visible. Es de interés para la medida en polvos muy cohesivos. Explicaré más adelante en que puede influir la selección de este parámetro.

Threshold: 80	🗹 All at once
Crop: 30 % of fra	me

Figura 4.3.2 Parámetros Threshold y Crop

4.3.3. Análisis – Gráficos y tablas

Después de analizar la muestra en el apartado *Analysis* nos encontramos con 2 pestañas, *Images* y *Graphs*.

En cuanto a Images aparece en la parte inferior la primera imagen que se toma al para cada velocidad. Al hacer *clic* sobre una de las fotos se puede distinguir en rojo, la posición

media de la interfase y en verde las fluctuaciones de la interfase que se usará para el cálculo del índice de cohesión (*Figura 4.3.3 y 4.3.4*).

Figura 4.3.3 Apartado de Images

Figura 4.3.4 En rojo, la posición media de la interfase y en verde las fluctuaciones de la interfase¹¹

En cuanto a la pestaña de *Graphs* se muestran los resultados de manera resumida representados en dos gráficos. Un gráfico representando el índice de cohesión frente a la velocidad de rotación en rpm y otro el ángulo de reposo frente a la velocidad de rotación en rpm. Como podemos observar en la Figura 6.3.5, a la derecha se encuentran los valores numéricos medios para cada velocidad. Además, podemos observar que hay un código de color que informa de la fluidez del polvo. Para obtener todos los datos, no solo las medias, se pueden extraer en formato *Excel* (que es lo que yo he realizado para este proyecto).

Figura 4.3.5 Apartado de Graphs

4.4. Materiales y procedimiento seguido

4.4.1. Materiales

Para este trabajo he usado 3 grupos de polvos:

- Esferas de vidrio
- Zirconio
- Partículas metálicas (acero inoxidable) tipo S (partículas esféricas) y G (partículas con superficies angulares).

En la tabla siguiente se mostrarán los distintos grupos de tamaños de partícula elegidos para realizar el estudio:

TABLA 4.4.1

Tamaños de partícula de las Microsferas de vidrio utilizados

Tamaños	de	0.20	0-50	40-70	70-110	100-	200-	300-	400-	1000-
partícula en µm		0-20				200	300	400	600	1300

TABLA 4.4.2

Tamaños de partícula de Zirconio utilizados

Tamaños de	0.08-0.13	0.1-0.2	0.3-0.4	1-1.2	1.2-1.4
partícula en mm	0,000 0,10	0,1 0,2	0,0 0,1	,-	-,, .

TABLA 4.4.3

Tamaños de partícula de los Metales G utilizados

Tamaños de	0.107	0.10	0.070	0.7	0 -1			1.10	
partícula en mm	0,125	0,18	0,353	0,5	0,71	1	1,14	1,18	1,7

TABLA 4.4.4

Tamaños de partícula de los Metales S de vidrio utilizados

Tamaños de	0.18	03	05	0.6	0.71	0.85	1	1 18	14	17	2
partícula en µm	0,10	0,5	0,5	0,0	0,71	0,85	1	1,10	1,7	1,7	2
4.4.2. Procedimiento seguido

Seguidamente se han seleccionado los valores de los parámetros mencionados en el *Apartado 4.3* utilizados en la experimentación:

- La secuencia de velocidades (2,4,6,8,10) en Histéresis
- Frame nº 40 y sampling (ms) 1000, es decir que, para cada velocidad,
 GranuDrum tomará 40 imágenes separadas por 1 segundo.

Se hacen pasar los 34 polvos. El tiempo de cada son unos 15 minutos.

Al terminar cada medida se extraen todo el conjunto de datos en una Hoja Excel y se autoguardan los ficheros de imágenes a analizar. La posición media de la interfaz polvoaire se calcula por procesamiento de imagen. De este análisis, dos medidas serán extraídas: índice de cohesión, función de las fluctuaciones de la interfaz polvo-aire y es representativo de la cohesión de las partículas dentro del tambor, y el ángulo de reposo dinámico.

4.5. Resultados: ÍNDICE DE COHESIÓN

Se analizan el comportamiento de este parámetro para los diferentes materiales.

4.5.1. Microesferas de vidrio

Reuní todos los datos y realicé un gráfico de barras con las medias de los valores del índice de cohesión para cada velocidad y grupo de tamaño. Todo ello, para mostrar la dependencia del índice de cohesión con la velocidad de rotación y el tamaño de partícula. Y a continuación realice la media del índice de cohesión (color amarillo en la *Tabla 4.5.1*) para cada grupo de tamaño.

TABLA 4.5.1

El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos tamaños

de	partíc	culas	de		las	Micro	oesferas		de	vidrio
COHESIVE INDEX GLASS BEADS										
					Particle siz	e (um)				
Speed (rpm)		0-20	0-50	40-70	70-110	100-200	200-300	300-400	400-600	1000-1300
2		37,62	18,55	13,03	10,41	1,94	1,64	1,65	2,29	3,81
4		35,50	17,41	12,90	8,32	1,91	1,78	1,82	2,15	3,76
6		32,87	17,97	13,09	9,83	1,90	1,80	1,95	2,18	3,63
8		29,04	18,68	13,99	10,36	1,94	1,67	1,75	2,04	4,00
10		28,43	21,08	14,97	10,90	2,02	1,74	1,83	2,04	3,83
AVARAG	θE	32,87	18,55	13,09	10,36	1,94	1,74	1,82	2,15	3,81

Con ello obtenemos los siguientes gráficos:

Figura 4.5.2 Gráfico del índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos tamaños de partículas de las Microesferas de vidrio

Figura 4.5.3 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los distintos tamaños de partículas de las Microesferas de vidrio

Podemos observar que, para las microesferas de vidrio, de menor tamaño, la cohesión inicial es muy alta. Este comportamiento puede ser debido a la presencia de pequeñas partículas en los primeros grupos de tamaños que aumentan las fuerzas cohesivas del polvo. Observamos esto sobre todo en los 4 primeros grupos, donde el tamaño de partícula es menor.

Pero en la *Figura 4.5.4* se puede ver una avalancha. A medida que aumentamos la velocidad, es decir más partículas están en movimiento, se generan pequeñas aglomeraciones de partículas, dando lugar, finalmente, a dicha avalancha. Este fenómeno hace que el índice de cohesión aumente para materiales con pequeños tamaños de partícula.

Figura 4.5.4. Imagen tomada del grupo de partículas de tamaño de 0-20 µm

Exceptuando el grupo con el menor tamaño de partícula (grupo azul – Figura 4.5.2). Esto puede deberse al aire o espacios presentes entre partículas debido al movimiento de rotación. Porque el aire actúa como lubricante y minimiza el contacto entre partículas y puede disminuir la cohesión y aumentar la fluidez, generando el efecto de **fluidización**, dando lugar a un comportamiento de adelgazamiento por cizalladura (**shear thinning behavior**).¹³ Además, con la disminución del tamaño de partícula, se crean avalanchas como la de la Figura 4.5.4 que pueden aumentar la cohesión.¹⁴

4.5.2. Zirconio

TABLA 4.5.3

El índice de cohesión (Cohesive Index) frente a la velocidad de rotación para los diferentes tamaños de partículas de Zirconio

COHESIVE INDEX										
Particle size (mm)										
Speed (rpm)	0,08-0,13	0,1-0,2	0,3-0,4	1-1,2	1,2-1,4					
2	1,64	1,47	1,70	2,66	3,11					
4	1,50	1,62	1,68	2,40	2,84					
6	1,53	1,53	1,67	2,41	3,18					
8	1,55	1,46	1,55	2,46	3,04					
10	1,76	1,30	1,75	2,45	3,04					
AVARAGE	1,55	1,47	1,68	2,45	3,04					

Con ello obtenemos los siguientes gráficos:

Figura 4.5.4 Gráfico del índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos tamaños de partículas de Zirconio

Figura 4.5.5 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los distintos tamaños de partículas de Zirconio

En estos gráficos podemos observar que el índice de cohesión se mantiene casi constante en cada grupo de tamaño de partículas en relación con la velocidad. (Figura 4.5.4). Dicho índice es muy bajo esto es debido a la naturaleza de las partículas. Este oxido metálico pulverulento, al igual que el cobre y el magnesio¹³ se definen por su alta gravedad específica. Por lo que cuando hay movimiento la inercia de partículas domina sobre las fuerzas cohesivas.

Figura 4.5.6 Imagen de la interfase de un tamaño de partícula de 1,2-1,4 mm (derecha) y 0,1-0,2 mm (izquierda) tomada con GranuDrum

En cambio, si comparamos el índice de cohesión con el tamaño de partícula vemos que este sigue siendo muy bajo, peor hay un ligero aumento al aumentar el tamaño de partícula. Este comportamiento lo vamos a despreciar ya que se debe a un error instrumental. Como podemos ver en la *Figura 4.5.6*, debido al gran tamaño de los granos el instrumento no detecta una interfase lisa, lo interpreta como si el polvo tuviese unas pequeñas fuerzas de cohesión. Lo mismo ocurre para el grupo de tamaño de partícula 1-1,2 mm.

4.5.3. Metales

TABLA 4.5.4

El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos tamaños de partículas de los Metales G

COHESIVE INDEX METALS G										
Particle -size (mm)										
Speed (rpm)	G120-0,125	G080-0,18	G050-0,353	G040-0,5	G025-0,71	G6018-1	G6014-1,14	G6016-1,18	G6012-1,7	
2	5,64	5,76	4,93	6,59	6,82	6,45	6,15	7,03	8,74	
4	4,80	4,85	2,98	3,37	4,03	4,45	5,69	4,99	7,73	
6	7,35	4,62	3,28	3,21	3,86	4,31	5,89	5,48	6,96	
8	6,96	5,54	3,17	3,10	3,80	4,28	5,44	5,38	7,24	
10	7,10	5,91	3,22	3,18	3,79	4,42	5,49	5,24	7,84	
AVARAGE	6,96	5,54	3,22	3,21	3,86	4,42	5,69	5,38	7,73	

Figura 4.5.7 Gráfico del índice de cohesión (Cohesive Index) frente a los distintos tamaños de partículas de los Metales G

TABLA 4.5.5

El índice de cohesión (Cohesive Index) frente a la velocidad de rotación de los distintos tamaños de partículas de los Metales S

COHESIVE INDEX METALS S											
Particle - size (mm)											
Speed (rpm)	S070-0,18	S110-0,3	S170-0,5	S230-0,6	S280-0,71	S330-0,85	S390-1	S460-1,18	S550-1,4	S660-1,7	S780-2
2	2,69	1,89	1,96	2,20	2,37	2,41	3,06	3,68	4,77	6,45	6,41
4	3,87	1,70	2,00	2,30	2,44	2,43	2,99	3,76	5,03	5,58	5,99
6	2,00	1,91	1,94	2,28	2,35	2,43	3,05	3,97	5,16	5,92	6,30
8	1,77	1,99	2,04	2,27	2,41	2,52	3,05	4,02	5,37	6,13	6,24
10	1,88	1,92	2,00	2,24	2,50	2,60	3,19	4,03	5,60	6,08	6,33
AVARAGE	2,00	1,91	2,00	2,27	2,41	2,43	3,05	3,97	5,16	6,08	6,30

Figura 4.5.8 Gráfico del índice de cohesión (Cohesive Index) frente a los distintos tamaños de partículas de los Metales S

Figura 4.5.9 Gráfico resumen del índice de cohesión (Cohesive Index) frente a los distintos tamaños de partículas de AMBOS Metales

Se observa en la *Figura 4.5.9* que el comportamiento de los dos polvos metálicos es el mismo. Al ser el mismo tipo de metal los dos poseen un índice de cohesión bajo, pero los polvos de los metales G (no esféricos) tienen un índice un bastante más elevado debido a la forma particular de las partículas del polvo (*Figura 4.5.10*) que favorece la fricción, sobre todo en las partículas de gran tamaño. Esta incrustación favorece la aglutinación de las partículas, aunque sea un efecto puramente mecánico más que cohesivo, sobre todo en polvos muy finos. Además, los ángulos de estas partículas causan errores en el instrumento al detectar mal la interfase.¹³

Figura 4.5.10 foto de las partículas del polvo de metal G (1,7 mm) (derecha) y la interfase calculada por GranuDrum (izquierda)

De la misma manera podemos despreciar las dos primeras medidas para los dos tamaños de partícula más pequeños de los metales G ya que analizando las imágenes tomadas se observan pequeñas "falsas" avalanchas que se producen posiblemente debido a las pequeñas irregularidades de los polvos que hacen que se produzcan pequeñas aglomeraciones incrustándose unas partículas con otras, dando errores en la interpretación de la interfase como podemos ver en la *Figura 4.5.11*.

Figura 4.5.11 foto de las partículas del polvo de metal S (derecha) y la interfase calculada por GranuDrum(izquierda)

4.6. Resultados: Ángulo de Reposo

Procediendo de la misma manera que con el análisis del índice de cohesión obtenemos los siguientes resultados para el análisis del ángulo de reposo (he puesto la misma escala 0-50 °):

4.6.1. Microesferas de vidrio

Con los datos de la Tabla 4.6.1 del anexo obtenemos el siguiente gráfico:

Figura 4.6.2 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de las Microesferas de vidrio

Figura 4.6.3 Gráfico resumen del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de las Microesferas de vidrio

Se observa que para menores tamaños de partícula el ángulo de reposo toma valores más altos y disminuye a medida que aumenta el diámetro de partícula.¹⁵ En comparación con la Figura 4.5.3 notamos que efectivamente, hay una relación entre el índice de cohesión y el ángulo de reposo, cuanto más cohesivo sea el polvo mayor será el ángulo de reposo.

4.6.2. Zirconio

Con los datos de la Tabla 4.6.2 del anexo obtenemos el siguiente gráfico:

Figura 4.6.4 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de Zirconio- CON MALA MEDIDA

Como ya se vio en el apartado 4.5.2 para el grupo de tamaño de partículas de 1-1,2 mm hubo un error de GranuDrum al detectar de manera errónea la interfase debido a la forma de las partículas, creando una interfase no lisa. Y en el análisis del ángulo de reposo tuvo grandes errores en la medida ya que no calculo bien el área del tambor, como se puede ver en la *Figura 4.6.5*, que creo una falsa avalancha.

Figura 4.6.5 Foto tomada del grupo de partículas de 1-1,2 mm donde se aprecia la falsa avalancha.

A continuación, volví a realizar las medidas reduciendo un poco el área del círculo a analizar, haciendo uso del parámetro "*Crop % of frame*" (*Apartado 4.3.2*). Realizado este cambio se obtuvieron muy buenos resultados. Se puede observar que el ángulo de reposo es prácticamente constante:

Figura 4.6.6 Gráfico del ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de Zirconio- CON BUENA MEDIDA

Figura 4.6.7 Gráfico resumen del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de Zirconio

Con estos resultados se puede concluir que el Zirconio no es cohesivo. Al igual que con el índice de cohesión el ángulo de reposo toma valores constantes y bajos.

4.6.3. Metales

Con los datos de la Tabla 4.6.2 y 4.6.3 del anexo obtenemos los siguientes gráficos:

Figura 4.6.8 Gráfico del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de los Metales G

Figura 4.6.9 Gráfico del ángulo de reposo (Angle of repose) frente a los distintos tamaños de partículas de los Metales S

Figura 4.6.10 Gráfico resumen del ángulo de reposo ((Angle of repose) frente a los distintos tamaños de partículas de AMBOS Metales

En cuanto a los metales podemos constatar que el ángulo de reposo no ha sido influenciado por la velocidad o el tamaño de partícula ya que se puede considerar prácticamente constante. Si que se puede observar una ligera diferencia debida a la forma entre los metales G, cuyas partículas no son esféricas y los metales S, cuyas partículas si que lo son.

4.7. Conclusiones GranuDrum

Después de haber analizado los resultados se concluye que se pueden observar 3 comportamientos distintos:

- Polvos cuya capacidad se flujo se vuelve más pobre al aumentar la velocidad de rotación, como es el caso de las microesferas de vidrio (exceptuando el primer grupo en el que se produce el efecto de la fluidización y numerosas avalanchas). A este comportamiento se le llama espesamiento por cizalladura (Shear Thickening behaviour o Dilatant)¹¹¹⁶¹⁷
- Polvos cuya capacidad de flujo se mantiene constante con el cambio de velocidad o con el cambio del tamaño de partícula, como es el caso del Zirconio o en el caso de ambos metales (descartando los errores instrumentales en el índice de cohesión). Este comportamiento recibe el nombre de Newtoniano.¹⁶¹¹
- El último comportamiento que podríamos percibir pero que en este proyecto no se ha observado se dan en polvos cuya capacidad de flujo se mejora cuando aumenta la velocidad de rotación. A este comportamiento recibe el nombre de adelgazamiento por cizalladura (shear thinning behaviour).¹⁶¹¹

También se ha llegado a la conclusión de que a partir de un tamaño de partícula igual a $100 - 200 \,\mu\text{m}$ se observa un índice de cohesión constante, este comportamiento puede ser explicado mediante el **número de Bond** explicado en el *apartado 2.5.3 (pag.17)*. En este proyecto se puede explicar de la siguiente manera:¹⁸

Partimos de la **relación**: $\frac{Fuerzas interparticulares}{peso de partículas}$ donde en el peso de las partículas interviene la densidad y el tamaño de partícula.

En polvos cohesivos, como las microesferas de vidrio:

Cuando el tamaño de partícula es muy pequeño las fuerzas interparticulares prevalecen aumentando las fuerzas de ficción, aumentando la cohesión y disminuyendo la capacidad de fluir. Cuando se supera los 100-200 µm el denominador prevalece sobre el numerador,

reduciendo la cohesión y aumentando la fluidez, otorgando al polvo cohesivo un comportamiento "No cohesivo".¹⁸

En polvos no cohesivos como el Zirconio:

Las fuerzas interparticulares prevalecen constantes y lo que va a aumentar su fluidez será el tamaño de partícula y sobre todo, la gran densidad de sus partículas en comparación a las microesferas de vidrio, por ejemplo.¹⁸

Figura 4.6.11 Gráfico resumen propio de las conclusiones obtenidas

5. Proceso FT4

5.1. Introducción

Hoy en día sigue siendo un gran desafío caracterizar las propiedades del flujo de un polvo. Para satisfacer estas necesidades se creó el FT4 que ahora es considerado un medidor de flujo de polvo universal. Destaca por su capacidad de simular las condiciones de un procesamiento de un polvo como por ejemplo realizando la medida en condiciones de estado consolidado, o moderadamente estresado, aireado o fluidizado. Ofrece la posibilidad de medir la resistencia de un polvo al flujo mientras el polvo está en movimiento y también permite calcular la resistencia al cizallamiento y medir las propiedades a granel (densidad, compresibilidad y permeabilidad).¹⁹

Figura 5.1.1 Reómetro FT4²⁰

5.2. Breve explicación del funcionamiento: test BFE y

El reómetro FT4 está compuesto principalmente de dos elementos: el cilindro de vidrio y la hélice (en este proyecto se ha usado un recipiente cilíndrico vidrio de 50 mm de diámetro y una hélice de longitud 48 mm).

El instrumento mide la resistencia del material pulverulento a la fluidez. Esta medida se obtiene con el movimiento ascendente y descendente de la hélice por el interior del lecho de partículas. Cuanta más resistencia oponga el polvo más difícil será que este fluya. El instrumento mide tanto resistencias verticales como rotacionales, en forma de fuerza y torque. Estos a su vez contribuyen al cálculo de la energía total.^{20,21}

Figura 5.2.1 Medidas de torque y fuerza- FT4²⁰

Existen dos maneras evaluar la fluidez de un polvo:

- La hélice realiza un movimiento descendente obligando a que el polvo fluya, ya que este está encerrado en el cilindro (*"confined flow test"*). Este test recibe el nombre de BFE (*Basic Flow Energy*).
- La hélice asciende sin forzar al polvo a fluir ya que, en este caso, la parte superior del recipiente no está cerrado. Este test recibe el nombre de SE (Specific Energy).²⁰²¹

Figura 5.2.3. Representación del BFE (derecha) y del SE (izquierda)²⁰

5.3. Tipos de test

5.3.1. BFE

Generalmente en la primera parte de una prueba se alcanza un nivel de energía que indica un "estado estacionario". A esta "energía estabilizada" se le llama **BFE (Basic Flow Energy)** y es medida en el movimiento ascendente del aspa. Viene definido como:

$$BFE (ml) = Flow energy of test 7$$
(11)

Esta medida depende de muchos parámetros:

- Propiedades físicas del polvo como: forma, densidad, cohesión...
- Propiedades ambientales: humedad, fuerzas electrostáticas, contenido de aire...

El estudio de BFE es muy útil si queremos analizar la influencia de un factor específico en las propiedades del polvo.

Normalmente un BFE bajo representa un polvo que fluye bien y un BFE alto muestra que el polvo fluye mal. Pero esto no es siempre así, ya que hay casos donde se mide un alto valor de BFE en un polvo cohesivo. Por lo tanto, valores altos o bajos no son necesariamente desfavorables, pueden indicar que el polvo es difícil de procesar, pudiendo compactar fácilmente o variar su fluidez.

5.3.2. SI

El "*Stability Index*" (SI) compara las energías medidas durante el movimiento descendente desde el primer ciclo hasta el séptimo, ofreciendo información cuantitativa del cambio producido en las propiedades del polvo. Viene definido de la siguiente manera:

$$SI = \frac{Flow \ energy \ of \ test \ 7}{Flow \ energy \ of \ test \ 1}$$
(12)

TABLA 5.3.1

Interpretación del test de estabilidad²²

$SI \approx 1$	SI > 1	SI < 1
Polvo estable, sus	Propiedades del polvo son	Propiedades del polvo son
propiedades no cambian	afectadas por causas como:	afectadas por causas como:
	-Segregación	-Desgaste
	-Aglomeración	-Desaglomeración
	-Cargas electrostáticas	-Por acción de un agente de
		flujo

5.3.3. FRI

El *FRI (Flow Rate Index)* cuantifica la sensibilidad del flujo a la velocidad de flujo. Corresponde a la relación entre la energía a 10 mm/s y a 100mms/s de la punta del aspa. Viene definido de la siguiente manera:²³

$$FRI = \frac{Flow \, Energy \, of \, test \, 11 \, (10mm/s)}{Flow \, Energy \, of \, test \, 8 \, (100/s)} \tag{13}$$

TABLA 5.3.2

Interpretación del test de FRI 2224

$FRI \approx 1$	FRI > 1
En polvos no cohesivos se observa que son	Esta situación se suele dar en polvos
menos sensibles al caudal. El contacto entre	cohesivos ya que son más sensibles al
partículas no se ve a penas afectado por la	cambio de caudal. Son polvos inestables,
velocidad del aspa. Si se estuviese en el	requieren menos energía una vez que
caso de un polvo ideal no cohesivo, la	comienzan a fluir más rápido. Son
energía se podría considerarse	polvos difíciles de manejar ya que su
independiente del caudal.	fluidez variará mucho durante su
	procesamiento (peligroso).

reómetro de diseño propio

Figura 5.3.1 Ilustración del análisis breve del FRI²⁵

5.3.4. SE

La Energía Específica, **SE** (*Specific Energy*), es una medida que indica como va a fluir el polvo en un ambiente no definido o de bajo estrés. El SE se calcula a partir del trabajo realizado en el movimiento del aspa hacia arriba en sentido de las agujas del reloj a través del polvo desde el fondo de cilindro. (Generando una leve elevación y bajo estrés).²⁶

TABLA 5.3.1

Interpretación del test de Energía específica²⁶

SE > 10	5 < SE > 10	SE < 5
Alta cohesión	Cohesión moderada	Baja cohesión

5.3.5. CBD

La Densidad a granel Condicionada, *CBD* (*Conditioned Bulk Density*), es la calculada a partir de la masa inicial calculada al principio de la muestra gracias a la balanza que se encuentra debajo del cilindro de vidrio y el volumen compacto. Este volumen es calculado después de que el reómetro FT4 indique que debemos retirar el exceso de polvo que sobresale del cilindro. Por lo tanto, el test de CBD se puede definir como:²⁶

Figura 5.3.2 Ilustración del cilindro de vidrio FT4 y los elementos para calcular el CBD

5.4. Resultados y discusión

En esta parte del proyecto se ha querido analizar, mediante los test comentados anteriormente, el comportamiento de los diferentes polvos.

Cabe destacar que no he analizado los polvos metálicos ya que cabía la posibilidad de que el instrumento (sobre todo la hélice y el cilindro de cristal) sufriese daños.

Tampoco he analizado los grupos de tamaño mayores a 1 mm de diámetro porque al intentarlo había partículas que se quedaban atrapadas entre la punta de la hélice y el cilindro. Ya que la hélice tiene 48 mm de diámetro y el cilindro 50 mm, por lo que toda partícula de diámetro mayor o igual a 1mm se queda encastrada causando daños y errores en la medida.

Figura 5.4.1 Gráfico del test de BFE para las Microesferas de vidrio

Figura 5.4.2 Gráfico del resto de test comentados en el apartado 5.3 para las Microesferas de vidrio

5.4.2. Zirconio

Figura 5.4.3 Gráfico del test de BFE para el Zirconio

Figura 5.4.4 Gráfico del resto de test comentados en el apartado 5.3 para e Zirconio

5.5. Conclusiones FT4

Observamos que para las Microesferas de vidrio el FRI es > 1 para el primer grupo de tamaño de partículas indicando que este es cohesivo, que es un polvo inestable que requiere menos energía una vez que comienzan a fluir más rápido. Para el resto de los grupos el FRI es aproximadamente 1, lo que quiere decir que no se consideran polvos cohesivos y que el contacto entre partículas no es afectado por la velocidad del aspa. Para el Zirconio vemos que el FRI toma un valor aproximado de 1 por lo que se concluye que es un polvo no cohesivo,

El mismo análisis hacemos con los valores de SI. Tanto los valores del Zirconio como los de las Microesferas de vidrio son aproximadamente 1, lo que indica que es un polvo que no sufre cambios en sus propiedades al aplicar un estrés. Exceptuando el primer grupo de las Microesferas de vidrio donde se obtiene un valor > 1 de SI, lo que indica que las propiedades del polvo son afectadas (puede ser por causas como: segregación, aglomeración o cargas electrostáticas, por ejemplo).

Para los valores de BFE observamos un comportamiento muy distinto, pero con la misma tendencia para los 2 tipos de polvo.

Cuando el tamaño de partícula es muy pequeño (polvo muy fino, con menos espacios entre partículas) se necesita menos energía para desplazar la masa ya que al ser tan compacto y compresible se observa que el aspa realiza una especie de "corte" en el polvo y a continuación esta se desplaza en vacío.

Figura 5.5.1 Ilustración del "corte" y del movimiento en vacío que realiza el aspa cuando el polvo es muy fino.

Figura 5.5.2 Ilustración de los espacios entre partículas para un polvo cohesivo y no cohesivo

El BFE aumenta con el aumento del tamaño de partícula al haber más espacios entre partículas y, por lo tanto, más volumen a desplazar. Esto ocurre hasta sobrepasar el tamaño de 100-200µm donde se observa sobre todo en las Microesferas de vidrio que el BFE comienza a ser constante.

Figura 5.5.3 Gráfico resumen propio de las conclusiones obtenidas

6. Conclusiones GranuDrum y FT4

Con los dos métodos utilizados se han obtenido resultados muy semejantes, destacando sobre todo la similitud del índice de cohesión y el ángulo de reposo con los resultados del BFE.

Los dos tipos de análisis me han hecho llegar a la misma conclusión final, las Microesferas de menor tamaño presentan un comportamiento cohesivo y el Zirconio y los metales presentan un comportamiento no cohesivo. La cohesión o no cohesión viene definida por las propiedades de los polvos (el tamaño de partícula principalmente), la forma de las partículas y las fuerzas interparticulares.

Este proyecto ha permitido ver que el GranuDrum es un instrumento que da una medida rápida (7 min sin histéresis aproximadamente), tiene una fácil manipulación, después de introducir la muestra no necesita personal para realizar ninguna acción, no se debe vaciar el tambor para repetir una medida, rápida exportación de los datos en ficheros Excel, es portátil por su tamaño y peso y una buena repetibilidad.

Pero en cambio, a partir de un tamaño de partícula mayor (en torno a 1 mm de diámetro) se producen errores en la detección de la interfase creando una interfase falsamente no lisa. También, en ocasiones, el instrumento posee errores de medida al detectar falsas avalanchas o al detectar de manera errónea el área del tambor, sobre todo en el análisis del índice de cohesión (Cohesive Index).

Por lo contrario, el reómetro FT4 es un instrumento más lento (20 min por una sola medida), se necesita al usuario para retirar el exceso de volumen, para repetir una medida se debe realizar el proceso de llenado y la introducción de la muestra desde el principio y al igual que GranuDrum no es apto para tamaños de partículas de más de 1 mm de diámetro.

En cambio, ofrece un análisis completo del polvo y tiene mejor repetibilidad.

Con ello se puede concluir que el GranuDrum es un instrumento que se podría utilizar para un análisis donde se quiera saber de manera rápida si un polvo es cohesivo o no o como pre-medida a un otro proceso. Por lo tanto, el instrumento ideal sería un reómetro FT4 que fuese más rápido y que no tuviese la necesidad de la presencia del usuario mediante la medida.

PARTE II: Simulación DEM

1. Introducción

La simulación es una herramienta innovadora que permite reproducir de manera virtual diferentes procesos y elementos, además de estudiar el comportamiento, analizar distintos parámetros, la dependencia de unas variables con otras, etc...

Lo más importante de la capacidad de comparar diferentes diseños, diferentes alternativas, sin tener que invertir tanto dinero y tiempo y sin tener que gastar energía o materiales. ²⁸

En este proyecto se pretende realizar la simulación de partículas basada en el método DEM (Discrete element method). Este permite optimizar instalaciones y procesos. Puede obtener un nivel de información que posiblemente no se pueda alcanzar con experimentos y permite realizar movimientos superficiales como la traslación, rotación, etc.²⁹ El objetivo de esta pequeña segunda parte era sobre todo aprender el lenguaje Liggghts.y comprender la simulación DEM.

2. LIGGGHTS,PARAVIEW, ONESHAPE

2.1. LIGGGHTS

LIGGGHTS es un software "open source" de simulación para el método Este programa es una versión mejorada de LAMMPS (simulador de dinámica molecular clásica). LIGGGHTS fue creado con el objetivo de enforcar su uso en aplicaciones industriales. Hoy en día es utilizado por una gran variedad de instituciones en todo el mundo.

Un fichero LIGGGHTS contendrá información como: el tipo de partículas, sus propiedades y parámetros, el campo de simulación, características geométricas del entorno y el movimiento de estas (en ciertos casos), las características de la inserción de partículas, número de iteraciones y componentes físicas. En este proyecto he realizado este fichero (*apartado 3*) en el Bloc de notas de mi portátil.

A continuación, LIGGGHTS ejecutará este fichero con el fin de realizar la simulación. Con ello podemos analizar distintas variables a cada instante como por ejemplo la velocidad, las fuerzas aplicadas, la posición de partículas, etc. El programa crea un fichero VTK que ofrece la posibilidad de visualizar la simulación con otro programa alternativo.³⁰

2.2. PARAVIEW

Paraview es un programa que lee ficheros VTK, por lo tanto, que nos permite visualizar las simulaciones efectuadas con LIGGGHTS. El programa leerá todos los datos contenidos en el fichero y los representará en una escala y en diferentes colores. Ofrece también el registro en video de la simulación y la posibilidad de comprobar que todo el script realizado y compilado con LIGGGHTS coincide con la realidad de lo que queremos simular.

2.3. ONSHAPE

ONSHAPE es un programa de CAO (Concepción Asistida por Ordenador) gratuito y que se puede usar en línea, de manera online, sin la necesidad de descargar el programa en el ordenador y al crearte una cuenta te permite almacenar todos los archivos en al almacenamiento propio del programa. He utilizado ONSHAPE en este proyecto para realizar la geometría del tambor utilizado en el script de LIGGGHTS.

Figura 2.1 Geometría creada con ONSHAPE con las dimensiones de GranuDrum

3. Programa usado: script

A continuación, voy a explicar las líneas de código usadas para realizar la simulación:

<pre>### WALL IMPORT FOR CAD # Preliminaries atom_style sphere atom_modify map array boundary f f f newton ofd</pre>	Boundary: Indica si los límites son fijos (f f f) o periódicos (p p p) En esta parte se indican que tipo de átomos son utilizados si la
communicate single vel yes units si	tercera ley de Newton es aplicada y en que unidades están introducidos los parámetros (SI, en este caso) ³¹³²
	Aquí podemos observar las especificaciones del tamaño de la caja de simulación y de los posibles contactos entre
<pre># Declare domain region domain block -1 1 -1 1 -1 1 units box create_box 1 domain # Neighbor listing neighbor 0.001 bin neigh modify every 1 check no</pre>	partículas. El número 1, es debido a que se tienen 1 tipo de material (suponemos que las microesferas de vidrio y el tambor están hechos
# Material and interaction properties required	del mismo material de vidrio). Normalmente, habría que considerar el material de las partículas del polvo estudiado y el material del tambor.
<pre>fix m1 all property/global youngsModulus peratomtype 1 24e-9 fix m2 all property/global poissonsRatio peratomtype 1 0.25 fix m3 all property/global coefficientRestitution peratomtypepair 1 0.6 fix m4 all property/global coefficientFriction peratomtypepair 1 0.1</pre>	propiedades del material (el polvo, en este caso).

reómetro de diseño propio

## Import mesh from cad: fix cad all mesh/surface/stress file meshes/granu drum.stl type 1 wear finnie	Importar el fichero CAD con la
fix granwalls all wall/gran model hertz tangential history mesh n_meshes 1 meshes cad	forma del recipiente
	Inserción de partículas:
##Particle insertion	Se describen las partículas que se
#distributions for insertion fix pts1 all particletemplate/sphere 15485863 atom_type 1 density constant 2600 radius constant 0.001 fix pdd1 all particledistribution/discrete 32452843 1 pts1 1	van a insertar (tipo de material,
group bdv_group region domain region gd cylinder z 0 0 0.0107 -0.00107 0.00107 units box	radio y densidad), así como la
	composición de estas.
	Finalmente, la región específica
	de inserción.
<pre>#particle insertion fix ins bdv_group insert/stream seed 32452867 distributiontemplate pdd1 & nparticles 6000 massrate 0.1 insert_every 1000 & overlapcheck yes all_in no vel constant 0.0 0.0 -1.0 & insertion_face inface</pre>	En esta parte de indica el número de partículas, la tasa de inserción
	y la velocidad inicial.
#Define the physics pair_style gran model hertz tangential history #Hertzian without cohesion pair_coeff * *	En estas líneas se define el modelo físico que se va a utilizar. (En <i>pair_coeff</i> , se pueden introducir diferentes interacciones entre diferentes tipos de partículas)
# Time step an Gravity timestep 0.00001 fix gravi all gravity 9.81 vector 0.0 0.0 -1.0	Introducción del <i>time step</i> y la gravedad
<pre>#output settings, include total thermal energy compute 1 all erotate/sphere thermo_style custom step atoms ke c_1 vol thermo 10000 thermo_modify lost ignore norm no</pre>	Aquí se definen que valores se quieren estudiar en el archivo y la frecuencia de presentar escritos los valores termodinámicos

	Genera un	conju	nto de arch	ivos
#insert the first particles so that dump is not empty run 1 dump dmp all custom/vtk 200 granudrum_process*.vtk id type type x y z ix iy iz vx vy vz fx fy fz omegax omegay omegaz radius	"dump"	para	contener	la
dump dmpstl all granu_drum/stl 200 post/dump*.stl	informació	n		

4. Conclusión

Varios problemas e incertidumbres al inicio de mi proyecto, no me han permitido avanzar de la manera esperada y por lo tanto, me ha impedido realizar la simulación del movimiento general de partículas. He realizado una búsqueda bibliográfica para realizar la siguiente conclusión.

Figura 4.1 Simulación DEM de un tambor rotativo con las mismas características que GranuDrum estático^{33 34}

En la *figura 4.1* podemos observar un tambor estático, donde, según el código de color, vemos que las partículas poseen velocidad prácticamente nula. Sin embargo, en la *figura 4.2* se puede observar el comportamiento de partículas de un polvo no cohesivo. Las partículas que se encuentran en el fondo realizarán un leve movimiento ascendente hasta topar con la interfase partículas-aire. En ese momento, las partículas se deslizarán en sentido descendente por la superficie de la interfase, con mayor velocidad. Dichas partículas están representadas con un color naranja-rojo en la *figura 4.2*, donde también

se puede destacar que, en el centro de este lecho de partículas, estas poseen velocidad cero, por lo tanto, se mantienen estáticas mientras el resto permanece en un continuo movimiento.^{35,36}

Figura 4.2 Simulación DEM de un tambor rotativo con las mismas características que GranuDrum en movimiento- velocidad de 12 rpm³⁴

En la *figura 4.3* se observa el mismo comportamiento para una velocidad de 36 rpm en partículas de diferente forma (C6, cuadrada y D5steel esférica). También se puede remarcar que para las partículas de forma cuadrada se producen avalanchas, sin embargo, se puede observar el mismo comportamiento que en el caso de la figura anterior (*figura 4.2*). Se observa el mismo movimiento ascendente-descendente de partículas y la velocidad nula o casi nula en el centro del lecho.³⁷

Figura 4.3 Simulación DEM de un tambor rotativo con las mismas características que GranuDrum comparación de forma³⁸

Las *figuras 4.4 y 4.5* sirven para ilustrar otros posibles estudios que se realizan con la simulación DEM, en estos casos, un análisis de la temperatura con el movimiento del lecho de partículas y la simulación realizada con una combinación de varios tipos de partículas con tamaños y formas distintas.

Figura 4.4 Simulación DEM de un tambor rotativo- análisis de temperatura³⁹

Figura 4.5 Simulación DEM de un tambor rotativo con partículas de distintos tamaños y formas^{40,41}

En conclusión, la simulación DEM en este proyecto puede servir para el análisis del comportamiento de diferentes polvos y de diferentes parámetros y su influencia sobre la fluidez. También, será posible simular y predecir el comportamiento de los polvos ante un cambio en el proceso o en el diseño de manera mucho más rápida, económica y eficaz que si se hiciera de manera experimental.

BIBLIOGRAFIA

- 1. Reología de Materiales en Polvo guíalab. Accessed April 23, 2022. https://www.guialab.com.ar/notas-tecnicas/reologia-de-materiales-en-polvo/
- Reología y propiedades reológicas Infinitia Research. Accessed April 23, 2022. https://www.infinitiaresearch.com/noticias/reologia-y-propiedades-reologicas-delos-materiales/
- 3. Granutools | Our company. Accessed April 23, 2022. https://www.granutools.com/en/granutools
- 4. Renald V.Giles. *Mecánica de Los Fluidos e Hidráulica Mc Graw Hill*.
- Fluidos Newtonianos y No Newtonianos | PDF | Viscosidad | Fluido. Accessed May 9, 2022. https://es.scribd.com/document/470945443/FLUIDOS-NEWTONIANOS-Y-NO-NEWTONIANOS
- 6. Pijush K.Kundu Ira M.Cohen. *Fluid Mechanics Second Edition*.; 2002.
- Números Adimensionales | PDF | Numero Reynolds | Mecánica. Accessed May 9, 2022. https://es.scribd.com/document/292695574/Numeros-Adimensionales
- número de Bond | Oilfield Glossary. Accessed May 11, 2022. https://glossary.oilfield.slb.com/es/terms/b/bond_number
- 9. Polvos Farmaceuticos | PDF | Medicamentos con receta | Sal (química). Accessed May 25, 2022. https://es.scribd.com/doc/38854770/POLVOS-FARMACEUTICOS
- Les 7 propriétés des poudres que vous devez connaître | Palamatic Process. Accessed May 25, 2022. https://www.palamaticprocess.fr/blog/les-7-proprietesdes-poudres-que-vous-devez-connaitre
- 11. How to Run Measurements and Make Data Interpretation with Fast Guide. www.GranuTools.com
- 12. Angulo de Reposo | La guía de Física. Accessed May 16, 2022. https://fisica.laguia2000.com/fisica-mecanica/angulo-de-reposo
- 13. Flowability and cohesion determination of metal powders using Granuheap and Granudrum. Accessed May 28, 2022. https://www.granutools.com/en/news/84_flowability-and-cohesion-determination-of-metal-powders-using-granuheap-and-granudrum
- Quintanilla MAS, Valverde JM, Castellanos A. The transitional behaviour of avalanches in cohesive granular materials. *Journal of Statistical Mechanics: Theory and Experiment*. 2006;2006(07):P07015-P07015. doi:10.1088/1742-5468/2006/07/P07015
- GRANUTOOLS. HOW TO GAIN A FULL UNDERSTANDING OF POWDER FLOW PROPERTIES, AND THE BENEFITS OF DOING SO. Accessed June 16, 2022. https://ondrugdelivery.com/wpcontent/uploads/2019/11/102 Nov 2019 Granutools.pdf
- GranuTools. Determination of flow ability and cohesion in metal powders using the GranuDrum. Metal Powders.
- 17. GranuTools. GranuDrum : The New Rheometer for Powder. Application notes.
- Capece M, Silva KR, Sunkara D, Strong J, Gao P. On the relationship of interparticle cohesiveness and bulk powder behavior: Flowability of pharmaceutical powders. *International Journal of Pharmaceutics*. 2016;511(1):178-189. doi:10.1016/J.IJPHARM.2016.06.059
- FT4 Powder Rheometer | Powder Flow Tester | Powder Flow. Accessed May 27, 2022. https://www.freemantech.co.uk/powder-testing/ft4-powder-rheometerpowder-flowtester?gclid=CjwKCAjw7cGUBhA9EiwArBAvosBDYTXQIm7wrK8l4ImZZK

K3X2wL0P_KhlcUtvHgfYF6F_g_KHhVXBoCCx4QAvD_BwE

- FT4 Powder Rheometer | Powder Flow Tester | Powder Flow. Accessed June 18,
 2022. https://www.freemantech.co.uk/powder-testing/ft4-powder-rheometer-powder-flow-tester
- Preziosi L. POLITECNICO DI TORINO Numerical simulation of the Freeman-FT4 powder rheometer An application of the Discrete Element Method Internal supervisor Academic year.

- 22. Powder Flow | Powder Testing | Powder Rheology. Accessed May 27, 2022. https://www.freemantech.co.uk/
- 23. Leturia M, Benali M, Lagarde S, Ronga I, Saleh K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. *Powder Technology*. 2014;253:406-423. doi:10.1016/J.POWTEC.2013.11.045
- 24. Ming LI. Study of the FT4 Powder Rheometer: Comparison of the Test Methods and Optimization of the Protocols.; 2017.
- 25. Fernández Arévalo M. MODULO III MODULO III SECCION 1 SECCION 1 SÓLIDOS PULVERULENTOS SÓLIDOS PULVERULENTOS.
- 26. Freeman Technology. W INSTRUCTION Specific Energy W7031 Issue A.; 2008.
- 27. (21) Part #3 Breaking down of a PhD: Powder flow and cohesion, where it comes from, how to fix it. Part 1 of 2 (or maybe 3, who knows) | LinkedIn. Accessed June 6, 2022. https://www.linkedin.com/pulse/part-3-breaking-down-phd-powder-flow-cohesion-where-campanelli/
- Simulación de procesos industriales | Automatización VLD 2020. Accessed June 8, 2022. https://www.vld-eng.com/blog/simulacion-procesos-industriales/
- 29. Le meilleur de la DEM avec CADFEM | CADFEM. Accessed June 8, 2022. https://www.cadfem.net/fr/industries-et-applications/applications/methode-deselements-discrets.html
- Introduction LIGGGHTS v3.X documentation. Accessed June 10, 2022. https://www.cfdem.com/media/DEM/docu/Section_intro.html#what-is-liggghtsr-public
- 31. Bosch C, Padr' P, Supervisor P, Feng YT. Discrete Element Simulations with LIGGGHTS.; 2014.
- 32. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, Mostoufi N. Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. *Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows*. Published online September 19, 2016:1-416. doi:10.1002/9781119005315

- Chand R, Khaskheli MA, Qadir A, Ge B, Shi Q. Discrete particle simulation of radial segregation in horizontally rotating drum: Effects of drum-length and nonrotating end-plates. *Physica A: Statistical Mechanics and its Applications*. 2012;391(20):4590-4596. doi:10.1016/J.PHYSA.2012.05.019
- 34. DEM simulation with LIGGGHTS YouTube. Accessed June 10, 2022. https://www.youtube.com/watch?v=z12Raodkw1w
- Wes GWJ, Drinkenburg AAH, Stemerding S. Heat transfer in a horizontal rotary drum reactor. *Powder Technol.* 1976;13(2):185-192. doi:10.1016/0032-5910(76)85003-6
- Yamamoto M, Ishihara S, Kano J. Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation. *Adv Powder Technol*. 2016;27(3):864-870. doi:10.1016/j.apt.2015.12.013
- 37. Hlosta J, Jezerská L, Rozbroj J, Žurovec D, Nečas J, Zegzulka J. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2—Process Validation and Experimental Study. *Processes 2020, Vol 8, Page 184.* 2020;8(2):184. doi:10.3390/PR8020184
- 38. Hlosta J, Jezerská L, Rozbroj J, Žurovec D, Nečas J, Zegzulka J. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2—Process Validation and Experimental Study. *Processes 2020, Vol 8, Page 184.* 2020;8(2):184. doi:10.3390/PR8020184
- Yazdani E, Hashemabadi SH. DEM simulation of heat transfer of binary-sized particles in a horizontal rotating drum. *Granular Matter 2018 21:1*. 2018;21(1):1-11. doi:10.1007/S10035-018-0857-3
- 40. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, Mostoufi N. Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. *Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows*. Published online September 19, 2016:1-416. doi:10.1002/9781119005315

Caracterización reométrica de polvos de uso industrial y de la respuesta de un reómetro de diseño propio

41. Rotating Drum with Non-Spherical Particles: A DEM Simulation - CEMF.ir. Accessed June 10, 2022. https://www.cemf.ir/rotating-drum-with-non-sphericalparticles-a-dem-simulation/

TABLAS

TABLA 4.6.1

El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de las Microesferas de vidrio:

	ANGLE OF REPOSE														
			l	Particle siz	e (um)										
Speed (rpm)	0-20	0-50	40-70	70-110	100-200	200-300	300-400	400-600	1000-1300						
2	52,02	40,52	36,26	33,75	28,41	25,80	25,66	26,04	27,66						
4	48,00	36,91	36,33	35,16	30,21	26,12	25,95	26,42	27,31						
6	48,35	38,98	36,81	36,13	34,60	27,05	27,64	27,53	28,57						
8	44,69	39,01	38,60	38,81	35,74	28,45	28,27	28,19	29,34						
10	43,56	37,77	38,18	38,69	36,09	28,48	29,76	28,88	29,29						
AVARAGE	48,00	38,98	36,81	36,13	34,60	27,05	27,64	27,53	28,57						

TABLA 4.6.2

El ángulo de reposo (Angle of repose) frente a la velocidad de rotación para los diferentes tamaños de partículas de Zirconio

ANGLE OF REPOSE														
			I	Particle siz	e (mm)									
Speed (rpm)	0,08-0,13	0,1-0,2	0,3-0,4	1-1,2	1,2-1,4									
2	23,89	23,35	23,66	20,94	23,52									
4	23,61	23,76	23,98	14,70	23,07									
6	24,49	24,71	25,60	12,62	24,63									
8	26,67	26,01	26,19	12,64	24,34									
10	26,72	26,01	26,84	13,37	24,62									
AVARAGE	24,49	24,71	25,60	13,37	24,34									

TABLA 4.6.3

El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de los Metales G

	ANGLE OF REPOSE METALS G														
	Particle -size (mm)														
Speed (rpm)	G120-0,125	G080-0,18	G6014-1,14	G6016-1,18	G6012-1,7										
2	37,25	36,21	37,16	36,67	38,04	36,42	38,80	38,68	40,45						
4	36,32	36,87	37,75	36,36	37,11	36,13	38,65	37,37	39,51						
6	42,92	40,53	37,48	37,52	38,95	36,98	38,85	39,27	39,82						
8	44,36	42,22	39,38	39,51	39,98	37,56	39,70	38,88	41,04						
10	44,39	43,13	42,31	40,82	41,24	39,36	40,25	40,91	40,92						
AVARAGE	42,92	40,53	37,75	37,52	38,95	36,98	38,85	38,88	40,45						

TABLA 4.6.4

El ángulo de reposo (Angle of repose) frente a la velocidad de rotación de los distintos tamaños de partículas de los Metales S

ANGLE OF REPOSE METALS S														
			Particle -	size (mm)										
Speed (rpm)	S070-0,18	S110-0,3	S170-0,5	S230-0,6	S330-0,85	S390-1	S460-1,18	S550-1,4	S660-1,7	S780-2				
2	30,26	27,05	27,50	28,29	29,04	29,07	30,32	31,38	31,58	31,92	33,71			
4	29,95	27,27	27,06	28,60	28,40	28,62	30,50	30,69	31,84	33,85	33,33			
6	31,18	28,34	29,51	29,65	30,20	29,69	31,58	32,47	33,06	33,53	34,87			
8	31,43	28,95	29,37	30,20	30,75	30,37	32,08	32,41	33,49	34,21	34,31			
10	33,06	29,61	29,98	30,86	31,38	31,01	32,85	33,54	34,13	35,03	35,72			
AVARAGE	31,18	28,34	29,37	29,65	30,20	29,69	31,58	32,41	33,06	33,85	34,31			

TABLA 1 ANEXO

Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada valor de velocidad y de cada tamaño de polvo de las microesferas de vidrio (extraídos de los datos de GranuDrum)

					6						
	Sequence v	alocity			C		Reverse ve	locity			
C	Acretice ve		Cabaabia In	Developer	la desi		Acretice		Cabaabia In	Developer	
Sheed [thui]	Aeration	Aligie	Conesive in	Roughness	nuex		Aeration	Angle	Conesive inc	Roughness	nuex
2	1,02	52,02	37,62	1,57			1,0	3 51,38	37,60	1,58	
4	1,05	48,00	35,50	1,61			1,0	6 49,99	31,81	1,60	
6	1,06	48,35	32,87	1,60			1,0	7 48,77	36,75	1,61	
8	1,08	44,69	29,04	1,55			1,0	8 45,68	31,55	1,59	
10	1.09	43.56	28 43	1.53			1.0	9 44 18	31.16	1.57	
	1,00	10,00	20,10	1,00	F		1,0		01,10	1,01	
	Somuonoo w	alaaitu			_		Beveree ve	looitu			
	Sequence w						Reverse ve				
Speed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
2	0,98	40,52	18,55	1,27			0,9	38,92	17,37	1,27	
4	0.98	36.91	17.41	1.27			0.9	39.83	17.86	1.27	
6	0,00	38.08	17 97	1 31			0,0	38.20	17 34	1 20	
0	0,33	00,00	10,00	1,01			0,3	07,44	17,54	1,20	
8	0,98	39,01	18,68	1,35			0,9	5 37,44	18,86	1,34	
10	0,99	37,77	21,08	1,34			0,9	9 37,77	19,71	1,33	
					E	DV 3					
	Sequence ve	elocity					Reverse ve	locity			
speed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
peed [i piii]	0.02		42.02	4.40	Index		Acration		42.00	1.40	nucx
2	0,93	30,26	13,03	1,16			0,9	5 37,60	13,99	1,16	
4	0,92	36,33	12,90	1,17			0,9	2 36,15	12,77	1,17	
6	0,92	36,81	13,09	1,20			0,9	3 36,23	15,78	1,19	
8	0,92	38,60	13,99	1,22			0.9	2 37,42	15,42	1,23	
10	0.92	38.18	14.97	1.26			0.9	2 37.84	15.12	1.25	
	0,02	55,10	,51	.,20			5,5	5.,04		.,20	
	Converse	alaaitu				0014	Bourses	looitu			
	Sequence ve	BIOCITY	a i i i				Reverse ve			- ·	
speed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
2	0,95	33,75	10,41	1,08			0,9	4 35,42	11,19	1,10	
4	0.93	35.16	8.32	1.10			0.9	4 36.21	9.94	1.11	
6	0.03	36.13	0,83	1 16			0.0	3 36/0	0,35	1 16	
0	0,93	30,13	9,03	1,10			0,9	5 50,45	9,33	1,10	
8	0,93	38,81	10,36	1,17			0,9	3 38,01	10,99	1,18	
10	0,93	38,69	10,90	1,21			0,9	3 38,81	10,81	1,20	
					E	DV 5					
	Sequence ve	elocity					Reverse ve	locity			
need [rnm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
	Aci alloi1		4.04	4.02	Index		Acrution		0.47	1.04	nucx
2	0,94	28,41	1,94	1,03			0,9	28,88	2,17	1,04	
4	0,94	30,21	1,91	1,04			0,9	4 29,72	1,80	1,04	
6	0,94	34,60	1,90	1,09			0,9	5 33,88	1,90	1,09	
8	0.94	35.74	1.94	1.13			0.9	4 34.90	1.88	1.12	
10	0.94	36.09	2.02	1 16			0.9	4 36.03	2.69	1 16	
10	0,01	00,00	2,02	1,10		DVG	0,0		2,00	1,10	
	•						-				
	Sequence ve	elocity					Reverse ve	locity			
Speed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
2	0,92	25,80	1,64	1,03			0,9	3 25,84	1,80	1,04	
4	0.93	26.12	1.78	1.03			0.9	3 25.54	1.77	1.03	
6	0.02	27.05	1 90	1 04			0,0	3 27 12	1 70	1 02	
0	0,93	21,00	1,00	1,04			0,9	21,10	1,70	1,05	
0	0,93	28,45	1,67	1,05			0,9	28,50	1,08	1,05	
10	0,93	28,48	1,74	1,06			0,9	3 29,22	1,68	1,06	
					E	BDV7					
	Sequence ve	elocity					Reverse ve	locity			
peed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Ind	Roughness	ndex
2	0 03	25.66	1.65	1.05			0.0	3 26.37	1 00	1.05	
4	0,93	20,00	1,00	1,00			0,5	20,37	1,50	1,00	
4	0,93	25,95	1,82	1,05			0,9	20,78	1,83	1,05	
6	0,94	27,64	1,95	1,04			0,9	4 27,70	1,78	1,04	
8	0,94	28,27	1,75	1,05			0,9	4 28,34	1,74	1,05	
10	0,94	29,76	1,83	1,06			0.9	4 29,02	1,97	1,06	
					F	DV 8					
	Sequence ve	elocity			-		Reverse ve	locity			
nood []	Acretic-	Anglo ^[0]	Cohochie In	Poughass-	Index		Agration	Angle [9]	Cabachus In	Poughass-	ndor
heen [tbm]	Aeration	Aligie [1]	Conesive In	Roughness	ndex		Aeration	Angle [1]	Conesive Inc	Roughness	nuex
2	1,00	26,04	2,29	1,11			1,0	1 26,40	2,24	1,10	
4	1,01	26,42	2,15	1,10			1,0	1 26,76	2,14	1,10	
6	1,01	27,53	2,18	1,09			1,0	2 27,67	2,11	1,09	
8	1.01	28.19	2.04	1.07			1.0	1 28.27	2.10	1.08	
10	1 01	28.99	2.04	1 07			1,0	1 28.01	2.06	1 09	
10	1,01	20,00	2,04	1,07			1,0	20,91	2,00	1,00	
	0				E	012					
	Sequence ve	elocity					Reverse ve	iocity			
peed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex
2	0.97	27.66	3.81	1.31			0.9	7 27.06	3.61	1.30	
4	0.07	27 21	3 76	1 20			0,0	7 27 57	3 03	1 21	
-	0,97	21,31	3,70	1,30			0,9	21,07	3,92	1,31	
Ø	0,98	28,57	3,63	1,30			0,9	28,64	3,75	1,30	
8	0,99	29,34	4,00	1,31			0,9	9 28,60	3,72	1,30	
10	0,99	29,29	3,83	1,30			0,9	9 29,31	3,97	1,27	

TABLA 2 ANEXO

Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada valor de velocidad y de cada tamaño de polvo de zirconio (extraídos de los datos de GranuDrum)

					ZY1						
	Sequence ve	elocity					Reverse ve	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0.96	23.89	1.64	1.02			0.96	3 23.12	1.36	1.02	
4	0.06	22,61	1.50	1.02			0.04	22 59	1.57	1.02	
4	0,90	23,01	1,50	1,05			0,90	23,30	1,37	1,02	
0	0,96	24,49	1,53	1,05			0,96	25,19	1,46	1,04	
8	0,96	26,67	1,55	1,07			0,96	5 25,95	1,51	1,07	
10	0,95	26,72	1,76	1,10			0,95	5 26,73	1,68	1,10	
					ZY2						
	Sequence ve	elocity					Reverse ve	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0,96	23,35	1,47	1,02			0,96	3 23,85	1,35	1,02	
4	0,96	23,76	1,62	1,02			0,96	6 24,31	1,54	1,02	
6	0.96	24.71	1.53	1.04			0.96	25.32	1.50	1.04	
8	0.96	26.01	1.46	1.05			0.96	25.98	1.58	1.05	
10	0.96	26.01	1.30	1.07			0.96	26 73	1.38	1 07	
10	0,00	20,01	1,00	1,07			0,00	20,70	1,00	1,07	
					773						
	Sequence w	alocity			213		Reverse vo	ocity			
0	Acuation Ve	Augula 701	0.1	Deserver 1			Accession of the	Augula Fol	0.1	Develope	
Speed [rpm]	Aeration	Angle [*]	Cohesive Inc	Roughness li	naex		Aeration	Angle [*]	Cohesive Inc	Roughness	ndex
2	0,95	23,66	1,70	1,03			0,94	4 24,18	1,69	1,03	
4	0,95	23,98	1,68	1,04			0,95	23.82	1,78	1,03	
6	0.95	25.60	1.67	1.04			0.95	5 24.72	1.70	1.04	
8	0.95	26.19	1.55	1.04			0.94	25 39	1.66	1 04	
10	0,55	26,13	1,55	1,04			0,30	25,00	1,00	1,04	
10	0,95	20,04	1,75	1,05			0,90	20,07	1,07	1,05	
	-				ZY4						
	Sequence ve	elocity					Reverse ve	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
2	0,91	20,34	5,95	1,32			0,94	12,73	1,53	1,23	
4	0,93	14,52	5,58	1,28			0,93	3 13,00	3,14	1,24	
6	0,94	11,72	1,18	1,23			0,93	3 13,06	1,61	1,25	
8	0,94	11,81	1,15	1,22			0,93	3 13,29	1,85	1,24	
10	0,94	11,84	1,27	1,23			0,94	12,29	1,80	1,23	
					ZY5						
	Sequence ve	elocity					Reverse ve	ocity			
Sneed [rnm]	Aeration	Angle [°]	Cohesive Inc	Roughness li	dev		Aeration	Angle [°]	Cobesive Inc	Roughness	Index
2	0.92	23.52	3 11	1 1/	IGOA		0.01	22.07	2 80	1 13	Index
4	0,92	23,32	2 0 4	1 14			0,92	22,07	2,00	1,13	
4	0,93	20,07	2,84	1,14			0,92	22,42	2,95	1,14	
0	0,93	24,03	3,18	1,10			0,93	23,42	2,92	1,14	
8	0,94	24,34	3,04	1,16			0,9	23,95	2,91	1,15	
10	0,94	24,62	3,04	1,17	7)(4.55	0.41	0,94	24,57	2,98	1,16	
	-				ZY4 RE	CAL	_				
	Sequence ve	elocity			-		keverse ve	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0,89	20,94	3,44	1,10			0,92	13,07	1,33	1,09	
4	0,92	14,70	4,47	1,09			0,92	13,43	2,51	1,08	
6	0,92	12,62	1,17	1,09			0,92	2 14,46	0,75	1,11	
8	0,92	12,64	0,85	1,08			0,92	13,51	1,03	1,10	
10	0,92	13,37	0,70	1,09			0,92	2 13,59	1,15	1,08	
					ZY4 GC	OD					
	Sequence ve	elocity					Reverse ve	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	ndex
2	0.00	22 64	2 66	1 11			0.00	22 00	2 20	1 11	
-	0,90	22,04	2,00	1,11			0,90	22,00	2,30	1,11	
4	0,98	22,70	2,40	1,12			0,98	22,31	2,32	1,12	
6	0,99	22,87	2,41	1,12			0,99	22,64	2,47	1,12	
8	0,99	23,36	2,46	1,13			0,99	23,91	2,39	1,12	
10	0,99	24,47	2,45	1,14			0,99	23,71	2,39	1,13	

TABLA 3 ANEXO

Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada valor de velocidad y de cada tamaño de polvo de Metal G (extraídos de los datos de GranuDrum)

					G08	0-0,18					
	Sequence ve	elocity					Reverse velo	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	Index		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	1.02	36.2	5.76	1.09			1.03	36.46	4.80	1.08	
4	1.03	36.8	7 4.85	1.08			1.03	36.42	1 37	1.08	
6	1,00	40.5	4,00	1,00			1,00	40,62	4,01	1,00	
6	1,04	40,5	4,62	1,12			1,04	40,62	4,50	1,12	
8	1,04	42,2	2 5,54	1,14			1,03	42,15	5,07	1,13	
10	1,03	43,1	3 5,91	1,15			1,03	44,97	5,06	1,15	
					G02	5- 0.71					
	Sequence ve	locity				,	Reverse velo	ocity			
	Acretice Ve	Angels [9]	Cabaabia Ind	Developer	u dav		Acretice	America [9]	Cabaabia Ind	Davahaaaa	la dav
peea [rpm]	Aeration	Angle [1]	Conesive inc	Roughness	naex		Aeration	Angle [1]	Conesive inc	Roughness	index
2	0,94	38,0	4 6,82	1,22			0,93	37,14	5,71	1,20	
4	0,94	37,1	4,03	1,20			0,94	37,92	3,92	1,20	
6	0.95	38.9	3 86	1 21			0.95	39.64	3 97	1 21	
0	0,00	20,00	0,00	1,21			0,00	20,04	0,01	1,21	
8	0,95	39,9	3,60	1,20			0,95	39,91	3,80	1,20	
10	0,95	41,24	1 3,79	1,19			0,95	41,24	3,73	1,20	
					G04	40-0,5					
	Sequence ve	elocity					Reverse velo	ocitv			
nood [rnm]	Aoration	Anglo [°]	Cohosivo Inc	Poughnose I	ndox		Agration	Anglo [°]	Cohosivo Inc	Poughnose	Indox
peed [rpm]	Acialion	Aligie	Conesive inc	Rougimessi	IIUEA		Actation	Angle	Conesive inc	Rouginiess	IIIUEA
2	1,00	36,6	6,59	1,15			1,02	37,70	6,83	1,16	
4	1,01	36,3	3,37	1,15			1,01	37,61	3,45	1,15	
6	1.02	37.5	3.21	1.15			1.02	37.80	3.19	1.15	
8	1 02	30 5	1 3 10	1 15			1 02	38.50	3 27	1 15	
10	1,03	39,0	0,10	1,10			1,03	10,02	3,27	1,13	
10	1,03	40,8	2 3,18	1,14		0.055	1,03	40,92	3,21	1,15	
					G050	0-0,353					
	Sequence ve	elocity					Reverse velo	ocity			
peed [rnm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0.00	07 4	4 00	4 40			0.00	DE 44	0.14	4 4 4	
2	0,93	37,1	4,93	1,12			0,93	35,44	3,11	1,11	
4	0,94	37,7	2,98	1,12			0,94	37,17	2,91	1,12	
6	0,95	37,4	3,28	1,13			0,94	38,12	3,05	1,13	
8	0.95	39.3	3.17	1.14			0.95	38.68	3.38	1.13	
10	0.95	12.3	3.22	1 14			0.95	/1 /8	3 21	1 1/	
10	0,95	42,3	5,22	1,14	0400	0.405	0,95	41,40	5,21	1,14	
	-				G120	J-0,125					
	Sequence ve	elocity					Reverse velo	ocity			
peed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	Index		Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0.88	37.2	5 5 64	1 10			0.88	36.37	4 97	1 09	
-	0,00	26.2	4 90	1,10			0,00	27.24	E 27	1,00	
4	0,00	30,3	4,60	1,10			0,00	37,24	5,57	1,10	
6	0,88	42,9	2 7,35	1,17			0,88	44,27	6,27	1,17	
8	0,88	44,3	6,96	1,18			0,87	44,46	6,14	1,19	
10	0.87	44.3	7 10	1 20			0.87	42 39	7 02	1 20	
	- / -	7-		, -			- / -	,	1-		
					GC	12-1,7					
	Sequence ve	elocity					Reverse ve	locity			
peed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive In	n Roughnes	s Index
2	0.97	40.4	5 974	1 20	2		0.8	8 30.5	9 0.4	3 1/	1
2	0,07	40,4	3 0,74	1,35	>		0,0	7 40.0	7 7 4	J 1,4	F I
4	0,87	39,5	1 7,73	1,38	1		0,8	7 40,0	/ /,4	3 1,3	57
6	0,89	39,8	2 6,96	1,38	3		0,8	8 39,2	6 7,4	3 1,3	37
8	0.89	41.0	4 7.24	1.38	3		0.8	9 40.9	5 7.6	2 1.3	37
10	0 00	40 0	2 7 8/	1 30	9		0.8	9 41 3	8 71	2 1 3	36
10	0,90	40,5	- 7,04	1,55		014 1 4	0,0	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- r, i	- 1,0	
	-				Gb	014-1,4	-				
	Sequence ve	elocity					Reverse ve	locity			
peed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive In	n Roughnes	s Index
2	0 94	38.8	0 615	1 30	2		0 9	4 38 9	7 64	0 1 7	34
-	0,04	20,0	5 5 6 6 6	1.02			0,5	5 20 5	0 5,7	0 4 4	21
4	0,90	30,0	5 5,68	1,31			0,9	J 30,5	0 5,7	J 1,3	20
ю	0,97	38,8	5,89	1,31			0,9	7 38,8	o 5,6	1,3	2
8	0,98	39,7	0 5,44	1,30)		0,9	7 38,9	4 5,2	ö 1,3	31
10	0,98	40.2	5 5,49	1,30)		0.9	8 39.5	1 5.4	3 1.3	31
	.,			,	Geo	16-1 18	-,-		.,.	.,.	
	Soquenee	alocity			000		Poverce ::-	locity			
	Sequence V						Reverse Ve				
peed [rpm]	Aeration	Angle [°]	Cohesive In	Roughness	Index		Aeration	Angle [°]	Cohesive Ir	Roughnes	s Index
2	1,00	38.6	8 7,03	1,30)		1,0	1 38,8	0 7,2	0 1,2	28
4	1.01	37.3	7 4.90	1.28	3		1.0	1 38.6	5 47	7 15	29
6	1.02	20.7	7 5 40	1 20	2		1,0	3 20.4	1 5.2	7 4 4	0
0	1,03	39,2	, 5,40	1,20	,		1,0	39,4	- 0,3	· 1,2	
8	1,03	38,8	8 5,38	1,28	5		1,0	3 40,3	1 5,4	ປ 1,2	8
10	1,04	40,9	1 5,24	1,27	7		1,0	4 39,5	0 5,0	5 1,2	27
					Gf	6018-1					
	Sequence	elocity					Reverse	locity			
	JEQUEILE V						Neverse ve				
	A		Conesive In	(Roughness	index		Aeration	Angle [°]	Conesive Ir	Koughnes	s Index
peed [rpm]	Aeration	Angle [*]	Concorre in	-							
peed [rpm] 2	Aeration 0,94	Angle [*] 36,4	2 6,45	1,26	3		0,9	4 37,3	5 5,3	9 1,2	25
peed [rpm] 2 4	Aeration 0,94	Angle [*] 36,4	2 6,45 3 4 45	i 1,26	5		0,9	4 37,3 5 37.0	5 5,3 2 4.4	9 1,2 4 1 0	25 25
peed [rpm] 2 4	Aeration 0,94 0,95	Angle [*] 36,4 36,1	2 6,45 3 4,45	1,26 1,25	5		0,9	4 37,3 5 37,0	5 5,3 2 4,4 7 4 0	9 1,2 4 1,2 7 1 7	25 25 26
peed [rpm] 2 4 6	Aeration 0,94 0,95 0,96	Angle [*] 36,4 36,1 36,9	2 6,45 3 4,45 8 4,31	1,26 1,25 1,25	5 5		0,9 0,9 0,9	4 37,3 5 37,0 6 37,8	5 5,3 2 4,4 7 4,0	9 1,2 4 1,2 7 1,2	25 25 26
2 2 4 6 8	Aeration 0,94 0,95 0,96 0,97	Angle [*] 36,4 36,1 36,9 37,5	2 6,45 3 4,45 8 4,31 6 4,28	i 1,26 i 1,25 i 1,26 i 1,26	6 5 6		0,9 0,9 0,9 0,9	4 37,3 5 37,0 6 37,8 7 37,4	5 5,3' 2 4,4 7 4,0 2 4,2	9 1,2 4 1,2 7 1,2 6 1,2	25 25 26 25
2 4 6 8 10	Aeration 0,94 0,95 0,96 0,97 0,97	Angle [*] 36,4 36,1 36,9 37,5 39,3	2 6,45 3 4,45 8 4,31 6 4,28 6 4,42	i 1,26 i 1,25 i 1,26 i 1,26 i 1,26 i 1,26	5 5 6 6		0,9 0,9 0,9 0,9 0,9 0,9	4 37,3 5 37,0 6 37,8 7 37,4 7 38.5	5 5,3 2 4,4 7 4,0 2 4,2 0 4.1	9 1,2 4 1,2 7 1,2 6 1,2 7 1.2	25 25 26 25 25

TABLA 4 ANEXO

Valores medios del ángulo de reposo dinámico, aeración e índice de cohesión para cada valor de velocidad y de cada tamaño de polvo de metal S (extraídos de los datos de GranuDrum)

					S11	0-0,3					
	Sequence ve	elocity					Reverse velo	city			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex
2	0,96	27,05	5 1,89	1,05			0,96	26,97	1,91	1,05	
4	0,97	27,27	1,70	1,05			0,97	27,34	1,86	1,05	
6	0,98	28,34	1,91	1,05			0,97	28,33	1,91	1,05	
8	0,98	28,95	5 1,99	1,06			0,98	28,24	1,94	1,06	
10	0.98	29.61	1.92	1.06			0.98	29.61	1.98	1.06	
	-,		.,	.,	S17	0-0.5	-,		.,	.,	
	Sequence w	locity			017	0 0,0	Poverse velo	city			
	Sequence v	America Foll	0.1	Describer of the			Reverse veit	An alla Fol	0		a dana
peea [rpm]	Aeration	Angle [*]	Conesive in	Roughness	naex		Aeration	Angle [*]	Conesive inc	Roughness I	ndex
2	0,93	27,50	1,96	1,05			0,93	28,25	1,91	1,06	
4	0,94	27,06	2,00	1,06			0,94	27,85	1,95	1,06	
6	0.95	29.51	1.94	1.06			0.95	28.87	2.05	1.06	
8	0.95	29.37	2.04	1.07			0.95	29.44	2 07	1.07	
10	0,00	20,01	2,01	1,07			0,00	30.04	1.08	1,01	
10	0,35	23,30	2,00	1,07	600	0.0.0	0,35	30,04	1,50	1,00	
					523	0-0,6					
	Sequence v	elocity					Reverse velo	city			
peed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex
2	0,96	28,29	2,20	1,09			0,96	28,29	2,26	1,09	
4	0.97	28.60	2.30	1.09			0.96	28.63	2.19	1.09	
6	0.97	29.65	2 28	1.09			0.97	29.64	2 22	1.09	
8	0,97	20,00	2,20	1,09			0,97	20,04	2,22	1,09	
0	0,98	30,20	2,27	1,09			0,98	30,23	2,33	1,10	
10	0,98	30,86	2,24	1,10			0,98	30,87	2,19	1,09	
					S280	0-0,71					
	Sequence v	elocity					Reverse velo	city			
peed [rpm]	Aeration	Angle [°]	Cohesive Ind	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex
2	0 02	20.04	2 37	1 10			0 02	28.80	2 11	1 1 1	
4	0,92	20,04	2,37	1,10			0,92	20,00	2,44	4.44	
4	0,93	20,40	2,44	1,11			0,93	20,47	2,50	1,11	
ь	0,94	30,20	2,35	1,11			0,93	30,18	2,53	1,12	
8	0,94	30,75	2,41	1,11			0,94	30,77	2,39	1,11	
10	0,94	31,38	2,50	1,11			0,94	31,36	2,63	1,11	
					S330	0-0.85					
	Sequence v	locity					Reverse velo	city			
need [rnm]	Aeration	Angle [°]	Cobesive In	Poughness I	ndev		Aeration	Angle [°]	Cohesive Inc	Poughness I	ndov
peed [rpin]	Acialion		Conesive in	Rouginessi	nuex		Aciation		Conesive int	Rouginessi	IIUEA
2	0,95	29,07	2,41	1,11			0,95	29,07	2,53	1,10	
4	0,96	28,62	2,43	1,11			0,96	28,82	2,42	1,11	
6	0,96	29,69	2,43	1,11			0,96	29,83	2,44	1,11	
8	0,97	30,37	2,52	1,11			0,97	30,38	2,51	1,12	
10	0.97	31.01	2.60	1.12			0.97	31.04	2.57	1.12	
	.,.	- /-			53	90-1					
	Sequence w	locity			00		Poverse velo	city			
	Sequence v	Amounty Foll	0.1	Description			Accession of the second	America 701	0	B	a dana
speed [rpm]	Aeration	Angle	Conesive ind	Roughness	ndex		Aeration	Angle	Conesive inc	Roughness	naex
2	1,02	30,32	3,06	1,17			1,02	30,29	3,00	1,18	
4	1,03	30,50	2,99	1,17			1,03	30,51	3,00	1,17	
6	1,04	31,58	3,05	1,17			1,04	31,48	3,03	1,17	
8	1.04	32.08	3.05	1.17			1.04	32.20	3.02	1.17	
10	1.05	32.85	3 10	1 18			1.05	32 71	3 13	1 17	
	1,00	02,00	0,10	1,10	S55	1.1.1	1,00	02,11	0,10	.,	
	C				000	J- 1,4	Deverae vela				
	Sequence v		0.1	Describer of the			Accession of the second	An alla Fol	0	B	a dana
speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex		Aeration	Angle [°]	Cohesive Inc	Roughness I	ndex
2	0,98	31,58	4,77	1,27			0,99	31,76	5,11	1,27	
4	1,00	31,84	5,03	1,28			1,00	31,96	5,19	1,26	
6	1,01	33,06	5,16	1,28			1,01	33,17	5,13	1,27	
8	1.02	33.49	5.37	1.29			1.02	32.94	5.04	1.28	
10	1.02	3/ 13	5,60	1 20			1.02	34 19	5 20	1.20	
10	1,02	54,13	5,00	1,29	200	0-17	1,03	54,10	5,20	1,20	
	Sequence	locity				- I, <i>I</i>	Poverce vela	city			
mand From P	Acredite V	Angle 703	Cabacheri	Develore .	u davi		Acestication	Angle [0]	Cabarbord	Developer -	n alay:
peea [rpm]	Aeration	Angle [°]	conesive Inc	Rougnness I	ndex		Aeration	Angle [°]	conesive inc	Rougnness I	naex
2	0.99	31,92	6,45	1,31			0,98	31,80	5,51	1,32	
4	0,55		5 5 8	1,32			1,00	32,49	5,73	1,32	
4	1,00	33,85	5,50						6.26	1.34	
6	1,00	33,85 33,53	5.92	1.32			1.01	34.82	0.20		
4 6 8	1,00 1,01	33,85 33,53 34,21	5,92	1,32 1.32			1,01	34,82	6.05	1.33	
4 6 8	1,00 1,01 1,02	33,85 33,53 34,21	5,92 6,13 6,08	1,32 1,32			1,01 1,02	34,82 34,56 34,80	6,05	1,33	
4 6 8 10	1,00 1,01 1,02 1,03	33,85 33,53 34,21 35,03	5,30 5,92 6,13 6,08	1,32 1,32 1,33	~~	80-2	1,01 1,02 1,03	34,82 34,56 34,89	6,05 5,88	1,33 1,32	
4 6 8 10	1,00 1,01 1,02 1,03	33,85 33,53 34,21 35,03	5,30 5,92 6,13 6,08	1,32 1,32 1,33	S7	80-2	1,01 1,02 1,03	34,82 34,56 34,89	6,05 5,88	1,33 1,32	
4 6 8 10	1,00 1,01 1,02 1,03 Sequence v	33,85 33,53 34,21 35,03	5,30 5,92 6,13 6,08	1,32 1,32 1,33	S7	80-2	1,01 1,02 1,03 Reverse velo	34,82 34,56 34,89	6,05 5,88	1,33 1,32	
4 6 8 10 Speed [rpm]	1,00 1,01 1,02 1,03 Sequence ve Aeration	33,85 33,53 34,21 35,03 elocity Angle [°]	5,35 5,92 6,13 6,08 Cohesive Ind	1,32 1,32 1,33 Roughness I	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration	34,82 34,56 34,89 city Angle [°]	6,05 5,88 Cohesive Inc	1,33 1,32 Roughness I	ndex
4 6 8 10 5peed [rpm] 2	1,00 1,01 1,02 1,03 Sequence v Aeration 0,98	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71	5,38 5,92 6,13 6,08 Cohesive Ind 6,41	1,32 1,32 1,33 Roughness I 1,32	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98	34,82 34,56 34,89 ccity Angle [°] 32,97	6,05 5,88 Cohesive Inc 6,04	1,33 1,32 Roughness I 1,34	Index
4 6 8 10 5peed [rpm] 2 4	1,00 1,01 1,02 1,03 Sequence v Aeration 0,98 0,99	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33	5,92 6,13 6,08 Cohesive Inc 6,41 5,99	1,32 1,32 1,33 Roughness I 1,32 1,33	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99	34,82 34,56 34,89 city Angle [°] 32,97 34.07	6,05 5,88 Cohesive Inc 6,04 6.02	1,33 1,32 Roughness I 1,34 1,31	ndex
4 6 8 10 5peed [rpm] 2 4 6	5,00 1,00 1,01 1,02 1,03 Sequence v Aeration 0,98 0,99 1,00	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87	5,30 5,92 6,13 6,08 Cohesive Ind 6,41 5,599 6,30	1,32 1,32 1,33 Roughness I 1,32 1,33 1 33	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00	34,82 34,56 34,89 city Angle [°] 32,97 34,07 34,07	6,05 5,88 Cohesive Inc 6,04 6,02 6,45	1,33 1,32 Roughness I 1,34 1,31	ndex
4 6 8 10 5peed [rpm] 2 4 6 8	5,00 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 24,24	Cohesive Inc 6,41 5,592 6,08 Cohesive Inc 6,41 5,599 6,30 6,30	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00	34,82 34,56 34,89 Angle [°] 32,97 34,07 34,70	6,05 5,88 Cohesive Inc 6,04 6,02 6,45	1,33 1,32 Roughness I 1,34 1,31 1,33	ndex
4 6 8 10 5peed [rpm] 2 4 6 8	1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31	Cohesive Ind 6,41 5,92 6,13 6,08 Cohesive Ind 6,41 5,99 6,30 6,24	1,32 1,33 Roughness I 1,32 1,33 1,33 1,33	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01	34,82 34,56 34,89 city Angle [°] 32,97 34,07 34,70 34,59	6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34	ndex
4 6 8 10 Speed [rpm] 2 4 6 8 10	5,50 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31 35,72	5,32 6,13 6,08 Cohesive In 6,41 5,99 6,30 6,24 2,6,33	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,32 1,33	S7	80-2	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02	34,82 34,56 34,89 city Angle [°] 32,97 34,07 34,70 34,59 35,67	Cohesive Inc 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10	Roughness I 1,32 1,32 1,32 1,34 1,33 1,34 1,32	ndex
4 6 8 10 5peed [rpm] 2 4 6 8 10	5,50 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 0,98 0,99 1,00 1,01 1,02 0,98 0,99 1,00 1,01 1,02 0,98 0,99 1,00 1,01 1,02 0,98 0,99 1,00 1,01 1,02 0,98 0,99 1,00 1,01 1,02 1,03 1	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31 35,72	Cohesive Int 6,41 8 6,08 Cohesive Int 6,41 8 5,99 6,30 6,24 2 6,33	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,33	S7 ndex S07(B0-2 D-0,18	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02	34,82 34,56 34,89 Angle [°] 32,97 34,07 34,70 34,59 35,67	6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10	1,33 1,32 Roughness I 1,34 1,31 1,33 1,33 1,34 1,32	Index
4 6 8 10 5peed [rpm] 2 4 6 8 10	5,50 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Sequence vi	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31 35,72 elocity	Cohesive Ind 6,41 5,92 Cohesive Ind 6,41 5,99 6,30 6,24 2,6,33	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,32 1,33	S7 ndex S070	80-2 D-0,18	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velo	34,82 34,56 34,89 xcity Angle [°] 32,97 34,07 34,70 34,70 34,59 35,67 xcity	6,25 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,32	Index
4 6 8 10 9 9 9 4 6 8 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration	33,85 33,53 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31 35,72 elocity Angle [°]	Cohesive Inc 6,41 3,5,92 6,08 Cohesive Inc 6,41 3,5,99 6,30 6,24 2,6,33 Cohesive Inc	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,32 1,33 1,32 1,33	S7 ndex S07(80-2 0-0,18	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velo Aeration	34,82 34,56 34,89 Angle [°] 32,97 34,07 34,70 34,59 35,67 Victy Angle [°]	6,25 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,32 Roughness I	Index
4 6 8 10 2 4 6 8 10 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration	33,85 34,21 35,03 elocity Angle [°] 33,71 33,33 34,87 34,31 35,72 elocity Angle [°] 30,26	Cohesive In 6,33 6,08 Cohesive In 6,30 6,24 6,33 Cohesive In 6,24 6,33	1,32 1,32 1,33 1,32 1,33 1,32 1,33 1,33	S7 ndex S07(30-2)-0,18	1,01 1,02 1,03 Reverse velc Aeration 0,98 0,99 1,00 1,01 1,01 Reverse velc Aeration	34,82 34,56 34,89 Angle [°] 32,97 34,07 34,70 34,59 35,67 vcity Angle [°] 28,28	Cohesive Inc 6,04 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,32 Roughness I	Index
4 6 8 10 2 4 6 8 10 peed [rpm] 2 peed [rpm] 2 4	5,50 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration 0,98 0,99 0,00 1,01 0,98 0,99 1,00 0,98 0,99 1,00 0,98 0,99 1,00 0,98 0,99 0,00 0,01 0,	33,85 33,53 34,21 35,03 elocity Angle [*] 33,71 33,33 34,87 34,87 34,31 35,72 elocity Angle [*] 30,26	Cohesive Int 6,41 5,92 6,13 6,08 6,41 5,99 6,30 6,24 2,633 Cohesive Int 5,09 6,30 6,24	1,32 1,32 1,33 1,33 1,33 1,33 1,32 1,33 1,32 1,33 1,32	S7 ndex S07(ndex	80-2)-0,18	1,01 1,02 1,03 Reverse veloc Aeration 0,98 0,99 1,00 1,01 1,02 Reverse veloc Aeration 0,98	34,82 34,56 34,89 activ 32,97 34,07 34,70 34,70 34,70 34,70 34,70 34,59 35,67 vity Angle [°] 28,28 27,27	6,25 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,32 Roughness I 1,03	Index
4 6 8 10 2 4 6 8 10 peed [rpm] 2 4 4 6	1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration 0,98 0,98 0,98	33,85 33,53 34,21 35,03 alocity Angle [°] 33,71 33,33 34,87 34,31 35,72 alocity Angle [°] 30,26 29,95	Cohesive In 6,33 6,08 Cohesive In 6,41 5,99 6,30 6,24 6,33 Cohesive In 6,269 5,387	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,33 1,33 1,33 1,33	S7 ndex S07(80-2)-0,18	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velo Aeration 0,98 0,98	34,82 34,56 34,89 Angle [*] 32,97 34,07 34,70 34,70 34,59 35,67 Angle [*] 28,28 27,76	6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67 1,85	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,32 Roughness I 1,03 1,03	Index
4 6 8 10 3 peed [rpm] 2 4 6 8 10 3 peed [rpm] 2 4 6	1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration 0,98 0,98 0,98	33,85 33,53 34,21 35,03 elocity Angle [*] 33,71 33,33 34,87 34,31 35,72 elocity Angle [*] 30,26 29,95 31,18	3,30 3,92 6,13 6,08 Cohesive Im 6,41 8 5,99 6,33 6,33 Cohesive Im 6,24 2 6,33 Cohesive Im 5,99 6,33 6,33 Cohesive Im 5,99 6,33 6,33 Cohesive Im 5,99 6,33 3,87 2,00 3,87	1,32 1,32 1,33 1,33 1,33 1,33 1,33 1,32 1,33 1,33	S7/ ndex S07/ ndex	80-2)-0,18	1,01 1,02 1,03 Reverse velo Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velo Aeration 0,98 0,98 0,98 0,98 0,98	34,82 34,56 34,89 Angle [*] 32,97 34,07 34,70 34,59 35,67 Angle [*] 28,28 Angle [*] 28,28 28,28 28,28 29,94	6,25 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67 1,85 1,78	1,33 1,32 Roughness I 1,34 1,31 1,33 1,34 1,33 1,34 1,32 Roughness I 1,03 1,03 1,05	ndex ndex
4 6 8 10 ;peed [rpm] 2 4 6 8 10 ; peed [rpm] 2 4 6 8 10 ; peed [rpm] 2 4 6 8 10	0,00 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration 0,98 0,99 0,00 8 0,98 0,98 0,98 0,99 0,00 1,01 0,01	33,85 33,53 34,21 35,03 35,03 35,03 40,00 40,00 33,71 33,33 34,87 34,31 35,72 30,26 29,95 31,18 31,483	Cohesive In 6,13 6,08 Cohesive In 6,41 5,99 6,30 6,24 6,33 Cohesive In 6,269 5,3,87 2,00 8,1,77	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,33 1,33 1,33 1,33	S7 ndex S07(ndex	90-2 9-0,18	1,01 1,02 1,03 Reverse velc Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velc Aeration 0,98 0,98 0,98 0,98 0,98	34,82 34,56 34,89 xcity Angle [*] 32,97 34,07 34,07 34,70 34,59 35,67 xcity Angle [*] 28,28 27,76 29,94 31,53	Cohesive Inc 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67 1,85 1,78 1,81	Roughness I 1,33 1,32 1,34 1,31 1,33 1,34 1,32 Roughness I 1,03 1,05 1,07	Index
4 6 8 10 ;peed [rpm] 2 4 6 8 10 ;peed [rpm] 2 4 6 8 10	1,00 1,00 1,01 1,02 1,03 Sequence v Aeration 0,98 0,99 1,00 1,01 1,02 Sequence v Aeration 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98	33,86 33,53 34,21 35,03 alocity Angle [*] 33,71 33,34,87 34,37 34,37 34,37 30,26 29,95 31,18 31,43 33,06	Cohesive In 6,41 5,92 6,13 6,08 Cohesive In 6,41 5,99 6,30 6,24 2,69 3,87 3,200 1,77 1,88	1,32 1,32 1,33 1,33 1,33 1,33 1,33 1,32 1,33 1,33	S7 ndex S07(ndex	-0,18	1,01 1,02 1,03 Reverse veloc Aeration 0,98 0,98 1,00 1,00 1,00 1,01 1,02 Reverse veloc Aeration 0,98 0,98 0,98 0,98	34,62 34,56 34,99 city Angle [*] 32,97 34,70 34,70 34,59 35,67 city Angle [*] 28,28 27,76 29,94 31,53 33,15	Cohesive Inc 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67 1,85 1,78 1,81 1,92	1,33 1,34 1,34 1,34 1,31 1,33 1,34 1,32 Roughness I 1,03 1,03 1,05 1,07 1,09	Index
4 6 8 10 3 5 peed [rpm] 2 4 6 6 8 10 3 5 peed [rpm] 2 4 6 8 10 3 5 9 10 10 10 10 10 10 10 10 10 10 10 10 10	0,00 1,00 1,01 1,02 1,03 Sequence vi Aeration 0,98 0,99 1,00 1,01 1,02 Sequence vi Aeration 0,98 00 0,98 0000000000	33,85 33,53 34,21 35,03 35,03 35,03 33,71 33,37 34,37	5,32 6,13 6,08 Cohesive In 6,41 5,99 6,30 6,24 6,33 Cohesive In 2,69 5,3,87 8,2,69 5,3,87 8,2,00 1,77 5,1,88	1,32 1,32 1,33 Roughness I 1,32 1,33 1,33 1,33 1,33 1,33 1,33 1,33	S7 ndex S07(0-2 0-0,18	1,01 1,02 1,03 Reverse velc Aeration 0,98 0,99 1,00 1,01 1,02 Reverse velc Aeration 0,98 0,98 0,98 0,98	34,62 34,65 34,89 city Angle [*] 32,97 34,07 34,07 34,07 34,59 35,67 city Angle [*] 28,28 27,76 29,94 31,53 33,15	Cohesive Inc 6,05 5,88 Cohesive Inc 6,04 6,02 6,45 5,92 6,10 Cohesive Inc 1,67 1,85 1,78 1,81 1,81	Roughness I 1,33 1,32 Roughness I 1,34 1,33 1,34 1,33 1,34 1,32 Roughness I 1,03 1,05 1,07 1,09	Index
4 6 8 10 Speed [rpm] 2 4 6 8 10 Speed [rpm] 2 4 6 8 10	0,00 1,00 1,01 1,02 1,03 Sequence v. Aeration 0,98 0,99 1,00 1,01 1,02 Sequence v. Aeration 0,98 0,98 0,98 0,98	33,85 34,21 35,03 2000 (1) 33,71 33,33 34,87 34,31 34,87 34,31 35,72 2000 (1) 400 (2) 400 (2)	3,30 5,92 6,13 6,08 Cohesive In 6,41 5,99 6,30 6,24 6,33 Cohesive In 6,24 2,69 3,87 3,2,09 1,77 1,88 1,88	1,32 1,32 1,33 1,33 1,33 1,33 1,33 1,32 1,33 1,32 1,33 1,32 1,33 1,04 1,06 1,06 1,06	S7 ndex S07(ndex	-0,18	1,01 1,02 1,03 Reverse veloc Aeration 0,98 0,98 1,00 1,01 1,02 Reverse veloc Aeration 0,98 0,98 0,98 0,98	34,62 34,66 34,89 city Angle [*] 32,97 34,07 34,59 35,67 city Angle [*] 28,28 27,76 29,94 31,53 33,15	Cohesive Int 6,05 5,88 Cohesive Int 6,02 6,45 5,92 6,10 Cohesive Int 1,67 1,85 1,78 1,81 1,81	1,33 1,33 1,34 1,34 1,31 1,33 1,34 1,32 Roughness I 1,03 1,03 1,03 1,07 1,09	Index

	Sequence v	elocity				Reverse velo	ocity			
Speed [rpm]	Aeration	Angle [°]	Cohesive Inc	Roughness	Index	Aeration	Angle [°]	Cohesive Inc	Roughness	Index
2	0,93	31,38	3,68	1,21		0,92	31,27	3,79	1,21	
4	0,93	30,69	3,76	1,20		0,93	31,42	3,82	1,21	
6	0,95	32,47	3,97	1,22		0,95	31,98	4,28	1,21	
8	0,95	32,41	4,02	1,21		0,95	32,99	4,08	1,22	
10	0,96	33,54	4,03	1,22		0,96	33,57	3,96	1,24	

reómetro de diseño propio

TABLA 5 ANEXO

Valores extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD, energía y masa) para el polvo de Zirconio

Series Name	Material and	BFE, mJ	SI	FRI	SE, mJ/g	CBD, g/ml	Split Mass, g	Tot.En, mJ @	Tot.En, mJ @	Tot. En, mJ (Tot. En, mJ (Tot.En, mJ @	Tot.En, mJ (Tot. En, mJ 🤅	Tot.En, mJ @			
PR3052	zy / 0,08-0,13	1980,68	1,00	1,05	2,06	3,66	584,91	1990,32	1989,98	1982,65	1994,70	1986,94	1999,43	1980,68	1988,08	1990,74	2027,76	2080,07
PR3053	zy / 0,08-0,13	1973,63	1,00	1,06	2,05	3,64	582,48	1967,77	1987,85	1973,45	1969,89	1973,75	1975,42	1973,63	1972,64	1987,05	2028,00	2089,02
PR3054	zy / 0,08-0,13	1965,50	1,00	1,07	2,05	3,64	582,11	1969,21	1967,22	1967,23	1966,65	1968,88	1969,94	1965,50	1957,42	1968,24	2013,73	2095,05
PR3055	zy / 0,1-0,2	2151,94	1,01	1,07	2,19	3,64	582,48	2141,00	2140,24	2154,70	2142,19	2143,08	2155,51	2151,94	2150,55	2160,05	2197,56	2296,12
PR3056	zy / 0,1-0,2	2149,38	1,01	1,07	2,21	3,63	581,44	2133,13	2148,52	2154,29	2158,32	2152,13	2153,05	2149,38	2147,55	2151,89	2198,48	2306,24
PR3057	zy / 0,1-0,2	2143,10	0,99	1,08	2,22	3,63	580,85	2153,94	2136,55	2145,90	2146,44	2156,77	2156,73	2143,10	2156,53	2173,11	2212,97	2323,25
PR3058	zy / 0,3-0,4	2113,55	0,94	1,04	2,09	3,67	587,38	2244,24	2212,47	2200,25	2188,03	2154,47	2155,22	2113,55	2123,68	2112,08	2145,12	2213,53
PR3059	zy / 0,3-0,4	2070,62	0,95	1,06	2,02	3,68	589,37	2188,80	2159,57	2129,10	2125,96	2099,40	2092,76	2070,62	2047,42	2062,89	2099,36	2174,54
PR3060	zy / 0,3-0,4	1951,08	0,95	1,06	1,94	3,66	585,81	2045,49	2019,08	2013,11	1994,57	1972,19	1949,95	1951,08	1943,64	1945,99	1973,01	2058,26

TABLA 6 ANEXO

Valores medios extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD, energía y masa) para el polvo de Zirconio

AVERAGE OF														
TAILLE (mm)	BFE, mJ	SI	FRI	SE, mJ/g	CBD, g/ml	Split Mass, g								
0,08-0,13	1973,63	1,00	1,06	2,05	3,64	582,48								
0,1-0,2	2149,38	1,01	1,07	2,21	3,63	581,44								
0,3-0,4	2070,62	0,95	1,06	2,02	3,67	587,38								

TABLA 7 ANEXO

Valores extraídos de la experimentación con el reómetro FT4 (BFE,SI,FRI, CBD, energía y masa)

para el polvo de Microesferas de vidrio

Material and	BFE, mJ	SI	FRI	SE, mJ/g	CBD, g/ml	Split Mass, g	Tot.En, mJ @	Tot. En, mJ @1	ot. En, mJ @1	rot.En, mJ @1	۲ot.En, mJ @	rot.En, mJ @1	rot.En, mJ @1	rot.En, mJ @1	rot. En, mJ @T	ot. En, mJ @T	ot.En, mJ @
BDV / 0-20ur	584,6635	1,157619	1,962756	6,097338	0,8035625	128,57	505,057	599,1681	704,0456	656,5986	628,4339	599,1301	584,6635	584,7886	678,9017	836,7202	1147,797
BDV / 0-20ur	628,449	1,179315	1,870712	6,332265	0,82325	131,72	532,8932	662,0337	614,0493	671,3364	608,5981	650,3036	628,449	620,6896	672,3563	838,7371	1161,131
BDV / 0-20ur	585,0397	1,202796	1,959524	4,98194	1,00625	161	486,3998	557,0319	591,713	590,7303	594,8347	580,4419	585,0397	598,25	671,6799	803,9385	1172,285
BDV / 0-50ur	1418	1,034432	1,034321	2,996934	1,615125	258,42	1370,801	1505,405	1448,21	1422,172	1435,321	1413,517	1418	1407,194	1449,82	1467,2	1455,491
BDV / 0-50ur	1413,998	0,9852105	1,044482	3,374019	1,435562	229,69	1435,224	1413,976	1416,148	1407,541	1427,186	1405,205	1413,998	1405,56	1444,431	1468,196	1468,082
BDV / 0-50ur	1404,729	0,992367	1,030962	2,983678	1,62025	259,24	1415,534	1396,83	1419,406	1388,405	1400,052	1420,568	1404,729	1417,654	1446,405	1461,634	1461,547
BDV / 70-110	1664,496	0,993957	1,037762	3,274206	1,620125	259,22	1674,616	1660,667	1654,28	1666,314	1674,701	1686,458	1664,496	1694,79	1696,516	1752,865	1758,788
BDV / 70-110	1724,036	0,9824297	1,043527	3,720177	1,4385	230,16	1754,869	1738,423	1712,539	1718,978	1742,414	1714,296	1724,036	1716,426	1744,329	1802,956	1791,136
BDV / 70-110	1720,26	0,9696251	1,040229	3,791036	1,43525	229,64	1774,149	1738,015	1727,653	1721,705	1718,836	1718,888	1720,26	1722,682	1747,736	1809,973	1791,984
BDV / 40-70u	1592,181	1,010334	1,045207	3,505641	1,420687	227,31	1575,896	1592,198	1609,238	1586,13	1586,738	1564,18	1592,181	1569,346	1571,055	1639,041	1640,292
BDV / 40-70u	1587,016	0,9682127	1,043321	3,499042	1,423437	227,75	1639,119	1617,533	1618,277	1602,772	1612,803	1610,805	1587,016	1577,504	1595,194	1632,79	1645,844
BDV / 40-70u	1532,533	0,9878688	1,022832	3,561192	1,401188	224,19	1551,353	1539,034	1527,238	1542,609	1533,042	1534,352	1532,533	1542,673	1533,106	1582,149	1577,896
BDV / 100-20	1805	1,008368	1,069846	2,36924	1,432	212,98	1790,021	1768,182	1748,393	1797,307	1754,99	1777,948	1805	1794,616	1835,08	1962,836	1919,963
BDV / 100-20	1812,184	1,003304	1,062885	3,953702	1,457	233,12	1806,217	1833,237	1766,671	1775,567	1780,707	1788,039	1812,184	1799,81	1826,594	1975,253	1912,992
BDV / 200-30	1140,589	1,000656	1,089179	2,71619	1,505937	240,95	1139,841	1143,227	1141,829	1149,478	1145,921	1147,116	1140,589	1144,277	1153,371	1196,637	1246,322
BDV / 200-30	1155,649	0,9980257	1,100204	2,766083	1,500687	240,11	1157,935	1154,954	1157,12	1159,332	1159,974	1149,339	1155,649	1149,66	1169,641	1200,816	1264,86
BDV / 200-30	1166,696	0,9982082	1,093977	2,794146	1,50125	240,2	1168,79	1165,039	1161,21	1163,262	1168,344	1176,244	1166,696	1168,444	1169,317	1209,476	1278,251
BDV / 300-40	1294,126	0,9941953	1,090542	2,927239	1,505375	240,86	1301,682	1294,665	1296,29	1283,715	1285,281	1276,149	1294,126	1290,384	1303,626	1335,141	1407,217
BDV / 400-60	1229,508	0,9828094	1,126347	2,73653	1,5135	242,16	1251,014	1240,91	1246,481	1229,086	1224,664	1222,835	1229,508	1234,983	1247,395	1294,005	1391,019
BDV / 400-60	1250,679	0,9973892	1,140565	2,760705	1,520063	243,21	1253,953	1257,156	1256,337	1245,048	1251,174	1242,013	1250,679	1259,812	1265,755	1310,391	1436,897
BDV / 400-60	1221,426	0,9619616	1,088591	2,79012	1,519687	243,15	1269,724	1266,269	1255,839	1266,064	1236,969	1220,083	1221,426	1221,023	1222,127	1240,523	1329,195
BDV / 300-40	1272,131	0,9683266	1,086091	2,866793	1,504625	240,74	1313,742	1285,501	1285,913	1277,028	1268,215	1276,223	1272,131	1272,24	1270,369	1318,57	1381,769
BDV / 300-40	1280,17	0,9719424	1,094909	2,9145	1,48975	238,36	1317,126	1317,863	1308,628	1307,147	1289,368	1285,207	1280,17	1282,14	1285,555	1335,388	1403,826

TABLA 8 ANEXO

Valores medios extraídos de la experimentación con el reómetro FT4 (BFE, SI, FRI, CBD, energía y masa) para el polvo de Microesferas de vidrio

AVERAGE OF							
SIZE (um)	BFE, mJ	SI	FRI	SE, mJ/g	CBD, g/ml	Split Mass, g	
0-20	585,04	1,18	1,96	6,10	0,82	131,72	
0-50	1414,00	0,99	1,03	3,00	1,62	258,42	
40-70	1587,02	0,97	1,09	2,89	1,50	239,55	
70-110	1720,26	0,9824297	1,040229	3,720177	1,4385	230,16	
100-200	1808,592	1,005836	1,0663655	3,161471	1,4445	223,05	
200-300	1155,649	0,9982082	1,093977	2,766083	1,50125	240,2	
300-400	1280,17	0,9719424	1,090542	2,9145	1,504625	240,74	
400-600	1229,508	0,9828094	1,126347	2,760705	1,519687	243,15	

ARCHIVOS ADJUNTOS AL TFG:

- ANÁLISIS GRANULOMETRICO DE LAS MICROESFERAS DE VIDRIO
- ANÁLISIS GRANULOMETRICO DEL ZIRCONIO
- ANÁLISIS GRANULOMETRICO DE LOS METALES S
- ANÁLISIS GRANULOMETRICO DE LOS METALES G

PLANIFICACION TEMPORAL

ACTIVIDAD	INICIO	DURACIÓN (días)	FIN					
Asignación del TFG	04/03/2022		04/03/2022					
Documentación								
Lectura de manuales	08/03/2022	10	18/03/2022					
de uso de máquinas v	00/03/2022	10	10/03/2022					
curso de seguridad								
Lectura de manuales	18/03/2022	8	25/03/2022					
sobre simulación	-,, -		-,, -					
DEM								
Ensayos								
Selección de polvos	25/03/2022	3	29/03/2022					
polvorientos								
Ensayos	01/04/2022	13	29/04/2022					
GRANUDRUM								
Ensayos Freeman FT4	02/05/2022	10	13/05/2022					
Simulación y resultados								
Simulación DEM	2/05/2022	13	20/05/2022					
Análisis de resultados	20/05/2022	14	03/06/2022					
Analisis de resultados	20/03/2022	14	03/00/2022					
Redacción								
Redacción del TFG	21/04/2022	50	10/06/2022					