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Abstract

Despite antimicrobial resistance is an increasing health emergency, the pace of development of
new drugs is slow due to the high cost and uncertain success of the process. At the same time,
the development of high-throughput technologies has allowed the integration of biological
data into genome-scale models of multiple microorganisms that have proven useful in areas
such as metabolic engineering. These models have the potential to offer cost-effective means
to identify vulnerabilities in metabolism, which can serve as potential therapeutical targets
for drugs.

In this work, we formally define chemical reactions of metabolism that are broadly acknowl-
edged as vulnerabilities. In order to exploit all the data available on the model, we develop
a procedure to integrate growth constraints into the identification of these vulnerabilities.
By doing so we are able to identify vulnerabilities in metabolism that are consistent with a
given growth rate of the model. Moreover, we also study how these constraints affect current
optimisation methods used to compute growth in a model.

In addition, in this work, we also study the mechanisms of metabolism robustness, this is,
the ability to sustain growth against external disruptions. A method is proposed to identify
sets of reactions that are essential for growth and sets of reactions that are redundant and
therefore account for the robustness of metabolism. We show that growth itself is produced
as a combination of the two previous sets. Moreover, the problem of computing a minimum
set of reactions that can produce optimum growth is formally stated. It is proven that such
a problem is NP-complete and a technique to reduce the search space of the problem is
proposed. Finally, we also show that flux variability is an indicator of reactions essentiality
and discuss how it is related to redundancy in metabolism. The methods proposed in this
work are experimentally applied in a genome-scale model of Plasmodium Falciparum.





Resumen

A pesar de la creciente emergencia sanitaria que supone la resistencia microbiana a los
antibióticos, el ritmo de desarrollo de nuevos medicamentos es lento debido al alto costo y al
éxito incierto del proceso. Al mismo tiempo, el desarrollo de las tecnologías de secuenciación
ha permitido la integración de datos biológicos en modelos a escala genómica de múltiples
microorganismos, los cuales han demostrado ser útiles en áreas como la ingeniería metabólica.
Estos modelos tienen el potencial de ofrecer alternativas computacionales más eficientes para
la identificación de vulnerabilidades en el metabolismo, los cuales pueden ser potenciales
dianas terapéuticas para fármacos.

En este trabajo, se definen de manera formal aquellas reacciones químicas del metabolismo
que son ampliamente reconocidas como vulnerabilidades del metabolismo. Con el objetivo de
aprovechar toda la información disponible en el modelo, se desarrolla un procedimiento para
integrar restricciones de crecimiento en la identificación de estas vulnerabilidades. De esta
manera, conseguimos identificar vulnerabilidades que son consistentes con un determinado
ratio de crecimiento en el modelo. Además de esto, se estudia el efecto que estas restricciones
tienen en los métodos de optimización actuales utilizados para la estimación de crecimiento.

Además de esto, en este trabajo también se estudian los mecanismos de robustez del
metabolismo, esto es, aquellos que le permiten mantener el crecimiento frente a pertur-
baciones externas. Para ello, se propone un método para identificar aquellos conjuntos de
reacciones que resultan esenciales para el crecimiento, y aquellas que resultan redundantes y
que por tanto contribuyen a la robustez del metabolismo. Se demuestra que el crecimiento
en el metabolismo es el resultado de una combinación de los dos conjuntos anteriores. El
problema del cálculo del mínimo conjunto de reacciones necesario para un crecimiento óptimo
también se propone formalmente. Se demuestra que este problema es NP-completo y se
propone una técnica para reducir el espacio de búsqueda. Finalmente, se demuestra que la
variabilidad en el flujo de las reacciones es un indicador de la esencialidad de estas y se discute
su relación con la redundancia en el metabolismo. Los métodos propuestos en este trabajo
se aplican experimentalmente a un modelo a escala genómica de la bacteria Plasmodium
Falciparum.
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Chapter 1

Introduction

Antimicrobial Resistance (AMR) occurs when bacteria, viruses, fungi and parasites evolve
and no longer are affected by conventional medicines thus making infections harder to treat
and increasing the risk of disease spread and severe illness. The emergence of multi-drug
resistant bacteria (MDR) is particularly alarming, as they can cause infections untreatable
with existing antibiotics. According to the World Health Organisation, AMR is one of the
primary global public health threats to humanity due to its high increasing rate [61].

Despite this increasing emergency, the antibiotics development pipeline entails a huge cost with
uncertain success. Preclinical stages of the process usually involve searching for antibacterial
compounds in nature and then putting them through a series of experiments to study their
drug feasibility. In this context, computational methods have the opportunity to offer
cost-effective alternatives to traditional screening methods [47].

In recent years, the emergence of high-throughput technologies allowed the integration of
transcriptomic data of multiple pathogens into large biological datasets. This integration
paved the way for the reconstruction of metabolic models of biological systems which directly
led to the possibility of modelling these systems computationally (see Figure 1.1). [50, 48].

Metabolism is the set of basic life processes that take place in the cell, and it is the means by
which cells can maintain life and grow from their environment. Metabolism can be represented
as a metabolic network, which includes all the metabolic reactions that can occur in a cell.
As of 2019, Genome-Scale Models (GEM) of metabolism have been reconstructed for more
than 6000 organisms including bacteria, archaea and eukaryotes [16].

To provide an example, Figure 1.2a shows a GEM consisting only of Escheria Coli nucleus
metabolism. This model consists of 54 compounds and 85 chemical reactions. In 1994, Varma
et.al. [56] made a significant breakthrough by showing that, with this model of Escheria Coli
nucleus, they were able to accurately predict glucose uptake in relation to the growth rate
(Figure 1.2b). In addition, this model also enabled the modelling of the change of compound
concentrations through time (Figure 1.2c). After almost 30 years, technological advances and
available data have substantially pushed further the field. Nowadays, models of E. coli are
comprised of more than 2700 reactions [25] with over 1500 genes [13] and are able to model
more complex behaviours such as transcriptomics machinery [41] or stress response [8].
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Figure 1.1 Holistic approach of metabolic modelling. High-throughput sequencing technology
and automatic annotation tools enabled the reconstruction of microorganisms’ metabolism.
Mathematical models can be used over these reconstructions to make predictions and gain
insight into the cellular behaviour of the modelled biological system. This figure is an
extension of Fig.1 in [12].

(a) Metabolic network of E. coli nucleus with 54 metabo-
lites and 85 reactions. Source: [34].

(b) Maximum aerobic glucose utilisation
rate (Glc) based on growth rate (X).
Source: [56].

(c) Predicted growth (Biomass), Glucose
and Acetate concentration on aerobic
batch culture. Source: [56].

Figure 1.2 Escheria Coli nucleus metabolic network and in-silico predictions obtained with
this model by Varma et al.. Model predictions are plotted with continuous lines.

Current applications of GEMs include but are not limited to: expanding knowledge on
microorganisms [19, 39] and microbial communities [29, 65], microbial engineering [37, 51],
and drug discovery [48]. Moreover, these models have proven useful in areas such as oncology,
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by studying drug targets in cancer metabolism [15], and viral diseases [3]. Drug targeting in
pathogens is usually performed by considering essential genes whose enzyme inhibition can
effectively kill a pathogen [16] or through metabolic network topology analysis [48]. For a
comprehensive review of GEMs, applications see [17].

In this work, we will focus on GEMs applications to drug discovery. It is well known that
bacteria evolved their metabolism to adapt to different environments and even today to avoid
antibiotics drugs. Despite the advances made with GEMs, what confers metabolism and its
robustness has been surprisingly understudied. Contributions in this field have promising
potential for both understanding and drug targeting on metabolism. This work will aim
to define potential drug targets, study metabolism robustness under certain conditions and
propose methods to exploit metabolic vulnerabilities for drug targetting.

1.1 Thesis contributions and outline
This work is composed of a series of individual contributions whose shared goal is to provide
methods to exploit metabolism vulnerabilities and shed light on the mechanisms that confer
robustness to metabolism. The main contributions of this work are listed below:

• Vulnerabilities computation

– Provided formal definitions for widely recognised metabolism vulnerabil-
ities such as chokepoint reactions and essential reactions which can be appealing
first-step targets for drug discovery (Chapter 2).

– Proposed a framework to study how these vulnerabilities change when the
model is producing growth in a steady state (Chapter 3).

– Proved formally that imposing flux variability constraints on each reaction
forces the model to produce a given growth (Chapter 4).

• Metabolism robustness

– Proposed a method for computing the minimum metabolism necessary
to sustain growth, which provides insights into metabolism robustness and how
growth is produced (Chapter 5).

– Showed that reactions that are essential for growth are directly related to
the flux that each reaction is able to carry, which sheds light on the mechanisms
that confer robustness to metabolism (Chapter 6).

• Evaluation

– Evaluated robustness and vulnerabilities identification on Plasmodium
Falciparum genome-scale model (Chapter 7).

• Conclusions and future work

– Provided the overall conclusions of the work and future approaches (Chapter 8).

Computational tools used in this work are reported in Appendix B.





Chapter 2

Definitions

In this chapter, preliminary definitions are introduced. We will define constraint-based
models, types of metabolic reactions and methods to estimate growth and metabolic flux.
Furthermore, some well-known vulnerabilities are formally defined.

2.1 Preliminary definitions

2.1.1 Constraint-based models

Definition 2.1.1. A constraint-based model [55, 43] is a tuple {R, M, S, L, U} where R
is a set of reactions, M is a set of metabolites, S ∈ R|M|×|R| is the stoichiometric matrix, and
L, U ∈ R|R| are lower and upper flux bounds of the reactions.

Without loss of generality, it is assumed that L[r]≤U [r] ∀r ∈ R.

All reactions are associated with a set of reactant metabolites and a set of product metabolites
(one of these two sets can be empty). For example, the reaction r:A → 2B has a reactant
metabolite A, and a product metabolite B with stoichiometric weight 2, i.e. two molecules of
type B are produced per each molecule of type A that is consumed by r. The stoichiometric
matrix S accounts for all the stoichiometric weights of the reactions, i.e. S[m, r] is the
stoichiometric weight of metabolite m ∈ M for reaction r ∈ R.

m1

m2

r1

m3

m4

m5

3 2

Figure 2.1 Example Petri net mod-
elling a constraint-based model with
only one reaction.

Constraint-based models are inherently bipartite di-
rected graphs and thus they can be represented graph-
ically as Petri nets [38, 18], where places, drawn as
circles, model metabolites, and transitions, drawn as
squares, model reactions. The presence of an arc from a
place(transition) to a transition(place) means that the
place is a reactant(product) of the reaction modelled by
the transition. The weights of the arcs of the Petri net
account for the stoichiometry of the constraint-based
model. In other words, the stoichiometric matrix of a
constraint-based model and the incidence matrix of its
corresponding Petri net coincide.
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Example 2.1.1. The Petri net in Figure 2.1 represents a simple constraint-based model
that consists of 1 reaction and 5 metabolites. The only transition r1, models the reaction
r1 : 3m1 + m2 → 2m3 + m4 + m5.

2.1.2 Structural and flux-based definitions

We will introduce now structural definitions making use of Petri net notation: Let X denote a
node of the net, i.e. a reaction or a metabolite. Then, •X(X•) denotes the set of input(output)
nodes of X. For instance, for a given reaction r ∈ R, •r denotes its set of reactants and r•

its set of products; for a given metabolite m ∈ M, •m denotes its set of producing reactions
and m• its set of consuming reactions.

The previous definitions only take into account the structure of the network and disregard
the flux bounds of the reactions. In order to capture the fact that reactions can proceed
forwards or backwards, e.g. reversible reactions, new sets of reactants, products, consumers
and producers that take into account flux bounds are defined:

• Flux-dependent set of reactants of r:
⋆r={m ∈ M|(S(m, r)<0 ∧ U [r]>0) ∨ (S(m, r)>0 ∧ L[r]<0)}

• Flux-dependent set of products of r:
r⋆={m ∈ M|(S(m, r)>0 ∧ U [r]>0) ∨ (S(m, r)<0 ∧ L[r]<0)}

• Flux-dependent set of producers of m:
⋆m = {r ∈ R|m ∈ r⋆}

• Flux-dependent set of consumers of m:
m⋆ = {r ∈ R|m ∈ ⋆r}

The flux bounds can be also used to classify reactions as dead, reversible or non-reversible:

Definition 2.1.2. A reaction r ∈ R is dead if L[r] = U [r] = 0.

Definition 2.1.3. A reaction r ∈ R is reversible if L[r] < 0 < U [r].

Definition 2.1.4. A reaction r ∈ R is non-reversible if r is not dead and r is not reversible.

From the above definitions, it can be deduced that r is non-reversible if (0 ≤ L[r] ∧ 0 <
U [r]) ∨ (L[r] < 0 ∧ U [r] ≤ 0).

r1

(a) Non-
reversible
reaction

r1

(b) Reversible
reaction

r1

(c) Dead reac-
tion

Figure 2.2 Types of reactions.

Notice that dead reactions will never have flux.
Since this might indicate a deficiency of the
model or a blocked pathway of the organism,
special attention will be paid to dead reactions.

Non-reversible reactions, reversible reactions and
dead reactions will be represented as white rect-
angles, red double rectangles, and grey crossed
rectangles respectively (see Figure 2.2) For con-
venience, metabolites only produced or only con-
sumed by dead reactions will be represented with
grey circles as well.
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Example 2.1.2. The Petri net in Figure 2.3 represents a constraint-based model with
6 metabolites and 10 reactions. Lets say that reactions r3, r4 have all flux bounds equal
to [−10, 10], reactions r1, r2, r5, r6, r7, r8, rg have all flux bounds equal to [0, 10] and re-
action r9 has flux bounds equal to [0, 0]. In this model, reactions r3, r4 are reversible
reactions (i.e. RR = {r3, r4}), reaction r9 is a dead reaction (i.e. DR = {r9}) and reactions
r1, r2, r5, r6, r7, r8, rg are non-reversible reactions (i.e. NR = {r1, r2, r5, r6, r7, r8, rg}).

2.1.3 Flux Balance Analysis

r1

m1

r2 r3

m2

rg

r4

m3

r5 r6

m4

r8

m5

r7

r9

m6

2

Figure 2.3 Example Petri net modelling a
constraint-based model.

Flux Balance Analysis (FBA) [44] is a math-
ematical procedure for the estimation of
steady-state fluxes in constraint-based mod-
els. FBA can be used, for instance, to predict
the maximum growth rate of an organism.
Let v ∈ R|R| be the vector of fluxes of re-
actions and v[r] denote the flux of reaction
r. At a steady state, it holds that S · v = 0,
where S is the stoichiometric matrix. Thus,
the linear programming problem (LPP) for
FBA is:

max z · v

st. S · v = 0
L ≤ v ≤ U

(2.1)

where z ∈ R|R| expresses the objective function.

Let rg be the reaction that models growth (or biomass production). Without loss of generality,
it will be assumed that L[rg]≥0. A theoretical optimum for the growth rate can be obtained
by the following FBA:

max v[rg]
st. S · v = 0

L ≤ v ≤ U

(2.2)

The maximum v[rg] obtained by the above LPP (2.2) will be denoted µmax.

2.1.4 Flux Variability Analysis

Flux Variability Analysis (FVA) [35] computes the minimum and maximum fluxes of reactions
that are compatible with a given state. For instance, FVA can be used to compute the fluxes
that are compatible with a growth γ · µmax where γ ∈ [0, 1]. FVA can be computed by solving
two independent LPPs per reaction r ∈ R. One programming problem maximises v[r], and
the other minimises v[r]. The constraints of both problems are the same: the steady state
condition S · v = 0, the flux bounds L ≤ v ≤ U , and the constraint γ · µmax ≤ v[rg]. The two
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LPPs for a given r ∈ R can be expressed as:

max / min v[r]
st. S · v = 0

L ≤ v ≤ U

γ · µmax ≤ v[rg]

(2.3)

2.2 Vulnerabilities
This section defines two types of reactions that are widely acknowledged as potential drug
targets: chokepoint reactions and essential reactions.

2.2.1 Chokepoint reactions

r1 m1

m2
r2

Figure 2.4 Reaction r1
is the only producer of
m1. Reaction r2 is the
only consumer of m2.

A chokepoint is a reaction that is the only consumer or the only
producer of a given metabolite. Thus, the inhibition of a chokepoint
may lead to the unlimited accumulation of potentially toxic metabo-
lites or the lack of production of an essential compound. This makes
chokepoint reactions appealing drug targets [62].

Formally, chokepoint reactions can be defined as:

Definition 2.2.1. A reaction r ∈ R is a chokepoint if there exists
m ∈ M such that m• = {r} or •m = {r}.

The previous definition only takes into account the structure of the
network and disregards the flux bounds of the reactions. In order
to capture the fact that reactions can proceed forwards or back-
wards, e.g. reversible reactions, a flux-based definition of chokepoint
reactions is proposed:

Definition 2.2.2. [40] A reaction r ∈ R is a flux-dependent chokepoint if there exists m ∈ M
such that m⋆ = {r} or ⋆m = {r}. The set of flux-dependent chokepoints is denoted CP⋆.

Example 2.2.1. In the Petri net in Figure 2.3, r1 is a flux-dependent producer of m1,
i.e. r1 ∈ ⋆m1; Since r1 is the only flux-dependent producer of m1, r1 is a flux-dependent
chokepoint, i.e. m1

⋆ = {r1} and r1 ∈ CP⋆.

2.2.2 Essential reactions

A reaction is said to be essential if it is required by the organism to grow. In other words,
the deletion of an essential reaction implies null growth. Consequently, these reactions have
the potential to cause the death of the modelled organism [45].
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Definition 2.2.3. [45] A reaction r ∈ R is an essential reaction if the solution of the following
LPP:

max v[rg]
st. S · v = 0

L ≤ v ≤ U

v[r] = 0

(2.4)

is equal to 0 or the LPP is infeasible.

The set of essential reactions, which is denoted ER, can be computed straightforwardly by
solving (2.4) for each r ∈ R.

Example 2.2.2. Consider now the Petri net of Figure 2.3, where reaction rg represents
growth. Here reactions r1, r4 and r8 are essential reactions. This is because, if the flux of
any of these reactions is set to 0, then it is not possible to produce metabolites m2, m4, m6
respectively, which are necessary for the growth reaction rg.

In Appendix C, a couple of examples from the literature have been included that show how
chokepoint reactions and essential reactions are exploited in drug discovery pipelines.





Chapter 3

Sustaining growth

In the previous chapter, flux-dependent definitions of reactions were introduced. These
reaction sets however are not fixed. Depending on the environment in which microorganisms
are located, and the nutrients available in the medium, flux might vary considerably in
metabolism. The aim of this chapter is to explore the question: What happens to the
vulnerabilities identified when a model is forced to produce a certain growth rate?. The chapter
presents how growth constraints can be incorporated into the identification of vulnerabilities.
The resulting vulnerabilities are considered growth-dependent.

3.1 Growth-dependent definitions

3.1.1 Essential reactions

Similarly to essential reactions, which are those reactions that are necessary to produce
non-null growth on the model, growth-dependent essential reactions are those reactions that
are necessary to produce a certain growth on the model. This certain growth will be expressed
as γ · µmax where γ ∈ [0, 1] and µmax is the solution of (2.2).

A reaction is said to be a growth-dependent essential reaction for a given growth γ · µmax if
its deletion implies that the maximum possible growth is below γ · µmax. More formally,

Definition 3.1.1. Let µmax be the solution of the LPP in (2.2). Given γ ∈ [0, 1], a reaction
r ∈ R is a growth-dependent essential reaction if the solution of LPP (2.4) is lower than
γ · µmax or the LPP is infeasible.

The set of growth-dependent essential reactions for a given growth specified by γ ∈ [0, 1] will
be denoted ERγ . This set can be computed straightforwardly by solving LPP (2.4) for each
reaction.

This chapter includes results from the preprint article:
A. Oarga, B. P. Bannerman and J. Júlvez. CONTRABASS: Exploiting flux constraints in genome-scale
models for the detection of vulnerabilities. Submitted to the journal Bioinformatics.
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Special attention is given to the set of reactions ER1, as it will consist of those reactions
that are necessary to produce the optimum growth of the model. This set will be named
essential reactions for optimum growth (EROG).

Example 3.1.1. In the Petri net of Figure 2.3 where rg models growth, reactions r1, r2, r3, r4
are essential reactions for optimum growth (i.e. r1, r4, r6, r8 ∈ EROG). Reactions r1, r4 and
r8 are essential reactions, and thus, they are also essential reactions for optimum growth.
Regarding reaction r6, if this reaction is forced to have flux equal to 0, metabolite m4, which
is essential for growth, can only be produced through a non-optimal path. Then, the model
will not be able to achieve optimum growth, thus making these reactions, essential reactions
for optimum growth.

3.1.2 Dead, reversible and chokepoint reactions

The computation of the flux bounds by means of FVA (2.3), can be carried out in an optimum
state i.e. γ = 1, or in a suboptimal state i.e. 0 ≤ γ < 1. In the optimal state, all fluxes must
be optimally directed towards growth, whereas in suboptimal states, fluxes are allowed to
deviate towards other functionalities.

Figure 3.1 Procedure for turning re-
action ri into a growth-dependent
reaction. FVA is computed for a
growth specified by γ and the initial
flux bounds [L[ri], U [ri]] are replaced
with FVA minimum and maximum
bounds [lbγ [ri], ubγ [ri]].

ri

[L[ri], U [ri]]

growth =
γ · µmax

min /max v[ri]
st. S · v = 0

L ≤ v ≤ U

γ · µmax ≤ v[rg]

[lbγ [ri], ubγ [ri]]

Let lbγ , ubγ ∈ R|R| be the result of computing FVA (2.3) on a constraint-based model
{R, M, S, L, U} for a given γ, i.e. lbγ [r] and ubγ [r] are the minimum and maximum
fluxes given by FVA for reaction r. If the flux bounds L, U of the constrained-based
model are replaced by lbγ , ubγ (as depicted in Figure 3.1), a new constraint-based model,
{R, M, S, lbγ , ubγ}, with more restrictive (and realistic) flux bounds is obtained.

Given γ ∈ [0, 1], the sets of growth-dependent products, reactants, consumers, and producers
of the model {R, M, S, L, U}, which are denoted rγ , γr, mγ , γm respectively, are defined
as the flux-dependent products, reactants, consumers and products of {R, M, S, lbγ , ubγ}
as discussed in Subsection 2.1.2.

Similarly, given {R, M, S, L, U} and γ ∈ [0, 1], we can define sets of growth-dependent
dead, reversible and non-reversible reactions, which are denoted DRγ , RRγ and NRγ , the
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Figure 3.2 Effects that growth-constraints have on the reactions of a constraint-based. When
the optimum growth constraint γ = 1 is imposed on the model (left), a new model with new
flux (and hence directionality) is obtained (right).

sets of growth-dependent chokepoint reactions, which are denoted as CPγ , are also defined as
the corresponding flux-dependent elements of {R, M, S, lbγ , ubγ}. Chapter 7 shows how
growth-dependent sets vary with growth in a real GEM of Plasmodium Falciparum bacteria.

Example 3.1.2. Let us assume that rg in the model on the left of Figure 3.2 represents
growth and that the flux bounds of the reactions are as defined in Example 2.1.2. In order to
obtain growth-dependent sets, the flux bounds computed by FVA with γ = 1 are assigned
to the reactions and the net on the right in 3.2 is obtained. In this new net, r5, r7 and r9
are dead reactions, i.e. r5, r7, r9 ∈ DR1, and r3, r4, which were reversible reactions, become
non-reversible reactions, i.e. r3, r4 ∈ NR1.

3.2 Dead reactions and growth
When applying the previous computation on different models, one can notice that the set of
growth-dependent dead reactions DRγ , always follows a pattern similar to the one shown in
Figure 3.3, this is, the size is always constant in suboptimal states (i.e. with γ ∈ (0, 1)).

0 0.2 0.4 0.6 0.8 1

200

300

400

500

γ

|D
R

γ
|

Figure 3.3 Size of
|DRγ | in model iAM-
Pf480 of Plasmodium
falciparum.

The goal of this subsection is to show that the set of growth-
dependent dead reactions is the same for any non-null suboptimal
state, i.e. for any growth strictly lower than the maximum growth
µmax and greater than 0. Such a set coincides with the set of blocked
reactions [60], where a reaction r ∈ R is said to be blocked if its
flux is 0 at any possible steady state. More formally:

Definition 3.2.1. A reaction r ∈ R is a blocked reaction if for
every v ∈ R|R| such that S · v = 0, it holds v[r] = 0.

Example 3.2.1. In the Petri net in Figure 3.4, reaction r1 is
a blocked reaction. This is because r1 consumes m1, which is
a metabolite not produced by any reactions. If the flux of r1
were positive(negative), the amount of m1 would decrease(increase)
indefinitely, which contradicts the steady-state constraint, therefore
the only possible steady-state flux for r1 is v[r1] = 0.
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Figure 3.4 Reaction r1 is
a blocked reaction because
there is no producer for m1.

In [60] blocked reactions are obtained by solving the following
linear programming problems that compute the maximum and
minimum feasible fluxes of the reactions subject to the steady
state constraint S · v = 0:

max / min v[r]
st. S · v = 0

L ≤ v ≤ U

(3.1)

A reaction with null maximum and minimum feasible flux is
a blocked reaction. Note that this procedure is equivalent to
computing FVA, see (2.3), with γ = 0. Thus, the set of blocked
reactions is equal to DR0.

Interestingly, the set of dead reactions in suboptimal states, regardless of the growth rate
imposed on the model, is equivalent to the set of blocked reactions. This fact will be proved
through several steps. Let us first prove that the range of feasible fluxes of a reaction r, i.e.
the interval [lbγ [r], ubγ [r]], cannot increase as γ increases.

Lemma 3.2.1. [lbγ2 [r], ubγ2 [r]] ⊆ [lbγ1 [r], ubγ1 [r]] ∀ r ∈ R ∧ ∀ γ1, γ2 such that 0≤γ1<γ2≤1.

See proof on page 45.

Then, the set of growth-dependent dead reactions cannot decrease with γ:

Lemma 3.2.2. DRγ1 ⊆ DRγ2 ∀ γ1, γ2 such that 0≤γ1<γ2≤1 .

See proof on page 45.

Let us now show that the set of growth-dependent dead reactions cannot increase with γ in
suboptimal states, i.e. with γ < 1:

Lemma 3.2.3. DRγ1 ⊇ DRγ2 ∀ γ1, γ2 such that 0≤γ1<γ2<1 .

See proof on page 45.

From Lemmas 3.2.2 and 3.2.3, the following theorem can be derived straightforwardly:

Theorem 3.2.4. DRγ1 = DRγ2 ∀γ1, γ2 ∈ [0, 1).

Thus, in particular, the set of blocked reactions coincides with the set of dead reactions in
suboptimal states.

Corollary 3.2.5. DRγ = DR0 ∀γ ∈ [0, 1).

Notice that DR1 can be strictly greater than DRγ with γ ∈ [0, 1). An example is shown in
Chapter 7.



Chapter 4

Enforcing growth, one reaction at a
time

In Section 3.1.2 we were able to obtain growth-dependent vulnerabilities by substituting
the flux bounds of the model (L, U) with the ones obtained with FVA in an optimum state
(lb1, ub1). However one can experimentally check that, if optimum growth FVA flux bounds
are substituted on a model, the model always produces the optimum growth. A question
then arises: does imposing FVA flux bounds individually on each reaction actually forces the
whole model to produce optimum growth? The aim of this chapter is to formally prove that
the answer to this question is “yes”.

4.1 Unbounded homogeneous case
Let us first consider the following LPP:

max cT x

st. A · x = 0
x ≥ 0

(4.1)

Lemma 4.1.1. Let H be any hyperplane that delimits the convex cone solution space of the
LPP in (4.1). Let x∗ denote an optimal solution defined by the LPP. If any x∗ is located
exclusively in H, then for all x solution of the LPP is 0.

See proof on page 45.

Lemma 4.1.2. Having A · x = 0 and x ≥ 0, if the LPP has at least one solution and
max cT x > 0, then the LPP in (4.1) is unbounded.

See proof on page 46.

Notice that the solution space of (4.1) defines a convex cone as the one in Figure 4.1a. Lemma
4.1.2 implies that any non-null solution is located in the interior of the cone.
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(a) Cone defined representing
the solution space of LPP
(4.1).
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(b) Convex cone representing
the solution space of LPP
(4.2).
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(c) Convex face solution space
obtained from imposing l = lb1
and u = ub1 on the LPP (4.2).

Figure 4.1 Graphical proof: If we impose bounding box constraints on an unbounded convex
cone, and then constrain all the solutions to an optimal face, then the solution space becomes
exclusively the optimal solution space.

4.2 Bounded homogeneous case
Let us now consider the following LPP:

max cT x

st. A · x = 0
0 ≤ l ≤ x ≤ u

x ≥ 0

(4.2)

Proposition 4.2.1. Given the unbounded LPP of (4.1) with max cT x > 0, if we include
the orthogonal constraints 0 ≤ l ≤ x ≤ u, then with the resulting LPP, ∃i ∈ [1, n] such that
that lb1[i] = ub1[i] = u[i] or lb1[i] = ub1[i] = l[i].

See proof on page 46.

Continuing with our graphical example, if we impose bounding box constraints on (4.1), we
obtain a cropped convex cone as the one in Figure 4.1b. Proposition 4.2.1 implies that the
optimal solution now has to be located at one of the new faces imposed.

Proposition 4.2.2. Let µmax > 0 be the solution of (4.2). Given the LPP in (4.2), if we
have l = lb1 and u = ub1, then max cT x = min cT x = µmax.

See proof on page 46.

Informally speaking, Proposition 4.2.2 means that, if we limit the solution space to a certain
face with optimal solutions, then all the solutions yielded by the new LPP produce the
optimum objective value (see Figure 4.1c). With this, we have shown that, if we impose FVA
flux bounds on each reaction, then the model is only able the produce the optimal solution.
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4.3 Bounded non-homogeneous case
Until now we have been considering LPPs defined by a homogeneous linear system. However,
it is also interesting to see that, under certain conditions, the results provided here can be
generalised to non-homogeneous linear systems as well. Since this is out of the scope of our
initial objective, it is provided separately in Appendix E.





Chapter 5

Minimal microorganisms

Minimum metabolism is the minimum genome necessary for cells to grow and divide [4].
The study of the minimal metabolism has been an appealing subject as it could provide
an understanding of evolutionary plasticity, which confers pathogens the ability to evolve
their metabolism towards drug-resistant configurations [4]. Besides it could also help in
the identification of simplest possibles forms of life [30]. For our work, the computation of
the minimum metabolism is relevant as it could provide insights into the robustness of the
networks. In this chapter, we study the problem of computing the minimum metabolism.

5.1 Reactions for growth
Before we start, first we will propose definitions of different sets of reactions that are involved
in growth, that is, reactions for growth and the minimum set of reactions for optimum growth.

5.1.1 Reactions for optimum growth

Let ||v|| denote the support of v ∈ R|R|, i.e., ||v|| = {r ∈ R |v[r] ̸= 0}. The set of reactions
for optimum growth is defined as follows:

Definition 5.1.1. A set of reactions F is a set of reactions for optimum growth (ROG) if
∃v ∈ R|R| such that S · v = 0, L ≤ v ≤ U , v[rg] = µmax and ||v|| = F .

Notice that set EROG, which was introduced in Chapter 3, is a subset of ROG, i.e. EROG ⊆
ROG. Moreover, since there can be multiple flux distributions that produce optimum growth,
ROG might not be unique. Given that the reactions in a ROG are sufficient to produce
optimum growth, the model can produce the optimum growth even if all the reactions in
R − ROG are inhibited.

This chapter includes results from the conference article:
A. Oarga and J. Júlvez. On the computation of the minimum set of reactions for optimal growth in constraint-
based models. Accepted at IEEE Conference on Decision and Control 2022 (CDC 2022).
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5.1.2 Minimum set of reactions for optimum growth

Let O be the set of all ROG sets of a model.

Definition 5.1.2. A set of reactions Oi ∈ O is a minimum set of reactions for optimum
growth (MROG) if |Oi| ≤ |Oj | ∀Oj ∈ O.
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Figure 5.1 Example Petri net modelling a
constraint-based model.

Similarly to ROG, the set MROG might not
be unique.

Example 5.1.1. The model in Figure 5.1
has 2 feasible MROG sets: {r1, r2, r4, r6, r8}
and {r1, r3, r4, r6, r8}. Metabolite m2 is nec-
essary for growth and can be equally pro-
duced by reactions r1, r2 or r1, r3. Metabo-
lite m6 can be produced by various reac-
tions, however, the minimum number of re-
actions required to produce it optimally is
1 (i.e. r8), thus r8 is in MROG. Finally, re-
actions r1, r4, r6 are in EROG and therefore
are present in any MROG set.

5.2 Minimum set of reactions computation
We are ready to formally define the problem of computing a MROG:

Problem 5.2.1. Given a constraint-based model {R, M, S, L, U}, and an objective
reaction rg ∈ R, the minimum set of reactions for optimum growth problem (MROGP ) is
the problem of finding a minimum set of reactions for optimum growth MROG.

It will be shown that MROGP can be solved by a Mixed-Integer Linear Programming
problem (MILP) where the objective is to minimise the number of reactions required for
optimum growth. We will make use of a vector of initial fluxes, w ∈ R|R|, and a vector of
binary variables, δ ∈ {0, 1}|R|, that indicates which fluxes are cancelled out, i.e. δ[r] = 0
implies that there is no flux through r regardless of w[r]. Thus, the actual flux of a given
reaction, r, is v[r] = δ[r]·w[r]. Let us consider the following programming problem:

min
∑
r∈R

δ[r]

st. S · v = 0
v[r] = δ[r] · w[r] ∀ r R
L ≤ w ≤ U

v[rg] = µmax

(5.1)

Given that the number of reactions with non-null flux is minimised, the support of a vector v
that is a solution to the programming problem (5.1) is an MROG.
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Equation v[r]=δ[r]·w[r] makes the problem (5.1) non-linear. Such an equation is equivalent
to the following inequalities:

v[r] ≤ U [r]·δ[r] ∀r ∈ R
v[r] ≥ L[r]·δ[r] ∀r ∈ R
v[r] ≤ w[r] − L[r]·(1 − δ[r]) ∀r ∈ R
v[r] ≥ w[r] − U [r]·(1 − δ[r]) ∀r ∈ R

(5.2)

Thus, the replacement of v[r]=δ[r] · w[r] in (5.1) by the above inequalities results in a MILP
which solves MROGP.

5.3 Computational complexity
This section proves that a solution for MROGP can not be found in polynomial time. Let
us first restate the problem as a decision problem:

Problem 5.3.1. Given a constraint-based model {R, M, S, L, U}, an objective reaction
rg ∈ R, and integer k, the set of reactions for optimum growth problem (ROGP ) is the
problem of determining whether there exists a ROG set Oi with |Oi| ≤ k.

We will prove that ROGP is NP-complete. First, it is proved that this problem is in NP.

Lemma 5.3.1. ROGP is in NP.

Proof. Given a set of reactions Oi ⊆ R, we can verify that the set is a ROG set for a
constraint-based model {R, M, S, L, U} with objective reaction rg ∈ R, by removing all
reactions not in Oi from the model and solving the LPP in (2.2). If the growth obtained is
equal to µmax and |Oi| ≤ k, then the set Oi is a ROG set with size at most k. Since LPPs
can be solved in polynomial time [22], ROGP is in NP.

Let us now prove that ROGP is NP-hard by reducing the vertex cover problem [23] to
ROGP .

The vertex cover problem is defined as:

Problem 5.3.2. Given an undirected graph G = (V, E), a vertex cover V ′ is a subset of V
such that uv ∈ E → u ∈ V ′ ∨v ∈ V ′. The vertex cover problem is the problem of determining
whether there exists a vertex cover of size at most k.

Lemma 5.3.2. ROGP is NP-hard.

Proof. Let us reduce an instance of the vertex cover problem, consisting of an undirected
graph G = (V, E), to a ROGP . First, the undirected graph is transformed into a bipartite
graph (represented graphically as a Petri net) of reactions and metabolites as follows:

• For each vertex vi ∈ V create a source reaction ri with L[ri]=0, U [ri]=2.

• For each edge ei ∈ E create a metabolite mi.
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Figure 5.2 Undirected graph
with 3 vertices and 2 edges
(left). Network of source re-
actions and metabolites re-
sulted from transforming the
undirected graph (right). v2

v1

v3e1 e2

r1 r2 r3

m1 m2

• For each adjacent edge ei of each vertex vj make the corresponding metabolite mi a
product of the corresponding reaction rj .

In Figure 5.2 we can see an example of a network R={r1, r2, r3} and M={m1, m2}, resulting
from the transformation of the undirected graph shown in the left with V ={v1, v2, v3} and
E={e1, e2}.

In addition to the previous transformations, the following ones are also performed:

• For each metabolite(edge) mi ∈ M create a sink reaction rj with |V |<j≤|V | + |E|
with L[rj ]=1, U [rj ]=|V |.

• Add an objective reaction rg with L[rg]=0, U [rg]=1 that consumes all metabolites
mi ∈ M.

Figure 5.3b shows the final constraint-based model resulting from applying the described
transformation to the graph in Figure 5.3a.

In the obtained constraint-based model, each source reaction ri will act as an input to the
network and sink reactions will balance the potential excess of produced metabolite. Notice
that in order to achieve the optimum growth, all the metabolites must be produced, and
as long as |E| > 0, this model will always be able to produce the maximum growth (i.e.
µmax=1) with a certain v ∈ R|R| obtained by the LPP in (2.2).

It can be seen that any ROG set will have the following number of reactions: all sink reactions
(the number of sink reactions is |E|) since all sink reactions are constrained to have non-null
flux; the growth reaction; and a number k of reactions, with 1 ≤ k ≤ |V |, that correspond to a
set of reactions necessary to produce all the metabolites in the model. To summarise, any ROG
set will have a size equal to: k (source reactions)+ |E| (sink reactions) + 1 (growth reaction).
The set of k source reactions will be used to derive a solution for the vertex cover problem.
Let us prove the following claim: a vertex cover of size k exists if and only if a ROG set of
size k + |E| + 1 exists. We proceed by proving both directions of the claim:

1. If a ROG set of size k + |E| + 1 exists, then a vertex cover of size k exists: Let Rin ⊆ R
be the set of k source reactions of a given ROG set. A vertex cover V ′ ⊆ V of the
graph G can be built as follows: vi ∈ V ′ if ri ∈ Rin. Here, a source reaction producing
metabolites is considered equivalent to a vertex covering its adjacent edges. If we
consider any source reaction ri ∈ Rin, it produces a set of metabolites mj , ..., mk ∈ M
that is equivalent to the set of edges ej , ..., ek ∈ E that would be covered by the
corresponding vertex vi ∈ V . Since the k source reactions produce all metabolites in
the model, it is guaranteed that the resulting vertex set V ′ covers all edges of the graph,
thus making V ′ a vertex cover.
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(b) Constraint-based model resulting from transforming the undi-
rected graph in Figure a). Input reactions mapped from the vertex
cover of Figure a) are highlighted in red. Arcs and metabolites, high-
lighted in blue, show that reactions r2 and r3 are able to produce
all the metabolites of the model.

Figure 5.3 Vertex cover problem transformation to MROGP.

2. If a vertex cover of size k exists, then a ROG set of size k + |E|+1 exists: let V ′ ⊆ V be
a vertex cover with |V ′| = k. Since all edges of the graph are covered by k vertices and
given the equivalence between source reactions and vertices, it is guaranteed that the
corresponding k source reactions of the model are sufficient to produce all metabolites
of the model and achieve optimum growth, hence a ROG of size at most k + |E| + 1
exists.

Figure 5.3a shows highlighted in red a vertex cover V ′ of size k = 2 (i.e. V ′ = {v2, v3})
of the undirected graph. Figure 5.3b shows that the corresponding source reactions r2, r3
(highlighted in red) are able to produce all metabolites of the model (highlighted in blue).
Therefore, there exists a ROG set of size at least k + |E| + 1 with k = 2 and |E| = 6.

Clearly, the same reasoning can be applied reversely to obtain a vertex cover from the
ROG set. Given the k source reactions of the ROG set (e.g. r2, r3 in Figure 5.3b), the
corresponding vertices are guaranteed to be a vertex cover (e.g. v2, v3 in Figure 5.3a).

The following theorem is derived straightforwardly from Lemmas 5.3.1 and 5.3.2.

Theorem 5.3.3. Reactions for Optimum Growth Problem (ROGP) is in NP-complete.

5.4 Problem size reduction
Given that ROGP is NP-complete, we can not expect to find a solution in polynomial time,
and consequently, we can not expect to solve MROGP in polynomial time either. It is
possible, however, to achieve a reduction in the size of MROGP and along with that a
potential reduction in the execution time required to solve it.

As mentioned previously, for any set ROG it holds that EROG ⊆ ROG. Consequently, the
search space for reactions in MROG can be reduced from R to R − EROG. Similarly, the
set DR1 contains all reactions whose only compatible flux with optimum growth is the null
flux, hence, this set can also be ignored in the search for MROG. The search space of the
problem is then reduced from |R| to |R − EROG − DR1|.
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Note that the MILP in (5.1) had |R| binary variables, and the above reasoning reduces the
number of binary variables to |R − EROG − DR1|. The resulting reduced MILP is:

min
∑
r∈F

δ[r]

st. S · v = 0
v[r] = δ[r] · w[r] ∀r ∈ F

v[r] = w[r] ∀r ∈ EROG

L ≤ w ≤ U

v[rg] = µmax

(5.3)

where F = R − EROG − DR1.



Chapter 6

What makes reactions essential
anyway?

Despite the significant success that in-silico knock-outs have shown regarding essentiality
detection [42, 45], the root cause of essentiality has not been cautiously studied, at least from
a constraint modelling perspective. Although we are not able yet to answer the question What
makes reactions essential?, we expect that, through the tools, definitions and procedures
exposed in this work, we will be able to shed light on the root cause that makes certain
reactions essential. First, we need to introduce a couple more definitions based on flux bounds:
forced reactions and knockable reactions.

6.1 Reactions sets
In this subsection we briefly introduce forced reactions and knockable reactions:

Definition 6.1.1. A reaction r ∈ R is forced if 0 /∈ [L[r], U [r]].

Definition 6.1.2. A reaction r ∈ R is knockable if 0 ∈ [L[r], U [r]] ∧ L[r] < U [r].

Sets of forced and knockable reactions are denoted FR and KR respectively.

Sets of growth-dependent forced and knockable reactions can be obtained as explained in
Section 3.1.2. These sets are denoted FRγ and KRγ respectively. By definition, growth-
dependent knockable reactions are those for which having a zero flux is compatible with
growth. Similarly, growth-dependent forced reactions are those reactions that necessarily
need to carry flux for the model to produce a given growth.

6.2 Flux variability and essentiality
We can prove now that flux variability can be used to identify essential reactions and vice-
versa. We assume that all reactions initially have loose flux bounds, this is, all reactions are
initially knockable reactions.
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Figure 6.1 Example constraint-based model showing how flux variability in the model
conditions essentiality.

Proposition 6.2.1. Assuming r ∈ KR ∀r ∈ R, given γ ∈ [0, 1] then FRγ = ERγ.

See proof on page 46.

Proposition 6.2.2. Assuming r ∈ KR ∀r ∈ R, given γ ∈ [0, 1] then KRγ = R−ERγ −DRγ.

See proof on page 47.

Example 6.2.1. Figure 6.1a depicts a constraint-based model where rg models growth.
Figures 6.1b, 6.1c and 6.1c depict 3 feasible configurations by which a certain growth given
by γ can be obtained in the model. In these Figures, red lines indicate the distribution of flux
through the network, with the lines’ height being proportional to the amount of flux carried.
Reactions without red lines are considered to carry no flux (e.g. reaction r4 in Figure 6.1b
does not have flux).

In Figure 6.1a reactions r3, r4, r5, r6 are growth-dependent knockable reactions (i.e. r3, r4, r5, r6 ∈
KRγ). It can be seen in Figures 6.1b and 6.1c that there are flux configurations where
these reactions have zero flux, but the model is still able to produce the given growth.
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As a consequence, these reactions also are not growth-dependent essential reactions (i.e.
r3, r4, r5, r6 /∈ ERγ). On the other hand, reactions r1, r2, r7 always need to carry flux to
produce growth. These reactions won’t allow loose fluxes or null fluxes because they must
always carry flux for the model to produce growth. Hence according to flux variability,
these are growth-dependent forced reactions (i.e. r1, r2, r7 ∈ FRγ). This also makes these
reactions growth-dependent essential reactions (i.e. r1, r2, r7 ∈ ERγ).

From the previous propositions, we can see that reaction essentiality can be identified from
flux variability and vice-versa. Since variability provides information about the essentiality of
each reaction we can leverage this to hypothesise about the properties of essential reactions.
In [40], we showed that, in synthetic models, reactions in alternative paths belonged to the
set of knockable reactions. In addition, in this work, we have seen that growth itself is
produced through a combination of essential reactions that are always mandatory and a
subset of optional reactions chosen from the set of knockable reactions. We have therefore
reasons to believe that knockable reactions provide redundancies (or robustness) in the
production of biomass, which makes them immune to individual knock-outs. On the other
hand, essential reactions contribute to the production of substrates that are not produced
through other reactions, which totally impedes growth when these types of reactions are
knocked out individually.

From a biological perspective, redundancy in metabolism has also been acknowledged as a
mechanism for robustness in yeast metabolism, through the means of isoenzymes [5]. Besides,
yeast metabolism robustness is believed to be an evolutionary result towards more metabolic
efficiency or robustness under specific environmental conditions [9, 46].
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Figure 7.1 Size of |NRγ |,
|RRγ | and |DRγ | in model
iAM-Pf480.

This chapter presents the results obtained for the constraint-
based model of Plasmodium falciparum (iAM-Pf480) [1]). The
models include a total of 1083 reactions, 909 metabolites, and
480 genes. The sizes of the sets of flux-dependent reactions are
|RR| = 493, |NR| = 590, |DR| = 0.

7.1 Growth-dependent reactions
Figure 7.1 shows the sizes of the growth-dependent sets NRγ ,
RRγ and DRγ . To assess the impact of γ in these sets, different
values of γ in the interval [0, 1] have been used. In addition
to the sizes of the sets obtained with γ, the leftmost value
(depicted in red) of plots refers (from top to bottom plot) to
the size of the flux-dependent set prior to FVA. i.e. NR, RR
and DR.

Recall that dead reactions were already studied in Section
3.2 and a formal reason for dead reactions progression with
growth was given. Furthermore, the increase in the set of dead
reactions that takes place at γ = 1 is due to the fact that, in the
optimal growth state, the flux must be necessarily distributed
through optimal paths for biomass production and no flux can
be diverted through other paths. Thus, non-optimal reactions
for biomass production become dead reactions.

With respect to reversible reactions, the steady state constraint
S · v = 0 reduce the size of this set from |RR| = 493 to
|RR0| = 210. Such a reduction is caused by the blocked reac-
tions that belonged to RR and become dead reactions, and by
the reversible reactions that become non-reversible with the
steady-state constraint.
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A considerable amount of non-reversible reactions turn into blocked reactions (dead reactions)
with the steady-state constraint. However, due to the significant amount of reversible reactions
that become non-reversible reactions, the size of the set is increased from |NR| = 590 to
|NR0| = 651.

7.1.1 Vulnerabilities
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Figure 7.2 Size of |CPγ | and
|ERγ | in model iAM-Pf480
of Plasmodium falciparum.

The number of initial flux-dependent chokepoint reactions is
|CP | = 453. The sets of essential reactions and essential
reactions for optimal growth were also computed, and the
following sizes were obtained: |ER| = 192 and |EROG| = 372.

Notice that if γ = 0, the constraint γ · µmax ≤ z · v in (2.3)
does not impose a minimum growth on the model, and only
the steady state condition S · v = 0 must be satisfied.

Concerning chokepoint reactions, see Figure 7.2, the number
of flux-dependent chokepoints is |CP⋆| = 453 (reported in red
in the leftmost part of the Figure). At γ = 0 there is an
increase to |CP0| = 450, and then the set increases slowly until
|CP0.99| = 468. As in the sets of non-reversible reactions and
reversible reactions, the set of chokepoints decreases at γ = 1
as many reactions become dead reactions.

Notice that the set of chokepoints at γ = 1, CP1, is smaller than
the set of flux-dependent chokepoints, CP⋆. Moreover, CP1 is
not contained in CP⋆. This is due to the changes produced in
the sets of non-reversible reactions and reversible reactions as
γ increases.

Figure 7.2 also reports the the size of the set of essential
reactions ERγ with respect to γ. The leftmost value of this
graph refers to the ER set, i.e. the set of essential reactions
with no growth constraints.

Notice that no reaction is mandatory to produce a null growth, hence at γ = 0, |ER0| is
always 0. Furthermore, for positive values of γ the size of ERγ increases as the size of RRγ

decreases. This is because, as γ increases, some reversible reactions become non-reversible,
and the flux of these reactions is necessary, i.e. essential for growth. On the other hand, as
expected, the amount of growth-dependent essential reactions increases with γ.

7.2 Robustness and minimal metabolism
Finally, Figure 7.3 shows the size of the set KRγ with respect to γ, with the leftmost point
corresponding to R − ER − DR. As mentioned in Chapter 6, this set is of interest as it
is composed of those reactions that can contribute to growth, that is, they are not dead
reactions, and at the same time are not growth-dependent essential reactions, that is, if
one of these reactions is knocked out the growth can still be kept the same. Notice that
this does not mean that all the reactions in this set can be knocked simultaneously without



7.2 Robustness and minimal metabolism 31

0 0.2 0.4 0.6 0.8 1

400

600

800

γ

|K
R

γ
|

KRγ
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affecting growth. As discussed, the presence of these reactions might then imply the presence
of redundancy in the metabolism. Therefore, this set of reactions provides the metabolism
with resilience and flexibility. As it can be seen, the size of this set decreases with γ. This
fact means that producing higher growths is more demanding as it requires a higher amount
of reactions to sustain it. In other words, the higher the growth the more reactions are
necessary to produce such growth, and therefore, less flexibility is given to the metabolism.

Regarding optimum growth production, a ROG set with |ROG| = 486 was computed with
FBA. We also had |KR1| = 242. The MROG computed with the procedure explained in
Chapter 5 had a size |MROG| = 478. This is, the MROG set has 8 reactions less than a
ROG set obtained with FBA. The size of this set represents 45% of all model reactions (478
out of 1083). As it has been explained, this MROG set is composed of the 372 reactions
from the EROG set plus 106 reactions out of the total 242 reactions of KR1.

Appendix D provides a visualisation of the sets EROG and KR1 of iAM-Pf480 model and
how these are combined to form the MROG set.





Chapter 8

Conclusions and Future Work

8.1 Conclusion
Computational methods have the potential to provide a cost-effective alternative to traditional
screening methods for drug discovery. In this master thesis, we aimed to provide computational
methods to accurately identify critical reactions in metabolism. These reactions can serve
as drug targets when applied to models of pathogenic bacteria. At the same time, we also
aimed to understand the mechanisms that confer robustness to bacteria metabolism.

In this work, we have formally defined types of reactions in metabolism (i.e. reversible
reactions, non-reversible, and dead reactions) and vulnerable reactions (i.e. chokepoint
and essential reactions). We have provided a novel method to identify growth-dependent
vulnerable reactions consistent with the production of growth in the modelled microorganisms.
On a general homogeneous LPP, we have proved that growth-dependent reactions do indeed
force the model to produce the optimum growth. Furthermore, we also formally prove that
the sets of growth-dependent dead reactions are fixed in suboptimal growth states.

We have also studied how growth is produced in metabolism. We provided methods to
identify sets of reactions essential for growth and sets of redundant reactions that account
for the robustness of metabolism. We showed that growth involves a combination of both
sets. All this helps to break the black-box conception of growth in constraint-based models.
We have also shown that finding a minimum set of reactions that supports optimal growth is
computationally complex and a method to optimise this procedure has been proposed. Finally,
we have shown that flux variability and essentiality are coupled and proposed redundancy as
one mechanism behind non-essentiality.

The vulnerabilities proposed in this work have been identified on a genome-scale model of
Plasmodium Falciparum. We have seen that growth-constrained vulnerabilities produce novel
vulnerabilities that are different from the ones obtained when such constraints are neglected.
Finally, we have used our proposed method to compute the minimum metabolism necessary
for optimum growth in a GEM of Plasmodium Falciparum.
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8.2 Future work
The contributions of this work have been possible thanks to the large amounts of data that
technological advances have produced. When omic data was first available, the integration
was merely prohibitive except for GEMs. However, this inability to integrate all the available
data means that these models only reflect a partial understanding of the modelled system
[64].

To tackle this issue, current approaches in the field are moving towards the integration of
multiple heterogeneous data sources into GEMs, and this is a trend expect to be maintained
in the forthcoming years [13, 10]. Future approaches need therefore to move towards this
direction as it will lead to more accurate predictions on models. For instance, recent
publications show that the identification of essential reactions can be significantly improved
by integrating constraints into the model such as thermodynamic [14] or transcriptomic
constraints [42].

Current modelling approaches also face another burden. Modelling solutions usually depend
on the availability of certain types of data (e.g. kinetic parameters) which might not be
available [21]. Future approaches should focus on extending current modelling solutions. This
might include being able to deal with uncertainty or being able to estimate the lacking data
[21, 64].

At the same time as this field develops, current data-driven approaches w.r.t. machine
learning modelling approaches have had sounding success in biological modelling. As of
2022, these methods have already successfully estimated kcat kinetic constraints parameters
directly from SMILES sequence [31] or Michaelis kM constants from structural data [28]. It
is expected that data-driven modelling approaches will bring substantial contributions to the
data-integrative development of the field [2, 24, 64].

The proposal of machine learning procedures is out of the scope of this work, however, the
curious reader could find a first proposal of a hybrid model/data-driven approach in Appendix
F. In this Appendix, we show how classical Petri Nets models can be leveraged to model
biological networks through neural networks.



Nomenclature

Greek Symbols

γ Fraction of optimum growth

µmax Optimum growth

Acronyms / Abbreviations

AMR Antimicrobial Resistance

CP ChokePoint reacctions

DR Dead Reactions

ER Essential Reactions

FBA Flux Balance Analysis

FR Forced Reactions

FVA Flux Variability Analysis

GEM Genome Scale Models

KR Knockable Reactions

LPP Linear Programming Problem

MDR Multi-Drug Resistant bacteria

MROG Minimum set of Reactions for Optimum Growth

MROGP Minimum set of Reactions for Optimum Growth Problem

NR Non Reversible reactions

ROG Reactions for Optimum Growth

ROGP Reactions for Optimum Growth Problem
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EROG Essential Reactions for Optimum Growth

RR Reversible Reactions
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Appendix A

Proofs

Lemma 3.2.1. [lbγ2 [r], ubγ2 [r]] ⊆ [lbγ1 [r], ubγ1 [r]] ∀ r ∈ R ∧ ∀ γ1, γ2 such that 0≤γ1<γ2≤1.

Proof of Lemma 3.2.1 . Given γ ∈ [0, 1], the range of feasible fluxes of r ∈ R, [lbγ [r], ubγ [r]],
is given by the solutions of FVA (2.3). Notice that the constraints of such linear programming
problem define a convex set of possible solutions which can only shrink as γ increases, i.e. as
the constraint γ · µmax ≤ z · v becomes more restrictive. Thus, if γ1 < γ2 then lbγ1 [r] ≤ lbγ2 [r]
and ubγ1 [r] ≥ ubγ2 [r].

Lemma 3.2.2. DRγ1 ⊆ DRγ2 ∀ γ1, γ2 such that 0≤γ1<γ2≤1 .

Proof of Lemma 3.2.2 . Let r ∈ DRγ1 , i.e. lbγ1 [r] = ubγ1 [r] = 0, then by Lemma 3.2.1, it
follows that lbγ2 [r] = ubγ2 [r] = 0 and hence r ∈ DRγ2 .

Lemma 3.2.3. DRγ1 ⊇ DRγ2 ∀ γ1, γ2 such that 0≤γ1<γ2<1 .

Proof of Lemma 3.2.3 . The convex set of possible solutions defined by the constraints
in (2.3) can only decrease as γ increases, see Lemma 3.2.1. Assume there exist γa, γb such
that 0≤γa<γb<1, lbγa [r]<ubγa [r] and lbγb

[r] = ubγb
[r] = 0, i.e. r becomes dead when γa is

increased to γb. Then, given that the constraints in (2.3) are linear, if γb is further increased
by ϵ ∈ R such that ϵ > 0 and γb + ϵ < 1, then lbγb+ϵ[r] > ubγb+ϵ[r] should hold which is not
possible because a lower bound cannot exceed an upper bound.

Lemma 4.1.1. Let H be any hyperplane that delimits the convex cone solution space of the
LPP in (4.1). Let x∗ denote an optimal solution defined by the LPP. If any x∗ is located
exclusively in H, then for all x solution of the LPP is 0.

Proof of Lemma 4.1.1 . From the definition of hyperplane, H can be defined as nT x + b = 0,
where n is the normal of the plane and b the offset. Here b = 0 since H passes through
the origin of the coordinates. Since any x∗ is located exclusively at H, then the objective
function hyperplane, whose normal is c, is parallel to H hyperplane. Consequently, and given
H definition, any x will hold nT x = cT x = 0.
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Lemma 4.1.2. Having A · x = 0 and x ≥ 0, if the LPP has at least one solution and
max cT x > 0, then the LPP in (4.1) is unbounded.

Proof of Lemma 4.1.2 . Let us suppose for the sake of contradiction that the LPP in (4.1) is
bounded and let us denote µ the objective value. Since the LPP is solvable, it exist one x
such that cT x = µ. Given this x and given λ > 1, vector λx is also a solution of the LPP
(4.1). However, the optimal solution obtained with λx is equal to cT λx = λµ, this is, the
vector yields an objective value greater than µ which is a contradiction.

Proposition 4.2.1. Given the unbounded LPP of (4.1) with max cT x > 0, if we include
the orthogonal constraints 0 ≤ l ≤ x ≤ u, then with the resulting LPP, ∃i ∈ [1, n] such that
that lb1[i] = ub1[i] = u[i] or lb1[i] = ub1[i] = l[i].

Proof of Proposition 4.2.1 . We will prove that for any x that is an optimal solution of (4.2)
it holds that x[i] = u[i] (or x[i] = l[i]) with i ∈ [1, n]. If we impose orthogonal constraints
0 ≤ l ≤ x ≤ u to the LPP in (4.1) it can be seen that the LPP is no longer unbounded
since we have imposed restrictions on all variables. Given this, the extreme points at which
the optimal solution is located must be at one of the faces defined by the new constraints
x[j] = u[j] or x[j] = l[j] with j ∈ [1, n]. If the optimal solution is located at one of the faces
defined by a constraint x[j] ≤ u[j] (or l[j] ≤ x[j]), then all solutions must satisfy x[j] = u[j]
(or x[j] = l[j]). Similarly, the previous condition is also satisfied when the optimal solution is
located at the intersection of 2 or more faces. Hence if max cT x > 0, then all solutions will
satisfy x[j] = u[j] (or x[j] = l[j]) with j ∈ [1, n].

Proposition 4.2.2. Let µmax > 0 be the solution of (4.2). Given the LPP in (4.2), if we
have l = lb1 and u = ub1, then max cT x = min cT x = µmax.

Proof of Proposition 4.2.2 . By proposition 4.2.1 we know that for at least one i ∈ [1, n] it
holds that lb1[i] = ub1[i] = u[i] (or lb1[i] = ub1[i] = l[i]). By imposing this constraint in the
LPP we are delimiting the solution space to the specific face or face intersection at which the
optimal solution is located. If there exists a solution x such that the previous condition is not
satisfied, the solution is not located at such faces and the optimum value can not be obtained.
On the other hand, any solution that satisfies the previous condition will necessarily be
located at the face (or faces) at which the optimal solutions are located and therefore will
also be an optimal solution.

Proposition 6.2.1. Assuming r ∈ KR ∀r ∈ R, given γ ∈ [0, 1] then FRγ = ERγ.

Proof of Proposition 6.2.1 . If a reaction r ∈ R is a forced reactions (i.e. r ∈ FRγ), then to
sustain the growth given by γ, reaction r needs to have a non-null flux, i.e. r ∈ ERγ . On the
other side, if a reaction r ∈ R is a growth-dependent essential reaction (i.e. r ∈ ERγ), the
reaction must have a non-null flux to produce the growth specified by γ, hence, FVA will
yield an interval [lbγ , ubγ ] with 0 /∈ [lbγ , ubγ ], consequently r ∈ FRγ .

Proposition 6.2.2. Assuming r ∈ KR ∀r ∈ R, given γ ∈ [0, 1] then KRγ = R−ERγ −DRγ.
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Proof of Proposition 6.2.2 . It can be seen that a reaction r ∈ R such that r /∈ DRγ

will be in FRγ or KRγ , i.e. r ∈ FRγ ∪ KRγ . Clearly forced and knockable sets are
disjoint, FRγ ∩ KRγ = ∅. Similarly, FRγ ∩ DRγ = ∅ and KRγ ∩ DRγ = ∅. It can also
be seen that FRγ ∪ KRγ ∪ DRγ = R. As a consequence of Proposition 6.2.1 we have
KRγ = R − ERγ − DRγ = R − FRγ − DRγ .





Appendix B

Methods

B.1 Computation
The methods presented in this work that involved computation were mostly implemented
with the Python language. The manipulation of the constraint-based models presented, FBA,
and FVA computation were performed with the Python toolbox COBRApy [11]. The MILP
presented for MROG computation was implemented using Pyomo language [6] and solved
by the commercial solver Gurobi Optimizer 9.1.2. MROG computation always took less
than 4 minutes with an Intel Core i5-9300H CPU @ 2.40GHz × 8. All the models used for
validation purposes were obtained from Biomodels [36] or BiGG [25] repositories.

B.2 CONTRABASS
For the computation of vulnerabilities in genome-scale models, we have developed the tool
CONTRABASS. CONTRABASS is a software tool distributed as a Python command line tool
but that can also be executed through an online web server at http://contrabass.unizar.es.
The CONTRABASS web server is designed to offer an intuitive interface to access the
operations of the tool (see Figure B.1).

The tool takes as an input a model in Systems Biology Markup Language (SBML) (33) and
computes the set of chokepoints reactions, essential reactions, dead reactions and dead-end
metabolites on the model by taking into account the dynamic constraints on the model
as explained in this work. The results are then exported as a spreadsheet file and as an
interactive HTML report (see Figure B.2). The operations that CONTRABASS allows
include the computation of sets of chokepoints, dead, reversible, non-reversible and essential
reactions with different values of γ; computation and removal of dead-end metabolites from a
model; and update the flux bounds of the reactions according to FVA.

In addition to the above, through the interactive HTML report users can also access the data
available in the model, this is, reactions, genes and metabolites along with their databases
identifiers if available; explore the reaction sets defined in this work, and also explore the
intersection of different sets of vulnerable reactions (see Figure B.3).

http://contrabass.unizar.es
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The documentation of the tool is available at https://contrabass.readthedocs.io. The source
code of the command line tool and the web server is available at
https://github.com/openCONTRABASS/CONTRABASS and
https://github.com/openCONTRABASS respectively. All the code is released under GPL-3.0
License.

Figure B.1 CONTRABASS initial page view.

https://contrabass.readthedocs.io
https://github.com/openCONTRABASS/CONTRABASS
https://github.com/openCONTRABASS
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Figure B.2 CONTRABASS growth-dependent reactions report view.
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Figure B.3 CONTRABASS vulnerabilities report view.



Appendix C

Vulnerabilities in the literature

As mentioned in Chapter 2, both essential reactions and chokepoint reactions are recognised
as potential drug targets. Here, we provide a couple of examples from the literature to
better motivate and contextualise our work. Figure C.1 shows a workflow for drug target
prioritisation in M. leprae were both chokepoint reactions, and essential genes, which are
dependent on essential reactions, are involved in the procedure of target selection. Figure
C.2 shows a subset of fatty acid metabolism of Klebsiella pneumoniae where structures that
are chokepoints and essential are ranked higher as druggable targets.

Figure C.1 Vedithi et al. proposed workflow for drug target prioritisation in Mycobacterium
leprae. The druggable proteome is identified from chokepoint reactions. Flux Balance Analysis
could also help in the identification of essential genes. Source: [57]
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Figure C.2 Subset of the fatty acid pathway where FabB, FabI and FabH are among the 15 top-
ranked candidates in the scoring pipeline for drug target selection in Klebsiella pneumoniae.
Here chokepoint reactions and essential reactions are prioritised as potential drug targets.
Source: [48].



Appendix D

Visualisation of model iAM-Pf480 of
Plasmodium falciparum.

Recall that all ROG sets were composed of EROG and a subset of knockable reactions. This
is shown graphically in Figure D.2. In Figure D.1 a full view of the reactions (grey) and
metabolites (yellow) of the model iAM-Pf480 is shown. In D.2a we can see the EROG set
and in Figure D.2b the KR1 set. The metabolites present in both sets’ reactions are shown
in green. The MROG shown in Figure D.2c is composed of all reactions from Figure D.2a
plus certain reactions from D.2b.

Figure D.1 Reactions (gray) and metabolites (yellow) of model iAM-Pf480 of Plasmodium
falciparum. Dead reactions and their metabolites have been previously removed.
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(a) EROG (b) KR1

(c) MROG

Figure D.2 D.2a) Reactions of EROG are highlighted in red. Metabolites are shown in a less
intense red color. D.2b) Reactions of KR1. Reactions are shown in blue and metabolites in
a less intense blue. D.2c) Set MROG is composed of reactions of EROG (red) and reactions
of KR1 (blue). Lighter red nodes represent metabolites of reactions in EROG and lighter
blue nodes represent metabolites in KR1. Green nodes represent metabolites involved in
both EROG and KR1 reactions. In all figures, dead reactions and their metabolites have
been removed.



Appendix E

Further reading: Bounded
Non-Homogeneous Case

In this appendix, we are going to prove that, if we compute maximum and minimum bounds
on each variable of an LPP and then impose them as bounding-box constraints, then we can
only obtain the optimum objective value.

Let us now consider the following LPP:

max cT x

st. A · x ≤ b

0 ≤ l ≤ x ≤ u

x ≥ 0

(E.1)

As done until now, let us denote µmax the solution of the LPP in (E.1). The equivalent
procedure of FVA for non-homogeneous systems is defined by the following maximisa-
tion/minimisation problem:

max / min cT x

st. A · x ≤ b

0 ≤ l ≤ x ≤ u

x ≥ 0
γ · µmax ≤ cT x

(E.2)

with γ ∈ [0, 1]. We will denote lbγ , ubγ ∈ R|x| the solutions obtained from minimas-
ing/maximising the LPP in (E.2).

First, we will prove Lemma E.0.1 for the sake of arriving at a contradiction.

Lemma E.0.1. Given the LPP of (E.1) with lb1[i] < ub1[i] ∀i ∈ [1, n] and n > 1, then
∃y ∈ Rn such that y is a solution of the LPP and lb1[i] < y[i] < ub1[i] ∀i ∈ [1, n].
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Proof. Let xi with i ∈ [1, n] denote the i-th variable of the LPP. Let us also denote S, the
convex set of solutions defined by the LPP. We are going to prove our claim by induction.
First we prove the base case n = 2:

(base case): Given x1, x2 ∈ S, by definition we have that:

∃ su
1 ∈ S with su

1 [x1] = ub1[x1]
∃ sl

1 ∈ S with sl
1[x1] = lb1[x1]

∃ su
2 ∈ S with su

2 [x2] = ub1[x2]
∃ sl

2 ∈ S with sl
2[x2] = lb1[x2]

Notice that su
1 ̸= sl

1 and su
2 ̸= sl

2. Since all the previous points belong to the convex set S, it
also holds that:

∃ sm
1 ∈ S such that sm

1 = λ1sl
1 + (1 − λ1)su

1 with 0 < λ1 < 1
∃ sm

2 ∈ S such that sm
2 = λ2sl

2 + (1 − λ2)su
2 with 0 < λ2 < 1

Notice that for sm
1 it is true that lb1[x1] < sm

1 [x1] < ub1[x1]. Similarly, for sm
2 it is true that

lb1[x2] < sm
2 [x2] < ub1[x2]. This is because:

lb1[x1] < λ1lb1[x1] + (1 − λ1)ub1[x1] < ub1[x1] with 0 < λ1 < 1
lb1[x2] < λ2lb1[x2] + (1 − λ2)ub1[x2] < ub1[x2] with 0 < λ2 < 1

We can now obtain a point y ∈ S equal to:

y = λysm
1 + (1 − λy)sm

2 with 0 < λy < 1

This point y holds lb1[x1] < y[x1] < ub1[x1] and lb1[x2] < y[x2] < ub1[x2]. Since y is in S, y
is a solution of the LPP.

(induction step): let say proposition holds for n variables, i.e. ∃y such that lb1[i] <
y[i] < ub1[i] ∀i ∈ [1, n]. Given a LPP with n + 1 variables, lets also say that we have
y[n + 1] = lb1[n + 1] or y[n + 1] = lb1[n + 1] (otherwise the proof has ended). As before, we
have:

∃ su
n+1 ∈ S with su

n+1[xn+1] = ub1[xn+1]
∃ sl

n+1 ∈ S with sl
n+1[xn+1] = lb1[xn+1]

∃ sm
m+1 ∈ S such that sm

m+1 = λn+1sl
m+1 + (1 − λn+1)su

m+1 with 0 < λn+1 < 1

We can now obtain a point y′ ∈ S equal to:

y′ = λsm
n+1 + (1 − λ)sm

n+1 with 0 < λ < 1

This point y′ holds lb1[i] < y′[i] < ub1[i] ∀i ∈ [1, n + 1].
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We are ready to prove now that ∃i such that for any solution x of the LPP in (E.1),
x[i] = lb1[i] = ub1[i].

Proposition E.0.1. Given the LPP of (E.1) of n variables. Let us denote S the polyhedra
defined by the LPP. If n > 1, S has a non-empty interior and cT x is an objective function
whose maximum is reached exclusively at a face or vertex of S, then ∃i ∈ [1, n] such that
lb1[i] = ub1[i] = u[i] (or lb1[i] = ub1[i] = l[i]).

Proof. If the condition does not hold, from Lemma E.0.1 we can obtain the optimum objective
value with an interior point, hence we reach a contradiction.

Finally, we can prove that if we impose the minimum and maximum bounds lb1 and ub1 on
each variable of the LPP, then the optimum objective value is always mumax.

Proposition E.0.2. Given the LPP of (E.1) of n variables. Let us denote S the polyhedra
defined by the LPP. If n > 1, S has a non-empty interior, cT x is an objective function
whose maximum is reached exclusively at a face or vertex of S, and l = lb1, u = ub1, then
max cT x = min cT x = µmax.

Same proof as applied in Proposition 4.2.2. If the solution space is constrained to a face
or vertex where the optimum value is located, then the constrained solution space can only
yield the optimum objective value.





Appendix F

Further reading: towards hybrid
data-model approaches

Through this work, a common assumption of steady state is made. This assumption has
produced promising results as been shown. Beyond the steady state, GEMs have also enabled
the study of metabolic systems in dynamic conditions. This modelling however is more
expensive and, as mentioned, requires more data on the modelled system. Consequently,
it remains challenging and feasible only for small systems. Another main issue regarding
metabolic modelling is clearly stated by Zampieri et al. [64]:

“Measurement is subject to intrinsic noise and uncertainty that has to be corrected. Additionally,
traditional omics are affected by sampling or technology-specific systematic errors”.

When systems are modelled by current approaches they are usually assumed to be free of
error. Modelling approaches presented in this work, such as Petri nets, assume the data to
be free of error, which in the end hampers our modelling abilities. Ideally, models should be
able to operate on multidimensional data that is able to capture the richness of the input
data. Based on the latest advances in algorithmic reasoning [7], here we present Neural Petri
Nets, an approach for modelling Petri Nets, that operate in a high dimensional space.

F.1 Preliminary Definitions

F.1.1 Neural Networks Fundamentals

Before introducing Neural Petri Nets we need to introduce the fundamentals of neural
networks. Neural network are machine learning models composed of neurons or perceptrons
[52]. Perceptrons receive an input vector x ∈ RN . The output of the model y ∈ R is given
by: y = σ(b +

∑N
i xiwi), where w ∈ RN is the weight vector, b is a bias value and σ is the

activation function. Usual activation functions include logistic sigmoid, hyperbolic tangent,
and rectified linear function (ReLU).

Neural networks are usually stacked in layers, where each layer input receives the previous
layer’s output. The most popular of such networks is the mulilayer perceptron (MLP), where
each perceptron is fully connected to the previous layer output. To further know about neural
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networks, deep neural networks, and their training procedure, a gentle introduction can be
found at: [54].

F.1.2 Graph Neural Networks

Figure F.1 Each GNN layer computes a node
representation by aggregating its neighbours’
representations. Source: [20].

Graph Neural Networks (GNN) [53, 32, 27]
are machine learning models that learn on
data that is accompanied by a graph struc-
ture. Proper design of GNNs is currently a
major ongoing challenge in machine learn-
ing [63]. GNNs are composed of layers of
message-passing networks. In each layer, the
embedding vector hi of node i is computed
from the aggregation of the embeddings of
their neighbour nodes N (i) of the previous
layer (see Figure F.1). The initial embedding
vector is usually the input feature vector that
each node is given. Embedding vectors hi

can be therefore considered as representa-
tions of the input feature vector aggregated
with the features’ representations received
from their neighbours.

Notice that, unlike conventional neural networks, stacking layers of GNNs does noes improve
the network expressivity, but instead it expands the graph computation of neighbours
aggregations. Formally and generally, the (k + 1)-th GNN layer of node v can be defined as:

h(k+1)
v = AGG({ACT (W (k)h(k)

u + b(k)), u ∈ N (v)}) (F.1)

where h
(k)
v is the k-th layer embedding of node v, W (k) and b(k) are the trainable weight

matrix and bias respectively, ACT is an activation function and AGG is a commutative
aggregation function such as maximisation, summation or mean [63].

F.2 Neural Petri Nets
We are going to formally introduce Neural Petri Nets:

Definition F.2.1. A Neural Petri Net (NPN) is a tuple {N , X
(t)
P , XT , fN }, where N is a

generalised Petri Net i.e. N = {P, T, Pre, Post}, X
(t)
P ∈ R|P |×|n| is the set of n features of

each place of the net at instant t, XT ∈ R|T |×|m| is the set m features of the transitions of the
network and fN is a neural network that defines the firing function fN : N × T × R|P |×|n| ×
R|T |×|m| → R|P |×|n|, with T being a subset of T (i.e. T ⊆ T ).

In NPNs, X
(t)
P are the equivalent of the marking in Petri Nets. However, contrary to

conventional Petri Nets, NPNs do not have a clearly defined firing logic for transitions.
Instead, the new features X

(t+1)
P , obtained after firing a certain set of transitions T at instant

t, are obtained as follows:
X

(t+1)
P = fN (N , T , X

(t)
P , XT ) (F.2)
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Figure F.2 Comparison of firing semantics between discrete Petri Nets (top) and Neural Petri
Nets (bottom). In discrete Petri Nets, marking M1 is a result of firing transition t1. In NPNs,
place features X

(1)
P are the output of fN .

This is, NPNs do not have explicitly enabled transitions and firing logic, but rather the
function fN that encodes the firing logic. Notice that this function fN is shared for all
transitions.

Example F.2.1. Figure F.2 shows a transition t1 of a Petri Net. In Petri Nets (top of
the Figure), the firing of t1 turns the marking M0 into the new marking M1. In Neural
Petri Nets (bottom of the Figure), features X

(0)
P are turned into features X

(1)
P by function

fN (N , {t1}, X
(t)
P , XT ).

F.2.1 Training NPNs

Notice that NPNs are particularly interesting, as one could potentially emulate various types
of conventional Petri Nets through them. For instance, if X

(t)
P = Mt , with Mt ∈ N|P | being

the marking of a discrete Petri Net, NPNs can learn to execute the firing of transitions
(i.e. generate Mt+1 as output). The main motivation of NPNs however is that they operate
over high-dimensional latent spaces, hence making them appealing for certain data-driven
modelling tasks (e.g. biological systems as mentioned earlier).

Suppose that we want to learn to emulate various types of Petri Nets through a NPN, and
for modelling purposes, we want to apply the learnt modelling rules in natural noisy inputs.
An ideal approach for this task is to follow a Neural Algorithmic Reasoner blueprint, and
more specifically, a 1-step Algorithmic Graph Executioner [58].

Figure F.3 shows an example of how Neural Petri Nets can be trained following a Neural
Algorithmic Reasoner blueprint. The following lines explain how this training is performed:

1. Train fN for abstract inputs, in this case, Petri Nets firing sequences. In the example,
x and x̂ could represent inputs from discrete, hybrid, and continuous Petri Nets. Each
network has its given weights for each place and parameters for each transition. The
expected output g(fN (f(x))) and ĝ(fN (f̂(x))) in this case are the results of firing all
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0.1 0.2 0.0 0.1
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Figure F.3 Neural Petri Nets following a Neural Algorithmic Reasoner blueprint.

enabled reactions in the input network (assuming no conflicts in the firing). Here f , f̂
are encoder networks that map input markings and networks parameter to the high
dimension input of fN and g, ĝ are decoder networks that map the high dimensional
output of fN to Petri Nets again.

2. When given biological network data corresponding to natural inputs, choose encoder f̃
and decoder g̃ that match input x̃ and output ỹ dimensionality.

3. Swap f , f̂ , g, ĝ with f̃ , g̃ and train their weights with gradient descent while keeping
fN gradients frozen.

Through these steps, f̃ and g̃ learn to map natural features to a high-dimensional space.
With this, we achieve to model the natural inputs through the previously trained NPN. This
yields a network able to model a system from raw and noisy input through classical Petri
Nets models without the need for feature engineering.

Besides the execution of Petri Nets, NPNs are appealing models as they could be potentially
extended to also perform inference on the modelled system. As an example, given an input x,
the encoder and decoder f and g and the NPN fN , we can extend the system with function
fE(f(x), fN (f(x))), whose output values are estimated parameters of the modelled systems.

In the next section, we include results from a NPN training where a Petri Net and a Timed
Continuous Petri Net are learnt simultaneously.
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F.3 Experiments

F.3.1 Petri Nets

The proposed Petri Nets to be learnt are discrete Petri Nets (PN) and Timed Continuous
Petri Nets (TCPN). Discrete Petri Nets have been previously explained in this work. It is
assumed that the reader is familiar with them.

Timed Continuos Petri Nets (TCPN) [49] are a tuple {N , λ, m0}, where:

• N is the structure of a Petri Net.

• λ ∈ R|T |
>0 is a vector with the speed of each transition.

• m0 is the initial marking of the network.

In this case, we are assuming infinite server semantics for the firing of a transition t, this is,
the flow of t, given marking M is:

f(M)[t] = λ[t] · min
p∈t

{M [p]/Pre[p, t]}

In the case of a discrete Petri Net, the task to be learnt is, given N and Mi, estimate Mi+1.
In the case of TCPN, given {N , λ, mi}, the task is to estimate mi+1. For simplicity, we will
assume that any enabled transition will be fired and no conflicts exist during the firing.

F.3.2 Learning architecture

To make the notation more readable, in the next lines we will denote m
(t)
i the marking of

place i ∈ P at instant time t. The proposed architecture first encodes the marking m
(t)
i of

each place i ∈ P and the parameters λj of each transition j ∈ T into the latent space with
the encoder function f :

z
(t)
i = f(m(t)

i ) with i ∈ P

wj = f(λj) with j ∈ T

We have Z(t) = {z
(t)
i ∈ R|P |×K | i ∈ P} and W = {wj ∈ R|T |×K | j ∈ T}, with K being

the latent feature dimension. The NPN fN then maps all transitions T , the structure
of the network N and the latent features Z(t), W to produce the output latent features
H(t) = {h

(t)
i ∈ R|P ∪T |×W | i ∈ P ∪ T}:

H(t) = fN (N , T, Z(t), W ) (F.3)

Finally, the output marking m
(t+1)
i of each place i ∈ P is obtained with the decoder network

g from the latent output variables:

m
(t+1)
i = g(h(t)

i ) with i ∈ P (F.4)

In our experimental setting, we will have a separate encoder f and decoder g for PNs, and a
separate encoder f̂ and decoder ĝ for TCPN. All f , g, f̂ , ĝ will be implemented with simple
linear transformation layers.
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Model MSE
PN

MSE
TCPN

GNN-max [63] 0.91 0.57
GNN-sum [63] 3.20 1.57
GNN-mean [63] 5.52 2.88
GAT [59] 0.53 1.45

Table F.1 Averaged test MSE obtained in the NPNs experiments based on the model employed.

Given the graph-oriented sense of the task, and the fact that PN firing depends on its
neighbour nodes, we propose Graph Neural Networks as a feasible model to learn NPNs.
GNNs take a graph as an input along with the features of nodes and edges, which makes
them ideal for modelling NPNs.

The chosen GNN for fN is a general Graph Neural Network (F.2). Since the input is a
bipartite graph and therefore the output depends on nodes 2-hops away, we use 2 layers of
GNNs, so as to reach 2-hops in the reachability graph (as it can be seen in Figure F.1, n
layers of GNN imply aggregation nodes that are n-hops away in the input graph). Regarding
the input, since our input networks are bipartite, to discern between places and transition
nodes, we have used a one-hot encoding approach and encoded the node type in the features
input vector. The marking of the input network is directly included as an input feature for
each place. The same field is left as a constant in the transitions feature input vector. In
the case of TCPN, parameters λ are included as a feature in transitions feature input. The
edge weight of each arc of the Petri Nets is given as the only edge parameter of the networks.
For the GNN aggregation function, we consider maximisation, mean and summation. As a
comparison, we also include Graph Attention Networks (GAT) [59] for our experiment.

The models were optimised with Adam SGD optimiser [26] with a learning rate of 0.0005. In
each case loss was computed with mean squared error (MSE). The embedding size feature
used was K = 64.

The training was performed with 20 Discrete Petri Nets with predefined values, and 20 TCPN
with the weights of the places randomly chosen in the range [0, 5] and speed parameters
randomly chosen in the range [0.001, 5]. The training was performed in a continual manner,
by producing random parameters on each epoch. Each model was trained for 3000 epochs
and the best model was chosen based on the validation set MSE. For validation, 3 Discrete
Petri Nets and 3 TCPNs with predefined values were used. Finally, for testing purposes, 5
predefined Petri Nets and 5 TCPNs were used. For training and testing, we use 5 consecutive
outputs for each net, this is, we fire each net 5 consecutive times and use the values for
training.

F.3.3 Results

Here we report the MSE obtained separately on PN and TCPN with the test set of networks.
These values were obtained with the model that yielded the lower MSE on the validation set
in each case. Table F.1 contains the minimum validation and test MSE obtained for each net
type, averaged over 5 steps and over the number of nets.
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In the table, we can see that, GNN-max perform better at learning TCPN and that GAT
perform well with PN. If we consider the sum of both MSEs, GNN-max yields the best
performance when learning both models simultaneously.

A close revision has been made to identify general errors made by the neural networks.
Generally, GNN-max and GAT perform better than the rest of the networks because they are
able to correctly identify those transitions that are enabled in Petri Nets and can correctly
compute the subtraction from the input places and the addition to the output places. GNN-
max shows also a great performance in generalising to increasing the number of input or
output places, unlike the other types of models.

The main error made by models comes when two transitions are fired simultaneously in
Petri Nets and tokens are accumulated in the same destination place. More generally, all the
models seem to struggle in the accumulation of values coming from more than one neighbour.
More research is, therefore, necessary into layer configurations that can generalise addition
while preserving performance in the other simulated tasks.
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